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Abstract. In this paper we explore the idea that Teichmüller space with the

Teichmüller metric is hyperbolic “on average.” We consider several different

measures on Teichmüller space and show that with respect to each one, the
average distance between points in a ball of radius r is asymptotic to 2r, which

is as large as possible.

1. Introduction

Let S be a closed surface of genus g > 1. In this paper we continue the study of
Teichmüller space T (S), which is the parameter space for several types of geometric
structures on S. It is known that Teichmüller space equipped with the Teichmüller
metric dT is a complete metric space homeomorphic to R6g−6. It is not δ–hyperbolic
[15], and several kinds of obstructions to hyperbolicity are known: for instance, pairs
of geodesic rays through the same point may fellow-travel arbitrarily far apart [9],
and there are large “thin parts” of the space which, up to bounded additive error,
are isometric to product spaces equipped with sup metrics [16]. These exceptions
to the negative-curvature phenomena seem to come from rare occurrences, so one
might expect properties that are characteristic of hyperbolicity to hold on average.

One way to make this precise is to consider the average distance between points
on metric spheres in a metric space (X, d). Writing Sr(x) for the sphere of radius r
based at x, we define a geometric statistic for the large spheres as follows. Given a
family of probability measures µr on the spheres Sr(x), let E(X) = E(X,x, d, {µr})
be the average distance between points on large spheres:

E(X) := lim
r→∞

1

r

∫
Sr(x)×Sr(x)

d(y, z) dµr(y)dµr(z),

if the limit exists. It is shown in [5] that non-elementary hyperbolic groups all have
E(G,S) = 2 for any finite generating set S; this is also the case in the hyperbolic
space Hn of any dimension endowed with the natural measure on spheres. By
contrast, it is shown that E(Rn) < 2 (increasing over the range [4/π,

√
2) as the

dimension goes from 2 to infinity), and that E(Zn, S) < 2 for all n and S, with
nontrivial dependence on S. (See [5] for more examples.)

In the case of Teichmüller space, the sphere Sr(x) can be identified with the unit
sphere Q1(x) in the vector space of quadratic differentials on x via the Teichmüller
map. The latter has various natural measures, and corresponding measures on
Sr(x) will be called visual measures.
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On the other hand, as a metric space T (S) carries a natural 6g − 6 dimensional
Hausdorff measure η. Using this measure, we also consider the average distance
between points in the ball Br(x) of radius r centered at x. Our main theorem is:

Theorem 1. For every point x ∈ T (S),

lim
r→∞

1

r

1

η(Br(x))2

∫
Br(x)×Br(x)

dT (y, z) dη(y)dη(z) = 2.

In other words, the average distance between points in Br(x) is asymptotic to
2r, which, in light of the triangle inequality, is the maximum possible distance. In
addition to Hausdorff measure, we will also prove this theorem for averages with
respect to various other measures; the complete statement is given in §5 at the end
of the paper.

Our approach to Theorem 1 will be via certain visual measures on spheres; these
will be discussed in §3. In this regard we have the following result.

Theorem 2. E(T (S)) = 2 with respect to Teichmüller distance and various visual
measures.

We will actually prove a slightly stronger statement that allows for the pair of
points to lie on spheres of different radii that go to infinity and we conclude that
the average distance is asymptotically the sum of those radii.

Before proceeding to the distance estimates needed for these results, in §3 we
will establish comparisons among a number of a priori different measures that are
natural from various points of view, such as the metric structure (Hausdorff mea-
sure), the Finsler structure (Busemann measure and Holmes-Thompson measure),
the quadratic differentials (holonomy, or Masur-Veech, measure), and the symplec-
tic structure. We find that all of these are absolutely continuous with respect to
each other and cite a theorem of [2] to conclude that they are absolutely continu-
ous with respect to certain visual measures as well. These comparisons may be of
independent interest.

We sketch here the main ideas in the proof of Theorem 2. The first step is to
show (Proposition 23) that on average, pairs of geodesics separate from each other
in the Teichmüller metric after a threshold time. Then one would hope that, as
in a hyperbolic space, the geodesic joining their endpoints would follow the first
geodesic back to approximately where they separate before following the other so
that its length is roughly the sum of the lengths of the two geodesics, as on the
left in Figure 1. The Minsky product regions theorem [16] says that this in fact
may not happen. If the pair of geodesics separate because they enter thin parts
that are disjoint, then the geodesic joining their endpoints travels through those
disjoint thin regions simultaneously and its length is then smaller than the sum,
as on the right in Figure 1. Our goal is to show that this phenomenon does not
happen on average. The mechanism for showing this is the coarsely contracting
map from T (S) to the curve complex. We show (Theorem 35) that, generically,
pairs of Teichmüller geodesics separate in the curve complex after a bounded time.
We then show (Theorem 36) that for generic pairs, a geodesic connecting the two
rays must pass through the region where the rays separated, which gives the needed
distance estimate.
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Figure 1. We will show that the geodesic between points on
generic rays “dips” back near the basepoint. This requires an anal-
ysis of the time spent in thick and thin parts: if [x, y′] and [x, z′]
lie in disjoint thin parts, then Minsky’s product regions theorem
shows that the connecting geodesic can take a “shortcut.” We
show that this effect is rare.

1.1. Acknowledgments. We would like to thank Alex Eskin, Benson Farb, Curtis
McMullen, and especially Kasra Rafi for numerous helpful comments and explana-
tions.

2. Background material

2.1. Teichmüller space and quadratic differentials. Recall that Teichmüller
space T (S) is the space of marked Riemann surfaces X that are homeomorphic to
the topological surface S. More precisely, it consists of pairs (X, f), where f : S →
X is a homeomorphism, up to the equivalence relation that (X1, f1) ∼ (X2, f2)
when there exists a conformal map F : X1 → X2 such that F ◦ f1 is isotopic to f2.
Alternately, we may define T (S) as the space of marked hyperbolic surfaces (ρ, f);
namely, maps f : S → ρ with (ρ1, f1) ∼ (ρ2, f2) when there exists an isometry
F : ρ1 → ρ2 s.t. F ◦ f1 is isotopic to f2.

Using the first definition of T (S), the Teichmüller distance is given by

dT ((X1, f1), (X2, f2)) := inf
F∼f2◦f−1

1

1

2
logK(F ),

where the minimum is taken over all quasiconformal maps F and K(F ) is the
maximal dilatation of F . The space T (S) is homeomorphic to the ball R6g−6, and
from now on we will use h = 6g − 6 to designate this dimension. In this paper,
we will denote a point of T (S) by x, regarding it either as a Riemann surface or a
hyperbolic surface, and suppressing the marking f .

For x, y ∈ T (S), the Teichmüller geodesic segment joining x to y will usually be
denoted [x, y]. We will also use γ(t) to denote a geodesic ray or segment when the
time parameter is important.

