SIEGEL-VEECH TRANSFORMS ARE IN L^2

JAYADEV S. ATHREYA, YITWAH CHEUNG, AND HOWARD MASUR

Dedicated to the memory of William Veech.

ABSTRACT. Let \mathcal{H} denote a connected component of a stratum of translation surfaces. We show that the Siegel-Veech transform of a bounded compactly supported function on \mathbb{R}^2 is in $L^2(\mathcal{H},\mu)$, where μ is Lebesgue measure on \mathcal{H} , and give applications to bounding error terms for counting problems for saddle connections. We also propose a new invariant associated to $SL(2,\mathbb{R})$ -invariant measures on strata satisfying certain integrability conditions.

1. Introduction

Motivated by counting problems for polygonal billiards and more generally for linear flows on surfaces, Veech [24] introduced what is now known as the Siegel-Veech transform on the moduli space of abelian differentials (in analogy with the Siegel transform arising from the space of unimodular lattices in \mathbb{R}^n). The main result of [24] is an integration (L^1) formula for this transform (see §1.3.1), a version of the classical Siegel integral formula.

Our main result Theorem 1.1 is that the Siegel-Veech transform \hat{f} of any bounded compactly supported function f on \mathbb{R}^2 satisfies

$$\widehat{f} \in L^2(\mathcal{H},\mu)$$

with respect to the natural Lebesgue measure μ on any (connected component of a) stratum \mathcal{H} of abelian differentials.

1.1. Translation surfaces. A translation surface S is a pair (X, ω) where X is a Riemann surface and ω is a holomorphic 1-form. The terminology is motivated by the fact that integrating ω (away from its zeros) gives an atlas of charts to $\mathbb C$ whose transition maps are translations. These can be viewed as singular flat metrics with trivial rotational holonomy, with isolated cone-type singularities corresponding to

J.S.A. partially supported by NSF CAREER grant DMS 1559860.

Y.C. partially supported by NSF DMS 1600476.

H.M. partially supported by NSF DMS 1607512.

zeros of ω . An saddle connection γ on S is a geodesic segment connecting two zeros of ω with none in its interior. Associated to each saddle connection is its holonomy vector

$$z_{\gamma} = \int_{\gamma} \omega \in \mathbb{C}$$

and its length

$$|\gamma| = \int_{\gamma} |\omega|.$$

We denote the set of holonomy vectors by Λ_{ω} . Λ_{ω} is a discrete subset of the plane $\mathbb{C} \sim \mathbb{R}^2$.

1.2. **Strata.** The moduli space Ω_g of genus g translation surfaces is the bundle over the moduli space M_g of genus g Riemann surfaces with fiber over each Riemann surface X given by $\Omega(X)$, the vector space of holomorphic 1-forms on X. Ω_g decomposes into strata depending on the combinatorics of the differentials.

Since the orders of the zeros of ω must sum to 2g-2, there is a stratum associated to each integer partition of 2g-2. Each of these strata has at most three connected components [13].

The flat metric associated to a one-form ω also gives a notion of area on the surface. We consider the subset of area 1 surfaces of a connected component of a stratum, and denote it by \mathcal{H} . We will, by abuse of notation, often simply refer to this as a stratum, and we will denote elements of it by (X, ω) .

1.2.1. Lebesgue measure. The group $GL(2,\mathbb{R})$ acts on Ω_g via linear post-composition with charts, preserving combinatorics of differentials. The subgroup $SL(2,\mathbb{R})$ preserves each area 1 subset, so acts on each stratum \mathcal{H} . On each stratum, there is a natural measure μ , known as Masur-Veech or Lebesgue measure, constructed using period coordinates on strata (see, e.g. [8] or [28] for a nice exposition of the construction of this measure). A crucial result, independently shown by W. Veech and the third-named author, is

Theorem. [15, 26] μ is a finite $SL(2,\mathbb{R})$ -invariant ergodic measure on each stratum \mathcal{H} .

1.3. Siegel-Veech transforms. Fix a stratum \mathcal{H} . Let $B_c(\mathbb{R}^2)$ denote the space of bounded compactly supported functions on $\mathbb{R}^2 \sim \mathbb{C}$. Given $(X, \omega) \in \mathcal{H}$ and $f \in B_c(\mathbb{R}^2)$, Veech [24] introduced the Siegel-Veech transform

$$\widehat{f}(X,\omega) = \sum_{v \in \Lambda_{\omega}} f(v).$$

Note that this is a *finite* sum for any fixed f and ω , since Λ_{ω} is discrete. Our main result is:

Theorem 1.1. Let $f \in B_c(\mathbb{R}^2)$. Then $\widehat{f} \in L^2(\mathcal{H}, \mu)$.

