
FINITE GROUPS AND FINITE SPACES

NOTES FOR REU BY J.P. MAY

We shall explain some of the results and questions in a beautiful 1978 paper [3]
by Daniel Quillen. He relates properties of groups to homotopy properties of the
simplicial complexes of certain posets constructed from the group. He does not
explicitly think of these posets as finite topological spaces. He seems to have been
unaware of the earlier papers of McCord [2] and Stong [4] that we have studied,
and it is interesting to look at his work from their perspective. Stong himself
first looked at Quillen’s work this way [5], and we will include his results on the
topic. We usually work with a finite group G, but the basic definitions apply more
generally.

1. Equivariance and finite spaces

We begin with some general observations about equivariance and finite T0 topo-
logical spaces, largely following Stong [5].

A topological group G is a group and a space whose product G×G −→ G and
inverse map G −→ G are continuous. An action of G on a topological space X is a
continuous map G ×X −→ X, written (g, x) 7→ gx, such that g(hx) = (gh)x and
ex = x, where e is the identity element of G. A map f : X −→ Y of G-spaces is a
continuous map f such that f(gx) = gf(x) for g ∈ G and x ∈ X. We say that G
acts trivially on X if gx = x for all g and x. We let G act diagonally on products
X × Y , g(x, y) = (gx, gy). In particular, with G acting trivially on I, we have the
notion of a G-homotopy, namely a G-map h : X× I −→ Y . There is a large subject
of equivariant algebraic topology, in which one studies the algebraic invariants of
G-spaces.

We begin with some basic ideas of equivalence in this context. We say that a
G-map f : X −→ Y is a G-homotopy equivalence if there is a G-map f ′ : Y −→ X
and there are G-homotopies f ◦ f ′ ' id and f ′ ◦ f ' id. For a subgroup H of G,
define the H-fixed point space XH of X to be {x|hx = x for h ∈ H}. Say that
a G-map f is an H-equivalence if fH : XH −→ Y H is a nonequivariant homotopy
equivalence. For nice G-spaces, the sort one usually encounters in classical algebraic
topology, which are called G-CW complexes, a map f is a G-homotopy equivalence
if and only if it is an H-equivalence for all subgroups H. Note that we have the
much weaker notion of an e-equivalence, namely a G-map which is a homotopy
equivalence of underlying spaces, forgetting the action of G.

We also have weak notions. A G-map f is a weak G-homotopy equivalence if each
fH : XH −→ Y H is a weak equivalence in the nonequivariant sense. We also have
the notion of a weak e-equivalence, meaning a G-map that is a weak equivalence of
underlying spaces, forgetting the action of G.

Date: Summer, 2003; revised, Summers 2008 and 2010.

1



2 NOTES FOR REU BY J.P. MAY

In general, the notions of G-equivalence are very much stronger than the notions
of e-equivalence. There are lots of G maps that are e-equivalences but are not
G-equivalences. We show that cannot happen when G acts on a finite space.

Let us note first that if a topological group G is a finite T0-space, then it is
discrete. Indeed, if h ≤ g, then, by the continuity of the inverse map, h−1 ≤ g−1. By
the continuity of left multiplication by h−1, e ≤ h−1g, and then, by the continuity
of right multiplication by g−1, g−1 ≤ h−1. Since G is T0, g−1 = h−1 and therefore
g = h. Thus Ug = g is open for all g and therefore every subset is open.

Recall the notion of upbeat and downbeat points in a finite T0-space X. Note
that if x is downbeat, so that there is a y > x such that z > x implies z ≥ y, then
y is uniquely determined by x.

Theorem 1.1. Let X be a finite T0-space with an action by a group G. Then there
is a core C ⊂ X such that C is a sub G-space and equivariant deformation retract
of X. We call C an equivariant core of X.

Proof. The orbit Gx of an element x is {gx|g ∈ G}. If x is upbeat, then gx is also
upbeat, with gy playing the role of y. The inclusion X −Gx ⊂ X is the inclusion
of a sub G-space. Define f : X −→ X − Gx ⊂ X by f(z) = z if z /∈ Gx and
f(gx) = gy, where y > x is such that z > x implies z ≥ y. Clearly f ≥ id and thus
f ' id. An explicit homotopy used to show this is given by h(z, t) = z if t < 1 and
h(z, 1) = f(z), and this homotopy is a G-map. Removing upbeat and downbeat
orbits successively until none are left, we reach an equivariant core. �

Corollary 1.2. If X is a contractible finite T0-space with an action by a group G,
then X is equivariantly contractible.