A quadratic differential on a Riemann surface X is an integrable holomorphic
2-tensor q = φ(z)dz2 on X. The space of all quadratic differentials on all Riemann
surfaces homeomorphic to S is denoted Q(S). A point of Q(S) will be denoted q,
with the underlying complex structure implicit in the notation. The real dimension
of Q(S) is 12g− 12 = 2h. Reading off the Riemann surface, we obtain a projection
to the Teichmüller space π : Q(S) → T (S). Under this projection, Q(S) forms
vector bundle over T (S) which is canonically identified with the cotangent bundle
of T (S). Each fiber Q(X) is equipped with a norm given by the total area of q;
namely ‖q‖ =

∫
X
|φ(z)dz2|. Recall that dT is not a Riemannian metric on T (S),
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but rather a Finsler metric; it comes from dualizing the norm on Q to give a norm
on each tangent space of T (S) that is not induced by any inner product.

It is the famous theorem of Teichmüller that the infimum in the definition of dT
is realized uniquely by a Teichmüller map from X1 to X2. A Teichmüller map is
determined by an initial quadratic differential q = φ(z)dz2 on X1 and the number
K. The Teichmüller map expands along the horizontal trajectories of q by a factor
of K1/2 and contracts along the vertical trajectories by the same factor to obtain
a terminal quadratic differential q′ on the image surface X2. If we fix q and let
K = e2t vary over t ∈ [0,∞) we get a Teichmüller geodesic ray.

Recall that the mapping class group of S, defined by

Mod(S) := Diff+(S)/Diff0(S),

is the discrete group of orientation-preserving diffeomorphisms of S, up to isotopy.
This group acts isometrically on T (S) by changing the marking: φ · (X, f) =
(X, f ◦ φ−1). In fact, by a result of Royden [20], Mod(S) is the full group of
(orientation-preserving) isometries of (T (S), dT ).

2.2. Curve graph. When we speak of a curve on S, this will mean an isotopy
class of essential simple closed curves. Given x ∈ T (S), the length lx(α) of a curve
α is the infimal length achieved by the isotopy class in the hyperbolic metric x.

We recall the definition of the curve complex (or curve graph) C(S) of S. The
vertices of C(S) are curves on S. Two vertices are joined by an edge if the cor-
responding curves can be realized disjointly. Assigning edges to have length 1 we
have a metric graph. Properly speaking, C(S) is the flag complex associated to
this curve graph, but since we are working coarsely, we can identify C(S) with the
graph.

It is known that the curve graph is hyperbolic [14]. That is, there exists a
constant δ > 0 such that every geodesic triangle in C(S) is δ–thin: each side of
the triangle is contained in the union of the δ–neighborhoods of the other two
sides. It follows that every geodesic quadrilateral in C(S) is 2δ–thin (each side is
within 2δ of the union of the other three sides). Furthermore, in any δ–hyperbolic
metric space and for any quasi-isometry constants (K,C), there exists a constant
τ , depending only on δ,K,C, such that any two (K,C)–quasi-geodesic segments
with the same endpoints remain within τ of each other. Since actual geodesics are
(1, 0)–quasi-geodesics, this implies that every (K,C)–quasi-geodesic quadrilateral
is 2(δ + τ)–thin.

2.3. Thick parts and subsurface projections. For any given ε0, we say a curve
is ε0–short if its hyperbolic length is less than ε0. Then define Tε0 , the ε0–thick part
of Teichmüller space, to be the subset of x ∈ T (S) on which no curve is ε0–short.

For each x ∈ T (S) there is associated a Bers marking µx. To construct µx,
greedily choose a shortest pants decomposition of the surface (a collection of 3g− 3
disjoint simple geodesics). Then for each pants curve β, choose a shortest geodesic
crossing β minimally (either once or twice depending on the topology) that is
disjoint from all other pants curves. The total collection of 6g − 6 curves is called
a Bers marking and is defined up to finitely many choices.

Throughout, a proper subsurface of S will mean a compact, properly embedded
subsurface V ⊂ S which is not equal to S and for which the induced map on
fundamental groups is injective. Subsurfaces which are isotopic to each other will
not be considered distinct. The proper subsurfaces of S fall into two categories,
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annuli and non-annuli, which behave somewhat differently. Nevertheless, we will
strive to develop intuitive notation under which these two possibilities may be dealt
with on equal footing.

Every proper subsurface V has a nonempty boundary ∂V consisting of a disjoint
union of curves on S. We say that two subsurfaces V and W transversely intersect,
denoted V t W , if they are neither (isotopically) disjoint nor nested. In this case,
∂V necessarily intersects W , and ∂W intersects V .

Consider a non-annular subsurface V , possibly equal to S. The subsurface pro-
jection πV (β) of a simple closed curve β ⊂ S to V is defined as follows: Realize
β and ∂V as geodesics (in any hyperbolic metric on S). If β ⊂ V , then πV (β) is
defined to be β. If β is disjoint from V , then πV (β) is undefined. Otherwise, β ∩V
is a disjoint union of finitely many homotopy classes of arcs with endpoints on ∂V ,
and we obtain πV (β) by choosing any arc and performing a surgery along ∂V to
create a simple closed curve contained in V . The subsurface projection of a point
x ∈ T (S) is then defined to be the collection

πV (x) := {πV (β)}β∈µx
of curves obtained by varying β in the Bers marking at x. This is a non-empty
subset of the curve complex C(V ) with uniformly bounded diameter.

Definition 3 (Non-annular projection distance). For a non-annular subsurface
V ⊆ S, the projection distance in V of a pair of points x, y ∈ T (S) is defined to be

dV (x, y) := diamC(V )(πV (x) ∪ πV (y)).

In particular, dS(x, y) denotes the curve complex distance. When convenient, we
will also denote this distance by dC(V ) := dV .

For an annular subsurface A ⊂ S with core curve α = ∂A, there are two kinds
of projection distances: one that measures twisting about α and is analogous to
the definition above, and a second which also incorporates the length of α. Any
simple closed curve β that crosses α may be realized by a geodesic and then lifted
to a geodesic β̃ in the annular cover Ã, that is, the quotient of H2 by the deck
transformation corresponding to α, with the Gromov compactification. For a pair
β, γ of such curves, we may then consider the intersection number i(β̃, γ̃) in Ã. The
twisting distance in A of a pair of points x, y ∈ T (S) is then defined as

dC(A)(x, y) := sup
β∈µx,γ∈µy

iÃ(β̃, γ̃).

We additionally define a hyperbolic projection distance as follows.

Definition 4 (Annular projection distance). For an annular subsurface A ⊂ S with
core curve α = ∂A, denote by Hα a copy of the standard horoball {Im(z) ≥ 1} ⊂ H2.
Given x, y ∈ T (S), we consider the points (0, 1/lx(α)) and (dC(A)(x, y), 1/ly(α)) ∈
H2 and denote their closest point projections to the horoball Hα by

πα(x) =

(
0,max

{
1,

1

lx(α)

})
, πα(y) =

(
dC(A)(x, y),max

{
1,

1

ly(α)

})
.

The projection distance in A (or hyperbolic distance dHα) between x and y is then
defined to be

dA(x, y) := dH2 (πα(x), πα(y)) .
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2.4. Distance formula. For functions f , g and constants K ≥ 1, C ≥ 0, we will

use the notation f(x)
K,C
� g(x) if the inequalities 1

K g(x)−C ≤ f(x) ≤ K · g(x) +C
hold for all x. As usual we denote f = O(g) if the second inequality holds, and
f = o(g) if f(x)/g(x)→ 0 as x→∞.

