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Abstract. This expository paper is meant to be a very brief primer in finan-
cial mathematics. In the first half, we will begin by defining some relatively

basic probability concepts. Our journey will lead us to some properties re-

lated to our definitions as well as a proof of the Optional Stopping Theorem.
After establishing a mathematical groundwork, we will enter the second half,

in which we investigate the realm of finance. In this part, the reader will en-
counter our mathematical model and its assumptions, as well as some simple

financial terms. Finally, we will investigate an application of financial math-

ematics: the optimal pricing and exercise of a perpetual American options
contract.
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1. Introduction

It is only relatively recently that a discipline has surfaced to bring together calm
and measured mathematics with the cutthroat world of finance. This discipline
is aptly named financial mathematics. Its advent has marked a significant cul-
tural shift in Wall Street. Businesses such as algorithmic-trading hedge funds have
sprouted to take advantage of computerized formulae to engage in trades. Firms
are now attracting many bright mathematical minds to become quantitative ana-
lysts, traders, or fund heads. And far from throwing advanced mathematics out the
window in search of more elementary applicable arithmetic, financial mathematics
proves to be a challenging and stimulating career for many. The world of finance
is a captivating one. I hope that by the end of this paper, some readers may come
to share in my enthusiasm.

2. The Probability Space

Definition 2.1. A sample space Ω is a set comprised of elements ω. Each ω in Ω
is an outcome.

Definition 2.2. A σ-algebra S of subsets Y of a set X is a collection of subsets
that satisfies the following requirements:

• S contains X.
• S is closed under complementation, meaning for any element Y ∈ S, it is

true that its complement Y C is an element of S.
• S is closed under countable union.

Remark 2.3. For our purposes, we define the σ-algebra F of Ω as comprised of
elements E, where each E is an event.

Definition 2.4. The probability function P : F −→ [0, 1] is a function that satisfies
the following:

• P(Ω) = 1
• Consider events E1, E2, . . . ∈ F such that the events are all disjoint. Then

P

 ∞⋃
j=1

Ej

 =

∞∑
j=1

P [Ej ]

As mathematicians, we use P(E) to express the probability of an event E
occurring.

These terms help bring us to our notion of a probability space:

Definition 2.5. A probability space is a sample space Ω taken with the σ-algebra
F and the function P, each with the respective properties outlined above. It is
written as (Ω,F ,P).

Definition 2.6. A Borel set, denoted B, is any set in an arbitrary topological
space that can be formed through the countable union, countable intersection, or
relative complement of open sets.

Definition 2.7. A random variable is a measurable function X : Ω −→ R such that
for every Borel set B on the standard topology on R, we may write

X−1(B) = {ω ∈ Ω | X(ω) ∈ B} ∈ F
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3. Expected Value

Definition 3.1. Consider some nonnegative random variable X. We define the
function

E(X) =

∫
XdP

expressed with the Lebesgue integral, as the expected value function. If X is a
random variable and E(|X|) < ∞, then we define E(X) as above. If X takes
positive and negative values and E(|X|) =∞, however, E(X) is undefined.

A simpler definition applies when considering discrete random variables:

Definition 3.2. Consider a discrete random variable X that takes on the values
a1, a2, . . . . The expected value E is a function defined as

E(X) =

∞∑
j=1

(ajP{X = aj})

defined on variables X for which the sum on the right-side of the equation is abso-
lutely convergent.

There is a more specific kind of expected value, namely the conditional expected
value. First we give the formal mathematical definition. Then, for those who do
not understand some of the terms at hand (outside of the scope of this paper), a
simplified definition will be given, which is more suitable for our purposes anyway.

Definition 3.3. Let (Ω,F ,P) be a probability space. Let G ⊂ F be a σ-algebra.
Let X be an integrable random variable on the probability space. There exists a
unique G-measurable random variable Y such that if A ∈ G,∫

A

Y dP =

∫
A

XdP

This random variable Y is the conditional expected value, and it is written as
E [X | G], read as “the expected value of X given the information in G.”

Now we will simplify considerably for a new definition that works well with a
binomial assumption for a probability space, an assumption that we will indeed end
up taking.

Definition 3.4. Consider some random variable X that depends on the first N
outcomes. Consider some n such that 1 ≤ n ≤ N . Define

Xn(ω1ω2 . . . ) = ωn =

{
1 with probability p
−1 with probability q

Fix outcomes ω1, ω2, . . . , ωn. The sequence ω1ω2 . . . ωn is known as a continuation.
We also say that Xn represents a binomial model because it may only take on two
values for any given outcome. We define an N-period binomial model as one that
considers two possibilities for each of its N inputs.

