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SIEGEL-VEECH TRANSFORMS ARE IN L2
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Dedicated to the memory of William Veech.

ABSTRACT. Let H denote a connected component of a stratum of
translation surfaces. We show that the Siegel-Veech transform of a
bounded compactly supported function on R? is in L?(H, ), where
w is Lebesgue measure on #H, and give applications to bounding
error terms for counting problems for saddle connections. We also
propose a new invariant associated to SL(2, R)-invariant measures
on strata satisfying certain integrability conditions.

1. INTRODUCTION

Motivated by counting problems for polygonal billiards and more
generally for linear flows on surfaces, Veech [24] introduced what is now
known as the Siegel-Veech transform on the moduli space of abelian
differentials (in analogy with the Siegel transform arising from the space
of unimodular lattices in R”). The main result of [24] is an integration
(L') formula for this transform (see §L.3.1]), a version of the classical
Siegel integral formula. R

Our main result Theorem [L.T]is that the Siegel-Veech transform f of
any bounded compactly supported function f on R? satisfies

feL*(MH,pu)

with respect to the natural Lebesgue measure p on any (connected
component of a) stratum #H of abelian differentials.

1.1. Translation surfaces. A translation surface S is a pair (X,w)
where X is a Riemann surface and w is a holomorphic 1-form. The
terminology is motivated by the fact that integrating w (away from its
zeros) gives an atlas of charts to C whose transition maps are transla-
tions. These can be viewed as singular flat metrics with trivial rota-
tional holonomy, with isolated cone-type singularities corresponding to
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zeros of w. An saddle connection v on S is a geodesic segment connect-
ing two zeros of w with none in its interior. Associated to each saddle
connection is its holonomy vector

Z,Y:/MGC
Y
|v|=/|w|-
Y

We denote the set of holonomy vectors by A,. A, is a discrete subset
of the plane C ~ R2.

and its length

1.2. Strata. The moduli space €}, of genus g translation surfaces is
the bundle over the moduli space M, of genus g Riemann surfaces with
fiber over each Riemann surface X given by Q(X), the vector space of
holomorphic 1-forms on X. , decomposes into strata depending on
the combinatorics of the differentials.

Since the orders of the zeros of w must sum to 2g — 2, there is a
stratum associated to each integer partition of 2g — 2. Each of these
strata has at most three connected components [13].

The flat metric associated to a one-form w also gives a notion of
area on the surface. We consider the subset of area 1 surfaces of a
connected component of a stratum, and denote it by H. We will, by
abuse of notation, often simply refer to this as a stratum, and we will
denote elements of it by (X,w).

1.2.1. Lebesgue measure. The group GL(2,R) acts on €2, via linear
post-composition with charts, preserving combinatorics of differentials.
The subgroup SL(2,R) preserves each area 1 subset, so acts on each
stratum H. On each stratum, there is a natural measure p, known
as Masur-Veech or Lebesgue measure, constructed using period coor-
dinates on strata (see, e.g. [§] or [28] for a nice exposition of the con-
struction of this measure). A crucial result, independently shown by
W. Veech and the third-named author, is

Theorem. [15,26] 1 is a finite SL(2, R)-invariant ergodic measure on
each stratum H.

1.3. Siegel-Veech transforms. Fix a stratum H. Let B.(R?) denote
the space of bounded compactly supported functions on R? ~ C. Given
(X,w) € H and f € B.(R?), Veech [24] introduced the Siegel-Veech
transform

f(Xw) =" f).

vEAL
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Note that this is a finite sum for any fixed f and w, since A, is discrete.
Our main result is:

Theorem 1.1. Let f € B.(R2). Then f € L2(H, p).

This corrects a mistake in [2], which claimed that if f was the indicator
function of the unit disk, that f ¢ L?. In fact, the proof in [2] only
shows f ¢ L3.

1.3.1. Siegel-Veech formulas. Veech [24] showed j?E LY(H, i), and us-

ing the SL(2,R)-invariance of p and a classification of the SL(2,R)-
invariant measures on R?, showed

Theorem. [24] There is a constant ¢ = c¢(p) so that
/ fdu=c [ fdm,
H R?

where m is Lebesque measure on R2.