This corrects a mistake in [2], which claimed that if f was the indicator function of the unit disk, that $\hat{f} \notin L^2$. In fact, the proof in [2] only shows $\hat{f} \notin L^3$.

1.3.1. Siegel-Veech formulas. Veech [24] showed $\widehat{f} \in L^1(\mathcal{H}, \mu)$, and using the $SL(2, \mathbb{R})$ -invariance of μ and a classification of the $SL(2, \mathbb{R})$ -invariant measures on \mathbb{R}^2 , showed

Theorem. [24] There is a constant $c = c(\mu)$ so that

$$\int_{\mathcal{H}} \widehat{f} d\mu = c \int_{\mathbb{R}^2} f dm,$$

where m is Lebesgue measure on \mathbb{R}^2 .

This is a generalization of the (two-dimensional version of) Siegel integral formula [22], which applies to averages of similar transforms over spaces of unimodular lattices.

1.3.2. Siegel-Veech constants. In fact, Veech showed that for any $SL(2,\mathbb{R})$ -invariant ergodic finite measure λ , that $\widehat{f} \in L^1(\mathcal{H}, \lambda)$, and that there is $c = c_{SV}(\lambda)$ so that

$$\int_{\mathcal{H}} \widehat{f} d\lambda = c \int_{\mathbb{R}^2} f dm.$$

These constants $c_{SV}(\lambda)$ are known as Siegel-Veech constants and are important numerical invariants associated to $SL(2,\mathbb{R})$ -invariant measures.

- 1.4. Siegel-Veech measures. For any measure λ with $\widehat{f} \in L^2(\mathcal{H}, \lambda)$, we can define two measure-valued invariants. First, we extend the notion of Siegel-Veech transform to $B_c(\mathbb{R}^4)$, viewing $\mathbb{R}^4 = \mathbb{R}^2 \times \mathbb{R}^2$.
- 1.4.1. Generalized Siegel-Veech transforms. Given

$$h \in B_c(\mathbb{R}^4) = B_c(\mathbb{R}^2 \times \mathbb{R}^2).$$

define the Siegel-Veech transform

$$\widehat{h}(\omega) = \sum_{v_1, v_2 \in \Lambda_\omega} h(v_1, v_2).$$

Note that if h(x,y) = f(x)f(y) for $f \in B_c(\mathbb{R}^2)$,

$$\widehat{h} = \widehat{f}^2.$$

1.4.2. Measure-valued invariants.

Theorem 1.2. Let λ denote an $SL(2,\mathbb{R})$ -invariant measure on \mathcal{H} so that for any $f \in B_c(\mathbb{R}^2)$, $\widehat{f} \in L^2(\mathcal{H}, \lambda)$. Then there exist Siegel-Veech measures $\nu = \nu(\lambda)$ on $\mathbb{R}\setminus\{0\}$ and $\eta = \eta(\lambda)$ on $\mathbb{P}^1(\mathbb{R}) = \mathbb{R} \cup \infty$ such that for any $h \in B_c(\mathbb{R}^4)$,

$$\int_{\mathcal{H}} \widehat{h}(\omega) d\lambda(\omega) = \int_{\mathbb{R}\setminus\{0\}} \left(\int_{SL(2,\mathbb{R})} h(tx,y) d\kappa(x,y) \right) d\nu(t)
+ \int_{\mathbb{P}^{1}(\mathbb{R})} \left(\int_{\mathbb{R}^{2}} h(x,sx) dx \right) d\eta(s).$$

1.5. Counting bounds. Veech introduced the Siegel-Veech transform to understand counting problems. Given a translation surface (X, ω) (or simply ω), let

$$N(\omega, R) = \# (\Lambda_{\omega} \cap B(0, R))$$

denote the number of saddle connections of length at most R. The third-named author showed that there are constants

$$0 < c_1 = c_1(\omega) \le c_2 = c_2(\omega)$$

so that

$$c_1 R^2 < N(\omega, R) < c_2 R^2.$$

The Siegel-Veech formula computes the mean of $N(\omega, R)$,

$$\int_{\mathcal{H}} N(\omega, R) d\mu(\omega) = c_{SV}(\mu) \pi R^2.$$

Eskin and the third-named author [9] showed that for μ -almost every $\omega \in \mathcal{H}$,

