
2nd subdivision of a simplicial set

1 Subdivision of simplicial sets - Kan version

∆n is the simplicial set whose q-simplices are maps [q]→ [n]. For any [p]
γ→ [q],

for [q] α→ [n], γ∗α is defined by precomposition. Therefore α is nondegenerate
iff it is injective.

∆′ [n] is a simplicial set whose q-simplices are ordered (q + 1)-tuples (α0, . . . αq)
of injective maps with target [n], such that αi is a face of αi+1, i.e. is ob-
tained from αi+1 by precomposition. For any [p]

γ→ [q], for α = (α0, . . . αq),
γ∗ (α) =

(
αφ(0), . . . αφ(p)

)
. Therefore (α0, . . . αq) is nondegenerate iff each αi is

a proper face of αi+1.

Since each αi is injective, and injective maps in ∆ are uniquely determined
by their images, it is equivalent to define q-simplices of ∆′n as elements of the
form (S0, . . . Sq) where each Si is a subset of [n], such that Si ⊂ Si+1 for all i.
Then for any For any [p]

γ→ [q], γ∗ (S0, . . . Sq) :=
(
Sγ(0), . . . Sγ(p)

)
. Then this

simplex is nondegenerate iff Si 6= Si+1 for each i.

Kan subdivision is defined as sdK := K ⊗∆′ [−]. The standard notation is
that elements in sdKq are in the form x⊗(φ0, . . . φq) where x ∈ Kn and the φi’s
are each nondegenerate faces of ∆n (i.e. injective maps [mi]→ [n]) such that for
each i, φi is a face of φi+1 (i.e. can be obtained from φi+1 via precomposition
of some injective map).

These elements are under the equivalence relation generated by γ∗x⊗(φ0, . . . φq) ∼
x ⊗ (ψ0, . . . ψq), for any morphism γ in ∆, where for each i, ψi is the injective
part of γ ◦φi (under the unique decomposition of any map in ∆ into a surjective
map followed by an injective map).
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For any [p]
γ→ [q], γ∗ (x⊗ (φ0, . . . φq)) := x⊗

(
φγ(0), . . . φγ(p)

)
.

Equivalently, one can write any element of sdK as x ⊗ (S0, . . . Sq) where
x ∈ Kn and each Si is a subset of [n], such that Si ⊂ Si+1 for all i. (This is
equivalent since any injective map in ∆ is uniquely determined by its image).

In the new notation, the elements are under the equivalence relation gen-
erated by γ∗x⊗(S0, . . . Sq) ∼ x⊗(γ (S0) , . . . γ (Sq)), for any morphism γ in ∆.

And for any [p]
γ→ [q], γ∗ (x⊗ (S0, . . . Sq)) := x⊗

(
Sγ(0), . . . Sγ(p)

)
.

Trivially these two definitions give isomorphic simplicial sets.

It is known that any element of sdK can be written uniquely in minimal
form. Here an element x ⊗ (S0, . . . Sq) is in minimal form if x ∈ Kn is nonde-
generate and Sq = [n].

Claim 0.0.1: A simplex of sdK is degenerate if and only if when writ-

ten in minimal form x⊗ (S0, . . . Sq), Si = Si+1 for some i.

Proof: ‘If’ is trivial; ‘only if’ can be proved as follows:

Take any degenerate simplex; this means that the simplex can be repre-
sented by Y := y⊗ (T0, . . . Tq) where for some j, Tj = Tj+1. Write y ∈ Kn. Let
m = |Tq| − 1, and find injective [m]

γ→ [n] such that γ ([m]) = Tq ∈ [n]. Then
define T ′i := γ−1 (Ti) for all i; note that T ′q = [m]. So, Y ∼ y′ ⊗

(
T ′0, . . . T

′
q

)
where y′ = γ∗y ∈ Km. Now write y′ = σ∗z for unique surjective σ and nonde-
generate z ∈ Kr; Y ∼ z ⊗

(
σ (T ′0) , . . . σ

(
T ′q
))

. Note that σ
(
T ′q
)

= [r] so this is
now in minimal form. And, Tj = Tj=1 ⇒ σ

(
T ′j
)

= σ
(
T ′j+1

)
. This proves the

claim.
�.

Note that sd is a functor S → S; for any map of simplicial sets K
f→ L, define

the map sd (f) to send x⊗ (S0, . . . Sq) 7→ f (x)⊗ (S0, . . . Sq). Trivially this is a
map of simplicial sets, and the functor satisfies laws of identity and composition.
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Lemma 0.0.2: If x ∈ Kn is nondegenerate then there exists a nonde-

generate q-simplex X in sdK with qth vertex x⊗ ([n]) iff q ≤ n.

Proof: If q ≤ n, set X = x⊗([n− q] , [n− q + 1] , . . . [n]); by Claim 0.0.1, X is
nondegenerate. Conversely if X is a nondegenerate q-simplex with qth vertex x
then in minimal form, we must have X = x⊗ (S0, . . . Sq = [n]) with Si a proper
subset of Si+1 for all i; therefore q ≤ n.
�.

Claim 0.0.3: An isomorphism sdK ∼= sdL induces a natural isomor-

phism Kn
∼= Ln for each n, and for any x ∈ Kn corresponding to

y ∈ Ln, the faces of x correspond to the faces of y.

(However, I will show in the ‘Non-examples’ section that K and L are not
necessarily isomorphic).

Proof: Given a map of simplicial sets sdK
f→ sdL, define a function Kn

gn→
Ln as follows. For nondegenerate x ∈ Kn, we have simplex x ⊗ ([n]) ∈ sdK0,
written in minimal form. f sends this to some element Y of sdL0; write Y in
minimal form, y ⊗ ([m]). But by Lemma 0.0.2, m = n, and so y ∈ Ln. Define
gn (x) = y. Note that in particular, gn sends nondegenerate simplices to non-
degenerate simplices.