The following distance formula due to Rafi relates the Teichmüller distance be-
tween two points x and y to the combinatorics of the corresponding Bers markings
µx and µy.

Theorem 5 (Distance formula, Rafi [17]). Fix a small ε0 > 0. For any sufficiently
large threshold M0, there exist quasi-isometry constants K ≥ 1 and C ≥ 0 depending
only on M0 and the topology of S such that, for all x, y ∈ T (S) we have

dT (x, y)
K,C
� dS(x, y) +

∑
V

[dV (x, y)]M0
+ max
α∈Γxy

dHα(x, y)

+
∑

A : ∂A6∈Γxy

log+

[
dC(A)(x, y)

]
M0

+ max
α∈Γx

log+

(
1

lx(α)

)
+ max
α∈Γy

log+

(
1

ly(α)

)
,

where Γxy is the set of ε0–short curves in both x and y, Γx is the set of curves that
are ε0–short in x but not in y, and Γy is defined similarly. Here and throughout,
log+ is a modified logarithm so that log+a = 0 for a ∈ [0, 1], and [·]M0

is a threshold

function for which [N ]M0
:= N when N ≥M0 and [N ]M0

:= 0 otherwise.

Remark 6. The definition of dHα = dA given above is technically different than
that used by Rafi in [17]; however, the two definitions agree up to bounded additive
error.

In order to simplify notation and streamline our arguments, it will be beneficial
to repackage this distance formula in a way that treats annular and non-annular
subsurfaces on equal footing, which has the effect of simply expressing the Te-
ichmüller distance as the sum of large subsurface projections. For simplicity and
without loss of generality, below we suppose that ε0 is fixed small enough that
log+(1/ε0) ≥ 100, say. We begin with a straightforward reformulation.

Lemma 7. Given any sufficiently large threshold M0, there exist K ≥ 1 and C ≥ 0
such that for all x, y ∈ T (S) we have:

dT (x, y)
K,C
� dS(x, y) +

∑
V

[dV (x, y)]M0
+

∑
A : ∂A∈Γxy

[dA(x, y)]M0
+

∑
A : ∂A/∈Γxy

[
max

{
log+

(
dC(A)(x, y)

)
, log+

(
1

lx(∂A)

)
, log+

(
1

ly(∂A)

)}]
logM0

Proof. Since Γxy, Γx and Γy each contain at most 3g − 3 curves, each max over
these sets is within bounded multiplicative error of the corresponding sum, and
applying a threshold only creates bounded additive error, so the first three terms
of the lemma are established. By the definition of Γx we have∑

α∈Γx

log+

(
1

lx(α)

)
=
∑
α/∈Γxy

log+

[
1

lx(α)

]
1/ε0

.

Since this is a sum with at most 3g−3 nonzero terms, we can increase the threshold
to any number M0 ≥ 1/ε0 with bounded additive error. Finally, for functions f, g, h,
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we have

log+[f ]M0
+ log+[g]M0

+ log+[h]M0

3,0
�
[
max{log+f, log+g, log+h}

]
logM0

. �

We now show that each term in the last summand is bilipschitz equivalent to
the corresponding hyperbolic distance dA(x, y).

Lemma 8. Consider an annular subsurface A ⊂ S with core curve ∂A = α. For
each pair of points x, y ∈ T (S), set

HA(x, y) := max

{
log+

(
dC(A)(x, y)

)
, log+

(
1

lx(α)

)
, log+

(
1

ly(α)

)}
.

If x, y ∈ T (S) are such that α /∈ Γxy and either dA(x, y) or HA(x, y) is greater than
36 log+(1/ε0), then 6−1dA(x, y) ≤ HA(x, y) ≤ 6dA(x, y).

Proof. Choose points x, y ∈ T (S) that satisfy the hypotheses. To fix notation, set
π′α(x) = (0, 1) and π′α(y) = (dC(A)(x, y), 1). These are the closest-point projections
of πα(x) and πα(y) to the horocycle bounding Hα, and their distances from these
points are exactly given by log+(1/lx(α)) and log+(1/ly(α)). Let

B = dH2(π′α(x), π′α(y)) = arccosh

(
1 +

dC(A)(x, y)2

2

)
denote the hyperbolic distance between these projections. Using this formula, one
may easily check that the inequalities

(1) log+dC(A)(x, y) ≤ B ≤ 4 log+dC(A)(x, y)

hold provided that either B ≥ 3 or dC(A)(x, y) ≥ 3.
Applying the triangle inequality with the points π′α(x) and π′α(y) implies that

(2) dA(x, y) ≤ log+

(
1

lx(α)

)
+B + log+

(
1

ly(α)

)
.

Then (1), (2), and the definition of HA imply that dA(x, y) ≤ 6HA(x, y) in the case
that B ≥ 3. If B < 3, we claim that the hypotheses of the Lemma ensure that
B cannot be the largest term on the right-hand side and therefore that dA(x, y) ≤
3L ≤ 3HA(x, y), where L denotes the larger of the other two terms. Indeed, if B
were the largest term and B < 3, then (2) would imply dA(x, y) < 9, and (1) would
necessitate log+dC(A)(x, y) < 3 so that HA(x, y) < 3. But then both dA and HA

are less than 9, contradicting the hypothesis.
By the above, the assumption dA(x, y) ≥ 36 log+(1/ε0) implies that HA(x, y) ≥

6 log+(1/ε0); therefore all cases will be covered by proving that this in turn im-
plies HA(x, y) ≤ 6dA(x, y). Without loss of generality, we may assume that
lx(α) ≤ ly(α); since α /∈ Γxy this guarantees ly(α) ≥ ε0. First suppose that
log+dC(A)(x, y) ≥ 3 log+(1/lx(α)), in which case we have log+dC(A)(x, y) = HA(x, y) ≥
6 log+(1/ε0). In particular we certainly have dC(A)(x, y) ≥ 3; thus (1) and the tri-
angle inequality give

log+dC(A)(x, y) ≤ B ≤ log+

(
1

lx(α)

)
+ dA(x, y) + log+

(
1

ly(α)

)
.

Therefore HA(x, y) = log+dC(A)(x, y) ≤ 3dA(x, y) in this case. The remaining pos-
sibility log+dC(A)(x, y) ≤ 3 log+(1/lx(α)) necessitates 3 log+(1/lx(α)) ≥ HA(x, y).
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Recall that π′α(x) is the closest point projection of πα(x) to the horocycle bounding
Hα; since π′α(y) is also on this horocycle we have

log+

(
1

lx(α)

)
≤ dH2(πα(x), π′α(y)) ≤ dA(x, y) + log+

(
1

ly(α)

)
.