This is a generalization of the (two-dimensional version of) Siegel
integral formula [22], which applies to averages of similar transforms
over spaces of unimodular lattices.

1.3.2. Siegel-Veech constants. In fact, Veech showed that for any SL(2, R)-
invariant ergodic finite measure A\, that f € L'(H,\), and that there
is ¢ = csy () so that

/ fdh=c | fdm.
H R2

These constants cgy(A) are known as Siegel-Veech constants and are
important numerical invariants associated to SL(2,R)-invariant mea-
sures.

1.4. Siegel-Veech measures. For any measure A with f € L3(H, N,
we can define two measure-valued invariants. First, we extend the
notion of Siegel-Veech transform to B.(R?), viewing R* = R? x R

1.4.1. Generalized Siegel-Veech transforms. Given
h € B.(R*) = B,(R? x R?).
define the Siegel-Veech transform

hw)= > h(v,ve).

v1,V02€A,

Note that if h(z,y) = f(z)f(y) for f € B.(R?),

h=f>.
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1.4.2. Measure-valued invariants.

Theorem 1.2. Let \ denote an SL(2,R)-invariant measure on H so

that for any f € B.(R?), fe L*(H,)\). Then there exist Siegel-Veech
measures v = v(\) on R\{0} and n = n(\) on P/(R) = RU oo such
that for any h € B.(RY),

/Hﬁ(w)dk(w) = /R\{O} (/SL@,R) h(tx,y)dm(x,y)) du(t)

* /Pl(R) </]R2 e Sm)dx) )

1.5. Counting bounds. Veech introduced the Siegel-Veech transform
to understand counting problems. Given a translation surface (X,w)
(or simply w), let

N(w,R) =# (A, N B(0, R))
denote the number of saddle connections of length at most R. The
third-named author showed that there are constants

0<c=cW)<e=c(w)

so that
i R? < N(w, R) < ¢, R?.

The Siegel-Veech formula computes the mean of N(w, R),

/H N (w, R)dp(w) = cov(j1)rR2

Eskin and the third-named author [9] showed that for p-almost every
w € H,
. N(w, R)
LT

= csv ().

1.5.1. Error terms. Our results can be viewed as showing that Siegel-
Veech transforms have finite variance. Variance bounds in turn yield
concentration bounds, bounding the probability of large discrepancy
from the mean. Finally, combining concentration bounds with the
Borel-Cantelli lemma yield almost everywhere error term bounds for
N(w, R). Suppose we write

L(R) = N (w, R)Il3.
and let e(R) denote an error function. Define
V(R) = L(R) — |N(w, R)|{ = L(R) — csv(n)*m*R".
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Theorem 1.3. Let R, — oo be a sequence, and e be a function such
that

— V(Ry)
; (e <o

9]

Then for p-almost every w € H, there is a ko so that for all k > kg
|N(w, Ry) = csv ()T R;| < e(Ry).

Currently, this theorem is ineffective, as we do not have an explicit
computation of L(R). Recently, Nevo-Ruhr-Weiss [17], using exponen-
tial mixing of Teichmiiller flow, give error bounds with a power savings
(along the full sequence).

1.6. Organization of the paper. In §2 we prove Theorem [L.1] via
intermediate results Theorem 211 and Theorem 2.2, which prove the
result for the indicator function of the unit disk and of a ball of radius
R respectively. In §3] we prove Theorem and discuss several explicit
computations in special cases.

1.6.1. Acknowledgments. We would like to thank Alex Eskin, Duc-
Manh Nguyen, Kasra Rafi, Rene Ruhr, John Smillie, and Barak Weiss,
for useful discussions. We dedicate this paper to the memory of William
Veech.

2. MEASURE BOUNDS AND DECOMPOSITIONS

In this section we prove Theorem [T}, via first proving them for the
indicator function of a small disk (Theorem 2.]) and then for the disk
of radius R (Theorem [2.2]).

2.1. Tail bounds. Given f € B.(R?), to prove f € L2(H, 1), we need
to show that

(2.1) > u(X,w) (X w) > VE) < oo.
k=1
2.2. A fixed disc. The first iteration of our main result is:

Theorem 2.1. Fiz a small ¢y and let f : R? — R be the indicator
function of the disc of radius €y. Then

feL*(H, p).
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Proof. We will divide the stratum H into a finite number of subsets H;

and prove
/ Fd,u < 00

for each H;.