For degenerate x ∈ Kn, there is a unique surjective map σ in ∆ and
nondegenerate simplex x′ in Km (for some m), such that x = σ∗x′. Define
gn (x) = σ∗gm (x′).

Constructing an analagous map Ln → Kn will show that g is bijective (this
follows from the fact that for any x, σ and x′ as defined above are unique).

For nondegenerate x ∈ Kn, the (n− 1)-faces of x are the simplices x′ ∈ Kn−1

such that there is some X ∈ sdK1 with d∗0X and d∗1X yielding x′ and x, respec-
tively. By uniqueness of minimal form, there are n+1 such simplices x′ (although
some may repeat - count them with multiplicities). Since this property is pre-
served by the isomorphism sdK ∼= sdL, it follows that for any nondegenerate
x ∈ Kn corresponding via gn to y ∈ Ln, the (n− 1)-faces of x correspond (with
multiplicities) via gn−1 to the (n− 1)-faces of y.
�.
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2 Property A:

Say that K has property A if for any non-degenerate simplex x, all faces of x
are also non-degenerate.

Claim 0.1: K has property A iff sdK has property A.

Proof: First suppose K has property A. Take an element X = x⊗ (S0, . . . Sq)
in sdKq. Assume X is in minimal form and x ∈ Kn.

Suppose for some [p]
γ→ [q], γ∗X = x ⊗

(
Sγ(0), . . . Sγ(p)

)
is degenerate. Let

α be the unique injective map [m] → [n] with image Sγ(p). Then γ∗X ∼ Y :=

α∗x⊗
(
S′γ(0), . . . S

′
γ(p) = [m]

)
. (Here α

(
S′γ(i)

)
= Sγ(i)).

Since x is nondegenerate and K has property A, α∗x is nondegenerate, and
so Y is in minimal form. By Claim 0.0.1, for some i, S′γ(i) = S′γ(i+1). Therefore
Sγ(i) = Sγ(i+1), proving that X is degenerate.

To prove the converse, suppose K does NOT have property A. Let x be a
non-degenerate n-simplex with degenerate m-face y. Then find nondegenerate
k-simplex z, injective α, and surjective σ 6= id such that α∗x = y = σ∗z. Find
injective right inverse for σ, β.

In sdK, we have 2-simplex x ⊗ (α ◦ β ([k]) , α ([m]) , [n]). It is written in
unique minimal form, therefore by above, it is nondegenerate. However, a
face of this 2-simplex is x ⊗ (α ◦ β ([k]) , α ([m])) ∼ α∗x ⊗ (β ([k]) , [m]) =
σ∗z ⊗ (β ([k]) , [m]) ∼ z ⊗ (σ ◦ β ([k]) , σ ([m])) = z ⊗ ([k] , [k]), a degenerate
1-simplex.

Therefore sdK does not have property A.
�.
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3 Property B

Say K has property B if for any nondegenerate x ∈ Kn, x has n + 1 distinct
vertices (meaning 0-faces).

Claim 1.1: K has property B if and only if for any n and nondegen-

erate x ∈ Kn, for any injective α, β in ∆ with target [n], α∗x = β∗x ⇒
α = β.

Proof: Clearly if the second statement is true then K has property B.

To prove the converse I will first introduce an alternate notation. For x ∈ Kn

and S ⊂ [n] let S∗x denote α∗x where [m] α→ [n] is the unique injective map in
∆ with target [n] and image S.

Now the second statement is equivalent to saying that for any n and nonde-
generate x ∈ Kn, if S and T are distinct subsets of [n] then S∗x 6= T ∗x.

Suppose K has property B, and for some nondegenerate x ∈ Kn and S, T ⊂
[n] we have S∗x = T ∗x. This implies |S| = |T |. Write S = {s0, . . . sm},
T = {t0, . . . tm}, each in strictly increasing order. For 0 ≤ i ≤ m, we have
{si}∗x = {i}∗ (S∗x) = {i}∗ (T ∗x) = {ti}∗x. But since K has property B, this
implies si = ti for all i. Therefore S = T .
�.

Claim 1.2: Property B implies property A.

Proof: Suppose property A is false for K. Then find a nondegenerate n-
simplex x with a degenerate face. Any degenerate simplex has a degenerate
1-face, therefore x has a degenerate 1-face. Since two of x’s vertices lie in this
1-face and are therefore equal, x cannot have n+1 distinct vertices. Then prop-
erty B is false for K.
�.

Claim 1.3: If K has property A then sdK has property B.

Proof: Take any X ∈ sdKq, X = x ⊗ (S0, . . . Sq), in minimal form, with
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x ∈ Kn. Suppose x ⊗ (Sa) ≈ x ⊗ (Sb) for some 0 ≤ a < b ≤ q. Let α and
β be injective maps with target [n] and images Sa and Sb, respectively. We
have α∗x⊗ ([ma]) ∼ β∗x ([mb]). But since K has property A, α∗x and β∗x are
nondegenerate, and therefore by uniqueness of minimal form, ma = mb. Since
also Sa ⊂ Sb, this implies Sa = Sb, and therefore X is degenerate. Therefore
sdK has property B.
�.

Note that Claims 0.1, 1.2, and 1.3 combined prove that sdK has property B
iff K has property A.

4 Property C

Say K has property C if for any distinct 0-simplices v0, . . . vn, there is at most
one n-simplex x with vertex set {v0, . . . vn}.

Claim 2.2: K has property B if and only if sdK has property C.

Proof: First suppose K has property B. Suppose that in sdKq, nondegenerate
simplices X = x⊗ (S0, . . . Sq) and Y = y ⊗ (T0, . . . Tq) each have q + 1 distinct
vertices, and their vertex sets are equal. Assume without loss of generality that
X and Y are in minimal form. Then by property B, the vertices of X and of Y
can be written in minimal form as S∗i x⊗ ([ni]) and T ∗i y ⊗ ([mi]).