The assumptions 3 log+(1/lx(α)) ≥ HA(x, y) ≥ 6 log+(1/ε0) and ly(α) ≥ ε0 now
ensure that HA(x, y) ≤ 6dA(x, y). �

Corollary 9. Let HA(x, y) be defined as in Lemma 8. Then for any threshold
M0 ≥ 36 log+(1/ε0) and any x, y ∈ T (S) we have∑

∂A/∈Γxy

6−1 [dA(x, y)]6M0
≤

∑
∂A/∈Γxy

[HA(x, y)]M0
≤

∑
∂A/∈Γxy

6 [dA(x, y)]M0/6

With these estimates, the distance formula now takes a particularly simple form.

Proposition 10 (Repackaged distance formula). For any sufficiently large thresh-
old M0, there exist quasi-isometry constants K ≥ 1 and C ≥ 0 depending only on
M0 and the topology of S such that, for all x, y ∈ T (S) we have:

(3) dT (x, y)
K,C
� dS(x, y) +

∑
Y

[dY (x, y)]M0

Here, the sum is over all (annular and non-annular) proper subsurfaces.

Proof. Fix a small ε0 > 0 and choose any sufficiently large threshold M0 such that
Lemma 7 holds for both e6M0 and M0/6 and such that M0/6 ≥ 36 log+(1/ε0).
Let K ≥ 1 and C ≥ 0 denote the larger of the quasi-isometry constants given by
Lemma 7 for the thresholds e6M0 and M0/6.

Notice that, in any sum of the form
∑

[f ]M , raising the threshold can only
decrease the value of the sum, and lowering the threshold can only increase its value.
Therefore, combining Lemma 7 and Corollary 9 we find that for any x, y ∈ T (S)
the various distances satisfy

dT ≤ K

dS +
∑
V

[dV ]e6M0 +
∑

∂A∈Γxy

[dA]e6M0 +
∑

∂A/∈Γxy

[HA]6M0

+ C

≤ 6K

dS +
∑
V

[dV ]M0
+

∑
∂A∈Γxy

[dA]M0
+

∑
∂A/∈Γxy

[dA]M0

+ C,

where we have suppressed the x and y in the notation. The lower bound on dT (x, y)
is similar. �

2.5. Thinness and time-ordering. We will use some results from Rafi’s work
[17, Prop 3.7] combinatorializing the Teichmüller metric. For every Teichmüller
geodesic and every proper subsurface V , there is a (possibly empty) interval along
the geodesic where ∂V is short. Outside of this interval, the projections dV move
by at most a bounded amount. In the form that we will use below: there is a global
constant M and constants ε0 < ε1 such that for any pair of points x, y ∈ T (S) there
is a possibly nonempty connected interval TV along the geodesic segment [x, y] such
that

• for a ∈ TV the length of ∂V on a is at most ε1;
• for a ∈ [x, y] \ TV the length of ∂V on a is at least ε0;
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• for a, b in the same component of [x, y] \ TV , we have dV (a, b) < M; and
• if V tW then TV ∩TW = ∅.

We should note that the interval TV is not uniquely defined. We also note that
the second condition says that on the complement of the union of thin intervals the
point lies in the ε0–thick part of T (S). If TV 6= ∅ we will say that V is thin along
TV . In particular if dV (x, y) ≥ M, then the interval TV 6= ∅.

We will write TV < TW along [x, y] if both endpoints of TV occur before both
endpoints of TW when traveling from x to y. This TV is called the thin interval
for V (or the active interval in some papers). Note that for us thin intervals are
segments in Teichmüller space, whereas Rafi works with the corresponding time
intervals IV ⊂ R. The geodesic [x, y] is suppressed in the notation TV , and so
the same notation re-occurs when there are multiple segments in an argument; the
geodesic with respect to which the interval is defined should be clear from context.
We will take M to be large enough to be a valid threshold in the distance formula
(3).

The properties of thin intervals imply the following time-ordering principle.

Lemma 11 (Time ordering [18]). Choose any constant M0 ≥ M. Consider a
pair of geodesic segments in T with a common basepoint x which end in y, y′,
respectively. Suppose V tW are transversely intersecting subsurfaces of S.

(1) If dV (x, y), dV (x, y′), dW (x, y), dW (x, y′) ≥ 3M0, then the thin intervals
TV ,TW appear in the same order along both geodesics, as they are traced
out from x.

(2) If dV (x, y), dW (x, y), dW (x, y′) ≥ 3M0 and TV appears before TW along
[x, y], then V determines a thin interval along [x, y′] which appears before
TW .

Proof. Assume the pairs of endpoints have large projection to V and W as in the
hypothesis of the first statement, and suppose TV appears before TW along [x, y].
Since the endpoints of TV contain ∂V in their markings, we have dW (x, ∂V ) ≤M0.
If the intervals appear in the opposite order along [x, y′], then letting z be the
endpoint of TV closest to x, since z contains ∂V in its marking, we use the triangle
inequality to get

dW (x, ∂V ) = dW (x, z) ≥ 3M0 −M0 = 2M0,

a contradiction. This proves the first statement. Turning to the second statement,
the assumption on [x, y] gives us that

dV (x, ∂W ) ≥ 2M0.

Let z′ be the endpoint of TW along [x, y′] closest to x. It contains ∂W in its
marking. We therefore have

dV (x, z′) ≥ 2M0 ≥ M,

and so TV must appear between x and z′ along [x, y′]. �

2.6. Reverse triangle inequality. We will repeatedly use the fact that the pro-
jection of a Teichmüller geodesic to the curve complex of any subsurface forms
an unparameterized quasi-geodesic that, in particular, does not backtrack. This
phenomenon is captured by the following “reverse triangle inequality,” which was
proved first in the case of the curve complex of the whole surface by Masur–Minsky
[14] and then for general subsurfaces by Rafi [18, Thm B].
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Lemma 12 (Reverse triangle inequality). There exists B > 0 such that for any
nonannular subsurface V (including S itself) and for any geodesic interval [x, y]
and any subinterval [a, b] ⊂ [x, y] we have

dV (x, a) + dV (a, y) ≤ dV (x, y) +B, and(4)

dV (a, b) ≤ dV (x, y) +B.

For an annulus A, these inequalities hold with the twisting distance dC(A), but not
necessarily with the projection distance dA.

In the exceptional annulus case, we have the following theorem from Rafi [17].

Theorem 13 (R.T.I. exception). For any sufficiently large M0, there exists a con-
stant B′ > 0 with the following property. For any geodesic segment [x, y] and any
annulus A, if a ∈ [x, y] is such that dA(x, a) + dA(a, y) − dA(x, y) ≥ B′ (i.e.,
the reverse triangle inequality fails), then there exists a proper subsurface V 6= A
containing a family of subsurfaces Wi ⊂ V such that

• ∂V = ∂A,
• the Wi fill V ,
• for each Wi the reverse triangle inequality (4) holds along [x, y],
• dWi(a, y) ≥M0 for each i,
• dA(a, y) ≤

∑
dWi(a, y).

