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To make life perhaps a little easier for you, I thought I would bang out some
notes. Be warned, these may be full of misprints. To ease texing, the first two
sections are adapted from my book “A Concise Course in Algebraic Topology”.

1. Basic homological algebra

Let R be a commutative ring. The main example will be R = Z. We develop
some rudimentary homological algebra in the category of R-modules.
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2 NOTES ON TOR AND EXT

1.1. Chain complexes. A chain complex over R is a sequence of maps of R-
modules

· · · −→ Xi+1
di+1

−−−→ Xi
di−→ Xi−1 −→ · · ·

such that di ◦di+1 = 0 for all i. We generally abbreviate d = di. A cochain complex
over R is an analogous sequence

· · · −→ Y i−1 di−1

−−−→ Y i di

−→ Y i+1 −→ · · ·

with di ◦ di−1 = 0. In practice, we usually require chain complexes to satisfy
Xi = 0 for i < 0 and cochain complexes to satisfy Y i = 0 for i < 0. Without
these restrictions, the notions are equivalent since a chain complex {Xi, di} can be
rewritten as a cochain complex

{

X−i, d−i
}

, and vice versa.
An element of the kernel of di is called a cycle and an element of the image of di+1

is called a boundary. We say that two cycles are “homologous” if their difference
is a boundary. We write Bi(X) ⊂ Zi(X) ⊂ Xi for the submodules of boundaries
and cycles, respectively, and we define the ith homology group Hi(X) to be the
quotient module Zi(X)/Bi(X). We write H∗(X) for the sequence of R-modules
Hi(X). We understand “graded R-modules” to be sequences of R-modules such as
this (and we never take the sum of elements in different gradings).

1.2. Maps and homotopies of maps of chain complexes. A map f : X −→ X ′

of chain complexes is a sequence of maps of R-modules fi : Xi −→ X ′
i such that

d′i ◦ fi = fi−1 ◦ di for all i. That is, the following diagram commutes for each i:

Xi

fi //

di

��

X ′
i

d′

i

��
Xi−1

fi−1

// X ′
i−1.

It follows that fi(Bi(X)) ⊂ Bi(X
′) and fi(Zi(X)) ⊂ Zi(X

′). Therefore f induces
a map of R-modules f∗ = Hi(f) : Hi(X) −→ Hi(X

′).
A chain homotopy s : f ≃ g between chain maps f, g : X −→ X ′ is a sequence

of homomorphisms si : Xi −→ X ′
i+1 such that

d′i+1 ◦ si + si−1 ◦ di = fi − gi

for all i. Chain homotopy is an equivalence relation since if t : g ≃ h, then s + t =
{si + ti} is a chain homotopy f ≃ h.

Lemma 1.1. Chain homotopic maps induce the same homomorphism of homology
groups.

Proof. Let s : f ≃ g, f, g : X −→ X ′. If x ∈ Zi(X), then

fi(x) − gi(x) = d′i+1si(x),

so that fi(x) and gi(x) are homologous. �
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1.3. Tensor products of chain complexes. The tensor product (over R) of
chain complexes X and Y is specified by letting

(X ⊗ Y )n =
∑

i+j=n

Xi ⊗ Yj .

When Xi and Yi are zero for i < 0, the sum is finite, but we don’t need to assume
this. The differential is specified by

d(x ⊗ y) = d(x) ⊗ y + (−1)ix ⊗ d(y)

for x ∈ Xi and y ∈ Yj . The sign ensures that d ◦ d = 0. We may write this as

d = d ⊗ id + id⊗ d.

The sign is dictated by the general rule that whenever two entities to which degrees
m and n can be assigned are permuted, the sign (−1)mn should be inserted. In the
present instance, when calculating (id⊗ d)(x ⊗ y), we must permute the map d of
degree −1 with the element x of degree i.

We regard R-modules M as chain complexes concentrated in degree zero, and
thus with zero differential. For a chain complex X , there results a chain complex
X ⊗ M ; H∗(X ⊗ M) is called the homology of X with coefficients in M .

Define a chain complex I by letting I0 be the free Abelian group with two
generators [0] and [1], letting I1 be the free Abelian group with one generator [I]
such that d([I]) = [0]− [1], and letting Ii = 0 for all other i. We could just as well
use free R-modules, but it is nice to have just the single complex I . Observe that
the tensor product M ⊗ A over Z of an R-module M and an Abelian group A is
an R-module via r(m ⊗ a) = (ra) ⊗ a. Similarly, the tensor product over Z of an
R-chain complex X and a Z-chain complex Y is an R-chain complex.

Lemma 1.2. A chain homotopy s : f ≃ g between chain maps f, g : X −→ X ′

determines and is determined by a chain map h : X⊗I −→ X ′ such that h(x, [0]) =
f(x) and h(x, [1]) = g(x).

Proof. Let s correspond to h via (−1)is(x) = h(x ⊗ [I]) for x ∈ Xi. The relation

d′i+1(si(x)) = fi(x) − gi(x) − si−1(di(x))

corresponds to the relation d′h = hd by the definition of our differential on I . The
sign in the correspondence would disappear if we replaced by X⊗I by I ⊗X . �

1.4. Short and long exact sequences. A sequence M ′ f
−→ M

g
−→ M ′′ of modules

is exact if im f = ker g. If M ′ = 0, this means that g is a monomorphism; if
M ′′ = 0, it means that f is an epimorphism. A longer sequence is exact if it is
exact at each position. A short exact sequence of chain complexes is a sequence

0 −→ X ′ f
−→ X

g
−→ X ′′ −→ 0

that is exact in each degree. Here 0 denotes the chain complex that is the zero
module in each degree.

Proposition 1.3. A short exact sequence of chain complexes naturally gives rise
to a long exact sequence of R-modules

· · · −→ Hq(X
′)

f∗

−→ Hq(X)
g∗

−→ Hq(X
′′)

∂
−→ Hq−1(X

′) −→ · · · .



4 NOTES ON TOR AND EXT

Proof. Write [x] for the homology class of a cycle x. We define the “connecting
homomorphism” ∂ : Hq(X

′′) −→ Hq−1(X
′) by ∂[x′′] = [x′], where f(x′) = d(x) for

some x such that g(x) = x′′. There is such an x since g is an epimorphism, and
there is such an x′ since gd(x) = dg(x) = 0. It is a standard exercise in “diagram
chasing” to verify that ∂ is well defined and the sequence is exact. Naturality
means that a commutative diagram of short exact sequences of chain complexes
gives rise to a commutative diagram of long exact sequences of R-modules. The
essential point is the naturality of the connecting homomorphism, which is easily
checked. �

1.5. Dual cochain complexes and Hom complexes. For a chain complex X =
X∗, we define the dual cochain complex X∗ by setting

Xn = Hom(Xn, R) and dn = (−1)n Hom(dn+1, id).

As with tensor products, we understand Hom to mean HomR when R is clear from
the context. On elements, for an R-map f : Xn −→ R and an element x ∈ Xn+1,

(dnf)(x) = (−1)nf(dn(x)).

More generally, for an R-module M , we define a cochain complex Hom(X, M) in
the same way. The sign is conventional. In analogy with the notation H∗(X ; M) =
H∗(X ⊗ M), we write

H∗(X ; M) = H∗(Hom(X, M)).

More generally, for a cochain complex Y , define

Hom(X, Y )n = ×q Hom(Xq, Y
n−q)

with differential δ specified by

(δf)(x) = d(f(x)) − (−1)nf(d(x))

More explicitly, writing f = (fq), fq : Xq −→ Y n−q, this means that δ(f) = (gq),
where gq : Xq −→ Y n+1−q is given on x ∈ Xq as the difference of dn−q(fq(x)) and
(−1)nfq−1dq(x). When Y = M is concentrated in degree 0, this agrees with the
previous definition.