$$\lim_{R \to \infty} \frac{N(\omega, R)}{\pi R^2} = c_{SV}(\mu).$$

1.5.1. Error terms. Our results can be viewed as showing that Siegel-Veech transforms have finite variance. Variance bounds in turn yield concentration bounds, bounding the probability of large discrepancy from the mean. Finally, combining concentration bounds with the Borel-Cantelli lemma yield almost everywhere error term bounds for $N(\omega, R)$. Suppose we write

$$L(R) = ||N(\omega, R)||_2^2$$

and let e(R) denote an error function. Define

$$V(R) = L(R) - ||N(\omega, R)||_1^2 = L(R) - c_{SV}(\mu)^2 \pi^2 R^4.$$

Theorem 1.3. Let $R_k \to \infty$ be a sequence, and e be a function such that

$$\sum_{k=1}^{\infty} \frac{V(R_k)}{e(R_k)^2} < \infty.$$

Then for μ -almost every $\omega \in \mathcal{H}$, there is a k_0 so that for all $k \geq k_0$

$$\left| N(\omega, R_k) - c_{SV}(\mu) \pi R_k^2 \right| < e(R_k).$$

Currently, this theorem is ineffective, as we do not have an explicit computation of L(R). Recently, Nevo-Ruhr-Weiss [17], using exponential mixing of Teichmüller flow, give error bounds with a power savings (along the full sequence).

- 1.6. Organization of the paper. In $\S 2$, we prove Theorem 1.1 via intermediate results Theorem 2.1 and Theorem 2.2, which prove the result for the indicator function of the unit disk and of a ball of radius R respectively. In $\S 3$, we prove Theorem 1.2 and discuss several explicit computations in special cases.
- 1.6.1. Acknowledgments. We would like to thank Alex Eskin, Duc-Manh Nguyen, Kasra Rafi, Rene Ruhr, John Smillie, and Barak Weiss, for useful discussions. We dedicate this paper to the memory of William Veech.

2. Measure bounds and decompositions

In this section we prove Theorem 1.1, via first proving them for the indicator function of a small disk (Theorem 2.1) and then for the disk of radius R (Theorem 2.2).

2.1. **Tail bounds.** Given $f \in B_c(\mathbb{R}^2)$, to prove $\widehat{f} \in L^2(\mathcal{H}, \mu)$, we need to show that

(2.1)
$$\sum_{k=1}^{\infty} \mu(X,\omega) : \widehat{f}(X,\omega) > \sqrt{k} < \infty.$$

2.2. A fixed disc. The first iteration of our main result is:

Theorem 2.1. Fix a small ϵ_0 and let $f: \mathbb{R}^2 \to \mathbb{R}$ be the indicator function of the disc of radius ϵ_0 . Then

$$\widehat{f} \in L^2(\mathcal{H}, \mu).$$

Proof. We will divide the stratum \mathcal{H} into a finite number of subsets \mathcal{H}_i and prove

$$\int_{\mathcal{H}_i} \widehat{f}^2 d\mu < \infty$$

for each \mathcal{H}_i .

- 2.3. **Thick part.** We begin by noting that by definition in the thick part $\mathcal{H}_1 \subset \mathcal{H}$ where every saddle connection has length at least ϵ_0 , then $\widehat{f}(X,\omega) = 0$.
- 2.4. No short loops. Next let \mathcal{H}_2 denote the set of (X, ω) for which there are saddle connections of length smaller than ϵ_0 but there are no homotopically nontrivial closed curves of length less than ϵ_0 .

Take the L^1 Delaunay triangulation of (X, ω) . There are no loops with length shorter than ϵ_0 . By Theorem 1 of Chew [7] any saddle connection is homotopic to a path in the edges of the Delaunay triangulation of length at most a fixed multiple of the length of the saddle connection. Since there are no loops shorter than ϵ_0 , any such path in the edges traverses successively at most a fixed number of edges shorter than ϵ_0 before traversing one of length at least ϵ_0 . Thus a saddle connection of length at most 1 can be written as a union of at most $O(1/\epsilon_0)$ edges of the triangulation and therefore expressed in terms of a fixed basis for $H_1(X,\omega,\Sigma)$ as a linear combination with coefficients that are $O(1/\epsilon_0)$. Thus there are $O(1/\epsilon_0^N)$ saddle connections, where N is the dimension of $H_1(X,\omega,\Sigma)$. Since ϵ_0 is fixed, this is a bounded function and so again

$$\int_{\mathcal{H}_2} \widehat{f}^2 d\mu < \infty.$$

2.5. **Short loops.** Now we treat the case that there are short loops of length smaller than some fixed ϵ_0 . Let \mathcal{H}_3 be the set of (X, ω) with a short curve of length at most ϵ_0 . Next let N be the maximum number of edges in any triangulation of (X, ω) and set $p = \frac{2}{3N}$.