Let ↑ denote the number of outcomes wi in a continuation such that ωi = 1,
and define ↓ analogously, where ωi = −1. The conditional expected value of the
random variable X based on information of outcomes ω1ω2 . . . ωn known at time n
is written as En [X] (ω1ω2 . . . ωn). It is defined as

En [X] (ω1ω2 . . . ωn) =
∑

ωn+1...ωN

p↑q↓X(ω1 . . . ωnωn+1 . . . ωN )
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Remark 3.5. Conventionally, we truncate the continuation when considering con-
ditional expected value. That is, we write En[X] rather than En[X](ω1 . . . ωn).

Properties of Conditional Expected Value. The conditional expected value
possesses many interesting properties. These properties will be outlined in the
following assumed proposition.

Proposition 3.6. Let N be a positive integer. Let X and Y be random variables
that depend on the first N coin tosses. Fix some integer n such that 0 ≤ n ≤ N .
Then all of the following properties hold true:

• Linearity: For all constants c1 and c2, it is true that

En [c1X + c2Y ] = c1En[X] + c2En[Y ]

• Independence: If X depends only on the first n coin tosses rather than the
first N coin tosses, then it is true that

En[XY ] = X · En[Y ]

If X depends only on latter tosses n + 1 through N rather than all of the
first N tosses, then it is true that

En[X] = E[X]

• Iterated Conditioning: Fix some integer m such that 0 ≤ n ≤ m ≤ N .
Then

En [[Em[X]] = En[X]

and

E[Em[X]] = E[X]

• Trivial: E0[X] = E[X] and EN [X] = X

4. Martingales

Definition 4.1. For our purposes, an adapted process is a sequence of random
variables P0, P1 . . . , PN such that P0 is constant and each Pn depends only on the
first n coin tosses.

Definition 4.2. Consider the adapted processM0,M1, . . . ,MN . IfMn = En[Mn+1]
for all n such that 0 ≤ n ≤ N − 1, then this process is a martingale. If, rather
than an = sign, we have a ≥ sign, this process is a supermartingale and may have
a tendency to decrease. An analogous statement regarding a ≤ sign classifies a
process as a submartingale, which may have a tendency to increase.

Properties Of Martingales. As with conditional expected value, we present a
couple of assumed propositions. They state some properties of martingales.

Proposition 4.3 (Multistep-Ahead Property). Consider the martingale
Mn;n = 0, 1, . . . , N . Then Mm = Em[Mn] whenever 0 ≤ m ≤ n ≤ N . Analo-
gous statements hold for supermartingales and submartingales, with the respective
≥ and ≤ signs.

Proposition 4.4 (Constant Expectancy). The expected value of a martingale is
constant over time. This may be written as M0 = EMn for all values of n such that
0 ≤ n ≤ N . Analogous statements hold for supermartingales and submartingales,
with the respective ≥ and ≤ signs.
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5. Random Walk and Stopping Times

Definition 5.1. Recall the random variable X from Definition 3.4. Define

Mn =

n∑
j=1

Xj

for all n ≥ 1, where M0 = 0. The adapted process M0,M1, . . . is called a
random walk on Z.

Remark 5.2. If p = q =
1

2
, we say that the random walk is symmetric. If p 6= q, we

say that the random walk is asymmetric.

Definition 5.3. Consider a random variable τ that takes values 0, 1, . . . , N or ∞
and satisfies the following condition: If

τ(ω1ω2 . . . ωnωn+1 . . . ωN ) = n

then
τ(ω1ω2 . . . ωnω

′
n+1 . . . ω

′
N ) = n

for all ω′n+1 . . . ω
′
N , an arbitrary sequence of the continuation. Such a variable τ is

called a stopping time.

Definition 5.4. Fix an integer m. Define

τm = min{n |Mn = m}
If the random walk never reaches m, τm is defined to be ∞. Such a variable τm is
the first passage time of the random walk to level m.

Remark 5.5. Note that a first passage time is a special kind of stopping time.

6. Miscellaneous Mathematical Definitions

We now give the definition of a Bellman equation and an accompanying definition
of a boundary condition. A Bellman equation is somewhat difficult to mathemat-
ically define with our background. Hence, the below definition is rather informal
but paints a good picture of the concept.

