Dirichlet Characters

Where we left off from Tuesday (Liang).

Want to show for $(a,b)=1$

\[\sum_{\chi \in \chi(a,b)} \frac{1}{p^s} \sim \frac{1}{\phi(b)} \log \frac{1}{s-1} \quad \text{as } s \to 1. \]

Goal today is to show \(\exists \) a func. \(\Psi(n) = \begin{cases} 1 & \text{if } n \equiv a(b) \\ 0 & \text{else.} \end{cases} \)

Then could write LHS of the above as \(\sum \frac{\Psi(p)}{p^s} \), and hope this is easier to deal with.

In order to do this or construct \(\Psi \), we need to seemingly shift gears and construct functions from \(\mathbb{Z} \) to \(\mathbb{C}^* \) which has the properties. For \(\chi : \mathbb{Z} \to \mathbb{C}^* \)

1. \(\exists \, N \in \mathbb{N} \), s.t. \(\chi(x+N) = \chi(x) \) (periodic in \(N \))
2. \(\chi(1) = 1 \) then \(\chi(x) = 0 \) if \((x,N) = 1 \) then \(\chi(x) \neq 1 \). (Non-zero on relatively prime \(\#s \))
3. \(\chi(mn) = \chi(m) \chi(n) \) for any \(m,n \in \mathbb{Z} \).
Can prove \(\chi(1) = 1 \) from these properties, likewise if \(a \equiv b \pmod{\phi(N)} \)

then \(\chi(a) = \chi(b) \).

Euler's Theorem: If \((a, N) = 1 \) then \(a^{\phi(N)} \equiv 1 \pmod{N} \).

Proof:

So \(\chi(a^{\phi(N)}) = \chi(1 + k\phi(N)) = \chi(1) \), but also \(\chi(a^{\phi(N)}) = \chi(a)^{\phi(N)} \).

So \(\chi(a) = 1 \), or \(\chi(a) \) is a \(\phi(N) \)th root of unity.

Do these exist? Yes, but need a new object.

Definition:

Set \((a, N) = 1 \) then \(g \) modulo \(N \) is called a primitive root modulo \(N \) if \(\exists \ k \in \mathbb{Z} \) s.t. \(a \equiv g^k \pmod{N} \).

In other words, given any element \(a \) modulo \(N \), you can "get to it" by a sufficient power of your primitive root \(g \).

As \(\phi(N) \) is the \(\phi(N) \)th root of unity, \(g^k \equiv 1 \pmod{N} \), \(g \) is a primitive root if \(\nexists \ k \) with \(k < \phi(N) \) s.t. \(g^k \equiv 1 \pmod{N} \).

Example:

\(N = 5 \), \(g = 2 \), then \(g^2 = 4, g^3 = 3, g^4 = 1 \).

\(g = 3 \), then \(g^2 = 4, 2^3 = 2, 1 \).

\(\exists k \) in interval \(0 \leq k < \phi(n) - 1 \) s.t. \(a \equiv g^k \pmod{N} \), we label it \(k = \text{ind}_g a \) and call it the index of \(a \) to base \(g \mod N \).
Remark: The index of a relative to \(g \) should immediately remind you of the logarithm and its relationship with exponentiation.

Then let \(g \) be a primitive root mod \(N \). If \((a, N) = (b, N) = 1 \) then

1. \(\text{Ind}_g(ab) \equiv \text{Ind}_g(a) + \text{Ind}_g(b) \pmod{\phi(N)} \)
2. \(\text{Ind}_g(a^N) \equiv N \cdot \text{Ind}_g(a) \pmod{\phi(N)} \)
3. If \(g' \) is another primitive root then \(\text{Ind}_g = \text{Ind}_{g'} \).

Pt. HW

So for a given \(N \) do primitive roots exist? Not always.

Thus for \(N = 1, 2, 4, p^x \), or \(2p^x \), where \(p \) is an odd prime and \(x \geq 1 \), \(\exists \) a primitive root.

Pt. Will not show. Perhaps if time show for \(p^x \), \(x \geq 1 \).

Construction of \(\chi \)

If \(p \) odd

Let \(g \) be a primitive root of \(p^x \), \(x \geq 1 \). Set \(b(n) = \text{Ind}_g n \pmod{\phi(p^x)} \)

so \(n \equiv g(b(n)) (p^x) \). For \(h = 0, 1, \ldots, \phi(p^x) - 1 \), define

\[
\chi_h(n) = \begin{cases}
\frac{2\pi i h b(n)}{\phi(p^x)} & \text{if } (n, p^x) = 1 \\
0 & \text{else}
\end{cases}
\]
Note \(\chi_h(n) = e^{2\pi i h(n)} = 1 \) as well \(\chi_h(n+k^\alpha) \).

\[
\chi_h(n) = \chi_h(n+k^\alpha) = \chi_h(n) \quad \text{as} \quad n+k^\alpha \equiv s \pmod{p^\alpha} \implies n \equiv s \pmod{p^\alpha}.
\]

Also, \(\chi_{nm} = \chi_h(n)\chi_h(m) \).