Note that if we take X to be just a chain complex of Z-modules and take Hom’s
over Z, then the definition still makes sense and gives a complex of R-modules.
We have defined Hom’s between chain and cochain complexes in the way that they
are most frequently used, but, when thinking categorically it makes more sense to
regrade all cochain complexes as chain complexes and redefine

Hom(X, Y )n = ×q Hom(Xq, Yq+n).

1.6. Relations between ⊗ and Hom. We record a few observations relating ⊗
and Hom of complexes, starting with relations between ⊗ and Hom on the category
of R-modules. For R-modules L, M , and N , we have an adjunction

Hom(L ⊗ M, N) ∼= Hom(L, Hom(M, N)).

We also have a natural homomorphism

Hom(L, M) ⊗ N −→ Hom(L, M ⊗ N),

and this is an isomorphism if either L or N is a finitely generated projective R-
module. Again, we have a natural map

Hom(L, M) ⊗ Hom(L′, M ′) −→ Hom(L ⊗ L′, M ⊗ M ′),
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which is an isomorphism if L and L′ are finitely generated and projective or if L is
finitely generated and projective and M = R.

We can replace L and L′ by chain complexes and obtain similar maps, inserting
signs where needed. For example, a chain homotopy X ⊗I −→ X ′ between chain
maps f, g : X −→ X ′ induces a chain map

Hom(X ′, M) −→ Hom(X ⊗ I , M) ∼= Hom(I , Hom(X, M)) ∼= Hom(X, M) ⊗ I
∗,

where I ∗ = Hom(I , R). It should be clear that this implies that our original
chain homotopy induces a homotopy of cochain maps

f∗ ≃ g∗ : Hom(X ′, M) −→ Hom(X, M).

2. The universal coefficient and Künneth theorems

We describe some classical results in homological algebra that explain how to
calculate H∗(X ; M) from H∗(X) ≡ H∗(X ; R) and how to calculate H∗(X ⊗ Y )
from H∗(X) ⊗ H∗(Y ). We then describe how to calculate H∗(X ; M) from H∗(X).
We again work over a general commutative ring R, and ⊗ and Hom are implicitly
understood to be taken over R.

2.1. Universal coefficients in homology. Let X and Y be chain complexes
over R. We think of H∗(X) ⊗ H∗(Y ) as a graded R-module which, in degree n, is
∑

p+q=n Hp(X) ⊗ Hq(Y ). We define

α : H∗(X) ⊗ H∗(Y ) −→ H∗(X ⊗ Y )

by α([x] ⊗ [y]) = [x ⊗ y] for cycles x and y that represent homology classes [x] and
[y]. As a special case, for an R-module M we have

α : H∗(X) ⊗ M −→ H∗(X ⊗ M).

We omit the proof of the following standard result, but we shall shortly give the
quite similar proof of a cohomological analogue. Recall that an R-module M is said
to be flat if the functor M ⊗ N is exact (that is, preserves exact sequences in the
variable N). We say that a graded R-module is flat if each of its terms is flat.

We shall treat torsion products, which measure the failure of tensor products to
be exact functors, shortly. For a principal ideal domain (PID) R, the only torsion

product is the first one, denoted TorR
1 (M, N). It can be computed by constructing

a short exact sequence

0 −→ F1 −→ F0 −→ M −→ 0

and tensoring with N to obtain an exact seqence

0 −→ TorR
1 (M, N) −→ F1 ⊗ N −→ F0 ⊗ N −→ M ⊗ N −→ 0,

where F1 and F0 are free R-modules. That is, we choose an epimorphism F0 −→ M
and note that, since R is a PID, its kernel F1 is also free.

Theorem 2.1 (Universal coefficient). Let R be a PID and let X be a flat chain
complex over R. Then, for each n, there is a natural short exact sequence

0 −→ Hn(X) ⊗ M
α
−→ Hn(X ⊗ M)

β
−→ TorR

1 (Hn−1(X), M) −→ 0.

The sequence splits, so that

Hn(X ⊗ M) ∼= (Hn(X) ⊗ M) ⊕ TorR
1 (Hn−1(X), M),

but the splitting is not natural.
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Remark 2.2. The result holds more generally when R is any ring and the chains
and cycles of X are also flat R-modules.

Corollary 2.3. If R is a field, then

α : H∗(X) ⊗ M −→ H∗(X ; M)

is a natural isomorphism.

2.2. The Künneth theorem. The universal coefficient theorem in homology is a
special case of the Künneth theorem.

Theorem 2.4 (Künneth). Let R be a PID and let X be a flat chain complex and
Y be any chain complex. Then, for each n, there is a natural short exact sequence

0 −→
∑

p+q=n

Hp(X)⊗Hq(Y )
α
−→ Hn(X⊗Y )

β
−→

∑

p+q=n−1

TorR
1 (Hp(X), Hq(Y )) −→ 0.

The sequence splits, so that

Hn(X ⊗ Y ) ∼= (
∑

p+q=n

Hp(X) ⊗ Hq(Y )) ⊕ (
∑

p+q=n−1

TorR
1 (Hp(X), Hq(Y ))),

but the splitting is not natural.

This applies directly to the computation of the homology of the Cartesian prod-
uct of CW complexes X and Y in view of the isomorphism

C∗(X × Y ) ∼= C∗(X) ⊗ C∗(Y ).

Corollary 2.5. If R is a field, then

α : H∗(X) ⊗ H∗(Y ) −→ H∗(X ⊗ Y )

is a natural isomorphism.

We prove the corollary to give the idea. The general case is proved by an elab-
oration of the argument. There is a simple but important technical point to make
here. Let us for the moment remember to indicate the ring over which we are taking
tensor products. For chain complexes X and Y over Z, we have

(X ⊗Z R) ⊗R (Y ⊗Z R) ∼= (X ⊗Z Y ) ⊗Z R.

We can therefore use the corollary to compute H∗(X ⊗Z Y ; R) from H∗(X ; R) and
H∗(Y ; R).

Proof of the corollary. Assume first that Xi = 0 for i 6= p, so that X = Xp is just
an R-module with no differential. The square commutes and the row and column
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are exact in the diagram

0

��
0 // Bq(Y ) // Zq(Y )

��

// Hq(Y ) // 0.

Yq+1
dq+1

//

dq+1

OO

Yq

dq

��
Yq−1

Since all modules over a field are free and thus flat, this remains true when we
tensor the diagram with Xp. This proves that if n = p + q, then

Zn(Xp ⊗ Y ) = Xp ⊗ Zq(Y ), Bn(Xp ⊗ Y ) = Xp ⊗ Bq(Y ),

and therefore

Hn(X ⊗ Y ) = Xp ⊗ Hq(Y ).

In the general case, regard the graded modules Z(X) and B(X) as chain complexes
with zero differential. The exact sequences

0 −→ Zp(X) −→ Xp

dp

−→ Bp−1(X) −→ 0

of R-modules define a short exact seqence of chain complexes since dp−1 ◦ dp = 0.
Define the suspension of a graded R-module N by (ΣN)n+1 = Nn. Tensoring with
Y , we obtain a short exact sequence of chain complexes

0 −→ Z(X) ⊗ Y −→ X ⊗ Y −→ ΣB(X) ⊗ Y −→ 0.

It follows from the first part and additivity that

H∗(Z(X) ⊗ Y ) = Z(X) ⊗ H∗(Y ) and H∗(ΣB(X) ⊗ Y ) = ΣB(X) ⊗ H∗(Y ).

Moreover, by inspection of definitions, the connecting homomorphism of the long
exact sequence of homology modules associated to our short exact sequence of chain
complexes is just the inclusion B ⊗ H∗(Y ) −→ Z ⊗ H∗(Y ). In particular, the long
exact sequence breaks up into short exact sequences

0 −→ B(X) ⊗ H∗(Y ) −→ Z(X) ⊗ H∗(Y ) −→ H∗(X ⊗ Y ) −→ 0.