We remark that this is not exactly how the result in [17] is stated. Rafi finds
an annulus about the short curve which with respect to the quadratic differential
is a disjoint union of a flat annulus and an expanding annulus. Each is foliated by
equidistant lines. In the flat annulus case, the lines are geodesics of the quadratic
differential and have 0 curvature. In the latter case they have negative curvature.
Rafi measures the path traveled in H2 defined by the length and twist coordinates
by computing the modulus of these annuli. He shows that the distance traveled in
H2 due to the expanding annulus is much smaller than the Teichmüller distance
and if the reverse triangle inequality fails, it is due to the presence of an expanding
annulus whose modulus is much bigger than the modulus of the flat annulus. The
fact that path length in H2 is much smaller than Teichmüller length forces, by
his distance formula, the presence of the domains Wi as in the statement of the
theorem.

Going forward, we fix once and for all a constant M large enough to satisfy
the quantitative parts of the thinness statements, the distance formula, and these
reverse triangle inequality statements.

3. Comparing measures

To address averaging questions, one of course needs to consider a measure. In the
present context of metric geometry, it is perhaps most natural to consider Hausdorff
measure of the appropriate dimension.

Definition 14 (Hausdorff measure). The n-dimensional Hausdorff measure on a
metric space will be denoted by η. It is defined by

η(E) := lim
δ→0

[
inf
∑

diam(Ui)
n
]
,

where the infimum is over countable covers {Ui} of E with diamUi < δ ∀i.
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For the Teichmüller metric, there is a nontrivial h-dimensional Hausdorff mea-
sure. As we shall see, in order to understand average distances with respect to this
measure, it will be necessary to compare with other measures, defined below, which
are also natural to consider in their own right.

3.1. Measures on Finsler manifolds. The Teichmüller space carries several nat-
ural volume forms coming from its structure as a Finsler manifold. Let us discuss
these general constructions first before returning to the case of M = T (S). The

treatment closely follows the survey by Álvarez and Thompson [1].
Recall that a Finsler metric on M is a continuous function F : T (M) → R that

restricts to a norm on each tangent space Tx(M). There is a dual norm on each
cotangent space T ∗x (M). For a point x ∈ M , let Bx ⊂ Tx(M) and B∗x ⊂ T ∗x (M)
denote the unit balls for these two norms. A local coordinate system (x1, . . . , xn)
on M induces a pair of isomorphisms

(5) φ : Tx(M)→ Rn and ψ : T ∗x (M)→ Rn

defined by writing vectors and covectors with respect to the dual bases {∂x1
, . . . , ∂xn}

and {dx1, . . . , dxn}. By definition of the dual norm, the pairing Tx(M)×T ∗x (M)→
R is sent to the standard inner product on Rn under these isomorphisms. In the
local coordinate chart we may now define two functions

f(x) =
εn

λ (φ(Bx))
and g(x) =

λ (ψ(B∗x))

εn
,

where λ is Lebesgue measure and εn := λ(Balln) is the Lebesgue measure of the
standard unit ball in Rn. While these functions clearly depend on the choice of
coordinates (x1, . . . , xn), one may easily check that the n–forms

f(x) dx1 ∧ · · · ∧ dxn and g(x) dx1 ∧ · · · ∧ dxn
are independent of the coordinate system and therefore define global volume forms
on M . The former is called the Busemann volume on the Finsler manifold and the
latter is the Holmes–Thompson volume; see [1] for more details. These both define
measures on M .

A third measure to consider is the one induced by the canonical symplectic
form ω on the cotangent bundle, defined as follows. Consider local coordinates
(x1, . . . , xn) defined in a neighborhood U ⊂ M . The 1–forms dx1, . . . , dxn then
give a trivialization of T ∗(M) over U , and we have a local coordinate system on
T ∗(M) given by

(6) (x1, y1, . . . , xn, yn) 7→

(
(x1, . . . , xn),

n∑
i=1

yi dxi

)
.

In these coordinates the canonical symplectic form may be written simply as ω =∑
dxi ∧ dyi. Taking exterior powers then yields a volume form µsp = ωn/n! on

T ∗(M). By restricting to the unit disk bundle T ∗,≤1(M) and pushing forward by
the projection π : T ∗(M)→M , we obtain a symplectic measure n on M .

Finally, a Finsler metric on a smooth manifold Mn induces a path metric d in
the usual way, and this in turn gives rise to a Hausdorff measure in any dimension.

Recall that a centrally symmetric convex body Ω ⊂ Rn determines a polar body
Ω◦ ⊂ (Rn)∗ = Rn via

Ω◦ := {ξ ∈ Rn | ξ · v ≤ 1 ∀v ∈ Ω}.
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The Mahler volume of Ω is then defined to be the product M(Ω) := λ(Ω)·λ(Ω◦) of
the Lebesgue volumes of Ω and Ω◦. For any centrally symmetric convex body Ω,
it is known that

(7)
ε2
n

nn/2
≤M(Ω) ≤ ε2

n = M(Balln).

The first inequality was established by John [8], and the latter, which gives an
equality if and only if the norm is Euclidean, is known as the Blaschke–Santaló
inequality [3].

Theorem 15 (Assembling facts on Finsler measures). Suppose that Mn is a con-
tinuous Finsler manifold. Then

• the Busemann measure µB and the n-dimensional Hausdorff measure η are
equal;
• the Holmes–Thompson measure µHT and the symplectic measure n are scalar

multiples: µHT = 1
εn

n;

• µHT ≤ µB ≤ (nn/2)µHT ,with equality of measures if and only if the metric
is Riemannian.

Note that it is still possible for µHT and µB to be scalar multiples of each other
in the non-Riemannian case, for instance on a vector space with a Finsler norm.

Proof. The first statement was originally shown by Busemann in the 1940s in [4]
and is stated in modern language in [1, Thm 3.23].

The second statement is straightforward and we include a proof for completeness.
Working in the local coordinates and applying the Fubini theorem, we see that the
Holmes–Thompson volume of a subset E ⊂M is given by:∫

E

g(x) dx1 ∧ · · · ∧ dxn =

∫
E

(∫
ψ(B∗x)

1

εn
dλ

)
dx1 ∧ · · · ∧ dxn

=
1

εn

∫
π−1(E)∩T∗,≤1(M)

dy1 ∧ · · · ∧ dyn ∧ dx1 ∧ · · · ∧ dxn

=
1

εn
n(E).

For the third statement, recall that the measures are defined by

µB(E) =

∫
E

f(x) dx1 ∧ · · · ∧ dxn and µHT(E) =

∫
E

g(x) dx1 ∧ · · · ∧ dxn.

For each x ∈ M , the unit ball Bx ⊂ Tx(M) is sent to a centrally symmetric
convex body φ(Bx) ⊂ Rn under the isomorphism φ defined in (5). The polar body
is exactly given by φ(Bx)◦ = ψ(B∗x). Therefore, the Mahler volume of φ(Bx) is

M(φ(Bx)) = λ(φ(Bx))·λ(ψ(B∗x)) = ε2
n

g(x)

f(x)
.