Proof. The core of X is a point, so the equivariant core must be a point with the
trivial action by G. �

Corollary 1.3. If X is a contractible finite T0-space, then X has a point that is
fixed by every homeomorphism of X.

Proof. The finite group G of homeomorphisms of X acts on X, and the equivariant
core is a fixed point. �

Theorem 1.4. Let X and Y be finite T0-spaces with actions by G and let f : X −→
Y be a G-map. If f is an e-homotopy equivalence, then f is a G-homotopy equiva-
lence.

Proof. Let C and D be cores of X and Y . Write iX : C −→ X and rX : X −→ C
for the inclusion and retraction, and similarly for Y . Let p be the composite

C
iX //X

f //Y
rY //D.

Then p is a G-map and a homotopy equivalence between minimal finite spaces. The
latter property implies that p is a homeomorphism, and p−1 is necessarily also a
G-map. Define f−1 : Y −→ X to be the composite

Y
rY //D

p−1
//C

iX //X.

Then f−1 ◦ f and f ◦ f−1 are equivariantly homotopic to the respective identity
maps. Indeed, we have the homotopies

f−1f = f−1f idX ' f−1f iXrX = iXp
−1(rY fiX)rX = iXrX ' idX
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and
ff−1 = idY ff

−1 ' iY rY ff−1 = iY (rY fiX)p−1rY = iY rY ' idY . �

2. The basic posets and Quillen’s conjecture

Fix a finite group G and a prime p. We define two posets.

Definition 2.1. Let Sp(G) be the poset of non-trivial p-subgroups of G, ordered
by inclusion. An abelian p-group is elementary abelian if every element has order 1
or p. This means that it is a vector space over the field of p elements. Define Ap(G)
to be the poset of non-trivial elementary p-subgroups of G, ordered by inclusion
and let i : Ap(G) −→ Sp(G) be the inclusion.

Remark 2.2. Quillen calls a non-trivial elementary abelian p-group a p-torus, and
he defines its rank to be its dimension as a vector space.

The reason these posets are interesting is that G acts on them in such a way that
their topological properties relate nicely to algebraic properties of G. The action of
G is by conjugation. If H is a subgroup of G and g ∈ G, write Hg = gHg−1. The
function fg that sends P to P g gives an automorphism of the posets Ap(G) and
Sp(G). Clearly fe = id, where e is the identity element of G, and fg′g = fg′ ◦ fg.
These automorphisms are what give these posets their interest: the poset together
with its group action describe how the different p-subgroups are related under
subconjugation in G.

In particular, a point P in Ap(G) is fixed under the action of G if and only if
P g = P for all g ∈ G, and this means that P is a normal subgroup of G. Thus the
poset (Ap(G))G of fixed points is the poset of normal p-tori of G. We can therefore
relate algebraic questions about the presence of normal subgroups to topological
questions about the existence of fixed points. Of course, we may regard these posets
as finite T0-spaces with G actions, and the theory of the previous section applies.

Remark 2.3. Some of Quillen’s language for studying these posets is similar to the
language we have been using, but it can be quite confusing. For example, he says
that a subset S of a poset X is closed if x ∈ S and y ≤ x implies y ∈ S. In our
language, this means that x ∈ S implies Ux ⊂ S, which says that S is open.

The posets Sp(G) and Ap(G) are both empty if p does not divide the order of G.
At first sight, it might seem that Sp(G) is a lot more interesting and complicated
than Ap(G), but that is not the case. To understand the discussion to follow, it is
helpful to keep the following commutative diagram of spaces in mind, remembering
that its vertical arrows are weak equivalences.

|K Ap(G)|
|K (i)| //

ψ

��

|K Sp(G)|

ψ

��
Ap(G)

i
// Sp(G)

We first consider p-groups.

Proposition 2.4. If P is a non-trivial p-group, then Ap(P ) and Sp(P ) are both
contractible.



4 NOTES FOR REU BY J.P. MAY

Proof. There is a central subgroup B of P of order p. We will be accepting as
known some basic facts in the theory of finite groups, such as this one. But the
proof is just an easy counting argument. We think of P as a P -set, with P acting on
itself by conjugation. As with any finite P -set P is isomorphic to a disjoint union
of orbits, each isomorphic to some orbit P/Q. Unless the orbit consists of a single
point, its number of elements is divisible by p, and the total number of elements is
the order of P . Since the identity element is an orbit with a single point, there must
be at least p− 1 other orbits with a single point, and such a point is a non-identity
element in the center of P .