Choose $\delta > 0$ small enough so

$$\frac{1+p}{1+\delta} \ge 1 + \frac{1}{2N}$$

and

$$\frac{3}{2(1+\delta)} \ge \frac{4}{3}.$$

Let $|\gamma|$ be the length of shortest saddle connection on (X, ω) , and again let $\widehat{f}(X, \omega)$ count the number of saddle connections that lie in a

disc of radius ϵ_0 . By Theorem 5.1 of [9], for some fixed ϵ_0 , there is C (depending on δ but not $|\gamma|$) such that

$$\widehat{f}(X,\omega) \le \frac{C}{|\gamma|^{1+\delta}}.$$

If $\widehat{f}(X,\omega) \geq \sqrt{k}$, then the above bound says there is c > 0 such that

$$|\gamma| \le ck^{-\frac{1}{2(1+\delta)}}.$$

We break the set of $(X, \omega) \in \mathcal{H}_3$ such that $\widehat{f} \geq \sqrt{k}$ into three sets $\Omega_0(k) \cup \Omega_1(k) \cup \Omega_3(k)$. It suffices to prove

$$\sum_{k} \mu(\Omega_i(k)) < \infty$$

for each i. Let

 $\Omega_0(k) = \{(X, \omega) : \widehat{f}(X, \omega) \ge \sqrt{k} \text{ and there is flat cylinder homotopic to } \gamma\}.$

We can assume Λ_{ω} contains a saddle connection crossing the cylinder. Then the height of the cylinder is at most ϵ_0 . The shortest saddle connection β crossing the cylinder has a component in the direction of the cylinder of length at most $|\gamma|$ and an orthogonal component of length at most ϵ_0 . If we include γ and β as part of a collection of saddle connections whose holonomy vectors (or period coordinates) define the Lebesgue measure μ we see

$$\mu(\Omega_0(k)) = O(|\gamma|^3) = O(k^{-\frac{3}{2(1+\delta)}}) = O(k^{-\frac{4}{3}}),$$

by the choice of δ . (We are citing [16] Theorem 10.1 for the first equality). Thus

$$\sum_{k} \mu(\Omega_0(k)) = \sum_{k} O(k^{-\frac{4}{3}}) < \infty.$$

Next let $\epsilon(X,\omega)$ be the length of the second shortest loop on (X,ω) . Let

$$\Omega_1(k) = \{(X, \omega) \in \mathcal{H}_3 : \widehat{f}(X, \omega) \ge \sqrt{k} \text{ and } \epsilon(X, \omega) \le |\gamma|^p\}.$$

Then since we have a saddle connection of length $|\gamma|$ and one of length $|\gamma|^p$ we have

$$\mu(\Omega_1(k)) = O(|\gamma|^{2+2p}) = O(k^{-\frac{1+p}{1+\delta}}) = O(k^{-1-\frac{1}{N}}),$$

by the choice of δ , p above, Thus

$$\sum_{k} \mu(\Omega_1(k)) < \infty.$$

Finally let $\Omega_2(k)$ be the set of surfaces (X, ω) with no cylinder homotopic to γ and

$$\widehat{f}(X,\omega) \ge \sqrt{k}, \ \epsilon(X,\omega) > |\gamma|^p.$$

Since there is no cylinder any saddle connection when written as a composition of edges in the Delaunay triangulation does not follow the circumference of γ multiple times as it might if there were a cylinder. Then by the exact same argument as before when considering Delaunay triangulation,

$$\widehat{f}(X,\omega) = O\left(\epsilon^{-N}\right) = O\left(|\gamma|^{-Np}\right).$$

For this to be bigger than \sqrt{k} have

$$|\gamma| = O\left(k^{-\frac{1}{2Np}}\right) = O\left(k^{-\frac{3}{4}}\right),$$

by the choice of p. Thus

$$\mu(\Omega_2(k)) = O(|\gamma|^2) = O\left(k^{-\frac{3}{2}}\right),$$

and again we have

$$\sum_{k} \mu(\Omega_2(k)) < \infty.$$

Theorem 2.2. Suppose f is the characteristic function of a disc of radius R. Then $\widehat{f} \in L^2(\mathcal{H}, \mu)$.