Note that since X and Y are nondegenerate, we have that n0 < . . . < nq

and m0 < . . . < mq.

Now suppose for some i, j, we have S∗i x⊗ ([ni]) ∼ T ∗j x⊗ ([mj ]). By minimal
form this would imply ni = mj . If i < j then it follows by the pigeonhole prin-
ciple that for some j′ < j and i′ > i, we would have ni′ = mj′ . Then we would
have ni < ni′ = mj′ < mj = ni, a contradiction. Therefore the ORDERED
vertex sets of X and Y are equal; that is, for each i, ni = mi and S∗i x = T ∗i y.

But by minimal form we also have x = y, and so by property B, Si = Ti for
all i, therefore X = Y . Therefore property C holds.
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Next suppose K does not have property B. Then find nondegenerate x ∈ Kn

and distinct [0]
α,β−→ [n] such that α∗x = β∗x (i.e. repeated vertices). Then

by uniqueness of minimal form, x ⊗ (α ([0]) , [n]) 6∼ x ⊗ (β ([0]) , [n]) but
x ⊗ (α ([0])) ∼ α∗x ⊗ ([0]) = β∗x ⊗ ([0]) ∼ s ⊗ (α ([0])), so we have a ver-
tex set {v0, v1} and two distinct nondegenerate 1-simplices with this vertex set.
(Note that as x is nondegenerate and by definition n 6= 0, v0 6= v1). Therefore
sdK does not have property C.
�.

Note that the combination of the claims above proves that if K has property
A, sd (sdK) has properties B and C. (And conversely, if sdnK has property A,
B, or C for any n > 0, then K has property A).

5 Relationship to simplicial complexes

There is a standard full embedding of the category of simplicial complexes,
SCplx, into S, by creating all the necessary degenerate simplices. Call this
functor D. It is known that for simplicial set K, K ∈ D (SCplx) if and only if
the vertex sets of nondegenerate simplices of K satisfy the criteria for a simpli-
cial complex; that is, if each n-simplex’s vertex set contains n+ 1 vertices, and
it is uniquely determined by its vertex set.

Claim 3.1: For K ∈ S, K ∈ D (SCplx) iff K has properties B and C.

Proof: This follows directly from definitions of properties B and C.
�.

6 Relationship to quasicategories and Kan com-

plexes

A ‘quasicategory’ is a simplicial set K such that for any n, 0 < k < n, any map
Λkn → F extends to ∆n as in the diagram below:
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A B

C

//f
� _

��

??�
�

�
�

�
�

�

f̃

Here Λkn is the (n− 1)-faces of ∆n minus the kth (n− 1)-face, where ∆n

is the simplicial set whose m-simplices are maps [m] → [n] with faces and
degeneracies via precomposition. Note that there are

(
n+1
m+1

)
nondegenerate m-

simplices for each m.

A Kan complex is a simplicial set K such that for any n, 0 ≤ k ≤ n, any
map Λkn → F extends to ∆n. In other words, a quasicategory is a simplicial
set with extensions of inner horns, while a Kan complex is a simplicial set with
extensions of both inner and outer horns.

Claim 4.1: For any simplicial set K, if K does not have property A,

then sdK is not a quasicategory.

Proof: Assume K does not have property A. I will construct a map Λ2
3
f→ sdK

that cannot be extended to a map ∆3
f̃→ sdK.

As in examples above, take a nondegenerate simplex x with degenerate face
y = σ∗z = α∗x where σ is surjective and α is injective, and z is non-degenerate.
Find injective right inverse β for σ. x ∈ Kn, y ∈ Km, z ∈ Kk.

Write ι3 for the generating 3-simplex of ∆3. The three 2-faces of ι3 in the
inner horn Λ2

3 are d∗0ι3, d∗1ι3, and d∗3ι3.

Let f map d∗0ι3 to x⊗(α ◦ β ([k]) , α ([m]) , [n]), map d∗1ι3 to x⊗(α ([m]) , α ([m]) , [n]),
and map d∗3ι3 to z⊗ ([k] , [k] , [k]). This gives a consistent definition of f on the
0- and 1-faces of the horn (a straightforward calculation).

However, f cannot be extended to the last 2-face d∗2ι3. This is because any
possible image, in minimal form, would have to be in the form x ⊗ (S, T, [n])
(unique minimal form of the last vertex). Then we would need x ⊗ (S, [n]) ∼
x⊗ (α ([m]) , [n]) and x⊗ (T, [n]) ∼ x⊗ (α ◦ β ([k]) , [n]). By uniqueness of min-
imal form, we see that S = α ([m]) and T = α ◦ β ([k]). Therefore, since k < m,
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T is a propert subset of S. But by definition S ⊂ T . This is a contradiction,
therefore no such extension exists.

Therefore sdK does not have extensions for all inner horns, and is therefore
not a quasicategory.
�.

Claim 4.2: sdK is not a Kan complex, unless K is a trivial simplicial

set with no non-degenerate simplices of positive degree.

Proof: Assume K has a non-degenerate n-simplex x, where n > 0. Let y be
a vertex of x with injective α such that α∗x = y. Then map Λ2

2 → sdK by
sending the vertices to x, y, and x, respectively, and sending the edge between
1 and 2 to x⊗ (α ([0]) , [n]) and the edge between 0 and 2 to x⊗ ([n] , [n]). There
is no 1-simplex with first vertex x and second vertex y (since y ∈ K0), so there
is no way to extend this map to the third edge. Therefore sdK does not have
extension from outer horns, and is therefore not a Kan complex.
�.