Combining with (7) now implies that n−n/2f(x) ≤ g(x) ≤ f(x) for all x ∈ M .
We conclude that µHT(E) ≤ µB(E) ≤ nn/2µHT(E) for all E ⊂ M . Finally, since
Blaschke–Santaló can only give equality for a Euclidean norm, it follows that µB

and µHT can only be equal for a Riemannian metric. �
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3.2. Measures coming from quadratic differentials. Recall that quadratic
differential space Q(S) is naturally identified with the cotangent bundle T ∗(T (S))
of Teichmüller space, and that each quadratic differential q ∈ Q(S) has a norm ‖q‖
given by the area of the flat structure on S induced by q. The unit disk bundle for
this norm will be denoted by

Q≤1(S) = {q ∈ Q(S) : ‖q‖ ≤ 1}.

Using this disk bundle, the natural symplectic measure µsp on Q(S) descends to a
measure n on T (S) exactly as above. We note that ω and therefore µsp and n are
invariant under the action of the mapping class group.

The space Q(S) also carries a natural Mod(S)–invariant measure µhol that is
defined in terms of holonomy coordinates and which we will refer to as holonomy
measure; it is also sometimes called Masur–Veech measure in the literature (see [11]
for details). This measure has been studied extensively, for instance to establish
ergodicity results for the geodesic flow. The measure µhol is also related to the
“Thurston measure” µTH on the space of measured foliations MF induced by the
piecewise-linear structure of MF [7]. Indeed, as seen in [11], µhol is equal to the
pullback of µTH × µTH under the Mod(S)-invariant map Q(S)→MF ×MF that
sends a quadratic differential to its vertical and horizontal foliations.

Just as µsp induces n, the holonomy measure µhol descends to a measure m on
T (S). Explicitly, the m–measure of a set E ⊂ T (S) is given by

m(E) := µhol

(
π−1(E) ∩Q≤1(S)

)
.

This measure m has been studied previously in [2] and [6].

Proposition 16. [13, p.3746] There is a scalar k > 0 such that µsp = k ·µhol.

We recall the outlines of the argument here. In [13], it was shown that the
Teichmüller flow on Q(S) is a Hamiltonian flow for the function

H(q) =
‖q‖2

2
.

As such, the Teichmüller flow preserves the symplectic form ω and the corre-
sponding measure µsp. The measures µsp and µhol both descend to the quotient
space Q(S)/Mod(S); furthermore, the latter defines an ergodic measure for the
Teichmüller flow on Q(S)/Mod(S) [11]. Since µsp is absolutely continuous with
respect to µhol, the result follows.

We therefore also have n = km, and combining Proposition 16 with Theorem 15
we get:

Corollary 17. There are scalars k2 > k1 > 0 such that

k1m ≤ η ≤ k2m.

3.3. Visual measures. The unit sphere subbundle of Q(S) will be denoted by

Q1(S) = {q ∈ Q(S) : ‖q‖ = 1}.

For each x ∈ T (S), the fiber Q1(x) is identified with the “space of directions” at x,
and the Teichmüller geodesic flow ϕt : Q(S)→ Q(S) gives rise to a homeomorphism

Ψx : Q1(x)× (0,∞) → T (S) \ {x}
(q, r) 7→ π(ϕr(q)) ,
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which serves as “polar coordinates” centered at x. Furthermore, this conjugates ϕt
to a radial flow based at x given by

ϕ̂t(π(ϕr(q))) := π(ϕr+t(q)).

We will consider measures on T (S) that are compatible with these polar coordinates
and with the radial flow.

Definition 18 (Visual measure). Given any measure κx on the unit sphereQ1(x) ∼=
Sh−1, we define the corresponding visual measures on Sr(x) and T (S) as follows.
Firstly, the visual measure Visr(κx) on the sphere Sr(x) of radius r is just the push-
forward of ehrκx under the homeomorphism Q1(x)×{r} ∼= Sr(x). Integrating these
over (0,∞) then gives a visual measure on T (S) defined by

Vis(κx)(E) :=

∫
(q,r)∈E⊂Q1(S)×(0,∞)

ehrdκx(q)dλ(r).

Said differently, Vis(κx) is equal to the push-forward of κx × λ0 under the home-
omorphism Ψx, where λ0 is the weighted Lebesgue measure on (0,∞) given by

λ0([a, b]) =
∫ b
a
ehrdλ(r) = (ehb−eha)/h. (We have scaled things in this way so that

the visual measure of the ball of radius R grows like ehR.)

The essential feature of visual measures is that they enjoy the following “nor-
malized invariance” under the radial flow: For any t ≥ 0 and measurable E ⊂ Sr(x)
we have

Visr+t(κx)(ϕ̂t(E))

Visr+t(κx)(Sr+t(x))
=

Visr(κx)(E)

Visr(κx)(Sr(x))
.

The same invariance holds for Vis(κx) when we normalize with respect to annular
shells Bb(x) \ Ba(x) instead of spheres.

There are two visual measures that specifically interest us. Firstly, the normed
vector space Q(x) carries a unique translation-invariant measure νx normalized so
that νx(B∗x) = 1; recall that the unit ball B∗x is just the intersection Q≤1(S)∩Q(x).
This induces a measure (also denoted νx) on the unit sphere Q1(x) via the usual
method of coning off: νx(E) := νx ([0, 1]× E) for E ⊂ Q1(x).

Secondly, since Q(S) has the structure of a fiber bundle over T (S), we can define
a conditional measure sx on Q(x) by disintegration from µhol. More precisely, sx is
the unique measure on Q(x) such that the µhol–measure of E ⊂ Q(S) is given by

µhol(E) =

∫
T (S)

sx(E ∩Q(x)) dm(x).

Via the process of coning off, we again think of sx as a measure on Q1(x). The
corresponding visual measure Vis(sx) is crucial to our argument because of the
following comparison theorem of Athreya, Bufetov, Eskin and Mirzakhani.

Theorem 19 (Holonomy vs. visual measure [2, Prop 2.5]). For any x ∈ T (S),
there exists a constant c1 such that

m ≤ c1 ·Vis(sx).

The space Q(S) of quadratic differentials is a complex vector bundle; as such,
there is a natural circle action S1 y Q(S) that preserves each fiber Q(x) and
unit sphere Q1(x). We say that a visual measure Vis(κx) is rotation-invariant if
the corresponding measure κx on Q1(x) is invariant under this action of S1. The
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visual measure Vis(νx) is rotation-invariant because S1 preserves the unit ball Bx.
Similarly, Vis(sx) is rotation-invariant because S1 preserves µhol.

3.4. Summary. The measures on T (S) considered above are n and m (induced
by the symplectic and holonomy measures on Q(S), respectively, via the covering
map), Hausdorff measure η, the visual measures Vis(κx) created by radially flowing
measures on the sphere of directions Q1(x), and the measures µB and µHT coming
from the Finsler structure.

We found that n, m, and µHT are scalar multiples of each other, Hausdorff
measure and Busemann measure coincide, and all of these are mutually comparable
in the sense of being bounded above and below by scalar multiples of each other.
Thus, we get from Theorem 19 that all are absolutely continuous with respect
to the visual measure Vis(sx). In the following section we will get results about
the structure of generic geodesic rays with respect to any rotation-invariant visual
measure and deduce results for the other measures considered here.