However, since tensoring with H∗(Y ) is an exact functor, the cokernel of the inclu-
sion B ⊗ H∗(Y ) −→ Z ⊗ H∗(Y ) is H∗(X) ⊗ H∗(Y ). The conclusion follows. �

2.3. Universal coefficients in cohomology. We have a cohomological version of
the universal coefficient theorem. We shall treat Ext modules, which measure the
failure of Hom to be an exact functor, shortly. For a PID R, the only Ext module
is the first one, denoted Ext1R(M, N). It can be computed by constructing a short
exact sequence

0 −→ F1 −→ F0 −→ M −→ 0

and applying Hom to obtain an exact seqence

0 −→ Hom(M, N) −→ Hom(F0, N) −→ Hom(F1, N) −→ Ext1R(M, N) −→ 0,

where F1 and F0 are free R-modules.
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For each n, define

α : Hn(Hom(X, M)) −→ Hom(Hn(X), M)

by letting α[f ]([x]) = f(x) for a cohomology class [f ] represented by a “cocycle”
f : Xn −→ M and a homology class [x] represented by a cycle x. It is easy to
check that f(x) is independent of the choices of f and x since x is a cycle and f is
a cocycle.

Theorem 2.6 (Universal coefficient). Let R be a PID and let X be a free chain
complex over R. Then, for each n, there is a natural short exact sequence

0 −→ Ext1R(Hn−1(X), M)
β
−→ Hn(X ; M)

α
−→ Hom(Hn(X), M) −→ 0.

The sequence splits, so that

Hn(X ; M) ∼= Hom(Hn(X), M) ⊕ Ext1R(Hn−1(X), M),

but the splitting is not natural.

Corollary 2.7. If R is a field, then

α : H∗(X ; M) −→ Hom(H∗(X), M)

is a natural isomorphism.

Again, there is a technical point to be made here. If X is a complex of free
Abelian groups and M is an R-module, such as R itself, then

HomZ(X, M) ∼= HomR(X ⊗Z R, M).

One way to see this is to observe that, if B is a basis for a free Abelian group F , then
HomZ(F, M) and HomR(F ⊗Z R, M) are both in canonical bijective correspondence
with maps of sets B −→ M . More algebraically, a homomorphism f : F −→ M of
Abelian groups determines the corresponding map of R-modules as the composite
of f ⊗ id and the action of R on M :

F ⊗Z R −→ M ⊗Z R −→ M.

2.4. Proof of the universal coefficient theorem. We need two properties of
Ext in the proof. First, Ext1R(F, M) = 0 for a free R-module F . Second, when R
is a PID, a short exact sequence

0 −→ L′ −→ L −→ L′′ −→ 0

of R-modules gives rise to a six-term exact sequence

0 −→ Hom(L′′, M) −→ Hom(L, M) −→ Hom(L′, M)
δ
−→ Ext1R(L′′, M) −→ Ext1R(L, M) −→ Ext1R(L′, M) −→ 0.

Proof of the universal coefficient theorem. We write Bn = Bn(X), Zn = Zn(X),
and Hn = Hn(X) to abbreviate notation. Since each Xn is a free R-module and R
is a PID, each Bn and Zn is also free. We have short exact sequences

0 // Bn
in // Zn

πn // Hn
// 0

and

0 // Zn

jn // Xn

dn // Bn−1
σn

oo_ _ _
// 0;



NOTES ON TOR AND EXT 9

we choose a splitting σn of the second. Writing f∗ = Hom(f, M) consistently, we
obtain a commutative diagram with exact rows and columns

0 0

��
0 // Hom(Hn, M)

π∗

n // Hom(Zn, M)
i∗n //

OO

Hom(Bn, M)

d∗

n+1

��
· · · // Hom(Xn−1, M)

d∗

n //

j∗n−1

��

Hom(Xn, M)

j∗n

OO

d∗

n+1 //

σ∗

n

���
�

�

Hom(Xn+1, M) // · · ·

Hom(Zn−1, M)
i∗n−1

//

��

Hom(Bn−1, M)
δ

//

d∗

n

OO

0

66l
l

l
l

l
l

l

Ext1R(Hn−1, M) // 0

0 0

OO

By inspection of the diagram, we see that the canonical map α coincides with the
composite

Hn(X ; M) = ker d∗n+1/ im d∗n = ker i∗nj∗n/ im d∗ni∗n−1

j∗n−→ im π∗

n

(π∗

n)−1

−−−−→ Hom(Hn, M).

Since j∗n is an epimorphism, so is α. The kernel of α is im d∗n/ im d∗ni∗n−1, and

δ(d∗n)−1 maps this group isomorphically onto Ext1R(Hn−1, M). The composite δσ∗
n

induces the required splitting. �

2.5. Künneth relations for cochain complexes. If Y and Y ′ are cochain com-
plexes, then we have the natural homomorphism

α : H∗(Y ) ⊗ H∗(Y ′) −→ H∗(Y ⊗ Y ′)

given by α([y]⊗[y′]) = [y⊗y′], exactly as for chain complexes. In fact, by regrading,
we may view this as a special case of the map for chain complexes. The Künneth
theorem applies to this map. For its flatness hypothesis, it is useful to remember
that, for any Noetherian ring R, the dual Hom(F, R) of a free R-module is a flat
R-module.

As indicated in §1.6, if Y = Hom(X, M) and Y ′ = Hom(X ′, M ′) for chain
complexes X and X ′ and R-modules M and M ′, then we also have the map of
cochain complexes

ω : Hom(X, M) ⊗ Hom(X ′, M ′) −→ Hom(X ⊗ X ′, M ⊗ M ′)

specified by the formula

ω(f ⊗ f ′)(x ⊗ x′) = (−1)(deg f ′)(deg x)f(x) ⊗ f ′(x′).

Also writing ω for the map it induces on cohomology, we then have the composite

ω ◦ α : H∗(X ; M)⊗ H∗(X ′; M ′) −→ H∗(X ⊗ X ′; M ⊗ M ′).

When M = M ′ = A is a commutative R-algebra, we may compose with the map

H∗(X ⊗ X ′; A ⊗ A) −→ H∗(X ⊗ X ′; A)

induced by the multiplication of A to obtain a map

H∗(X ; A) ⊗ H∗(X ′; A) −→ H∗(X ⊗ X ′; A).
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The cases most commonly used are when R = Z and A is either Z or a field. For
example, this is a starting point for the definition of the cup product in topology.

3. Torsion products

We give a quick development of the basic theory of torsion products. Here we
change our point of view and work more generally with non-commutative rings R
and their right and left modules. Thus, in general, M ⊗R N is only an Abelian
group. When R is commutative, all of our functors take values in the category of
R-modules rather than just Abelian groups.

3.1. Projective resolutions. We work with right R-modules here, but we could
equally well work with left R-modules. Recall that an R-module P is said to be
projective if for each epimorphism g : M −→ N and each map f : P −→ N , there
exists a map f̃ : P −→ M such that g ◦ f̃ = f . This means that

Hom(id, g) : HomR(P, M) −→ Hom(P, N)

is an epimorphism. There is a standard characterization.

Lemma 3.1. A module P is projective if and only if it is a direct summand of a
free module. Any projective module is flat.

Proof. It is clear that R itself is projective and any direct sum of projective modules
is projective. Therefore every free module is projective. If there is a module Q such
that P ⊕Q = F is free, then, using the inclusion P −→ F and projection F −→ P ,
we see that P is projective. If P is projective and g : F −→ P is an epimorphism
with F free, as can always be chosen, then application of projectivity to the identity
map P −→ P shows that P is a direct summand of F . Since direct sums and direct
summands of flat modules are flat, the second statement follows. �

Let M be an R-module. A complex of R-modules over M is a complex of the
form

· · · −→ Xi+1
di+1

−−−→ Xi
di−→ Xi−1 −→ · · · −→ X0

ε
−→ M −→ 0.

It is a projective (or free or flat) complex over M if each Xi is projective (or free
or flat). It is a resolution of M if the displayed sequence is exact. It is appropriate
to think of M itself as a complex concentrated in degree 0 and ε : X −→ M as a
morphism of complexes. If X is a resolution of M , then ε induces an isomorphism
on homology since Coker d1 = M .