Proof. We cover the disc of radius R with sectors of angle $\frac{\epsilon_0^2}{R^2}$. It is enough to show that for f the characteristic function of any of these sectors the function \widehat{f} is in $L^2(\mathcal{H},\mu)$. Let θ_0 the center angle of this sector. Let $t_0 = \log \frac{R}{\epsilon_0}$. Let (X,ω) any translation surface and consider $(Y,\omega') = g_{t_0}r_{-\theta_0}(X,\omega)$. That is, we rotate so direction θ_0 is vertical and flow time t_0 . Then since the angle is $\frac{\epsilon_0^2}{R^2}$, every saddle connection of (X,ω) in that sector has length at most ϵ_0 on (Y,ω') . Let h be the characteristic function of the disc of radius ϵ_0 . Then since the flow is μ measure preserving,

$$\int \widehat{f}^2(X,\omega)d\mu(X) \le \int \widehat{h}^2(Y,\omega')d\mu(Y) < \infty.$$

2.6. **Proof of Theorem 1.1.** Let $f \in B_c(\mathbb{R}^2)$, then there is an R > 0 so that the support of f is contained in B(0, R), and letting $C = \max f$, we have

$$f \le C\chi_{B(0,R)},$$

SO

$$\widehat{f} \leq C\widehat{\chi}_{B(0,R)}$$
.

Applying Theorem 2.2, we have our result.

Remark: We remark that Wright [27] showed that any (X, ω) in a rank 1 orbit closure in \mathcal{H} is completely periodic. This means that for any direction with a cylinder γ , the surface can be written as a union of cylinders in that direction, and there are always such cylinder directions (actually a dense set). Thus the set of (X, ω) with $\hat{f} \geq \sqrt{k}$ coincides with the set $\Omega_0(k)$. Nguyen in Proposition 4.3 [18] proved that for any ergodic $SL(2,\mathbb{R})$ invariant measure ν on a rank 1 orbit closure, and any such cylinder γ ,

$$\nu(\Omega_0(k)) = O(|\gamma|^3).$$

Together with the discussion in the cylinder case in the proof of Theorem 2.1, this gives that $\hat{f} \in L^2(\nu)$ for any such ν .

3. Siegel-Veech measures

In this section, we prove Theorem 1.2, and give examples of the resulting Siegel-Veech measures in some special cases.

3.1. Transforms and bounds. Let τ denote an $SL(2,\mathbb{R})$ invariant measure on a stratum \mathcal{H} of abelian differentials, and suppose that for any $f \in B_c(\mathbb{R}^2)$, $\hat{f} \in L^2(\mathcal{H}, \tau)$. Then, for any $h \in B_c(\mathbb{R}^4)$, $\hat{h} \in L^1(\mathcal{H}, \tau)$, since we can dominate

$$\widehat{h}(\omega) = \sum_{v_1, v_2 \in \Lambda_\omega} h(v_1, v_2)$$

by \widehat{f}^2 where $f = \max(h)\chi_H$, where H denotes the union of the projections of the support of h via the maps $\mathbb{R}^4 = \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$

$$(x,y) \longmapsto x \text{ and } (x,y) \longmapsto y.$$

3.2. Haar measures. Our claim in Theorem 1.2 is that there are Siegel-Veech measures $\nu = \nu(\tau)$ on $\mathbb{R}\setminus\{0\}$ and $\eta = \eta(\tau)$ on $\mathbb{P}^1(\mathbb{R}) = \mathbb{R} \cup \infty$ such that

$$\int_{\mathcal{H}} \widehat{h}(\omega) d\mu(\omega) = \int_{\mathbb{R}\setminus\{0\}} \left(\int_{SL(2,\mathbb{R})} h(tx,y) d\kappa(x,y) \right) d\nu(t)
+ \int_{\mathbb{P}^{1}(\mathbb{R})} \left(\int_{\mathbb{R}^{2}} h(x,sx) dx \right) d\eta(s).$$

Here, κ is Haar measure on $SL(2,\mathbb{R})$ (with a fixed normalization), and the integral over $SL(2,\mathbb{R})$ is taken over pairs $(x,y) \in \mathbb{R}^2 \times \mathbb{R}^2$ with $\det(x,y) = 1$, that is, we view $SL(2,\mathbb{R})$ as a subset of $\mathbb{R}^4 = \mathbb{R}^2 \times \mathbb{R}^2$.