4. Statistics for the geometry of Teichmüller rays

4.1. Separation and thickness of rays. We need an estimate for how likely it is
for two geodesics to fellow-travel past some radius R0. The next theorem gives the
appropriate sort of estimate for pairs of geodesics that are nearby at a given radius.
Proposition 23 then extends this to geodesics that are near each other at any time
during an interval [R0, R]. After that, we use the ergodicity of the geodesic flow to
conclude that most rays are thick for a definite proportion of the time.

Definition 20. For any r > 1, let Ar(x) = Br(x) \ Br−1(x) be the annular shell
between radius r and r − 1. We say a measure µ satisfies an exponential decay
estimate if given any M0 > 0 there exist C,R0 such that for all t, r with R0 ≤ t ≤ r
and any x1 6= x we have

µ
{
x2 ∈ Ar(x) : dT (γ1(t), γ2(t)) < M0

}
< Ce−t · µ(Ar(x)),

where γi is the geodesic ray based at x and passing through xi.

Lemma 21. Every rotation-invariant visual measure µx = Vis(κx) on T (S) satis-
fies an exponential decay estimate.

Proof. Choose 0 < t ≤ r, fix a point x1 6= x, and let E = {x2 ∈ Ar(x) :
dT (γ1(t), γ2(t)) < M0}. Looking instead in the sphere St(x), we have the set
E′ = {z ∈ St(x) : dT (γ1(t), z) < M0}. Notice that, by definition,

E =
⋃

s∈[r−t−1,r−t]

ϕ̂s(E
′).

Therefore, by the normalized invariance, we have

µ(E) =

∫ r

r−1

Viss(κx)(ϕ̂s−t(E
′)) dλ(s)

=

∫ r

r−1

Vist(κx)(E′)
Viss(κx)(Ss(x))

Vist(κx)(St(x))
dλ(s)

=
κx(E′)

κx(Q1(x))
µx(Ar(x)),

where, in the last line, we have identified E′ with its image in Q1(x) ∼= St(x).
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It remains to show that κx(E′)/κx(Q1(x)) ≤ Ce−t when t is large. Recall that
S1 acts freely on Q1(x) by rotations. Choosing orbit representatives, we may realize
Q1(x) as a setwise product (Q1(x)/S1)× S1. The measure κx pushes forward to a
measure on Q1(x)/S1. By disintegration, we then obtain a measure on each fiber S1

which, by the rotation-invariance of κx, must agree with Lebesgue measure up to a
scalar. For any two points z, z′ ∈ E′, the triangle inequality gives dT (z, z′) ≤ 2M0.
Now suppose that z and z′ lie in the same Teichmüller disk, meaning that the
unit quadratic differentials associated to the geodesics [x, z] and [x, z′] lie in the
same S1–orbit. Each Teichmüller disk is an isometrically embedded copy of the
hyperbolic plane. Thus, when t is large compared to M0, hyperbolic geometry
implies that the fraction of each S1–orbit contained in E′ is at most Ce−t for some
constant C. Using the product structure and integrating over the Q1(x)/S1 factor,
Fubini’s theorem then implies that κx(E′)/κx(Q1(x)) ≤ Ce−t as well. �

Theorem 22 (Exponential decay of fellow-travelers). The visual measures Vis(νx)
and Vis(sx), the holonomy measure m, and the Hausdorff measure η all satisfy
exponential decay estimates.

Proof. The visual measures Vis(νx) and Vis(sx) are rotation-invariant, so this fol-
lows from Lemma 21 above. Since η and m are bounded in terms of each other
(Cor 17), and m is bounded above by the visual measure Vis(sx) (Thm 19), we
need only verify that for either η or m the measure of Ar(x) is bounded below by
Cehr ∼ Vis(sx)(Ar(x)) for some constant C. For η this follows from the observation
that there are ehr orbit points of the mapping class group in this shell; alternately,
this was proved for m in [2]. �

We also have

Proposition 23 (Separation is forever). Suppose a measure µ satisfies an expo-
nential decay estimate. Then for any M0 > 0 and for sufficiently large R0 there
exists a C such that for all r ≥ R0 and any x1 6= x,

µ
{
x2 ∈ Ar(x) : dT (γ1(t), γ2(t)) < M0 for some t ∈ [R0, r]

}
< Ce−R0µ(Ar(x)),

where γi is the geodesic ray based at x and passing through xi.

Proof. If x2 is such a point, then there is some k ∈ N, k ≤ r − R0, such that
dT (γ1(R0 + k), γ2(R0 + k)) < M0 + 2. Thus our set of points is contained in the
union of the exceptional sets corresponding to the radii R0, R0+1, . . . , R0+br−R0c.
Using the exponential decay estimate, we see that our set has measure at most(
e−R0 + e−R0−1 + · · ·+ e−R0−br−R0c

)
Cµ(Ar(x)) ≤

(
e

e− 1

)
Ce−R0µ(Ar(x)). �

Thus we can conclude that after throwing out a subset of Ar(x)×Ar(x) of mea-
sure which is an arbitrarily small proportion, all pairs of geodesics stay separated
by an arbitrarily chosen distance in Teichmüller space after a threshold time has
elapsed. Later we will show that after waiting even longer we may also assume
that every pair of geodesics has big curve complex distance. This relies both on
the large Teichmüller distance established above and the fact that most geodesics
spend a definite fraction of their time in the thick part.

Fix a measure κx (either sx or νx) on Q1(x) and an ε0–thick part Tε0 .
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Proposition 24 (Thickness of geodesics). There is a constant δ > 0 such that for
all ε > 0 there is a threshold R0 and a set E ⊂ Q1(x) with κx(Ec) ≤ ρ so that each
geodesic [x, γ(r)] corresponding to q ∈ E, r ≥ R0 spends at least time δr in Tε0 .

Proof. By the ergodicity of the geodesic flow [11] there is δ > 0 such that the
geodesic determined by almost every q ∈ Q(S) spends proportion δ of its time in Tε0 ,
asymptotically. The vertical foliation of each such q is uniquely ergodic [12]. If two
quadratic differentials have the same vertical uniquely ergodic measured foliation
then they are forwards asymptotic [10]. We conclude that almost every measured
foliation F ∈ MF (with respect to Thurston measure µTH) has the property that
for any quadratic differential with vertical foliation F , the corresponding geodesic
spends at least δ proportion of its time in the thick part, asymptotically.

The map Q(x)→MF which assigns to q its vertical foliation is a smooth map
off the multiple zero locus, so it is smooth on a set of full measure. Thus it is
absolutely continuous with respect to the measures κx and µTH. Thus the property
of asymptotically spending proportion δ in the thick part is true of almost every
q ∈ Q(x). Thus for every ε, except for a set of κx measure at most ε, long enough
geodesics are thick for proportion δ of their length. �

4.2. Thick-thin structure and progress in the curve complex. The goal of
this section is to prove Proposition 33, which says that any geodesic that spends
a definite fraction of its time in the thick part must move a definite amount in
the curve complex. The idea is that long subintervals contained in Tε0 contribute
to progress in C(S); alternately, one could consider intervals in the complement
of
⋃
V TV . For this analysis, we would like to bound the number of connected

components of
⋃
V TV in terms of dS(x, y). One bound is given by the number of

nonempty thin intervals. While there may be arbitrarily many such TV , some of
these will be redundant in the sense that TV ⊂ TW for some other subsurface W .