Lemma 3.2. Every R-module M has a projective resolution.

Proof. Every module is a quotient of a free module. Start with an epimorphism
ε : X0 −→ M with X0 free. Then choose an epimorphism X1 −→ Ker ε, with X1

free and let d1 be its composite with the inclusion Ker ε ⊂ X0. Continue inductively
to construct epimorphisms Xi+1 −→ Ker di. �

Projective resolutions are unique up to chain homotopy equivalence, as we see
by taking f = id in the following result.

Lemma 3.3. Let f : M −→ N be a map of R-modules. Let ε : X −→ M be a
projective complex over M and let ζ : Y −→ N be a resolution of N . Then there is
a map f̃ : X −→ Y of chain complexes such that ζ ◦ f̃ = f ◦ ε, and f̃ is unique up
to chain homotopy.
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Proof. Consider the following diagram.

· · · // Xi+1
di+1 //

f̃i+1

��

Xi
di //

f̃i

��

Xi−1
//

f̃i−1

��

· · · // X0

f̃0

��

ε // M //

f

��

0

· · · // Yi+1
di+1

// Yi
di

// Yi−1
// · · · // Y0

ζ
// N // 0

Since X0 is projective and ζ is an epimorphism, there exists a map f̃0 such that
ζf̃0 = fε. Inductively (thinking of f as f−1 and d−1 as ε or ζ), suppose given a

map f̃i−1, i ≥ 1, such that di−1f̃i−1 = f̃i−2di−1. Then di−1f̃i−1di = 0, so that

f̃i−1di maps Xi to Ker di−1 = Im di. We obtain f̃i such that dif̃i = f̃i−1di by the
projectivity of Xi.

Now assume given another such map f̃ ′. Then ζ(f̃0 − f̃ ′
0) = 0, so by the pro-

jectivity of X0 and surjectivity of ζ, we obtain s0 : X0 −→ Y1 such that d1s0 =
f̃0 − f̃ ′

0. Inductively (thinking of s−1 as zero), suppose given si−1, i ≥ 1, such that

disi−1 + si−2di−1 = f̃i−1 − f̃ ′
i−1. Then di(f̃i − f̃ ′

i − si−1di) = 0, so there exists

si : Xi −→ Yi+1 such that di+1si = f̃i − f̃ ′
i − si−1di by the projectivity of Xi. �

We need another such lemma to deal with long exact sequences of Tor groups.

Lemma 3.4. Let 0 −→ M ′ f
−→ M

g
−→ M ′′ −→ 0 be an exact sequence of R-

modules. Let X ′ and X ′′ be projective resolutions of M ′ and M ′′. Then there is a
projective resolution X of M and an exact sequence of resolutions over the given
exact sequence:

0 // X ′
f̃ //

ε′

��

X
g̃ //

ε

��

X ′′ //

ε′′

��

0

0 // M ′

f
// M g

// M ′′ // 0.

Proof. Define Xi = X ′
i ⊕X ′′

i and let f̃ and g̃ be the canonical inclusion and projec-
tion. We must construct an epimorphism ε : X0 −→ M and maps di : Xi −→ Xi−1

that give a complex over M such that the diagram commutes. By the long exact
sequence associated to the resulting short exact sequence of chain complexes, it will
follow that X is a projective resolution of M . The restriction of ε to X ′

0 must be
ε′, and the restriction of di to X ′

i must be d′i. Choose the restriction of ε to X ′′
0

to be any map ζ : X ′′
0 −→ M such that gζ = ε′′. There is such a map since X ′′

0

is projective, and a diagram chase shows that ε is then an epimorphism. For the
diagram to commute, the restriction of di, i ≥ 1, to X ′′

0 must be of the form (ei, d
′′
i ),

ei : X ′′
i −→ X ′

i−1. For X to be a complex over M , we must have ε′e1 = −ζd′′1 and,
for i ≥ 2, d′i−1ei = −ei−1d

′′
i . These will ensure that εd1 = 0 and di−1di = 0. Since

ε′′d′′1 = 0, ζd′′1 can be viewed as a map X ′′
1 −→ M ′, and we can choose such an e1.

Given ei−1, ei−1d
′′
i : X ′′

i −→ X ′
i−2 takes values in Ker d′i−2 = Imd′i−1, and we can

choose such an ei. �

3.2. The definition and properties of Tor. For a short exact sequence of right
R-modules 0 −→ M ′ −→ M −→ M ′′ −→ 0 and a left R-module N , the sequence
of Abelian groups

M ′ ⊗R N −→ M ⊗R N −→ M ′′ ⊗R N −→ 0
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is exact, but the left-most arrow need not be a monomorphism. We say that ⊗R

is right exact. Torsion products measure the deviation from exactness. Here is an
omnibus theorem that states the basic properties of torsion products.

Theorem 3.5. There are Abelian group–valued functors TorR
n (M, N) of right R-

modules M and left R-modules N , together with natural connecting homomorphisms

∂ : TorR
n (M ′′, N) −→ TorR

n−1(M
′, N) and ∂ : TorR

n (M, N ′′) −→ TorR
n−1(M, N ′)

for short exact sequences

0 −→ M ′ −→ M −→ M ′′ −→ 0 and 0 −→ N ′ −→ N −→ N ′′ −→ 0.

These satisfy the following properties.

(i) TorR
n (M, N) = 0 for n < 0.

(ii) TorR
0 (M, N) is naturally isomorphic to M ⊗R N .

(iii) TorR
n (M, N) = 0 for n > 0 if either M or N is projective.

(iv) The following sequences are exact.

· · · −→ TorR
n (M ′, N) −→ TorR

n (M, N) −→ TorR
n (M ′′, N) −→ TorR

n−1(M
′, N) −→ · · ·

· · · −→ TorR
n (M, N ′) −→ TorR

n (M, N) −→ TorR
n (M, N ′′) −→ TorR

n−1(M, N ′) −→ · · ·

For each fixed N , the functors TorR
n (M, N) of M together with the natural con-

necting homomorphisms ∂ : TorR
n (M ′′, N) −→ TorR

n−1(M
′, N) on exact sequences

0 −→ M ′ f
−→ M

g
−→ M ′′ −→ 0 are uniquely determined up to isomorphism by

(i)—(iv), and similarly for each fixed M .

Proof. The naturality statements imply that the long exact sequences of (iv) are
functorial on short exact sequences. For the existence statement, let us fix N .
Choose a projective resolution X of M . Define

TorR
∗ (M, N) = H∗(X ⊗R N)

Since chain homotopic maps of complexes induce the same map on homology,
Lemma 3.3 shows that this is well-defined up to natural isomorphism and gives
a functor of M . Manifestly, it also gives a functor of N . Since ⊗R is right exact,
(ii) is clear. Since the identity map X0 = M −→ M is a projective resolution of a
projective module M and since projective modules are flat, both parts of (iii) are
also clear. We define the first map ∂ and derive the first long exact sequence of
(iv) by use of Lemma 3.4. We define the second map ∂ and derive the second long
exact sequence by use of the short exact sequence of chain complexes

0 −→ X ⊗ N ′ −→ X ⊗ N −→ X ⊗ N ′′ −→ 0.

Here exactness holds by the projectivity and thus flatness of the Xi.
For the axiomatization, we proceed by induction on n, starting from (i) and (ii).

If we have two systems of functors and natural connecting homomorphisms and
we have proven they are isomorphic through stage (n − 1), then a diagram chase
starting from short exact sequences 0 −→ M ′ −→ M −→ M ′′ −→ 0 where M is
free shows that they are isomorphic at the stage n.