2.3. Thick part. We begin by noting that by definition in the thick
part H; C H where every saddle connection has length at least ¢y, then

o~

f(X,w)=0.

2.4. No short loops. Next let Hs denote the set of (X, w) for which
there are saddle connections of length smaller than €, but there are no
homotopically nontrivial closed curves of length less than €.

Take the L' Delaunay triangulation of (X,w). There are no loops
with length shorter than ;. By Theorem 1 of Chew [7] any saddle
connection is homotopic to a path in the edges of the Delaunay trian-
gulation of length at most a fixed multiple of the length of the saddle
connection. Since there are no loops shorter than ¢y, any such path in
the edges traverses successively at most a fixed number of edges shorter
than ¢y before traversing one of length at least ¢;. Thus a saddle con-
nection of length at most 1 can be written as a union of at most O(1/¢)
edges of the triangulation and therefore expressed in terms of a fixed
basis for H;(X,w, ¥) as a linear combination with coefficients that are
O(1/€p). Thus there are O(1/€l)) saddle connections, where N is the
dimension of H;(X,w, ). Since ¢ is fixed, this is a bounded function

and so again
/ fzd,u < 0.
Ho

2.5. Short loops. Now we treat the case that there are short loops of
length smaller than some fixed €. Let Hg be the set of (X, w) with a
short curve of length at most ¢y. Next let N be the maximum number

of edges in any triangulation of (X,w) and set p = 2.

3N
Choose § > 0 small enough so
1+p 1
LT A T
1+9 i 2N
and
EEEN
2(14+46) — 3

Let || be the length of shortest saddle connection on (X, w), and
again let f(X,w) count the number of saddle connections that lie in a



SIEGEL-VEECH TRANSFORMS ARE IN L? 7

disc of radius ¢y. By Theorem 5.1 of [9], for some fixed ¢y, there is C'
(depending on § but not |v|) such that

o~

If f(X,w) > vk, then the above bound says there is ¢ > 0 such that
] < ek~

We break the set of (X,w) € Hs such that F > vk into three sets
Qo(k) UQy (k) UQs(k). It suffices to prove

S () < o0

for each 7. Let
Qo(k) ={(X,w) : f(X, w) > Vk and there is flat cylinder homotopic to 7} .

We can assume A, contains a saddle connection crossing the cylinder.
Then the height of the cylinder is at most ¢;. The shortest saddle
connection [ crossing the cylinder has a component in the direction
of the cylinder of length at most |y| and an orthogonal component of
length at most €y. If we include v and [ as part of a collection of saddle
connections whose holonomy vectors (or period coordinates) define the
Lebesgue measure p we see
u(Q0(k)) = O(17) = O(k™=15) = O(k™3),

by the choice of 6. (We are citing [16] Theorem 10.1 for the first
equality). Thus

> n( (k) =Y O(k5) < oo
k k
Next let €(X,w) be the length of the second shortest loop on (X, w).
Let
O (k) = {(X,w) € Hs : f(X,w) > Vk and (X, w) < |[7[7}.

Then since we have a saddle connection of length |y| and one of
length |y|” we have

1 (k) = O(|y|*2) = O(k~ 156 ) = O(k~*~~),
by the choice of §, p above, Thus

S len (k) < oo.
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Finally let Q3(k) be the set of surfaces (X, w) with no cylinder homo-
topic to v and

f(X,w) > VE, e(X,w) > [y,

Since there is no cylinder any saddle connection when written as a
composition of edges in the Delaunay triangulation does not follow the
circumference of v multiple times as it might if there were a cylinder.
Then by the exact same argument as before when considering Delaunay
triangulation,

FX,w) =0 (€M) =0 (4 ™7).
For this to be bigger than vk have

10 (1) ~o(1-1)

by the choice of p. Thus

#(Qa(k)) = O(11?) = 0 (k74
and again we have

S (k) < oo.

k
U

Theorem 2.2. Suppose f is the characteristic function of a disc of
radius R. Then f € L*(H, u).