Definition 6.1. In the context of economics, finance, and programming, a
Bellman equation is one that greatly simplifies the analysis of a problem. Its input
is the result of some initial choices. Its output computes both the value at a certain
point in time based on those choices and the value of the remaining problem at
hand. Here, value is not necessarily monetary or anything similar. It is just some
number, variable, or expression that can be used for comparing with other numbers,
variables, or expressions determined by the Bellman equation.

Definition 6.2. A boundary condition is an equation or statement that expresses
what happens at the boundary.

Finally, we include a couple of functions we shall use.

Definition 6.3. The positive part of a function is defined as f+(x) = max{f(x), 0}.

Definition 6.4. The minimum function ∧ : R × R −→ R is defined as x ∧ y =
min{x, y}, where x and y are real numbers. We analogously define the maximum
function ∨.
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The Optional Stopping Theorem.

Theorem 6.5 (Optional Stopping Theorem). A martingale stopped at a stopping
time is a martingale. A supermartingale stopped at a stopping time is a super-
martingale. A submartingale stopped at a stopping time is a submartingale.

Proof. Consider the martingale Mn;n = 0, 1, . . . , N . We know that Mm = Em[Mn],
where 0 ≤ m ≤ n ≤ N , by the “multistep-ahead” property. Consider a stopping
time τ . If we let m = τ ∧ n, then we have Mτ∧n = Eτ∧n[Mn], which is both a
martingale and a martingale stopped at a stopping time. A similar proof may be
given for supermartingales and submartingales. �

The Optional Stopping Theorem is easily proved, yet it is still called a theorem
because of its importance to martingale theory and a number of other applications.
In an application to finance, the theorem asserts that if one buys an asset whose
price is a martingale, one cannot hope to make money or lose money off of sheer
market timing as a strategy. This is because the expected value is the same as
the price paid for it. Analogous statements may be made for assets that have a
tendency to go up in price (submartingale) or down (supermartingale). [3]

The Optional Stopping Theorem caps off our discussion of pure mathematics.
Now we may begin our foray into a new realm, where we will come to see the
marriage of finance and mathematics.

7. An Introduction to the Model and Finance

For the purpose of this discussion, we will define a model in which there are four
assumptions. The first assumption is that it is possible to purchase or sell subdi-
vided shares of a security; that is, securities do not necessarily need to be bought
or sold in integer quantities. This assumption is generally acceptable because secu-
rities tend to be traded in large volume. The second assumption is that the interest
rate r for investing and the interest rate r′ for borrowing are equal: r = r′. This
assumption, while not always true, is true for the large institutions that apply the
results of financial mathematics. The third assumption is that at a given time,
a given security is bought and sold at the same price. This is known as having
zero bid-ask spread. Realistically, this assumption is rarely satisfied. When not
much trading is taking place, however, the bid-ask spread really can be considered
negligible.

The fourth assumption is more complicated. For our model, define times

t0, t1, . . . , ti−1, ti, ti+1, . . .

where t0 is the initial time and where

t0 < · · · < ti−1 < ti < ti+1 < · · ·

Then there does not exist some time k between ti−1 and ti, where i > 0. We are
thus considering a discrete model of time. Furthermore, we assume that a security
may only take on only two different values in the next time period. Expressed
mathematically, define the security price as Si at time ti, where i ≥ 0. The security

at time ti+1 will cost either S↑i+1 or S↓i+1, where S↓i+1 ≤ Si ≤ S↑i+1. This is the
binomial assumption to our asset-pricing. It is our fourth assumption that causes
us to term this approach as the discrete-time binomial asset-pricing model.
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A reader might imagine that geometric Brownian motion would more accurately
depict changes in the market, but interestingly enough this is not the case in prac-
tice. Nevertheless, a qualm with the binomial assumption is a valid one. There are
no claims here that our model works for most or all cases. It is its basic nature that
renders it suitable for our discussion. True, it’s not the “best” model out there.
But in some situations, it really does shine, and it still is worthy of consideration.
So let’s consider it.

Financial Definitions.

Definition 7.1. A security is a negotiable financial instrument that represents a
type of financial value. A derivative is a kind of security that is so named because
it derives its price from one or more underlying assets.

Definition 7.2. An options contract is a type of derivative. It is sold by the option
writer to the option holder. An options contract may be either a call or a put. A call
provides the holder the right but not the obligation to purchase a specified quantity
of a financial instrument at a strike price K from the writer at some specified time
on or prior to the options contract’s expiration. An analogous definition of a put
may be given, but as a right to sell. The time of purchase in a call – or, analogously,
the time of sale in a put – is known as the exercise time. An options contract may
only be exercised when the underlying financial instrument costs more than the
strike price (in a call) or less (in a put). This is when the options contract is said
to be in-the-money.