We can reverse the roles of M and N in our original construction, starting from
a projective resolution of N . We again have all of the properties (i) – (iv), so by
the uniqueness we obtain the same sequence of functors and natural connecting
homomorphisms. Moreover, we can also check that H∗(X ⊗R Y ) gives functors
and natural connecting homomorphisms that satisfy the axioms. Altenatively, we
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can observe that the morphisms of complexes X −→ M and Y −→ N induce
morphisms of complexes

X ⊗R M X ⊗R Y //oo Y ⊗R N.

Either by a direct, hands on, Künneth type argument, or more elegantly by an
application of the theory of spectral sequences if one knows about that, one can
check directly that these give isomorphisms. �

3.3. Change of rings. In applications, it is very often the case that we use further
structure on torsion products. We describe some of this here and in the next section.
We take the opportunity to introduce and use some standard and important adjoint
functors on the way.

In this section, we fix a homomorphism of rings f : R −→ S. Let M and P be
a right R module and a right S-module, and let g : M −→ P be an f -equivariant
map, meaning that g(mr) = g(m)f(r). Similarly, let N and Q be a left R-module
and a left S-module and let h : N −→ Q be f -equivariant, h(rn) = f(r)h(n). We
shall obtain a map

(3.6) Torf
∗(g, h) : TorR

∗ (M, N) −→ TorS
∗ (P, Q).

This allows us to view Tor as a functor of all three variables.
Let us write f∗ for the pullback of action functor MS −→ MR, where MR

denotes the category of right R-modules. Thus f∗P is P with the right R-action
pr = pf(r). Clearly g is just a map of right R-modules M −→ f∗P . The functor
f∗ has left and right adjoints, often denoted f! and f∗, that are given by extension
and coextension of scalars. Explicitly,

f!M = M ⊗R S and f∗M = HomR(S, M).

We are using that S is both a left and a right S-module and therefore a left and
right R-module via f . In defining M ⊗R S, we use the left action of R to define the
tensor product and use the right action of S to give M ⊗R S an S-action, whereas
HomR(S, M) is the Abelian group of maps of right R-modules k : S −→ M , with
right S-action given by (ks)(s′) = k(ss′). That is, it is induced by the left action
of S on itself. The adjunctions read

HomS(f!M, P ) ∼= HomR(M, f∗P ) and HomR(f∗P, M) ∼= HomS(P, f∗M).

The easy verifications are left to the reader.
The functor f! takes R to S and preserves direct sums, hence it takes R-projective

modules to S-projective modules. If f∗S is flat as an R-module, in which case we
say that f is a “flat extension” of R, then f! takes exact sequences of R-modules
to exact sequences of S-modules. Now Lemma 3.3 gives the following result.

Lemma 3.7. Let X be a projective R-resolution of M and Y be a projective S-
resolution of P . Then there is a map g̃ : f!X −→ Y of S-projective complexes over
the adjoint ĝ : f!M −→ P of the map g : M −→ f∗P . It is a map of projective
resolutions if S is a flat extension of R.

We agree to write f! for both of the functors M ⊗R S and S ⊗R N . We have the
natural homomorphism of Abelian groups

ζ : M ⊗R N −→ f!M ⊗S f!N ∼= M ⊗R S ⊗R N
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specified by ζ(m⊗n) = m⊗ 1⊗n. With the notations of the previous lemma, and

using the adjoint ĥ : f!N −→ Q of h : N −→ f∗Q, this gives a natural composite

X ⊗R N −→ f!X ⊗S f!N −→ Y ⊗S Q.

Passing to homology, we obtain the promised map (3.6). A moment’s reflection
shows that it factors naturally as the composite

TorR
∗ (M, N)

Torid
∗

(η,η)// TorR
∗ (f∗f!M, f∗f!N)

Torf
∗
(id,id)// TorS

∗ (f!M, f!N)
Torf

∗
(ĝ,ĥ)// TorS

∗ (P, Q)

where η : M −→ f∗f!M is the unit of the adjunction, η(m) = m ⊗ 1 ∈ M ⊗R S.

Remember that when R is commutative, TorR
∗ (M, N) is a graded R-module.

The following result could be obtained a little more directly but it illustrates ideas
to derive it from what we have done.

Proposition 3.8. Let T be a multiplicative subset of a commutative ring R and
let S = RT = R[T−1] be the localization of R at T . For all R-modules M and N ,
the canonical map

TorR
∗ (M, N) −→ TorS

∗ (M ⊗R S, N ⊗R S)

is localization at T .

Proof. The localization functor sends M to f!M = M ⊗R S, where f : R −→ S is
the localization map. Of course, f is a flat extension. The target of our map is an
S-module and is therefore T -local. After tensoring with S, our map becomes the
isomorphism on homology induced by the canonical isomorphism of chain complexes

(X ⊗R N) ⊗R S ∼= (X ⊗R S) ⊗S (N ⊗R S)

where X is an R-projective resolution of M . �

3.4. Pairings and products. Again let R and S be rings. In applications, it is
often the case that our rings are algebras over a commutative ring k. Taking tensor
products over k rather than Z and writing ⊗ = ⊗k, the constructions of this section
generalize directly. Let M and N be right and left R-modules, and let P and Q be
right and left S-modules. Letting γ be the symmetry isomorphism, R⊗ S is a ring
with product

R ⊗ S ⊗ R ⊗ S
id⊗γ⊗id //R ⊗ R ⊗ S ⊗ S //R ⊗ S

induced by the products of R and S. Similarly, M ⊗ P is a right (R ⊗ S)-module
with action

M ⊗ P ⊗ R ⊗ S
id×γ×id //M ⊗ R ⊗ P ⊗ S //M ⊗ P

induced by the actions of R on M and S on P , and N ⊗Q is a left R⊗ S-module.
Let X be an R-projective resolution of M and Y be a S-projective resolution of

P . Then X ⊗ Y is an R ⊗ S-projective complex over M ⊗ P . Rather than use a
Künneth argument to check that it is a resolution, we can map it to a projective
R⊗S-projective resolution of M ⊗P by use of Lemma 3.3. Using the natural map
α from the tensor product of homologies to the homology of a tensor product, the
map

(X ⊗R N) ⊗ (Y ⊗S Q) −→ (X ⊗ Y ) ⊗R⊗S (N ⊗ Q)

induced by id⊗γ ⊗ id gives rise to a natural pairing

(3.9) TorR
∗ (M, N) ⊗ TorS(P, Q) −→ TorR⊗S

∗ (M ⊗ P, N ⊗ Q).



NOTES ON TOR AND EXT 15

Now recall that a ring R is commutative if and only if its product is a map of
rings. In formulas, this means that rr′ss′ = ss′rr′ for all r, r′, s, s′ if and only if
rs = sr for all r and s. Taking r′ = 1 = s′ gives one implication, and the other
is obvious. When we deal with graded rings with products Rm ⊗ Rn −→ Rm+n,
we understand commutativity to mean graded commutativity, rs = (−1)mnsr.
Formally, that means that we are defining the graded symmetry isomorphism γ
with our usual sign convention on interchange.

We say that a ring R is augmented over a ring k if there is an epimorphism of
rings ε : R −→ k. It is especially interesting to consider the quotient homomorphism
ε : R −→ R/m = k of a local ring R with maximal ideal m.

Theorem 3.10. If R is a commutative ring with augmentation ε : R −→ k, then
TorR

∗ (k, k) is a graded commutative k-algebra.

Proof. We are regarding k as the R-module ε∗k. Writing φ for the products on R
and on k, the required product on TorR

∗ (k, k) is the composite

TorR
∗ (k, k) ⊗k TorR

∗ (k, k) −→ TorR⊗R
∗ (k ⊗ k, k ⊗ k) −→ TorR

∗ (k, k).