For any subgroup A of P , we have A ⊂ AB ⊃ B. If A is a p-torus, then so
is AB since B is central. Define three maps Ap(P ) −→ Ap(P ): the identity map
id, the map f that sends A to AB, and the constant map cB that sends A to B.
These are all continuous, and our inclusions say that id ≤ f ≥ cB . This implies
that id ' f ' cB . Since the identity is homotopic to the constant map, Ap(G) is
contractible. The proof for Sp(G) is the same. �

Quillen calls a poset X conically contractible if there is an x0 ∈ X and a map of
posets f : X −→ X such that x ≤ f(x) ≥ x0 for all x. He was thinking in terms
of associated simplicial complexes, but we are thinking in terms of finite T0-spaces.
The previous proof says that Ap(P ) and Sp(P ) are conically contractible. It is to
be emphasized that conically contractible finite spaces are genuinely and not just
weakly contractible. As we shall see, the difference is profound in the case at hand.
In contrast with the previous result, we emphasize the word “weak” in the following
result.

Theorem 2.5. The inclusion i : Ap(G) −→ Sp(G) is a weak homotopy equivalence.
Therefore the induced map |K i| : |K Ap(G)| −→ |K Sp(G)| is a weak homotopy
equivalence and hence an actual homotopy equivalence.

Proof. We have the open cover of Sp(G) given by the UP , where P is a non-trivial
finite p-group. Clearly i−1UP is the poset of p-tori of G that are contained in P ,
and this is the contractible space Ap(P ). Our general theorem that weak homotopy
equivalence is a local notion applies. �

Definition 2.6. Define the p-rank of G, denoted rp(G), to be the maximal rank of
a p-torus in G. Observe that this is one greater than the dimension of the simplicial
complex K Ap(G) (interpreting the dimension of the empty complex to be −1).

Example 2.7. If the p-Sylow subgroups of G are cyclic of order p and there are q
of them, then Ap(G) is a discrete space with q points. For example, this holds for
some q if G is the symmetric group of order n, where p is a prime and p ≤ n < 2p.

Remark 2.8. Sylow’s third theorem is relevant. The number of Sylow p-subgroups
of G is congruent to 1 mod p and divides the order of G.

Theorem 2.9. If G has a non-trivial normal p-subgroup, then Sp(G) is conically
contractible and therefore contractible. Moreover G then has a non-trivial normal
elementary abelian subgroup and therefore Ap(G) is also contractible. Conversely,
if Ap(G) or, equivalently, Sp(G) is contractible (not just weakly!), then G has a
non-trivial normal p-subgroup.

Proof. Suppose G has a normal p-subgroup P . Then, for any p-subgroup Q of G,
Q ⊂ QP ⊃ P , where QP denotes the subgroup generated by P and Q. Since
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P is normal in G, QP = {qp|q ∈ Qandp ∈ P}. This implies that id ≤ f ≥ cP ,
where f(Q) = QP and cP (Q) = P , hence Sp(G) is conically contractible. As a
matter of algebra that we leave to the reader (although a topological proof is also
possible), if G has a normal p-subgroup, then it has an elementary abelian normal p-
subgroup and the same argument applies to show that ApG is conically contractible.
Conversely, suppose that Sp(G) is contractible. It is then G-contractible to a G-
fixed point P , which means that P is a normal p-subgroup. This argument works
equally well with Sp(G) replaced by Ap(G), and then of course the conclusion gives
a normal elementary abelian p-subgroup. �

In the converse, the hypotheses are equivalent because ApG is contractible if
and only if SpG is contractible, since both are equivalent to the existence of a
non-trivial normal elementary abelian p-subgroup of G. However, the inclusion
i : Ap(G) −→ Sp(G) is not generally a homotopy equivalence. To see this, we use
the following observation.

Lemma 2.10. Let Qp(G) ⊂ Sp(G) be the subposet of nontrivial intersections of
Sylow p-subgroups. Then Qp(G) is an equivariant deformation retract of Sp(G).

Proof. For P ∈ Sp(G), let f(P ) be the intersection of the Sylow p-subgroups
that contain P and observe that f : Sp(G) −→ Qp(G) ⊂ Sp(G) is continuous
and G-equivariant. Moreover, f(P ) = P is P is itself a p-Sylow subgroup. If
j : Qp(G) −→ Sp(G) is the inclusion, then fj = id. Since Q ≤ f(Q), id ' jf via
an equivariant homotopy. �

Example 2.11. Let G = Σ5 be the symmetric group on five letters. Then A2(G)
and S2(G) are not homotopy equivalent. There are 6 conjugacy classes of 2-
subgroups of G, as follows.