Definition 7.3. An American options contract is one that does not have a specified
exercise time; it may be exercised at any time prior to its expiration. A perpetual
options contract is one that does not have an expiration date.

Definition 7.4. The intrinsic value of an options contract for the option holder
is a function g : R −→ R that reflects the difference in the strike price K and
the underlying stock price s of the option. For a call, g(s) = s − K. For a put,
g(s) = K − s.

Definition 7.5. Fix N and consider a binomial model. Let u =
S↑i
Si−1

and let

d =
S↓i
Si−1

for all numbers i such that 0 < i ≤ N , where Si is the price of the

security at time i. We call u the up factor and d the down factor.

Definition 7.6. The interest rate r is a quantified property of the money market
that yields 1 + r dollars at time one for a dollar invested in the money market at
time zero. Similarly, a dollar borrowed at time zero from the money market results
in a debt of 1 + r dollars.

Remark 7.7. As stated earlier in our assumptions for the model, we require that the
interest rate r for the money market is the same as the interest rate for investing.
We also require that r > −1.

Definition 7.8. Arbitrage is a trading strategy that arises in inefficient markets.
An investor taking advantage of arbitrage can start with no money, have zero
probability of losing money, and have positive probability of making money.
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Remark 7.9. Sometimes arbitrage is present in the real world, but with computers
and professionals tracking the markets so closely, arbitrage may be taken advantage
of quite quickly. We assume an efficient market in our analyses, meaning that we
necessitate 0 < d < 1 + r < u to make sense.

Definition 7.10. Hedging is the process whereby an investor minimizes risk by
investing in a way so as to control for market fluctuations.

Someone who hedges attempts to control for risk. Thus, when dealing with equa-
tions for determining how to construct a hedge, financial mathematicians don’t use
actual probabilities p and q. Rather, risk-neutral probabilities p̃ and q̃ are consid-
ered. Similarly, Ẽ denotes that risk-neutral expected value is being considered.

Remark 7.11. It is not required – and indeed quite rare – that p̃ = q̃ =
1

2
. “Risk-

neutral” doesn’t mean these two probabilities are equal. The actual way risk-neutral
probabilities are related under the discrete-time binomial asset-pricing model is as
follows:

p̃ =
1 + r − d
u− d

q̃ =
u− 1− r
u− d

For our purposes, we take these equations as assumed.

8. Deriving the Appropriate Bellman Equation

Now begins the fun part: applying our knowledge. In this section, we will
prepare an application of a Bellman equation that takes some stated values and
gives us a specified optimal stopping time for exercising a perpetual American
options contract. To get to that step, though, we’re going to need a Bellman
equation in the first place. The derivation of our Bellman equation is not very
difficult, so long as we keep in mind the core properties that it needs to satisfy.
Our Bellman equation should ideally price the options contract at the traded value
that represents the “fairest” value v(Sn), where v : R −→ R is a function computing
the value of the options contract based on the underlying stock price at time n. We
have to make sure that the seller does not consider the price to be too low, and we
have to make sure that the buyer does not consider the price too high.

The seller is satisfied if he or she has a hedging portfolio that has enough value
to pay off the options contract when it is exercised and that has enough value to
match the value of the options contract at any given time. In order to pay off a
call when exercised, the seller must have a hedging portfolio valued at (Sn −K)+.
Analogously, for a put, the portfolio should be valued at (K − Sn)+. An astute
reader may recall that these expressions represent the intrinsic value of the options
contract, g+(Sn). Finally, in order to have a portfolio that matches the value of
the options contract at any given time, we must compute a function v such that

(1 + r)v(Sn) ≥ Ẽn [v(Sn+1)]]
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We include the interest rate in there because the value of the money invested is
itself changing, and so a hedging portfolio must invest into the money market and
take into account the interest rate. This may be rewritten as

v(Sn) ≥
(

1

1 + r

)
Ẽn [p̃v(uSn) + q̃v(dSn)]

An astute reader may be thinking of the term “supermartingale” right now. We are
indeed checking to see that the value of the stock has a tendency to go down, so that
the seller can construct a hedge. To satisfy the seller, we have so far demonstrated
that these properties need to be met by our function. So, we need a function v such
that

v(Sn) ≥ max

{
g+(Sn),

(
1

1 + r

)
Ẽn [p̃v(uSn) + q̃v(dSn)]