7 Relationship to categories and the nerve func-

tor

Now let N be the nerve functor, Cat N→ S. For C ∈ Cat, N (C)n = {A0
f1→ A1

f2→
A2 . . . An−1

fn→ An}, where the Ai’s and fi’s are objects and morphisms in C. It
is known that N is a full embedding, i.e. it is injective on objects and full and
faithful on morphism sets. Therefore we can regard Cat as a full subcategory
of S. It is also known that a quasicategory K is the nerve of a category if and
only if any map Λkn → F extends uniquely to a map from ∆n.

It is also known that simlicial set K is the nerve of a category iff for any
x1, . . . xn ∈ K1 such that d∗1xi−1 = d∗0xi for each i, there exists a unique y ∈ Kn

such that for [1] εi→ [n] the injective map with image {i − 1, i}, ε∗i y = xi (for
1 ≤ i ≤ n).
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Claim 5.1: If K has property A, then sdK is the nerve of a category.

Proof: Take X1 = x1⊗ (A1, B1) , . . . Xq = xq ⊗ (Aq, Bq) ∈ sdK1 such that for
each i, d∗1Xi−1 ∼ d∗0Xi. Assume that each Xi is in minimal form, with xi ∈ [ni]
and injective [mi]

αi→ [ni] with image Ai for each i.

Then the condition on the vertices is equivalent to saying that xi−1 ⊗
([ni−1]) ∼ α∗i xi⊗ ([mi]). Since K has property A, α∗i xi is nondegenerate for all
i, and therefore by uniqueness of minimal form, xi−1 = α∗i xi and ni−1 = mi for
all i.

Define X = xq ⊗ (αq ◦ . . . α1 ([m1]) , αq ◦ . . . α2 ([m2]) , . . . αq ([mq]) , [nq]).
Then ε∗iX = xq⊗

(
αq ◦ . . . αi ([mi]) , αq ◦ . . . αi+1 ([mi+1]) ∼ α∗i+1 ◦ . . . α∗qx⊗ (αq ([mi]) , [mi+1])

)
=

xi ⊗ (Ai, [ni]). Therefore ε∗iX ∼ Xi for all i as desired.

Now suppose there exists another extension Y = y ⊗ (S0, . . . Sq) ∈ sdKq.
Assume Y is in minimal form; then y ∈ Knq and Sq = [nq]. Let β1, . . . βq be
injective maps, with [nq] the target of βq, such that the image of βq ◦ . . . βi is
Si−1 for all i.

First consider the vertices of Y . The ith vertex is y⊗ (Si) ∼ β∗i+1 ◦ . . . β∗qy⊗
([|Si| − 1]) ∼ xi ⊗ ([ni]). K has property A, so β∗i+1 ◦ . . . β∗qy is nondegenerate;
by uniqueness of minimal form, β∗i+1 ◦ . . . β∗qy = xi and |Si| = ni + 1 for all i; in
particular we have y = xq.

Next consider the edges of Y . For each i, ε∗i Y = y ⊗ (Si−1, Si) ∼ β∗i+1 ◦
. . . β∗qy ⊗ (βi ([ni−1]) , [ni]) ∼ xi ⊗ (Ai, [ni]). By uniqueness of minimal form,
βi ([ni]) = Ai for all i. Therefore βi = αi for all i; therefore Si−1 = αq ◦
. . . αi ([mi]) for all i; therefore Y = X.
�.

Let S τ1→ Cat be the adjoint to N . It is defined as follows:

For K ∈ S, the object set of τ1K is K0. For x, y ∈ K0, τ1K (x, y) = {zn ?
. . . ? z1 | n ≥ 1, zi ∈ K1 ∀i, d∗0z1 = x, d∗1zn = y, d∗1zi = d∗0zi+1 ∀1 ≤ i < n}\ ≈,
where ? represents formal composition, with s∗0x labeled as idx, with composi-
tion defined as concatenation of strings (written in the order one writes com-
positions), and with ≈ the equivalence relation generated by d∗1w ≈ d∗0w ◦ d∗2w
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for all w ∈ K2 and f ◦ idx ≈ idx ◦ f ≈ f for any f in the morphism set. (I will
write ≈ to distinguish it from the relation ∼ used to define sd).

It is known that for any C ∈ Cat, τ1 ◦N (C) ∼= C.

Lemma 5.1.1: For any K, any morphism in τ1 (sdK) can be repre-

sented by a 1-simplex in sdK.

Proof: By definition, a morphism in τ1 (sdK) can be represented by a formal
string of 1-simplices, Xq ? . . . ?Xq, with d∗1Xi = d∗0Xi+1 for all i. Write each Xi

in minimal form, xi ⊗ (Si, [ni]). Then x1 ⊗ ([n1]) ∼ x2 ⊗ (S2) ∼ S∗2x2 ⊗ ([m2]),
so by uniqueness of minimal form, S∗2x2 = σ∗x1 for some surjective σ. Let β be
a right inverse for σ. Let α2 be the injective map to [n2] with image S2. Then
x2 ⊗ (α2 ◦ β ([n1]) , S2) ∼ S∗2x2 ⊗ (β ([n1]) , [m2]) ∼ x1 ⊗ ([n1] , [n1]), a degener-
ate simplex. Considering 2-simplex x2 ⊗ (α2 ◦ β ([n1]) , S2, [n2]), we see that as
morphisms, x2 ⊗ (S2, [n2]) ≈ x2 ⊗ (α2 ◦ β ([n1]) , [n2]).

Next, observe that x1 ⊗ (S1, [n1]) ∼ x2 ⊗ (α2 ◦ β (S1) , α2 ◦ β ([n1])). Then
considering 2-simplex x2 ⊗ (α2 ◦ β (S1) , α2 ◦ β ([n1]) , [n2]), we see that x2 ⊗
(S2, [n2]) ? x1 ⊗ (S1, [n1]) ≈ x2 ⊗ (α2 ◦ β (S1) , [n2]).