(i) Dihedral groups D8 of order 8, the Sylow 2-subgroups.
(ii) Cyclic groups C4 of order 4.
(iii) Elementary 2-groups C2 × C2 generated by transpositions (ab) and (cd).
(iv) Elementary 2-groups C2×C2 generated by products of transpositions (ab)(cd),

(ac)(bd), whose product in either order is (ad)(bc).
(v) Cyclic groups C2 generated by a transposition.

(vi) Cyclic groups C2 generated by a product of two transpositions.
Of course, each C2 × C2 contains three C2’s. Each C2 of type (v) is contained in
three C2 × C2’s of type (iii) and each C2 of type (vi) is contained in one C2 × C2

of type (iii) and one C2 × C2 of type (iv). This information shows that A2(G)
is minimal, hence not homotopy equivalent to any space with fewer points. The
intersections of Sylow 2-subgroups of G are the dihedral groups in (i), the groups
C2×C2 of type (iv) and the subgroups C2 of type (v) (and in fact Q2(G) is a core
of S2(G)). Counting, one checks that there are fewer points in Q2(G) than there
are in A2(G), so there can be no homotopy equivalence between them.

Quillen conjectured the following stronger version of the converse, and he proved
the conjecture for solvable groups.

Conjecture 2.12. If Ap(G) is weakly contractible, then G contains a non-trivial
normal p-subgroup.

The hypothesis holds if and only if |K Ap(G)| or, equivalently, |K Sp(G)| is
weakly contractible and therefore contractible.
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In particular, if G is simple, then it has no non-trivial normal subgroups and the
conjecture implies that Ap(G) cannot be weakly contractible. This consequence of
the conjecture has been verified for many but not all finite simple groups, using the
classification theorem and proving that the space Ap(G) has non-trivial homology.
A conceptual proof would be a wonderful achievement!

3. Joins and products

As a preliminary to an example to be given later and an illustration of the
translation of algebra to topology, we explain how to compute Ap(G×H) for finite
groups G and H.

Definition 3.1. Let X and Y be posets. As dictated by the product topology on
X × Y , the product poset X × Y is the set X × Y with the induced partial order
specified by (x, y) ≤ (x′, y′) if x ≤ x′ and y ≤ y′. The join poset X ∗ Y is the poset
given by the disjoint union of the posets X and Y , together with the additional
relations x < y if x ∈ X and y ∈ Y .

If Y is a single point, then X ∗Y is the cone CX as we defined it earlier. Quillen
defines cones by taking X rather than Y to be a point.

Remark 3.2. It is perhaps illuminating to use both choices, and we write C+X
for the first choice and C−X for the second choice. They give rise to simplicial
complexes with homeomorphic realizations. There is a canonical map i from X ∗Y
to the poset C+X × C−Y − {(cX , cY )}, where cX and cY denote the cone points.
Indeed, we set i(x) = (x, cY ) and i(y) = (cX , y). Since x < cX and cY < y,
i(x) < i(y) for all x and y, while i(x) ≤ i(x′) if and only x ≤ x′ and i(y) ≤ i(y′)
if and only if y ≤ y′. This map does not figure explicitly in Quillen’s work, but a
similar comparison below will show why we care about it.

Proposition 3.3. The poset Ap(G × H) is homotopy equivalent to the poset
C−Ap(G)× C−Ap(H)− {(cG, cH)}.

Proof. Let T be the subposet of Ap(G×H) whose points are the p-tori in G = G×e,
the p-tori in H = e × H, and the products A × B of p-tori A in G and B in
H. (Remember that p-tori are non-trivial elementary abelian p-groups). Visibly,
thinking of trivial groups as conepoints and therefore < non-trivial subgroups, T
is isomorphic to C−Ap(G) × C−Ap(H) − {(cG, cH)}. Let i : T −→ Ap(G × H)
be the inclusion. The projections G ×H −→ G and G ×H −→ H induce a map
r : Ap(G×H) −→ T such that r◦i = id. For C ∈ Ap(G×H), we have i(r(C)) ⊃ C,
which means that i ◦ r ≥ id and thus i ◦ r ' id. �

We consider products and joins of simplicial complexes and then return to relate
joins geometrically to the posets of the proposition.