Proof. We cover the disc of radius R with sectors of angle ;—‘2)2. It is
enough to show that for f the characteristic function of any of these
sectors the function J? is in L?(H, ). Let 6y the center angle of this
sector. Let ty = log g. Let (X,w) any translation surface and consider
(Y,w') = g4,7—9,(X,w). That is, we rotate so direction 6, is vertical

62 .
and flow time #o. Then since the angle is 2z, every saddle connection
of (X,w) in that sector has length at most ¢y on (Y,w’). Let h be the
characteristic function of the disc of radius €¢;. Then since the flow is

/L Theasure preserving,

/P(X,w)du(X) < /EQ(Y,W')du(Y) < 0o.
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2.6. Proof of Theorem [I.1l Let f € B.(R?). then there is an R > 0
so that the support of f is contained in B(0, R), and letting C' = max f,
we have

J < CxBo,r),
SO
f< CXB(0.R)-
Applying Theorem 2.2, we have our result. U

Remark: We remark that Wright [27] showed that any (X,w) in a
rank 1 orbit closure in H is completely periodic. This means that
for any direction with a cylinder v, the surface can be written as a
union of cylinders in that direction, and there are always such cylinder

directions (actually a dense set). Thus the set of (X,w) with f > vk
coincides with the set Q(k). Nguyen in Proposition 4.3 [I8] proved
that for any ergodic SL(2,R) invariant measure v on a rank 1 orbit
closure, and any such cylinder ~,

v(Q(k)) = O(11?).

Together with the discussion in the cylinder case in the proof of The-
orem 2.1] this gives that f € L?*(v) for any such v.

3. SIEGEL-VEECH MEASURES

In this section, we prove Theorem [[.2] and give examples of the
resulting Siegel-Veech measures in some special cases.

3.1. Transforms and bounds. Let 7 denote an SL(2,R) invariant
measure on a stratum H of abelian differentials, and suppose that
for any f € B.(R?), f € L*(H,7). Then, for any h € B.(R%), h €
LY(H, ), since we can dominate

h(w) = Z h(v1, va)

v1,v2EAL

by f? where f = max(h)x g, where H denotes the union of the projec-
tions of the support of h via the maps R* = R? x R? — R?

(z,y) —> = and (z,y) — y.
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3.2. Haar measures. Our claim in Theorem is that there are
Siegel-Veech measures v = v(7) on R\{0} and n = n(7) on P}(R) =
R U oo such that

/Hﬁ(w)d/i(w) = /R\{O} (/S‘L(Z,R) h(tx,y)d/g(x,y)) dv(t)

* /Pl(R) (/]1@2 e Sx)dx) )

Here, k is Haar measure on SL(2,R) (with a fixed normalization), and
the integral over SL(2,R) is taken over pairs (z,y) € R? x R? with
det(x,y) = 1, that is, we view SL(2,R) as a subset of R = R? x R?.

This follows by the SL(2, R)-invariance of x4 and the classification of
SL(2,R)-orbits on R*. By the invariance of 7, and our integrability
condition, we have that

h— /H h(w)dp(w)

is a SL(2,R)-invariant linear functional on B.(R?*), the set of bounded
compactly supported functions on R%. Therefore, there is an SL(2, R)-
invariant measure m = m(7) (a Siegel-Veech measure) on R* = R? x

R? = M,(R) so that
| ) = [ nam

3.3. SL(2,R)-invariant measures on R*. To describe SL(2, R)-invariant
measures on R*, we need to understand SL(2,R)-orbits on R*. For
t eR, let

Dy = {(z,y) € R* x R? : det(x,y) = t}
For t # 0, D, is an SL(2,R)-orbit. Dy decomposes further. For s €
P'(R), let
Ly ={(z,sz): 7 € R* x # 0},
with
Lo ={(0,y) : y € R?,y # 0}

3.3.1. Orbits and measures. D; and Ly are the non-trivial SL(2,R)
orbits on R? x R?, and each carries a unique (up to scaling) SL(2,R)-
invariant measure. These are the (non-atomic) ergodic invariant mea-
sures for SL(2,R) action on R? x R2. On D, the measure is Haar
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measure on SL(2,R), and on L, it is Lebesgue on R?. Thus, associ-
ated to any SL(2,R) invariant measure m on R* we have measures
v =v(m) and n = n(m) so that

/R4 am = /R\{O} (/SL@,R> h(m’y)dm(x’w) dv t)
T /Pl(R) (/Rz h(z, Sx)dx) dn(s).