While R is not a k-algebra, the construction just given works with M = N = P = Q
to give the first map, and the second map is Torφ(φ, φ) of (3.6). Note that φ induces

an isomorphism k ⊗R k −→ k, so that TorR
0 (k, k) ∼= k. It is a straightforward

exercise, left to the reader, that the product on TorR
∗ (k, k) is associative, unital,

and graded commutative. �

3.5. A sample computation. It is all very well to define a product, but how
do we compute it? A DGA (differential graded k-algebra) is a k-chain complex
A with an associative and unital product A ⊗k A −→ A which is a map of chain
complexes, meaning d(ab) = d(a)b + (−1)degaad(b). It is (graded) commutative if
ab = (−1)degadegbba for all a and b. We can also define the weaker notion of a
DGA up to chain homotopy. This is defined in the same way, except that we only
require associativity and unitality up to chain homotopy. The homotopies ensure
that H∗(A) is a graded algebra. For example, the (normalized) singular cochains
of a space with coefficients in k form a cohomologically graded DGA, but it is
only commutative up to chain homotopy, and that is enough to ensure that the
cohomology of a space is a commutative k-algebra.

Now return to a commutative ring R with augmentation ε : R −→ k, for example
an augmented k-algebra. Let X be an R-projective resolution of k. Then Lemma 3.3
gives that there is a map of (R ⊗ R)-chain complexes φ̃ : X ⊗ X −→ X over the
product φ : k ⊗ k −→ k, where X is regarded as an (R ⊗ R)-chain complex via
the product R ⊗ R −→ R. Since the product on k is associative, unital, and
commutative, the same result applies to show that the product φ̃ is associative,
unital, and (graded) commutative up to chain homotopy. Then X ⊗R k is a DG

k-algebra, and its homology is TorR
∗ (k, k) as a k-algebra. This is all that one can

expect in general, but for especially nice rings R, one can find an X which is actually
a DGA, with no need for chain homotopies.

To illustrate, let R be the polynomial algebra k[x] with augmentation determined
by ε(x) = 0. Let X be the graded k-algebra and free right R-module E[y] ⊗k R,
where E[y] is the exterior algebra on one generator y of degree 1. Thus y2 = 0, and
E[y] is the free k-module with one basis element 1 of degree 0 and one basis element
y of degree 1. Define ε : X −→ k by letting ε(1⊗1) = 1 and ε(y⊗1) = 0 = ε(1⊗x).
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Define a differential on X by letting d(y⊗1) = 1⊗x and requiring d to be a map of
R-modules. Then d(y⊗xn) = 1⊗xn+1. Since X has the k-basis {1×xn}∪{y⊗xn}
we see that X is an R-free resolution of k. Moreover, it is a differential graded R-
algebra, and X ⊗R k is the k-algebra E[y] with zero differential. This proves the
case n = 1 of the following result.

Theorem 3.11. Let R be the polynomial algebra k[x1, · · · , xn]. Then TorR
∗ (k, k)

is the exterior algebra E[y1, · · · , yn], where deg(yi) = 1.

Proof. X = E[y1, · · · , yn] ⊗ R is a DG R-algebra with differential determined by
d(yi) = xi on generators over R, and it is isomorphic to the tensor product of DG
k-algebras

(E[y1] ⊗ k[y1]) ⊗k · · · ⊗k (E[yn] ⊗ k[yn]).

With the evident map to k, it follows that the DGA X is an R-free resolution of k.
The differential on X ⊗R k = E[y1, · · · , yn] is zero, and the conclusion follows. �

Since the associated graded k-algebra of a regular local ring R with respect to
the filtration given by the powers of its maximal ideal is a polynomial algebra
on n generators, where n is the Krull dimension of R is n, this suggests that
the conclusion applies equally well to TorR

∗ (k, k). In particular, this suggests that

TorR
q (k, k) = 0 for q > n. In fact, we shall see later that much more is true. We

state the result now and prove it later.

Theorem 3.12 (Serre). Let R be a (Noetherian) local ring of Krull dimension

n. If TorR
q (k, k) is zero for any q > n, then R is regular. If R is regular, then

TorR
q (M, N) = 0 for all R-modules M and N and all q > n and, as a k-algebra,

TorR
∗ (k, k) ∼= E[y1, · · · , yn].

4. Ext groups

We give a quick parallel development of the basic theory of ext groups. We again
work with non-commutative rings R and their right and left modules. By default,
modules mean left modules, and then HomR(M, N) is the Abelian group of maps
of left R-modules M −→ N . Again, when R is commutative, everything we do
works just as well in the category of R-modules.

4.1. Two identities between Hom functors. For rings R and S, an (R, S)-
bimodule M is a left R-module and right S-module with commuting actions, mean-
ing that (rm)s = r(ms). When R is commutative, any R-module may be considered
as an (R, R)-bimodule with rm = mr. We record two standard identities. Their
proofs are elementary, but it is fun to use the Yoneda lemma and analogous iden-
tities between tensor products to derive them.

Lemma 4.1. Let M be a left R-module, N be a right S-module, and P be an
(R, S)-bimodule. Then there is a natural isomorphism of Abelian groups

HomR(M, HomS(N, P )) ∼= HomS(N, HomR(M, P )).

Here the R and S actions on P induce the R and S actions on HomS(N, P ) and
HomR(M, P ).
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Lemma 4.2. Let M be a right R-module, N be an (R, S)-bimodule, and P be a
left S-module. Then there is a natural isomorphism of Abelian groups

HomS(M ⊗R N, P ) ∼= HomR(M, HomS(N, P )).

Here the S and R actions on N induce the S and R actions on M ⊗R N and
HomS(N, P ). The analogous result with left and right reversed also holds.

We shall have immediate use of the following special case of the reversed version.
Here we specialize S to Z. We take N = R, regarded as a right R-module, noting
that any right R-module can be viewed as a (Z, R)-bimodule.

Lemma 4.3. Let M be a left R-module and P be an Abelian group. Then there is
a natural isomorphism of Abelian groups

HomZ(M, P ) ∼= HomR(M, HomZ(R, P )).

4.2. Injective resolutions. Recall that modules mean left modules. A module
I is said to be injective if for each monomorphism e : L −→ M and each map
f : L −→ I, there exists a map f̃ : M −→ I such that f̃ ◦ e = f . This means that

Hom(e, id) : HomR(M, I) −→ Hom(L, I)

is an epimorphism. There is no analogue of Lemma 3.1, but there is the following
analogue of its key consequence.

Lemma 4.4. Every R-module N embeds as a submodule of an injective R-module.

Proof. By an exercise, an Abelian group is divisible if and only if it is an injective
Z-module. Clearly a direct sum of divisible Abelian groups is divisible, and so is
a quotient of a divisible Abelian group. Since Z embeds in the divisible group Q

and any Abelian group is a quotient of a free Abelian group, the result holds for
modules over the ring Z. Define j : N −→ HomZ(R, N) by j(n)(r) = rn. On the
right, N is regarded just as an Abelian group. Clearly j is a homomorphism of
Abelian groups, but in fact it is a map of R-modules. Indeed, for s ∈ R,

j(sn)(r) = r(sn) = (rs)n = j(n)(rs) = (sj(n))(r)

where the last equality holds by the definition of the left action of R on HomZ(R, N).
Moreover, j is a monomorphism since j(n)(1) = n. Now, ignoring the R-action on
N , choose a monomorphism i : N −→ D, where D is a divisible Abelian group,
and let i∗ = Hom(id, i) : HomZ(R, N) −→ HomZ(R, D). Then i∗ and therefore the
composite i∗ ◦ j is a monomorphism of R-modules. Using the natural isomorphism

HomZ(M, D) ∼= HomR(M, HomZ(R, D))

of Lemma 4.3, we see that HomZ(R, D) is injective as an R-module since D is
injective as a Z-module. �

Let N be an R-module. A (cochain) complex of R-modules under N is a complex
of the form

0 −→ N
η
−→ Y 0 −→ · · · −→ Y i −→ Y i+1 −→ · · ·

It is an injective complex under N if each Y i is injective. It is a resolution of N
if the displayed sequence is exact. We think of N itself as a complex concentrated
in degree 0 and η : N −→ Y as a morphism of complexes. If Y is a resolution of
N , then η induces an isomorphism on (co)homology since Ker d0 = N . Now the
following three results are proven in exactly the same way as Lemmas 3.2, 3.3, and
3.4, except that we reverse all of the arrows and replace projectivity by injectivity.
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Lemma 4.5. Every R-module N has an injective resolution.