This follows by the $SL(2,\mathbb{R})$ -invariance of μ and the classification of $SL(2,\mathbb{R})$ -orbits on \mathbb{R}^4 . By the invariance of τ , and our integrability condition, we have that

$$h \longmapsto \int_{\mathcal{H}} \widehat{h}(\omega) d\mu(\omega)$$

is a $SL(2,\mathbb{R})$ -invariant linear functional on $B_c(\mathbb{R}^4)$, the set of bounded compactly supported functions on \mathbb{R}^4 . Therefore, there is an $SL(2,\mathbb{R})$ -invariant measure $m=m(\tau)$ (a Siegel-Veech measure) on $\mathbb{R}^4=\mathbb{R}^2\times\mathbb{R}^2=M_2(\mathbb{R})$ so that

$$\int_{\mathcal{H}} \widehat{h}(\omega) d\mu(\omega) = \int_{\mathbb{R}^4} h dm$$

3.3. $SL(2,\mathbb{R})$ -invariant measures on \mathbb{R}^4 . To describe $SL(2,\mathbb{R})$ -invariant measures on \mathbb{R}^4 , we need to understand $SL(2,\mathbb{R})$ -orbits on \mathbb{R}^4 . For $t \in \mathbb{R}$, let

$$D_t = \{(x, y) \in \mathbb{R}^2 \times \mathbb{R}^2 : \det(x, y) = t\}$$

For $t \neq 0$, D_t is an $SL(2,\mathbb{R})$ -orbit. D_0 decomposes further. For $s \in \mathbb{P}^1(\mathbb{R})$, let

$$L_s = \{(x, sx) : x \in \mathbb{R}^2, x \neq 0\},\$$

with

$$L_{\infty} = \{(0, y) : y \in \mathbb{R}^2, y \neq 0\}$$

3.3.1. Orbits and measures. D_t and L_s are the non-trivial $SL(2,\mathbb{R})$ orbits on $\mathbb{R}^2 \times \mathbb{R}^2$, and each carries a unique (up to scaling) $SL(2,\mathbb{R})$ -invariant measure. These are the (non-atomic) ergodic invariant measures for $SL(2,\mathbb{R})$ action on $\mathbb{R}^2 \times \mathbb{R}^2$. On D_t , the measure is Haar

measure on $SL(2,\mathbb{R})$, and on L_s it is Lebesgue on \mathbb{R}^2 . Thus, associated to any $SL(2,\mathbb{R})$ invariant measure m on \mathbb{R}^4 we have measures $\nu = \nu(m)$ and $\eta = \eta(m)$ so that

$$\int_{\mathbb{R}^4} h dm = \int_{\mathbb{R}\setminus\{0\}} \left(\int_{SL(2,\mathbb{R})} h(tx,y) d\kappa(x,y) \right) d\nu(t)
+ \int_{\mathbb{P}^1(\mathbb{R})} \left(\int_{\mathbb{R}^2} h(x,sx) dx \right) d\eta(s).$$

3.4. Siegel-Veech measures from measures on strata. Putting $\nu(\tau) = \nu(m(\tau))$ and $\eta(\tau) = \eta(m(\tau))$, we have our Siegel-Veech measures. These measures are interesting invariants associated to $SL(2,\mathbb{R})$ -invariant measures τ on \mathcal{H} . A natural question is:

Question. Let μ denote Lebesgue measure on the stratum \mathcal{H} . What are the spectral measures $\nu(\mu)$ and $\eta(\mu)$?

3.4.1. Virtual Triangles. Smillie-Weiss [23] introduced the notion of virtual triangles on a surface. A virtual triangle is simply a pair of (distinct) saddle connections, and the area of a virtual triangle is the (absolute value of the) determinant of the matrix given by the holonomy vectors.

They showed that there is a positive lower bound on the area of virtual triangles on the surface ω if and only if the surface ω is an *lattice* surface, that is, its stabilizer $SL(X,\omega)$ under $SL(2,\mathbb{R})$ is a lattice. In this case the $SL(2,\mathbb{R})$ orbit is closed, and the Haar measure τ on $SL(2,\mathbb{R})/SL(X,\omega)$ is finite.

This condition, known as no small virtual triangles (NSVT) can be summarized as saying that $\nu(\tau)$ has no support in a neighborhood of 0. More generally, given an arbitrary $SL(2,\mathbb{R})$ -invariant measure τ , the support of $\nu(\tau)$ is the collection of virtual triangle areas for surfaces ω in the support of τ .