3.4. Siegel-Veech measures from measures on strata. Putting
v(t) = v(m(7r)) and n(7) = n(m(r)), we have our Siegel-Veech mea-
sures. These measures are interesting invariants associated to SL(2, R)-
invariant measures 7 on H. A natural question is:

Question. Let p denote Lebesgue measure on the stratum H. What
are the spectral measures v(p) and n(p)?

3.4.1. Virtual Triangles. Smillie-Weiss [23] introduced the notion of
virtual triangles on a surface. A virtual triangle is simply a pair of
(distinct) saddle connections, and the area of a virtual triangle is the
(absolute value of the) determinant of the matrix given by the holo-
nomy vectors.

They showed that there is a positive lower bound on the area of
virtual triangles on the surface w if and only if the surface w is an lattice
surface, that is, its stabilizer SL(X,w) under SL(2,R) is a lattice.
In this case the SL(2,R) orbit is closed, and the Haar measure 7 on
SL(2,R)/SL(X,w) is finite.

This condition, known as no small virtual triangles (NSVT) can be
summarized as saying that v(7) has no support in a neighborhood of 0.
More generally, given an arbitrary SL(2,R)-invariant measure 7, the
support of v(7) is the collection of virtual triangle areas for surfaces w
in the support of .

3.5. Lattice surfaces and covering loci. For some lattice surfaces
and loci of covers, we have examples where we can compute these
measures explicitly.

3.5.1. Flat tori. For
H(0) = SL(2,R)/SL(2, Z),

the moduli space of abelian differentials on flat tori, these measures
were implicitly computed by Schmidt [21], see [3] for an explicit compu-
tation with full proofs (which correct a mistake in a paper of Rogers [20]).
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Precisely, if the Haar measure x on SL(2,R) is normalized so that
R(SL(2,R)/SL(2,2)) = ¢(2),
we have that )
v=Y ——=d(n)s,
neZ\{0} ¢(2)

and
n = 51 + 5_1.

3.5.2. Cowvering loci and affine lattices. In the stratum (1, 1) we have
the subvariety ) of two identical tori glued along a slit. Equivalently,
these are double covers of a flat torus branched over two points. We
can thus identify V with #(0,0), the space of tori with two marked
points (the slit is a segment connecting the two points). In turn, we
have
H(0,0) = ASL(2,R)/ASL(2,7),
where
ASL(2,R) = SL(2,R) x R* ASL(2,7Z) = SL(2,7Z) x Z*.
We will identify w € V with cosets [g,v], g € SL(2,R), v € R?/gZ>.
We have [6] that
A[!]’U} = ng)rim U (gzz + U)v
where Z2,,, is the set of primitive integer vectors. Thus, we can break
the Siegel-Veech measures up into the measures associated to each
piece. For the first piece gZ2 , the computation in §3.5.1] yields the

prim?
measures, and for the second, these were computed in [I].

3.5.3. Lattice surfaces. More generally, for lattice surfaces w, it seems
possible to use the fact that there are vectors vy, ...v; € R? so that

k
Ay = SL(X, w)v;
j=1

to turn to algebraic techniques to compute these measures, which will
depend on the action of SL(X,w) on R? x R2.
4. L2 BOUNDS AND ERROR TERMS
4.1. Notation. We prove Theorem [[.3] Recall we write
L(R) = |[N(w, R)|]3,

and
V(R) = L(R) — |N(w, R)||T = L(R) — csv(pu)*m*R".
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4.2. Expectation and variance. Then

i (w€H: |N(w, R)—cov(u)TR| > e(R)) =

i (w eH: }N(w,R) - CSV(M)WR2}2 > e(R)2> <
Ju|N (@, R) = csy ()mR*du - V(R)
e(R)? e(R)?

4.3. Borel-Cantelli. Theorem[I.3then follows from applying the easy
part of the Borel-Cantelli lemma to the sequence of sets

A ={w € H: |N(w, R) — csv(u)TR?| > e(Ry).
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