Definition 3.4. The product K × L of two abstract simplicial complexes K and
L has V (K ×L) = V (K)× V (L) and has simplices all subsets of products σ× τ of
sets σ and τ that prescribe simplices of K and L. We must take subsets here since
a general subset of σ × τ is not a product of subsets of σ and τ . The product of
geometric simplicial complexes in RM and RN is defined similarly as a geometric
simplicial complex in RM+N = RM × RN .
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It is important to distinguish beween ordered and unordered simplicial complexes
here. Even considering K and L to each have just two vertices and their subsets,
we can order K, L, and their product, and then their geometric realizations are
homeomorphic. However, if we construct realizations directly without introducing
orderings, it is no longer true that the realization of a product of abstract simplicial
complexes is homeomorphic to te product of the realizations. The former has too
many simplices. We shall say more about this later.

Proposition 3.5. Let X and Y be posets. Then K (X × Y ) is a subdivision of
K (X)×K (Y ), hence both have the same geometric realization, and their common
realization is homeomorphic to |K (X)| × |K (Y )|.

Proof. Clearly K (X)×K (Y ) and K (X ×Y ) have the same finite set of vertices.
Inspection shows that every simplex of K (X × Y ) is contained in a product of
simplices of K (X) and K (Y ) and that every simplex of K (X)×K (Y ) is a union
of finitely many simplices of K (X×Y ). In more detail, the n-simplices of K (X×Y )
are all sets of pairs τ = {(xi, yi)|0 ≤ i ≤ n} such that (xi, yi) < (xi+1, yi+1). This
means that xi ≤ xi+1 and yi ≤ yi+1, with not both equal. If there are p+1 distinct
xi and q + 1 distinct yj , then ρ = {xi} is a p-simplex of K (X), σ = {yj} is a
q-simplex of K (Y ), and τ is contained in ρ× σ. There are many choices of τ that
determine the same ρ and σ. Thus every simplex of K (X × Y ) is contained in a
simplex of K (X)×K (Y ). The projections X×Y −→ X and X×Y −→ Y induce
the coordinates of a map

|K (X × Y )| −→ |K (X)| × |K (Y )|.
A point on the right is a pair (u, v) where u is an interior point of some simplex σ of
gK (X) and v is an interior point of some simplex τ of gK (Y ). Since all simplices
on the left are subsimplices of some σ × τ , this map is a homeomorphism. �

The last statement works more generally for simplicial complexes that are not
given in the form K (X) for a poset X, provided that they are ordered.

Proposition 3.6. Let K and L be ordered geometric simplicial complexes. Then
the projections induce a homeomorphism

|K × L| −→ |K| × |L|.

Intuitively, the point is that the product of two geometric simplices is not a
geometric simplex (a square is not a triangle) but can be subdivided into geometric
simplices. In effect, the displayed homeomorphism carries out this subdivision
consistently over all of the simplices of a product of simplicial complexes.

We have analogous statements for joins. Just as for products, the precise def-
inition of which is different when we consider products of posets, of simplicial
complexes, and of topological spaces, we have different meanings of the notion of
join, all of which are denoted by the symbol ∗. However, unlike products, which
are characterized by a universal property, the different definitions of the join are
largely motivated by the comparisons among them.

Definition 3.7. The join K ∗ L of abstract simplicial complexes K and L has
vertex set V (K ∗ L) the disjoint union of V (K) and V (L) and has simplices the
simplices of K, the simplices of L, and all disjoint unions of simplices of K and
L. The join of geometric simplicial complexes is defined similarly, requiring the
disjoint union of V (K) and V (L) to be a linearly independent set.
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Conceptually, it is helpful to note that, just like the product, where X×Y is not
literally the same as Y ×X but only isomorphic to it, we should think of disjoint
union as an operation only commutative up to isomorphism. Then the evident
choice of order on the join of ordered geometric simplicial complexes corresponds
to the analogous choice we had when defining the join of posets in Definition 3.1.

Definition 3.8. The join of topological spaces X and Y is the quotient space of
X × I ×Y obtained by identifying (x, 0, y) with (x′, 0, y) and (x, 1, y) with (x, 1, y′)
for all x, x′ ∈ X and y, y′ ∈ Y . It is the space of lines connecting X to Y . If
X and Y are disjoint subspaces of some large Euclidean space, X ∗ Y is defined
geometrically as the subspace of points tx+(1−t)y for x ∈ X, y ∈ Y , and 0 ≤ t ≤ 1,
noting that the point is independent of x if t = 0 and of y if t = 1.