Lemma 4.6. Let f : M −→ N be a map of R-modules. Let ζ : M −→ X be a
resolution of M and let η : N −→ Y be an injective complex under N . Then there
is a map f̃ : X −→ Y of complexes such that f̃ ◦ ζ = η ◦ f , and f̃ is unique up to
chain homotopy.

Lemma 4.7. Let 0 −→ N ′ f
−→ N

g
−→ N ′′ −→ 0 be an exact sequence of R-modules.

Let Y ′ and Y ′′ be injective resolutions of N ′ and N ′′. Then there is an injec-
tive resolution Y of N and an exact sequence of resolutions under the given exact
sequence:

0 // N ′
f //

η′

��

N
g //

η

��

N ′′ //

η′′

��

0

0 // Y ′

f̃

// Y
g̃

// Y ′′ // 0.

4.3. The definition and properties of Ext. For a short exact sequence of R-
modules 0 −→ M ′ −→ M −→ M ′′ −→ 0 and an R-module N , the sequence of
Abelian groups

0 −→ HomR(M ′′, N) −→ HomR(M, N) −→ HomR(M ′, N)

is exact, but the right-most arrow need not be a epimorphism. Similarly, for a short
exact sequence of R-modules 0 −→ N ′ −→ N −→ N ′′ −→ 0 and an R-module M ,
the sequence of Abelian groups

0 −→ HomR(M, N ′) −→ HomR(M, N) −→ HomR(M, N ′′)

is exact, but the right-most arrow need not be a epimorphism. We say that the
functor HomR is left exact. Ext groups measure the deviation from exactness. Here
is an omnibus theorem that states their basic properties.

Theorem 4.8. There are Abelian group valued functors ExtnR(M, N) of (left) R-
modules M and N , together with natural connecting homomorphisms

δ : ExtnR(M ′, N) −→ Extn+1
R (M ′′, N) and δ : Extn

R(M, N ′′) −→ Extn+1
R (M, N ′)

for short exact sequences

0 −→ M ′ −→ M −→ M ′′ −→ 0 and 0 −→ N ′ −→ N −→ N ′′ −→ 0.

These satisfy the following properties.

(i) Extn
R(M, N) = 0 for n < 0.

(ii) Ext0R(M, N) is naturally isomorphic to HomR(M, N).
(iii) Extn

R(M, N) = 0 for n > 0 if either M is projective or N is injective.
(iv) The following sequences are exact.

· · · −→ Extn
R(M ′′, N) −→ ExtnR(M, N) −→ ExtnR(M ′, N) −→ Extn+1

R (M ′′, N) −→ · · ·

· · · −→ Extn
R(M, N ′) −→ ExtnR(M, N) −→ Extn

R(M, N ′′) −→ Extn+1
R (M, N ′) −→ · · ·

For each fixed N , the functors Extn
R(M, N) of M together with the natural con-

necting homomorphisms δ : ExtnR(M ′, N) −→ Extn+1
R (M ′′, N) on exact sequences

0 −→ M ′ f
−→ M

g
−→ M ′′ −→ 0 are uniquely determined up to isomorphism by

(i)—(iv), and similarly for each fixed M .
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Proof. The naturality statements imply that the long exact sequences of (iv) are
functorial on short exact sequences. For the existence statement, let us fix N .
Choose a projective resolution X of M . Define

Ext∗R(M, N) = H∗(HomR(X, N))

Since chain homotopic maps of complexes induce the same map on homology,
Lemma 4.6 shows that this is well-defined up to natural isomorphism and gives
a functor of M . Manifestly, it also gives a functor of N . Since HomR is left exact,
(ii) is clear, and (iii) is also clear. We define the first map δ and derive the first
long exact sequence of (iv) by use of Lemma 4.7. We define the second map δ and
derive the second long exact sequence by use of the short exact sequence of chain
complexes

0 −→ HomR(X, N ′) −→ HomR(X, N) −→ HomR(X, N ′′) −→ 0.

Here exactness holds by the projectivity of the Xi.
For the axiomatization, we proceed by induction on n, starting from (i) and (ii).

If we have two systems of functors and natural connecting homomorphisms and
we have proven they are isomorphic through stage (n − 1), then a diagram chase
starting from short exact sequences 0 −→ M ′ −→ M −→ M ′′ −→ 0 where M is
free shows that they are isomorphic at the stage n.

We can reverse the roles of M and N in our original construction, starting from
an injective resolution Y of N and redefining

Ext∗R(M, N) = H∗(HomR(M, Y )).

We again have all of the properties (i) – (iv), so by the uniqueness we obtain
the same sequence of functors and natural connecting homomorphisms. Moreover,
we can also check that H∗(HomR(X, Y )) gives functors and natural connecting
homomorphisms that satisfy the axioms. Alternatively, we can observe that the
morphisms of complexes X −→ M and N −→ Y induce morphisms of complexes

HomR(X, N) // HomR(X, Y ) HomR(M, Y )oo

and can check directly that these give isomorphisms. �

4.4. Change of rings. Just as for Tor, we can make Ext into a functor of three
variables, allowing for change of rings. As in §3.3, let f : R −→ S be a map of rings,
let M and N be R-modules, and let P and Q be S-modules. Let g : f∗P −→ M
and h : f∗N −→ Q be maps of R-modules. We assume that S is projective as an
R-module, and under that hypothesis we shall obtain a map

(4.9) Ext∗f (g, h) : Ext∗R(M, N) −→ Ext∗S(P, Q).

This allows us to view Ext as a functor of three variables.
Since S is R-projective, any projective S-module is projective as an R-module.

Let Y be a projective resolution of the S-module P . Then f∗Y is a projective
resolution of the R-module f∗P . If X is a projective resolution of M , there is a
map g̃ : f∗Y −→ X over g. Using g̃ and h, there results a map

HomR(X, N) −→ HomR(f∗Y, N) ∼= HomS(Y, f∗N) −→ HomS(Y, Q)

of chain complexes. Passage to homology gives the promised map (4.9).
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4.5. Extensions. Expanding on an exercise, we explain the classical interpretation
of Ext1R(M, N) in terms of extensions of modules. We omit details. An extension
of N by M is a short exact sequence

(4.10) 0 −→ N −→ E −→ M −→ 0.

A map of extensions is a commutative diagram

(4.11) 0 // N

f

��

// E

g

��

// M

h

��

// 0

0 // N ′ // E′ // M ′ // 0.

It is an equivalence of extensions if f and h are identity maps, in which case g
must be an isomorphism. Define Ext(M, N) to be the set of equivalence classes of
extensions of N by M .

For a map f : N −→ N ′ and an extension E of N by M , as in (4.10), we obtain
an extension E′ of N ′ by M by taking E′ to be the pushout of f and the inclusion
N −→ E. By the universal property of pushouts applied to the quotient map
E −→ M and 0: N ′ −→ M , we obtain a map (4.11) in which h is the identity map
of M . Dually for a map h : M −→ M ′ and an extension E′ of N by M ′, we obtain
an extension E of N by M by taking E to be the pullback of h and the quotient
map E′ −→ M ′. With these constructions, Ext(M, N) is a contravariant functor
of N and a covariant functor of M .

Given two extensions E and E′ of N by M , we can take direct sums to obtain

0 −→ N ⊕ N −→ E ⊕ E′ −→ M ⊕ M −→ 0

Using functoriality with respect to the diagonal N −→ N ⊕ N and the codiagonal
(or sum) ∇ : M ⊕M −→ M , we construct an extension of N by M , denoted E +E′

and called the Baer sum of E and E′. This gives Ext(M, N) a natural structure of
Abelian group.

Theorem 4.12. Ext(M, N) is naturally isomorphic to Ext1R(M, N).