- 3.5. Lattice surfaces and covering loci. For some lattice surfaces and loci of covers, we have examples where we can compute these measures explicitly.
- 3.5.1. Flat tori. For

$$\mathcal{H}(\emptyset) = SL(2,\mathbb{R})/SL(2,\mathbb{Z}),$$

the moduli space of abelian differentials on flat tori, these measures were implicitly computed by Schmidt [21], see [3] for an explicit computation with full proofs (which correct a mistake in a paper of Rogers [20]).

Precisely, if the Haar measure κ on $SL(2,\mathbb{R})$ is normalized so that

$$\kappa(SL(2,\mathbb{R})/SL(2,\mathbb{Z})) = \zeta(2),$$

we have that

$$\nu = \sum_{n \in \mathbb{Z} \setminus \{0\}} \frac{1}{\zeta(2)} \phi(n) \delta_n$$

and

$$\eta = \delta_1 + \delta_{-1}$$
.

3.5.2. Covering loci and affine lattices. In the stratum $\mathcal{H}(1,1)$ we have the subvariety \mathcal{V} of two identical tori glued along a slit. Equivalently, these are double covers of a flat torus branched over two points. We can thus identify \mathcal{V} with $\mathcal{H}(0,0)$, the space of tori with two marked points (the slit is a segment connecting the two points). In turn, we have

$$\mathcal{H}(0,0) = ASL(2,R)/ASL(2,\mathbb{Z}),$$

where

$$ASL(2,\mathbb{R}) = SL(2,\mathbb{R}) \ltimes \mathbb{R}^2, ASL(2,\mathbb{Z}) = SL(2,\mathbb{Z}) \ltimes \mathbb{Z}^2.$$

We will identify $\omega \in \mathcal{V}$ with cosets [g, v], $g \in SL(2, \mathbb{R})$, $v \in \mathbb{R}^2/g\mathbb{Z}^2$. We have [6] that

$$\Lambda_{[g,v]} = g\mathbb{Z}_{\text{prim}}^2 \cup (g\mathbb{Z}^2 + v),$$

where $\mathbb{Z}^2_{\text{prim}}$ is the set of *primitive* integer vectors. Thus, we can break the Siegel-Veech measures up into the measures associated to each piece. For the first piece $g\mathbb{Z}^2_{\text{prim}}$, the computation in §3.5.1 yields the measures, and for the second, these were computed in [1].

3.5.3. Lattice surfaces. More generally, for lattice surfaces ω , it seems possible to use the fact that there are vectors $v_1, \ldots v_k \in \mathbb{R}^2$ so that

$$\Lambda_{\omega} = \bigcup_{j=1}^{k} SL(X, \omega) v_j$$

to turn to algebraic techniques to compute these measures, which will depend on the action of $SL(X,\omega)$ on $\mathbb{R}^2 \times \mathbb{R}^2$.

4. L^2 BOUNDS AND ERROR TERMS

4.1. **Notation.** We prove Theorem 1.3. Recall we write

$$L(R) = ||N(\omega, R)||_2^2,$$

and

$$V(R) = L(R) - ||N(\omega, R)||_1^2 = L(R) - c_{SV}(\mu)^2 \pi^2 R^4.$$

4.2. Expectation and variance. Then

$$\mu\left(\omega \in \mathcal{H}: \left| N(\omega, R) - c_{SV}(\mu)\pi R^{2} \right| > e(R) \right) = \mu\left(\omega \in \mathcal{H}: \left| N(\omega, R) - c_{SV}(\mu)\pi R^{2} \right|^{2} > e(R)^{2} \right) \leq \frac{\int_{\mathcal{H}} \left| N(\omega, R) - c_{SV}(\mu)\pi R^{2} \right|^{2} d\mu}{e(R)^{2}} = \frac{V(R)}{e(R)^{2}}.$$

4.3. **Borel-Cantelli.** Theorem 1.3 then follows from applying the easy part of the Borel-Cantelli lemma to the sequence of sets

$$A_k = \{ \omega \in \mathcal{H} : \left| N(\omega, R) - c_{SV}(\mu) \pi R^2 \right| > e(R_k).$$