Therefore we have that our original formal string of length q is equivalent to
a formal string of length q − 1. By induction, it must be equivalent to a string
of length 1, and can therefore be represented by a 1-simplex.
�.

Corollary 5.2: sdK ∼= N ◦ τ1 (sdK) iff K has property A.

Proof: By claim 5.1, if K has property A, then sdK is the nerve of a cat-
egory for some category C. Then N ◦τ1 (sdK) = N (τ1 ◦N (C)) ∼= N (C) = sdK.

Conversely, if K does not have property A, then by Claim 4.1, sdK is not a
quasicategory. Therefore it cannot be isomorphic to quasicategory N ◦τ1 (sdK).
�.

I will say that a category C has property A (or B, or C) iff simplicial set
N (C) has property A (or B, or C).
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Claim 5.3: For C ∈ Cat, C has property A iff for any A
f→ B, B

g→ A in

C such that g ◦ f = idA, A = B and f = g = id.

Proof: Suppose N (C) and g ◦ f = idA. Then 2-simplex A
f→ B

g→ A has
degenerate face A idA→ A and must itself be degenerate, and therefore f = idA

or g = idA, therefore f = g = idA.

To prove the converse, suppose property A does not hold for N (C). Then
by definition of the nerve of C we have that for some A, some non-identity maps
f1, . . . fn, idA = fq ◦ . . . ◦ f1 = (fn ◦ . . . ◦ f2) ◦ f1. But f1 is not an identity map;
then this contradicts the second statement as desired.
�.

Corollary 5.3.1: If C is a category with a left- or right-invertible non-

identity arrow, then N (C) is not isomorphic to the subdivision of any

simplicial set.

Proof: Claims 0.1 and 4.1.
�.

Claim 5.4: For C ∈ Cat, C has property B if and only if for any A
f→ B,

B
g→ A in C, A = B and f = g = id.

Proof: Suppose N (C) has property B and that we have A
f→ B and B

g→ A.
Then 2-simplex A

f→ B
g→ A does not have 3 distinct vertices, and so it must

be degenerate. Therefore A = B (and either f = ida or g = ida). Furthermore
1-simplices A

f→ A and A
g→ A do not have 2 distinct vertices and so they must

both be denegerate; therefore f = g = idA.

Conversely suppose that for any A
f→ B, B

g→ A in C, A = B and f = g = id.
Now take an n-simplex A0

f1→ A1 . . . An in N (C). If this simplex is non-
degenerate, then by the assumptions on C, the Ai’s are distinct. Then there
are clearly n+ 1 distinct vertices of this simplex, and so property B holds.
�.
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Claim 5.5: For any K, τ1 (sdK) has property B.

Proof: By Claim 5.4, this is equivalent to showing that for any K, for any
A

f→ B, B
g→ A in τ1 (sdK), A = B and f = g = id.

Take any such A,B, f, g. By definition of τ1, A and B are 0-simplices in
sdK. Write A = a⊗ ([m]) and B = b⊗ ([n]), in minimal form.

By Lemma 5.1.1, morphisms in τ1 (sdK) are equivalence classes of 1-simplices,
so we can represent f and g by 1-simplices X and Y in sdK written in minimal
form. By uniqueness of minimal form, since d∗1X ∼ b⊗([n]) and d∗1Y ∼ a⊗([m]),
we can write X = b⊗ (S, [n]) and Y = a⊗ (T, [m]) for some S, T . Find injective
[s]

γ→ [n] and [t] δ→ [m] with images S and T . Then we have γ∗b⊗([s]) ∼ a⊗([m])
and δ∗a⊗ ([t]) ∼ b⊗ ([n]).

Write γ∗b = σ∗c for unique surjective σ and nondegenerate c ∈ Kr. Then
γ∗b⊗ ([s]) ∼ c⊗ ([r]) ∼ a⊗ ([m]), and so r = m and therefore s ≥ m. Similarly
t ≥ n. But by definition, s ≤ n and t ≤ m. So we have m ≤ s ≤ n ≤ t ≤ m,
and so m = n = s = t.

Therefore X and Y are degeneracies, and so A = B and f = g = idA as
desired.
�.

8 Relationship to posets

Claim 6.1: For C ∈ Cat, C has properties B and C if and only if C is a

poset.

Proof: Suppose C is a poset. Then for a q-simplex A0
f1→ A1 . . . Aq in N (C), if

it is non-degenerate then the Ai’s are distinct by definition of a poset, so prop-
erty B holds. Furthermore, for a set {A0, . . . Aq} of distinct 0-simplices (objects
in C), a q-simplex with this vertex set gives a total ordering on these objects,
agreeing with the partial order on C. This total ordering, if it exists, must be
unique. Therefore property C holds.

Conversely suppose C is a small category and N (C) has properties B and C.
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Then for any x and y objects in C, there is at most one 1-simplex in N (C) with
vertices x and y, and therefore there is at most one morphism x → y for any
x, y ∈ C, and morphisms x→ y and y → x imply x = y. Therefore C is a poset.
�.

Claim 6.2: Any quasicategory K with properties B and C is the nerve

of a poset, i.e. the full subcategory of S consisting of all quasicate-

gories with properties B and C is isomorphic to P via N (since N is

a full embedding).

Proof: Take such a K. First I will show that K is the nerve of a category. Sup-
pose we have a map Λkn

f→ K and two extensions, ∆n
g1,g2→ K. Each extension

is uniquely determined by the image of the single non-degenerate n-simplex in
∆n, call them x1 and x2. But the vertex sets of x1 and x2 are identical, because
f determines the images of the 0-simplices in ∆n (assuming here that n ≥ 2
for non-triviality). Then by condition C, x1 = x2 and therefore the extension is
unique. Therefore K = N (C) for some C.