Proof. If X2 −→ X1 −→ X0 −→ M −→ 0 is the start of a projective resolution of
M and E is an extension of N by M , Lemma 3.3 gives a commutative diagram

X2
//

��

X1
//

��

X0
//

��

M // 0

0 // N // E // M // 0.

The map X1 −→ N is a cocycle of HomR(X, N). Its cohomology class is in-
dependent of choices, and the resulting map Ext1R(M, N) −→ Ext(M, N) is an
isomorphism. �

4.6. Long extensions and the Yoneda product. The description of Ext1R gen-
eralizes to ExtnR, starting from extensions of length n, namely long exact sequences

(4.13) 0 −→ N −→ En−1 −→ · · · −→ E0 −→ M −→ 0.
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Maps of extensions of length n are commutative diagrams

(4.14) 0 // N //

f

��

En−1

��

// · · · // E0

��

// M

h

��

// 0

0 // N ′ // E′
n−1

// · · · // E′
0

// M ′ // 0

Taking f and h to be identity maps and requiring the other vertical arrows to be
isomorphisms, we obtain the notion of an elementary equivalence of extensions of
N by M . Elaborating from the previous section, but using a more complicated
equivalence relation that we make precise in the next section, the resulting sets of
equivalence classes of extensions of length n give well-defined Abelian group valued
functors of M and N . One can elaborate the proof of Theorem 4.12 to obtain the
following generalization.

Theorem 4.15. For n ≥ 1, Extn(M, N) is naturally isomorphic to the Abelian
group of equivalence classes of extensions of N by M of length n.

This result leads to a beautiful construction of a pairing between Ext groups,
called the Yoneda product.

Definition 4.16. Define the Yoneda product

ExtnR(N, P ) ⊗ ExtmR (M, N) −→ Extm+n
R (M, P )

as follows. Suppose given extensions

0 −→ N −→ Em−1 −→ · · · −→ E0 −→ M −→ 0

and

0 −→ P −→ Fn−1 −→ · · · −→ F0 −→ N −→ 0.

Rename Fi as Em+i and splice the sequences using the evident composite map
F0 −→ N −→ Em−1. This gives an extension

0 −→ P −→ Em+n−1 −→ · · · −→ E0 −→ M −→ 0,

which is the Yoneda product of the given extensions. We can extend the definition
to allow m = 0 or n = 0 by using functoriality on maps. Then identity maps of
modules act as identities for the pairing.

Theorem 4.17. The Yoneda product passes to equivalence classes to give an as-
sociative and unital system of pairings of Ext groups.

Categorically, we can say that the Ext groups specify a category enriched in
graded Abelian groups whose objects are the R-modules M and whose graded
Abelian group of morphisms M −→ N is Ext∗R(M, N). In particular, we see that
each Ext∗R(M, M) is a graded ring. Categories like this are often called “rings with
many objects”. This extra structure is central to many applications.

4.7. Equivalences of long extensions. We first need notations for pushout and
pullback constructions on extensions. Consider an extension

0 −→ N −→ E −→ M −→ 0
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and a map β : N −→ N ′. Let β∗E be the extension displayed in the diagram

0 // N

β

��

// E //

��

M //

=

��

0

0 // N ′ // β∗E // M // 0,

where the left square is a pushout. Similarly for a map α : M ′ −→ M , let α∗E be
the extension displayed in the diagram

0 // N

=

��

// α∗E //

��

M ′ //

α

��

0

0 // N // E // M // 0,

where the right square is a pullback. For extensions

0 −→ N −→ E −→ B −→ 0,

a map β : B −→ B′ and an extension

0 −→ B′ −→ E′ −→ M −→ 0

we have two generally different Yoneda composites β∗E ◦ E′ and β∗E
′ ◦ E.

0 // N

=

��

// β∗E //

��

B′

β

��

// E′

��

// M

=

��

// 0

0 // N // E // B // β∗E
′ // M // 0

We agree to say that these two length two extensions are equivalent. This is an
equivalence of length two. We also have the elementary equivalences given by
isomorphisms

0 // N

=

��

// E //

∼=

��

M

=

��

// 0

0 // N // E′ // M // 0

This is an equivalence of length one.
Consider long exact sequences

S : 0 //N
fn //En−1

fn−1 //En−2
// · · · //E1

f1 //E0
f0 //M //0.

Let Bi be the image of fi; in particular, by abuse, let Bn = N and B0 = M . We
have extensions

0 −→ Bi+1 −→ Ei −→ Bi −→ 0

for 0 ≤ i ≤ n − 1, and S is their Yoneda composite En−1 ◦ · · · ◦ E0. Say that two
such sequences S and S′ are equivalent if there is a chain of equivalences of length
one or of length two connecting them. That is, we form the smallest equivalence
relation that identifies equivalent subsequences of length one or length two. The
set of equivalence classes admits an addition under which it gives an abelian group
isomorphic to Extn(M, N).
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4.8. Pairings of Ext groups. The Yoneda pairing also admits a direct construc-
tion in terms of our original definition of Ext groups. Let M , N , and P be R-
modules and let X be a projective resolution of M and Y be an injective resolution
of P . The composition pairing

HomR(N, P ) ⊗ HomR(M, N) −→ HomR(M, P )

gives a map of chain complexes

HomR(N, Y ) ⊗ HomR(X, N) −→ HomR(X, Y ).

Passing to homology and using the pairing α of §2.1, we obtain a pairing

Extn
R(N, P ) ⊗ Extm

R (M, N) −→ Extm+n
R (M, P ).

This coincides with the Yoneda product of the previous section.
There is also an external pairing related to change of rings. Let R and S be

rings, let M and N be R-modules, and let N and Q be S-modules. Then there is
a pairing

(4.18) Extm
R (M, N) ⊗ ExtnS(P, Q) −→ Extm+n

R⊗S (M ⊗ P, N ⊗ Q)

If X is a projective resolution of M and Y is a projective resolution of N , we can
apply the tensor pairing

ω : HomR(M, N) ⊗ HomS(P, Q) −→ HomR⊗S(M ⊗ P, N ⊗ Q)

specified by ω(f ⊗ g)(m ⊗ p) = f(m) ⊗ g(n) to obtain a map of chain complexes

ω : HomR(X, N) ⊗ HomS(Y, Q) −→ HomR⊗S(X ⊗ Y, N ⊗ Q).

Here, as usual, we must insert the sign (−1)deg(g) deg(m) when interpreting the tensor
pairing in order to obtain a map of chain complexes. Again using α from §2.1 and
passing to homology, we obtain the pairing (4.18).

Remember that when R is commutative the Ext groups and all maps in sight
between them take values in the category of R-modules. More generally, if R is
an algebra over a commutative ring k, then the Ext groups and all maps in sight
between them take values in the category of k-modules. When R is commutative
and augmented over k, we have seen that TorR

∗ (k, k) is a graded k-algebra. We now
see that Ext∗R(k, k) is also a graded k-algebra, via the Yoneda product. If k is a
field and X is an R-free resolution of k, then we have

HomR(X, k) ∼= Homk(k ⊗R X, k)

as k-chain complexes. Writing M∗ = Homk(M, k) for the vector space dual of M ,
this implies that

(4.19) Ext∗R(k, k) ∼= (TorR
∗ (k, k))∗

Therefore Ext∗R(k, k) has both an algebra structure and the dual of an algebra
structure, which is called a coalgebra structure. We shall return to consideration
of such structures later, when we shall talk about bialgebras and Hopf algebras.

For now, we sum up by saying that for any k-algebra R, Ext∗R(k, k) is a k-
algebra under the Yoneda product. It is not necessarily commutative even when R
is commutative, but then Ext∗R(k, k) is a Hopf algebra.

We shall later return to this point and show that if R is a Hopf algebra over k,
then Ext∗R(k, k) is a commutative k-algebra, but not necessarily a Hopf algebra. As
we shall see, when specialized to group algebras this is closely related to the fact
that the cohomology of a space with coefficients in k is a commutative k-algebra.