}
An options contract valued as such certainly meets the seller’s demands. The

buyer, however, rightfully wishes for the options contract he or she is purchasing
to be priced as low as possible. Thus, the buyer requires that the function v is
the “smallest” function from a pointwise perspective; that is, for a function y that
satisfies the seller, at each time n ≥ 0, we have y(Sn) ≥ v(Sn). We may continue
to find a smaller and smaller function that satisfies the Bellman inequality above
up to a point: equality. Thus, the appropriate Bellman equation is

v(Sn) = max

{
g+(Sn),

(
1

1 + r

)
Ẽn [p̃v(uSn) + q̃v(dSn)]

}
where g+ is defined as earlier. Yet while this Bellman equation is correct, it

is not in simplest form. Any values of Sn that would make g negative cause our
function v to take on the value

v(Sn) =

(
1

1 + r

)
Ẽn [p̃v(uSn) + q̃v(dSn)]}

So we may simplify our equation to our desired form:

v(Sn) = max

{
g+(Sn),

1

1 + r
Ẽn [p̃v(uSn) + q̃v(dSn)]

}
We do, however, require some boundary conditions to be put in place to avoid

extraneous solutions. For a call, the boundary conditions are

lim
Sn↓0

v(Sn) = 0, lim
Sn→∞

v(Sn)

Sn
= 1

For a put, the boundary conditions are

lim
Sn↓0

v(Sn) = K, lim
Sn→∞

v(Sn) = 0
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9. Solving Our Bellman Equation

Time to apply.
Suppose as a budding “quant,” you determine that the market you are currently

dealing with satisfies assumptions that allow you to use the discrete-time binomial
asset-pricing model. An option writer has sold to you, the option holder, a perpetual
American put for the price of S0 = $4. When exercised, you have the right but
not the obligation to sell it for the strike price K = $4. You surmise that at each
time n, the options contract may be very closely approximated as either doubling

in price or as falling to one half of its current price. So you take u = 2 and d =
1

2
.

You also know that the interest rate r is
1

4
and shows no sign of changing any time

soon. Quick computation yields the risk-neutral values p̃ = q̃ =
1

2
.

We plug into our Bellman equation and simplify to get

v(Sn) = max

4− Sn,
1(

1 +
1

4

) Ẽn
[

1

2
v(2Sn) +

1

2
v

(
1

2
Sn

)]
= max

4− Sn,

 1(
5

4

)
(1

2

)
Ẽn
[
v(2Sn) + v

(
1

2
Sn

)]
= max

{
4− Sn,

(
2

5

)
Ẽn
[
v(2Sn) + v

(
1

2
Sn

)]}

The goal is to find a function v that satisfies all of the properties detailed in our
derivation. Suppose, after some mathematics outside of the scope of this paper –
or simply skilled guesswork – we decide that using the following function would be
a good idea:

v(2j) =

{
4− 2j , if j ≤ 1
4

2j
, if j ≥ 1

If we can prove that this function v satisfies all of the properties for all stock
prices Sn that are of the form 2j , then all that is left to do is find the maximum
value of v. We will use a more rigorous, proof-based approach:
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Satisfying The Seller, Part One.

Theorem 9.1. v(Sn) ≥ (4− Sn)+ for all n ≥ 0.

Proof. For the case where j ≤ 1 and Sn = 2j , then 4− Sn > 0, meaning

v(Sn) = 4− Sn ≥ (4− Sn)+

Similarly, for the case where j ≥ 2 and Sn = 2j , then 4− Sn < 0, meaning

v(Sn) ≥ 0 = (4− Sn)+

�

Satisfying The Seller, Part Two. So our function satisfies the first half of our
Bellman equation, whether as an equality or as an appropriate inequality. We will
now proceed to show that it satisfies the second half of our Bellman equation, and
for this we divide our proof into three theorems. The reason why shall become
apparent later.

Theorem 9.2. Ẽn [v(Sn+1)] <

(
5

4

)
v(Sn) for all values of Sn that correspond to

some value 2j, where j ≤ 0.

Proof.