But by Claim 6.1, C must be a poset.
�.

Summary so far:

For any simplicial set K, if K has property A, sd2K is the nerve of a poset5.
If K does not have property A, sdK is not a quasicategory and does not have
property A, and therefore by induction, no iterated Kan subdivision of K yields
a poset.

9 Subdivision of categories

Next I will describe Anderson’s category subdivision functor Cat sdCat→ Cat. I will
also show that this functor is isomorphic to τ1 ◦ sd ◦N , but first I will rework
the results in terms of categories.

For C ∈ Cat, let ∆\C be the category of chains A = A0
f1→ A1 . . . Aq over any

q ≥ 0, i.e. maps from objects of ∆ to C. For B = B0
g1→ B1 . . . Bq, morphisms

14



in ∆\C (A,B) are maps [q]
γ→ [p] such that γ∗B = A.

Now localize ∆\C at all surjections; in other words, construct the equivalence
relation generated by β1 ∼ β2 : A → σ∗A where σ is a surjection [q + 1] → [q]
and β1, β2 are two right inverses for σ.

Let sdCatC be the full subcategory of this localization of ∆\C with objects
all nondegenerate chains in C.

An equivalent description is as follows. Let NC be the category with the
objects consisting of chains (of any length n ≥ 0) of composable non-identity
arrows, e.g A = A0

f1→ A1 . . . Aq. For B = B0
g1→ B1 . . . Bp, set NC (A,B) to

equal the set of maps [q]
γ
↪→ [p] in ∆ such that γ∗B = A, where γ∗B is taken

by composing adjacent maps or deleting first or last arrows, as in the nerve of
a category.

Note that any such γ must be injective, since A is nondegenerate.

Now let sdCatC be the quotient of NC taken via the equivalence relation on
morphisms generated by the following relations. (By quotient of a category, I
mean one in which an equivalence relation is imposed on morphism sets, but
the object set remains the same).

For any surjective σ and injective α such that α∗B = σ∗A, if β1 and β2 are
right inverses of σ, set α ◦ β1 ∼ α ◦ β2 : A→ B.

Claim 7.2: For any C, NC has property B.

Proof: Take any A = A0
f1→ A1 . . . Aq and B = B0

g1→ B1 . . . Bp in NC .
Suppose NC (A,B) 6= ∅ and NC (B,A) 6= ∅. Then q = p. Since the only in-
jective map [q] → [q] in ∆ is the identity map, we have that A = B and
NC (A,A) = {idA}. By Claim 5.4, this implies that NC has property B.
�.

Corollary 7.3: For any C, sdCatC has property B.

Proof: Take any A
f→ B and B

g→ A in sdCatC. Since sdCatC is a quotient of
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NC , we can find representatives γ and δ for f and g, respectively. Now we have
A

γ→ B and B
δ→ A in NC . By Claim 7.2, therefore A = B, and γ = δ = idA in

NC .

Therefore, f = g = idA in sdCatC, as desired.
�.

Claim 7.4: sdCatC is a poset iff C has property B.

Proof: First suppose C has property B. Since property B implies property A,
by Claim 7.1, sdCatC ∼= NC . So, it is sufficient to show that NC is a poset.

First, we need to show that if in NC there is a morphism A → B and a
morphism B → A, then A = B. But this true because NC has property B for
any C.

Second, we need to show that if in NC we have A
γ,δ−→ B then γ = δ. Write

A = A0
f1→ A1 . . . Aq and B = B0

g1→ B1 . . . Bp. Since A = γ∗B = δ∗B, we know
that Ai = Bγ(i) = Bδ(i) for all i.

Suppose for some i < j, Bi = Bj . Then we have Bi
gj−1◦...γi+1−→ Bi+1 and

Bi+1
gj→ Bj = Bi. Since C has property B, this implies that gj = idBj . But this

is a contradiction, since B must be nondegenerate.

Therefore for i 6= j, Bi 6= Bj . Therefore γ (i) = δ (i) for all i. Therefore
γ = δ, as desired.

Therefore NC ∼= sdCatC is a poset.

Conversely, suppose C does not have property B. Then either there exist
A

f→ B and B
g→ A in C with A 6= B, or A

f→ A such that f 6= idA. In either
case, we have A

f→ B and B
g→ A such that f and g are both non-identity maps.

(In the second case, set B := A and g := f).

Now in sdCatC, take objects X = A
f→ B

g→ A and Y := A. Let γ, δ : [0]→
[2] be the maps with images {0} and {2}, respectively. Then γ∗X = δ∗X = Y .
But no degeneracy of Y is a face of X, therefore γ 6∼ δ in sdCatC (Y,X). There-
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fore sdCatC is not a poset.
�.

Corollary 7.5: For any C ∈ Cat, sd2
CatC is a poset.

(And as above, first subdivision typically does not yield a poset).

Claim 7.6: sdCat ∼= τ1 ◦ sd ◦N .

Proof: I will show that sdCatC ∼= τ1 ◦ sd ◦ N (C) for all C; naturality will be
obvious.

Take any C ∈ Cat. First, define functor NC
F→ τ1 ◦ sd ◦N (C) as follows.

For A = A0
f1→ A1 . . . Aq in NC , let F (A) = A ⊗ ([q]) (a simplex in

sd (N (C))0). For morphism γ ∈ NC (A,B) (for injective [q]
γ→ [p]), let F (γ) be

the morphism represented by B⊗(γ ([q]) , [p]) in sd (N (C))1. Trivially, F agrees
with identities and compositions, and is therefore a functor.