As there are \(\phi(p) \) h's, there are \(\phi(p^\alpha) \) distinct Dirichlet characters \(\chi \pmod{p^\alpha} \). This construction works also for moduli \(2^\alpha \) if \(\alpha = 1 \) or \(\alpha = 2 \) with \(q=3 \) (check HWW). However, \(\not\exists \) no primitive root for \(2^\alpha \), \(\alpha \geq 3 \)

and one constructs Dirichlet characters mod \(2^\alpha \) by a different method.

Now if \(N = p_1^{\alpha_1} p_2^{\alpha_2} \ldots p_r^{\alpha_r} \) and if \(\chi_i \) is a Dirichlet character mod \(p_i^{\alpha_i} \), then \(\chi = \chi_1 \chi_2 \ldots \chi_r \) is a Dirichlet character mod \(N \).

How many \(\alpha \) are there in this construction, there are \(\phi(p_1^{\alpha_1})\phi(p_2^{\alpha_2})\ldots\phi(p_r^{\alpha_r}) \) of them.

Then \(\phi(c,b) = \phi(a)\phi(b) = \phi(ab) \).

If HWW (Give steps toward proof)

by Then \(\phi(p_1^{\alpha_1})\ldots\phi(p_r^{\alpha_r}) = \phi(N) \), with some group theory

one can show this is all of the Dirichlet characters modulo \(N \).

Why do we care about Dirichlet characters?
Easy to check if $\chi \cdot \psi$ are Dirichlet character mod N. Then $\chi \cdot \psi$ is also. (Check HW). Take $x \in \mathbb{Z}$ s.t. $x \not\equiv 1 (N)$.

Consider $\sum \chi(x)$. If we multiply it by $\psi(x)$ with $\psi(x) \neq 1$, $\chi(x)$

then $\psi(x) \cdot \sum \chi(x) = \sum \psi(x) \chi(x)$. Can check by def'n of Dirichlet character that ψ acting by multiplication on $\{\chi_1, \ldots, \chi_{\phi(N)}\}$ permutes the set of $\phi(N)$, so $\sum (\psi \cdot \chi)(x) = \sum \chi(x)$. Then $(1 - \psi(x)) \sum \chi(x) = 0$, $\chi(x)$

so $\sum \chi(x) = 0$. If $x \not\equiv 1 (N)$ then by def'n $\sum \chi(x) = \sum \chi(1(N)) = \Phi(N)$.

We have then $\frac{1}{\psi} \sum \chi(x) = \left\{ \begin{array}{ll} 1, & x \equiv 1 (N) \\ 0, & \text{else} \end{array} \right.$

Back to our original problem with $(a,b) = 1$.

$$\sum \frac{1}{\rho s} = \sum \frac{1}{\rho s} \quad \text{where} \quad \sum_{\rho \in \mathbb{Z} / \mathbb{Z}} \rho \not\equiv 1 (b),$$

Using Dirichlet characters

$$\sum_{\rho \in \mathbb{Z} / \mathbb{Z}} \frac{1}{\varphi(b)} \sum_{\chi(c)} \chi(p \rho) = \frac{1}{\varphi(b)} \sum_{\rho \in \mathbb{Z} / \mathbb{Z}} \chi(p \rho),$$

is our τ we desired to construct! What have we gained from this?
Can write as

\[
\frac{1}{\phi(b)} \sum_{\pi(b)} \frac{\pi(p)}{p^s},
\]

Similar to Tuesday adding \(\frac{\log \zeta(s)}{s} \) to \(\sum_{\pi(b)} \frac{\pi(p)}{p^s} \), and ask

\[
\sum_{\text{prime}} \frac{1}{p^s}
\]

we define

\[
L(s, x) := \sum_{\pi(b)} \frac{\pi(p)}{p^s},
\]

what are its analytic properties and relate \(\log L(s, x) \sim \sum_{\pi(b)} \frac{\pi(p)}{p^s} \), for any \(\pi(N) \).
Homework Problems

1. Define the function \(\mu \) as follows: \(\mu(1) = 1 \); \(\mu(n) = (-1)^r \) if \(n = p_1^a_1 \cdots p_r^a_r \) and \(q = a_1 = \cdots = a_r = 1 \); \(\mu(n) = 0 \) otherwise.

2. Show \(\sum \mu(d) = \left\lfloor \frac{1}{n} \right\rfloor = 1 \) if \(n = 1 \); \(0 \) if \(n > 1 \). Here \(\lfloor x \rfloor \) is the floor function.

3. Use this to prove \(\left(\sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} \right) \cdot \zeta(s) = 1 \), for \(\Re(s) > 1 \).

4. What does this say about the Euler product of \(\sum_{n=1}^{\infty} \frac{\mu(n)}{n^s} \)?

2. Prove if \(n \neq 1 \) then \(\phi(n) = \sum_{d|n} \mu(d) \frac{n}{d} \).

 Hint: Write \(\phi(n) = \sum_{j=1}^{n} \left\lfloor \frac{n}{\gcd(n,j)} \right\rfloor \), where \(\gcd(n,j) \) is GCD of \(n \) and \(j \).

3. Prove for \(n \neq 1 \) \(\phi(n) = n \prod_{p|n} \left(1 - \frac{1}{p} \right) \).

 Hint: Expand the product into a sum and use (2).

4. Conclude from (3) that if \((m,n) = 1 \) then \(\phi(mn) = \phi(m) \phi(n) \).

 Remark: There are other (possibly easier) proofs of this using the Chinese Remainder Theorem.