Lemma 3.9. For spaces X and Y , X∗Y is homeomorphic to (CX×Y )∪(X×CY ).

Proof. We identify X ∗ Y and (CX × Y ) ∪ (X × CY ) as homeomorphic quotients
of subspaces of X × Y × I × I. Let J be the diagonal {(s, t)|s + t = 1} in the
square. Then X ∗ Y is homeomorphic to the quotient of X × Y × J obtained from
the equivalence relation given by

(x, y, (1, 0)) ∼ (x′, y, (1, 0)) and (x, y, (0, 1)) ∼ (x, y′, (0, 1)).

Think of the cone coordinates of CX and CY as the edges I1 = [(0, 0), (1, 0)]
and I2 = [(0, 0), (0, 1)] of I × I. Let K = I1 ∪ I2 ⊂ I × I. Then (CX × Y ) ∪
(X ×CY ) is homeomorphic to the quotient of X × Y ×K obtained from precisely
the same equivalence relation. Radial projection from (1, 1) gives a deformaion
I × I −{1, 1} −→ K that restricts to a homeomorphism J −→ K and thus induces
the claimed homeomorphism. �

Proposition 3.10. For posets X and Y ,

K (X ∗ Y ) ∼= K (X) ∗K (Y ).

For abstract simplicial complexes K and L,

g(K ∗ L) ∼= gK ∗ gL.

For ordered geometric simplicial complexes K and L,

|K ∗ L| ∼= |K| ∗ |L|.

We give another way to think about the join |K| ∗ |L| in RN , where K and L are
geometric simplicial complexes. The notion of X −{x}, x ∈ X, is clear for a poset.
For a simplicial complex K, K − {v} for v ∈ V (K) means the simplicial complex
that is obtained from K by deleting all simplices which have v as a vertex, and
K (X − {x}) = K (X)− {x}. However, |K − {v}| is quite different from |K| − v.

Proposition 3.11. Let K and L be ordered geometric simplicial complexes. Then

CK × CL− {(cK , cL)} = (CK × L) ∪ (K × CL)

as subcomplexes of CK × CL, and |K| ∗ |L| is homeomorphic to |CK × CL −
{(cK , cL)}|

Proof. The simplices of CK × CL that do not have (cK , cL) as a vertex are the
simplices in either CK × L or K × CL. The gives the first conclusion. Geometric
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realization commutes up to homeomorphism with cones, products and unions, so
that

|(CK × L) ∪ (K × CL)| ∼= (C|K| × |L|) ∪ (|K| × C|L|).
Now our lemma on topological joins gives the second conclusion. �

Corollary 3.12. |K (Ap(G×H))| is homeomorphic to |K (Ap(G)| ∗ |K (Ap(H)|.

4. Group actions and Quillen’s conjecture

As we have explained, if G has a non-trivial normal p-subgroup, then Ap(G)
is contractible and therefore weakly contractible. Quillen’s conjecture is that, con-
versely, if Ap(G) is weakly contractible, then G has a non-trivial normal p-subgroup.
In other words, contrary to what we have seen holds in general, if Ap(G) is weakly
contractible, then it is contractible. In this form, we see that the conjecture can be
thought of as a problem in the equivariant homotopy theory of finite T0-spaces.

Proposition 4.1. The conjecture holds if rp(G) ≤ 2.

Proof. The hypothesis cannot hold if rp(G) = 0, since Ap(G) is then empty and
hence not contractible. If rp(G) = 1, then the space Ap(G) is discrete since there
are no proper inclusions. It is weakly contractible if and only if it consists of a single
point, and then its single point must be fixed by the action of G. This means that
there is a unique p-torus in G, and it is a normal subgroup of order p. If rp(G) = 2,
then |K (Ap(G))| is one dimensional and contractible, which means that it is a tree.
According to Quillen, “one knows (Serre) that a finite group acting on a tree always
has a fixed point”. This means that G has a normal p-torus. The trees here are
of a particularly elementary sort, but the conclusion is still not altogether obvious.
The following problem gives a way of thinking about it. �

Problem 4.2. Consider a T0 space X such that |K (X)| is a tree (a contractible
graph). Clearly X is weakly contractible. Prove that X is contractible. (Search for
upbeat or downbeat points). It follows that if a finite group G acts on X, then X
is G-contractible and therefore has a G-fixed point.

Much of Quillen’s paper is devoted to proving that the conjecture holds for
solvable groups G. This means that there is a decreasing chain of subgroups of G,
each normal in the next, such that the subquotients are cyclic of prime order.