Now suppose we have surjective σ and injective α such that α∗B = σ∗A, if
β1 and β2 are right inverses of σ (so α ◦ β1 ∼ α ◦ β2 : A → B is a generating
relation for the quotient NC → sdCatC). Then since σ∗A⊗(βi ([q]) , [r]) is degen-
erate for i = 1, 2, by the definition of τ1, we have that B ⊗ (α ◦ β1 ([q]) , [p]) ≈
B⊗(α ◦ β2 ([q]) , [p]) in τ1◦sd◦N (C), since each is equivalent to B⊗(α ([r]) , [p]).

Therefore F can be regarded as a well-defined functor sdCatC → τ1◦sd◦N (C).

Next, define functor τ1 ◦ sd ◦N (C) G→ sdCatC as follows.

An objectX in τ1◦sd◦N (C) is a 0-simplex in sd (N (C)). Write this 0-simplex
in unique minimal form, A ⊗ ([q]), for a nondegenerate A = A0

f1→ A1 . . . Aq.
Define G (X) = A.

Take objects X and Y in τ1 ◦ sd ◦ N (C), associated to 0-simplices A ⊗
([q]) and B ⊗ ([p]) (in minimal form) in sd (N (C)). A morphism X

f→ Y

in τ1 ◦ sd ◦ N (C) is a formal string of 1-simplices in sd (N (C)) with condi-
tions on the vertices as defined above. In minimal form, write this sequence
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as Br ⊗ (Sr, [nr]) ? . . . ? B1 ⊗ (S1, [n1]). By uniqueness of minimal form, we
see that Br = B and nr = p, that S∗1B1 = σ∗A for some surjective σ, and
that for each i < r, for some surjective σi, s∗iBi = S∗i+1Bi+1. For each i

choose some right inverse βi for σi, and choose right inverse β for σ. Then
A = β∗S∗1B1 = β∗S∗1β

∗
1S
∗
2B2 = . . . = β∗S∗1β∗1S∗2β∗2 . . . β∗r−1S

∗
rB. Then define

G (f) = αr ◦ βr−1 ◦ . . . β2 ◦α2 ◦ β1 ◦α1 ◦ β, where αi is the injective map to [ni]
with image Si.

We must check that G is well-defined on morphisms.

First, note that by the equivalence relation on morphisms of sdCatC, this
definition is independent of choices of β or the βi’s.

Second, we must check that G agrees with composition, when defined as
formal concatenation of strings. This is true because Br ⊗ (Sr, [nr]) ? . . . ?
B1 ⊗ (S1, [n1]) ? B′s ⊗ (S′s, [n

′
s]) ? . . . ? B

′
1 ⊗ (S′1, [n

′
1]) would be mapped to

αr ◦ βr−1 ◦ . . . β2 ◦ α2 ◦ β1 ◦ α1 ◦ β ◦ α′s ◦ β′s−1 ◦ . . . β′2 ◦ α′2 ◦ β′1 ◦ α′1 ◦ β′ (where
all the maps here are defined analagously).

Finally, we must also check that G is well-defined with respect to the equiv-
alence relation on morphisms given by the definition of τ1. There are two
types of generating relations. First, for a 2-simplex B ⊗ (S, T, [n]), we set
B ⊗ (T, [n]) ? B ⊗ (S, T ) ≈ B ⊗ (S, [n]). But by definition of G, both sides
map to morphism α which is the injective map to [n] with image S. Second, if
B⊗ (S, [n]) is degenerate then it must map to the identity. This is true trivially
since in minimal form, it would be written as B′ ([n′] , [n′]).

Therefore G is well-defined.

Regarding F as as a functor with source sdCatC, it is clear that F ◦ G and
G ◦ F are each the identity on objects, and by inspection we can see that this
is true on morphisms as well. Therefore the categories are isomorphic.
�.

Corollary 7.7: sd (N (C)) ∼= N (sdCatC) iff C has property A.

Proof: If C has property A, then by Corollary 5.2, N ◦ τ1 (sd (N (C))) ∼=

18



sd (N (C)). Therefore, using Claim 7.6, sdCatC ∼= τ1 (sd (N (C))) ∼= τ1 ◦ N ◦
τ1 (sd (N (C))) ∼= τ1 ◦ sd (N (C)).

And therefore N (sdCatC) ∼= N ◦ τ1 ◦ sd (N (C)) ∼= sd (N (C)).

To prove the converse, observe that if C does not have property A, then
sd (N (C)) does not have property A, by Claim 0.1. However sdCatC has prop-
erty A by Claims 1.2 and 7.3, and therefore the congruence cannot hold.
�.

10 Non-examples

Claim 8.0.1: In Cat, not every C has property A.

Proof: Most common categories do not have property A, for example Abelian
groups or topological spaces.
�.

Corollary 8.0.1.1: Not every simplicial set has property A.

Claim 8.0.2: In Cat, property A does not imply property B.

Proof: Let C be the subcategory of Abelian groups with single object A =
Z ⊕ Z and with maps idA and p1, projection onto the first coordinate. (Com-
position law: p2

1 = p1). Then C does not have arrows f, g such that f ◦ g is an
identity map, except for f = g = idA, so property A holds. However property
B clearly does not hold.
�.

Corollary 8.0.2.1: For a nerve of a category or a quasicategory or a

simplicial set K, property A does not imply property B.

Claim 8.1: In Cat, C has property B does not imply that C is a poset.

Proof: Let C be the category with two objects A and B, and with morphisms
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idA, idB , A
f→ B, and A

g→ B.
�.

Corollary 8.1.1: For a nerve of a category or a quasicategory or a

simplicial set K, neither property A nor property B imply property

C.

Claim 8.2: In Cat, C has property C does not imply that C has prop-

erty A.

Proof: Let C be the cyclic group of order 2, with object A and morphisms
idA, f . Then in N (C), for any q there is exactly one nondegenerate q-simplex
(namely, q arrows, each labeled f) and so property C holds trivially. However
nondegenerate 2-simplex A = A

f→ A
f→ A has degenerate face d∗1A = A

idA→ A.
�.