Ẽn [v (Sn+1)] =

(
1

2

)
v
(
2j+1

)
+

1

2
v
(
2j−1

)
=

(
1

2

)(
4− 2j+1 + 4− 2j−1

)
=

(
1

2

)(
8− 2j

[
2 +

1

2

])
= 4−

(
1

2

)(
2j
[

5

2

])
= 4−

(
2j
)(5

4

)
(

4

5

)n+1

Ẽn [v (Sn+1)] =

(
4

5

)n+1(
4− 2j

[
5

4

])
=

(
4

5

)n(
16

5
− 2j

)
<

(
4

5

)n (
4− 2j

)
Ẽn [v (Sn+1)] <

(
5

4

)
v (Sn)

�
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Theorem 9.3. Ẽn [v (Sn+1)] =

(
5

4

)
v (Sn) for all values of Sn that correspond to

some value 2j, where j ≥ 2.

Proof.

Ẽn [v (Sn+1)] =

(
1

2

)
v
(
2j+1

)
+

(
1

2

)
v
(
2j−1

)
=

(
1

2

)(
4

2j+1
+

4

2j−1

)
(

4

5

)n+1

Ẽn [v (Sn+1)] =

(
4

5

)n+1(
1

2

)(
4

2 · 2j
+

16

2 · 2j

)
=

(
4

5

)n(
2

5

)(
20

2 · 2j

)
=

(
4

5

)n(
4

2j

)
Ẽn [v (Sn+1)] =

(
5

4

)
v (Sn)

�

Theorem 9.4. Ẽn [v (Sn+1)] <

(
5

4

)
v (Sn) for all values of Sn that correspond to

the value 2.

Proof.

Ẽn [v (Sn+1)] =

(
1

2

)
v
(
2j+1

)
+

1

2
v
(
2j−1

)
=

(
1

2

)
v
(
22
)

+
1

2
v
(
20
)

=

(
1

2

)(
4

4
+ 4− 20

)
=

3

2(
4

5

)n+1

Ẽn [v (Sn+1)] =

(
4

5

)n+1(
3

2

)
=

(
4

5

)n(
6

5

)
<

(
4

5

)n
· 2

<

(
4

5

)n
v (Sn)

Ẽn [v (Sn+1)] <

(
5

4

)
v (Sn)

�
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Satisfying the Buyer. Theorems 9.2 - 9.4, together with Theorem 9.1, prove that
the seller is satisfied. Now we will prove that the buyer is satisfied by demonstrating
that our function not just satisfies a Bellman inequality, but may be correctly
written as the Bellman equation derived earlier. This is because our function is the
smallest such function.

Theorem 9.5. Consider an adapted process Yn that satisfies the seller for all n ≥ 0.
Then Yn ≥ v(Sn) for all n.

Proof. Fix n. First we will consider the case where j ≤ 1. In this case, Sn ≤ 2, and
we have v(Sn) = 4 − Sn ≤ Yn by definition of Yn. Next we will consider the case
where j ≥ 2. Define τ as the first time after time n that the price of the stock falls
to $2. Because 4− Sτ = 2 > 0, we get the following equation

(9.6) v(Sn) = Ẽn

[(
4

5

)τ−n
(4− Sτ )

]
= Ẽn

[(
4

5

)τ−n
(4− Sτ )+

]
This equation will come in handy now that we turn our attention to Yn. If we

recall the Optional Stopping Theorem as well as a property of Yn that allows it to
satisfy the seller, we know that for all k ≥ n

(
4

5

)n
Yn =

(
4

5

)τ∧n
Yτ∧n

≥ Ẽn

[(
4

5

)τ∧k
Yτ∧k

]

≥ Ẽn

[(
4

5

)τ∧k
(4− Sτ∧k)+

]
If we let k approach infinity, we get(

4

5

)n
Yn ≥ Ẽn

[(
4

5

)τ
(4− Sτ )+

]
Yn ≥ Ẽn

[(
4

5

)τ−n
(4− Sτ )+

]
Together with Equation 9.6, we have Yn ≥ v(Sn) for all n. �

The Optimal Stopping Time. Thus, our function v satisfies the Bellman equa-
tion we derived earlier. All that is left for us to do is to find the maximum value
v([0,∞]) takes on. Recall that in Theorem 9.5 we calculated the first passage time
for the stock to fall to the price of $2. This was no accident. In fact, recall further
back to Theorems 9.2 - 9.4 regarding the supermartingale/martingale properties
of v. Because v shows the martingale property for all values of j ≥ 2 and the
supermartingale property for all values of j ≤ 1 – namely, beginning at the value
Sn = 2 – we recognize that the stock is at its highest value for the holder of the
put at the time when the stock falls to $2. Having demonstrated that our function
obeys our Bellman equation, we were ultimately able to demonstrate that the op-
timal strategy for the holder of this perpetual American put in market conditions
as stated is to sell it when it first falls to $2.
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