Following Quillen, we work out the structure of Ap(G) when G = Σ2p is the
symmetric group on 2p letters for an odd prime p. First note that Ap(Σn) is empty
if n < p and is a discrete space with one element for each cyclic subgroup of order
p if p ≤ n < 2p. There are n!/(n− p)!p(p− 1) such subgroups.

Let g ∈ G = Σ2p have order p. The group 〈g〉 it generates has order p, and its
action on the set S = {1, · · · , 2p} partitions S into two disjoint subsets, one given
by the orbit generated by an element s such that gs 6= s and the other given by
its complement, on which 〈g〉 acts either freely or trivially. If A ∼= Z/p × Z/p is a
maximal elementary abelian p-subgroup of G with generators g and g′, then since
g and g′ commute we can see that they give the same partition of S, so that each
such A gives a unique partition of the set S into two A-invariant subsets, each with
p elements. The set of such partitions of S into two subsets with p elements gives
a corresponding decomposition of Ap(G) into disjoint subposets, each consisting of
those A which partition S in the prescribed way.
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Under the action of G, these partitions are permuted transitively, meaning that,
given two partitions, there is an element of G that permutes one into the other.
Consider for definiteness the partition into the first p and last p elements of S. Let
H be the subgroup of those elements of G that fix this partition. The corresponding
subposet of Ap(G) is Ap(H). Here H is the wreath product Σ2

∫
Σp, which is the

semi-direct product of Σ2 with Σp × Σp determined by the permutation action of
Σ2 on Σp × Σp.

Since p is odd, Ap(H) = Ap(Σp × Σp), which, after passage to realizations of
simplicial complexes, is the join Ap(Σp) ∗ Ap(Σp). Since Σp has (p − 2)! Sylow
subgroups, each of order p, Ap(Σp) is the disjoint union of (p − 2)! points. After
counting the number of partitions and inspecting the join of our two discrete spaces
Ap(Σp), Quillen informs us, and we can work out for ourselves, that |Ap(Σ2p)|
is a disconnected graph with (2p)!/2(p!)2 components, each of which is homotopy
equivalent to a one-point union of ((p−2)!−1)2 circles. For example, for p = 5, there
are 25 circles. The same analysis applies to the alternating groups An for n ≤ 2p
since Ap(An) = Ap(Σn). Of course, these Ap(G) are not weakly contractible.

5. The components of Sp(G)

Let p be a prime which divides the order of G. We describe the set of components
π0(Sp(G)), which of course is the same as π0(Ap(G)). Recall that two elements
of a poset are in the same component if they can be connected by a chain of
elements, each either ≤ or ≥ the next. In the poset π0(Sp(G)), each element is
a p-group and is contained in a Sylow subgroup. Therefore there is at least one
Sylow subgroup in each component. Since any one Sylow subgroup P generates all
the others by conjugation by elements of G, G acts transitively on π0(Sp(G)), in
the sense that there is a single orbit. If N = NP denotes the subgroup of G that
fixes the component [P ] of P , then G/N is isomorphic to the G-set π0(Sp(G)) via
gN 7→ [P g]. We want to determine the subgroup N . Let Sylp(G) denote the set of
p-Sylow subgroups of G and let NGH denote the normalizer in G of a subgroup H.
Recall that Hg = gHg−1.

Proposition 5.1. The following conditions on a subgroup M of G are equivalent.

(i) For some P ∈ Sylp(G), M ⊃ NP .
(ii) For some P ∈ Sylp(G), M ⊃ NGH for all H ∈ Sp(P ).

(iii) For some P ∈ Sylp(G), M ⊃ NGP and K ⊂M whenever K is a p-subgroup
of G that intersects M non-trivially.

(iv) p divides the order of M and M ∩Mg is of order prime to p for all g /∈M .

Moreover, Sp(G) is connected if and only if there is no proper subgroup M which
satisfies these equivalent conditions.

Proof. The last statement holds since G is connected if and only if G = NP for all
P ∈ Sylp(G), in which case no proper subgroup can satisfy the stated conditions.
(i) =⇒ (ii): If g ∈ NGH with H ⊂ P , then Hg = H is contained in both P and
P g, so that [P ] = [P g] = g[P ]. This means that g ∈ NP ⊂M .
(ii) =⇒ (iii): Obviously M ⊃ NGP . Since P is a p-Sylow subgroup of G, it is
also a p-Sylow subgroup of M . Thus if H is a non-trivial p-subgroup of M , then
H is conjugate in M to a subgroup, Hm say, of P . Since M ⊃ NG(Hm) and
(NGH)m = NG(Hm), M ⊃ NGH. Let K be a p-subgroup of G such that K ∩M
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is non-trivial. We have

K ∩M ⊂ NK(K ∩M) = K ∩NG(K ∩M) ⊂ K ∩M.