Corollary 8.2.1: For a nerve of a category or a quasicategory or a

simplicial set K, property C does not imply property A or property

B.

Specifically, for a category, property C does not imply that C is a poset.

Claim 8.3: In S, properties B and C together do not imply that K is

a quasicategory.

Proof: Take the simplicial set K = Λ1
2. K is a simplicial set corresponding to

a simplicial complex, therefore by Claim 3.1 K has properties B and C. How-
ever, the identity map Λ1

2 → K does not extend to a map ∆2 → K, therefore
K is not a quasicategory.
�.

Corollary 8.3.1: Properties A or B or C do not imply that K is a

poset or a category or a quasicategory.
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Claim 8.4: A quasicategory K with property B is not necessarily a

category.

Proof: Start with a category that has property B. Choose a nondegenerate
1-simplex in N (C) and construct the corresponding quasicategory that is not
a category, as in my notes on this topic. The resulting quasicategory will have
property B as well by definition.
�.

Claim 8.5: A quasicategory K with property C is not necessarily a

category.

Proof: Start with C defined as the cyclic group of order 2. Choose nondegen-
erate 1-simplex A

f→ A in N (C) and construct the corresponding quasicategory
that is not a category, as in my notes on this topic. In N (C), there is only one
0-simplex, and so there is only one 0-simplex in the new quasicategory as well.
Then property C holds trivially.
�.

Corollary 8.5.1: Properties A or B, or C without B, for a quasicate-

gory or simplicial set K do not imply that K is the nerve of a category.

(However as in Claim 6.2, a quasicategory with properties B and C is a poset,
while a simplicial set with properties B and C may still not be a quasicategory
as in Claim 8.3).

Claim 8.6: Given a poset C, N (C) is not necessarily isomorphic to the

subdivision of some simplicial set.

Proof: Let C be the integers with the usual ordering. Suppose N (C) ∼= sdK

for simplicial set K. Find 0-simplex X in sdK corresponding to the integer 0.
Write X in minimal form, x⊗ ([n]). Then for any q-simplex Y with qth vertex
X, we can write Y in minimal form as x ⊗ (S0, . . . Sq = [n]). Therefore if Y
is nondegenerate, q ≤ n. However, in N (C), we have non-degenerate (n+ 1)-
simplex (−n− 1) → (−n) → (−n+ 1) → . . . → (−1) → (0). This contradicts
the isomorphism.
�.
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Corollary 8.6.1: Properties A or B or C for a category C do not imply

that N (C) is isomorphic to the subdivision of some simplicial set.

(And as in Corollary 5.3.1, if C does not have property A then N (C) is never
isomorphic to the subdivision of any simplicial set).

Claim 8.7: For posets P and Q, sdCatP ∼= sdCatQ does not imply that

P ∼= Q, or even that the two are isomorphic up to a reversal of the

order on Q.

Proof: I will describe a construction for P and Q such that P 6∼= Q but
sdCatP ∼= sdCatQ. SinceN is an embedding it is equivalent to say that sd (N (P )) ∼=
sd (N (Q)).

Take any two posets A and B. Let P = A tB with the additional relations
that a ≤ b ∀ a ∈ A, b ∈ B. Let Q = A t B with the additional relations
that a ≥ b ∀ a ∈ A, b ∈ B. Note that for general A and B, P and Q are not
isomorphic, even up to a reversal of the order on Q.

Define sd (N (P ))
f→ sd (N (Q)). Note that any element in N (P ) can be

written as a0 → a1 → . . . ar → b0 → b1 → . . . bs for ai ∈ A, bi ∈ B.

Take an element X ∈ sd (N (P )), X = x ⊗ (S0, . . . Sq) for x = a0 → a1 →
. . . ar → b0 → b1 → . . . bs in N (P )r+s+1 and Si ⊂ [r + s+ 1]. Define f (X) =
Y := y ⊗ (prs (S0) , . . . prs (Sq)), where y = b0 → b1 → . . . bs → a0 → a1 → . . . ar

and prs is a permutation of [r + s+ 1] defined by x 7→ x+ s+ 1 (mod r + s+ 2),
i.e. swaps the first (r + 1) elements with the last (s+ 1) elements.

It is a trivial exercise to show that this map is bijective, well-defined over
the equivalence relation in sd, and agrees with face and degeneracy operators.

Therefore sdCatP ∼= sdCatQ as desired.

Note that an analagous construction could be used for the nerve of any cat-
egory, and so assuming that a simplicial sets K,L do NOT have property A (or
B, or C) will still not guarantee that sdK ∼= sdL ⇒ K ∼= L.
�.
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Corollary 8.8.1: For simplicial sets K and L, sdK ∼= sdL does not imply

K ∼= L, under any conditions of properties A or B or C.

(But see Claim 0.0.3 to see what can be concluded).

11 Summary.

For any simplicial set, property A implies property B, but no other implications
hold between properties A, B, and C.

If K does not have property A, then sdnK does not have property A or B
or C for any n > 0 (even if K itself has property C).

Under any of these properties, being a simplicial set does not imply being
a quasicategory, and being a quasicategory does not imply being the nerve of
a category, except that quasicategories with properties B and C are nerves of
categories.

The category of quasicategories with properties B and C (or equivalently,
the category of (small) categories with properties B and C) is isomorphic to the
category of posets.

The category of simplicial sets with properties B and C is isomorphic to the
category of simplicial complexes.

Nerve and subdivision commute (giving composite functors Cat→ S) iff the
category in question has property A.

Second subdivision of a simplicial set K with property A is a poset.

Second ‘categorical subdivision’ (sdCat) of ANY category C is a poset.
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