References

- [1] J. S. Athreya, *Random Affine Lattices*, Contemporary Mathematics, volume 639, 160-174, 2015.
- [2] J. S. Athreya and J. Chaika, The distribution of gaps for saddle connection directions. Geometric and Functional Analysis, Volume 22, Issue 6, 1491-1516, 2012.
- [3] J. S. Athreya and S. Fairchild, in preparation.
- [4] J. S. Athreya and G. A. Margulis, *Logarithm laws for unipotent flows*, *I*, Journal of Modern Dynamics, volume 3, number 3, pages 359-378, July 2009.
- [5] J. S. Athreya and G. Margulis, Values of Random Polynomials at Integer Points, preprint.
- [6] Y. Cheung, P. Hubert and H. Masur, Dichotomy for the Hausdorff dimension of the set of nonergodic directions. Invent. Math. 183 (2011), no. 2, 337-383.
- [7] P. Chew, There is a Planar Graph Almost as Good as the Complete Graph, Proceedings of 2nd Symposium on Computational Geometry, Yorktown Heights, NY, 1986.
- [8] A. Eskin, Counting Problems in moduli space. Handbook of dynamical systems. Vol. 1B, 581–595, Elsevier B. V., Amsterdam, 2006.
- [9] A. Eskin and H. Masur, Asymptotic Formulas on Flat Surfaces, Ergodic Theory and Dynam. Systems, v.21, 443-478, 2001.
- [10] A. Eskin, M. Mirzakhani, and A. Mohammadi, Isolation, equidistribution, and orbit closures for the $SL(2,\mathbb{R})$ action on moduli space, Volume 182, 673-721 Volume 182 (2015).
- [11] A. Eskin, M. Mirzakhani and K. Rafi, Counting geodesics in a stratum. To appear, Inventiones Mathematicae.
- [12] S. Kerckhoff, H. Masur and J. Smillie, Ergodicity of billiard flows and quadratic differentials. Ann. of Math. (2) 124 (1986), no. 2, 293-311.
- [13] M. Kontsevich, A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), no.3, 631-678.
- [14] H. Masur, The growth rate of trajectories of a quadratic differential, Ergodic Theory Dynam. Systems 10 (1990), no. 1, 151–176.

- 14
- [15] H. Masur, Interval exchange transformations and measured foliations, Ann. of Math. (2) 115 (1982), no. 1, 169–200.
- [16] H. Masur and J. Smillie, Hausdorff dimension of sets of nonergodic measured foliations. Annals of Mathematics, (2)134 (1991), no. 3, 455-543.
- [17] A. Nevo, R. Ruhr, and B. Weiss, Effective counting on translation surfaces, preprint, arXiv:1708.06263
- [18] D. Nguyen, Volume of the set of surfaces with small saddle connection in rank one affine manifolds, preprint, arXiv:1211.7314
- [19] K. Rafi Hyperbolicity in Teichmller space. Geometry Topology 18-5 (2014) 3025–3053.
- [20] C. A. Rogers, The number of lattice points in a set, Proc. London Math. Soc. (3) 6 (1956), 305–320.
- [21] W. Schmidt, A metrical theorem in geometry of numbers. Transactions of the American Mathematical Society (1960), pp. 516-529.
- [22] C. L. Siegel, A mean value theorem in geometry of numbers, Ann. Math. 46, 340–347 (1945).
- [23] J. Smillie and B. Weiss, *Characterizations of lattice surfaces*, Invent. Math. 180 (2010), no. 3, 535–557.
- [24] W. Veech, Siegel Measures, Annals of Mathematics, 148, (1998), 895-944.
- [25] W. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. math. 97, 553-583 (1989).
- [26] W. A. Veech. Gauss measures for transformations on the space of interval exchange maps. Ann. of Math. (2), 115(1):201–242, 1982.
- [27] A. Wright Cylinder deformations in orbit closures of translation surfaces, Geometry Topology (19) 413-438, 2015.
- [28] A. Zorich, *Flat surfaces*, Frontiers in number theory, physics, and geometry. I, 437–583, Springer, Berlin, 2006.

E-mail address: jathreya@uw.edu E-mail address: ycheung@sfsu.edu

E-mail address: masur@math.uchicago.edu

Department of Mathematics, University of Washington, Padelford Hall, Seattle, WA 98195, USA

DEPARTMENT OF MATHEMATICS, SAN FRANCISCO STATE UNIVERSITY, THORN-TON HALL 937, 1600 HOLLOWAY AVE, SAN FRANCISCO, CA 94132, USA

Department of Mathematics, University of Chicago, 5734 South University Avenue, Chicago, IL 60615, USA