Since K is a p-group, the first inclusion is proper if K ∩M is a proper subgroup of
K. Since this is a contradiction, we must have K ∩M = K and K ⊂M .
(iii) =⇒ (iv): Since M ⊃ P , p divides the order of M . Assume that p divides
the order of M ∩ Mg for some g ∈ G. Then there is a non-trivial p-subgroup
H ⊂ M ∩Mg. Let H ⊂ Q for Q ∈ Sylp(G). Since Q ∩M is non-trivial, we have
Q ⊂M . Since Hg−1 ⊂ Qg−1

and Hg−1 ⊂M , we also have Qg
−1 ⊂M . Since P , Q,

and Qg
−1

are p-Sylow subgroups of M , they are conjugate in M , say Qm = P and
Qg
−1

= Pn for m,n ∈ M . Then a quick check shows that mgn ∈ NGP ⊂ M and
therefore g ∈M , proving (iv).
(iv) =⇒ (i): Writing G as the disjoint union of double cosets MgM , one calculates
that the index of M in G is the sum over double coset representatives g of the
indices of M ∩Mg in M . Since p divides the order of M and does not divide the
order of M ∩Mg if g /∈ M , these indices are divisible by p except for the double
coset represented by e. Thus the index of M in G is congruent to 1 mod p, hence
M must contain some p-sylow subgroup P . Let N = NP . For n ∈ N , P and
Pn are in the same component. Considering p-Sylow subgroups containing groups
in a chain connecting them, we see that there is a sequence of p-Sylow subgroups
P = P0, P1, . . ., Pq = Pn such that Pi ∩ Pi+1 6= {e}. There are elements gi such
that P gi

i−1 = Pi, and we can choose gq so that gq · · · g1 = n. We have P ⊂ M ,
and we assume inductively that Pi−1 ⊂ M . Then Pi−1 ∩ Pi ⊂ M ∩Mgi , so this
intersection contains a p-group and, by (iv), gi ∈ M . This implies that Pi ⊂ M
and, inductively, we conclude that n ∈M , so that N ⊂M . �

Corollary 5.2. NP is generated by the groups NGH for H ∈ Sp(P ).

Proof. NP contains all of these NGH, so it contains the subgroup they generate,
and it is the smallest such subgroup by the equivalence of (i) and (ii). �

By the contrapositive, G is not connected if and only if there is a proper subgroup
M of G that satisfies the equivalent properties of the proposition. For example, if
rp(G) = 1 and G has no non-trivial normal p-subgroup, then Ap(G) is discrete and
not contractible, and is therefore not connected. Quillen gives a condition on G
under which these are the only examples.

Proposition 5.3. Let H (= Op′(G)) be the largest normal subgroup of G of order
prime to p and let K (= Op′,p(G)) be specified by requiring K/H to be the largest
normal p-subgroup of the quotient group G/H. If K/H is non-trivial and Sp(G)
is not connected, then rp(G) = 1.

Proof. If Q is a p-Sylow subgroup of K, then K = QH since H is a p′-group
and K/H is a p-group. This implies that H acts transitively on π0(Sp(K)) since
it implies that any two p-Sylow subgroups are conjugate by the action of some
h ∈ H. The intersection with K of a p-Sylow subgroup P of G is a p-Sylow
subgroup of K. A p-subgroup of K is a p-subgroup of G, and the induced map
π0(Sp(K)) −→ π0(Sp(G)) is surjective since P ∩ K ⊂ P implies that [P ] is the
image of [P ∩ K]. Therefore H also acts transitively on π0(Sp(G)). Let A be a
maximal p-torus of G. The map π0(Sp(AH)) −→ π0(Sp(G)) is also surjective
since H acts transitively on the target and the map is H-equivariant. Therefore
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Sp(AH) is not connected. The component [A] is fixed by the centralizers CH(B)
for all non-trivial subgroups B of A since Bh = B ⊂ A for h ∈ CH(B). By [1, 6.2.4],
if A is not cyclic (= rank one), then H is generated by these centralizers, which
contradicts the fact that Sp(AH) is not connected. Therefore A is cyclic. �
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