Definition 25 (Thin-significance). Recall the choice of global constant M. A
proper subsurface V ( S is said to be thin-significant for the geodesic segment [x, y]
if dC(V )(x, y) ≥ 3M and for every other proper subsurface Z ( S with dC(Z)(x, y) ≥
3M we have TV 6⊂ TZ .

Remark. In this subsection we will focus on the curve complex distance dC(V ) for a
subsurface V . Recall that this agrees with the usual projection distance dV in the
case that V is non-annular, but that dC(A) and dA differ for annuli. We will take
care to handle exceptional annuli carefully.

Our next goal is to bound the number of thin-significant subsurfaces along an
arbitrary geodesic. For this, we will use the work of Rafi–Schleimer [19] bounding
the size of an antichain in the poset of subsurfaces of S.

Definition 26 (Antichain). Given a subsurface Σ ⊂ S a pair of points x, y ∈ T (S)
and constants T1 ≥ T0 > 0, a collection Ω of proper subsurfaces of Σ is an antichain
for (Σ, x, y, T0, T1) if the following hold:

• if Y, Y ′ ∈ Ω, then Y is not a proper subsurface of Y ′;
• if Y ∈ Ω, then dC(Y )(x, y) ≥ T0; and
• if Z ( Σ and dC(Z)(x, y) ≥ T1, then Z ⊂ Y for some Y ∈ Ω.

Lemma 27 (Antichain bound [19, Lem 7.1]). For every Σ ⊂ S and sufficiently
large T1 ≥ T0 > 0, there is a constant A = A(Σ, T0, T1) so that if Ω is an antichain
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for (Σ, x, y, T0, T1) then
|Ω| ≤ A·dC(Σ)(x, y).

We now prove a proposition showing that if there are a large enough number of
thin-significant subsurfaces along a geodesic, then the image of the geodesic makes
definite progress in the curve complex. The following notation will be used in the
proof.

Definition 28. Consider a geodesic segment [x, y] ⊂ T (S) and a collection Ω of
proper subsurfaces of S. We will consider three partial orders on the set Ω:

(1) V ≤1 W ⇐⇒ V ⊂W ,
(2) V ≤2 W ⇐⇒ TV ⊂ TW , and
(3) V ≤3 W ⇐⇒ V ⊂W and TV ⊂ TW .

The subcollection of Ω consisting of maximal elements with respect to ≤∗ will be
denoted (Ω)∗; notice that these sets are related by (Ω)1 ⊂ (Ω)3 ⊃ (Ω)2. Elements
of (Ω)1 are said to be topologically maximal with respect to Ω.

Proposition 29 (Progress from thin-significant subsurfaces). For any t0, there
is a constant N such that if dC(S)(x, y) ≤ t0, then the number of thin-significant
subsurfaces Y along [x, y] is at most N .

Proof. Let Ω = {V ( S : dC(V )(x, y) ≥ 3M} be the collection of proper subsurfaces
which have a large projection. By definition, the set of thin-significant subsurfaces
is exactly given by (Ω)2. On the other hand, the subcollection (Ω)1 of topologically
maximal subsurfaces clearly forms an antichain for (S, x, y, 3M, 3M). By Lemma 27,
we therefore have |(Ω)1| ≤ At0 for some constant A. We will extend this to a bound
on the cardinality of the larger set (Ω)3; this will imply the proposition because
(Ω)2 ⊂ (Ω)3.

Fix a proper subsurface W ∈ Ω and consider the set UW = {V ∈ (Ω)3 : V (W}.
We claim that |UW | is bounded by a constant depending only on the complexity
of W . By the above, this will suffice because each V ∈ (Ω)3 is either equal to or
properly contained in some topologically maximal proper subsurface W ∈ (Ω)1.

First consider those V ∈ UW for which TV ∩TW 6= ∅. The definition of ≤3

implies that TV 6⊂ TW ; therefore TV must overlap with at least one endpoint of
TW . If TV1 and TV2 both contain the initial endpoint of TW , then TV1 ∩TV2 6= ∅
and so we cannot have V1 t V2. Since there is a universal bound on the number
of subsurfaces such that no two intersect transversely, this bounds the number of
V ∈ UW for which TV ∩TW 6= ∅.

It remains to bound the number of V ∈ UW for which TV ∩TW = ∅; we will only
focus on the case TV < TW . Suppose that TW = [a, b] ⊂ [x, y] and consider the
set Ω′ = {V ∈ Ω : V ( W and dC(V )(x, a) ≥ 2M}. Notice that the subcollection
(Ω′)1 forms an antichain for (W,x, a, 2M, 4M): the only difficulty is to check that
every Y (W with dC(Y )(x, a) ≥ 4M is contained in an element of (Ω′)1. However,
this is true because the reverse triangle inequality guarantees that dC(Y )(x, y) ≥
dC(Y )(x, a)−B ≥ 3M and therefore that Y ∈ Ω′. Since dC(W )(x, a) ≤ M, Lemma 27
now gives a bound on |(Ω′)1|. Finally, notice that for each V ∈ UW with TV < TW
the triangle inequality gives dC(V )(x, a) ≥ dC(V )(x, y)−M ≥ 2M and so ensures that
V ∈ Ω′. Therefore each such V is contained in some topologically maximal Z ∈ Ω′;
that is to say, each V ∈ UW with TV < TW is contained in UZ for some Z ∈ (Ω′)1.
The bound on |UW | now follows by induction on the complexity of the subsurface
W . �
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Definition 30. Define a constant P := 36 max
{

log+(1/ε0), log+(3M)
}

. Say that an
annular subsurface A has an exceptional thin interval TA along [x, y] if dC(A)(x, y) ≤
3M but dA(x, y) ≥ P. By Lemma 8, this is only possible if lx(∂A) < ε0 or ly(∂A) <
ε0. Therefore, such an annulus must determine a nonempty thin interval along [x, y]
that contains either x or y. Since all annuli A with lx(∂A) < ε0 must be disjoint,
we see that there is a universal bound (namely 6g−6 = h) on the number of annuli
with exceptional thin intervals along an arbitrary geodesic [x, y].

We now define the primary thin portion W of a geodesic segment [x, y] to be the
union of thin intervals TV for all non-annular proper subsurfaces with dV (x, y) ≥
3M and all annular subsurfaces with dC(A)(x, y) ≥ 3M or dA(x, y) ≥ P. In the case
that dS(x, y) ≤ t0, Proposition 29 implies that W is the union of at most N + h
thin intervals, namely, those corresponding to the thin-significant subsurfaces and
to annuli with exceptional thin intervals.

While W does contain most of the nonempty thin intervals along the geodesic,
it need not cover the entire time that [x, y] spends in the thin part of Teichmüller
space. Nevertheless, the projections to all proper subsurfaces remain uniformly
bounded on the complement of W.

Lemma 31 (Complement of W). There exists a constant M ′ with the following
property. If [a, b] ⊂ [x, y] \ W is a connected interval in the complement of the
primary thin portion of [x, y], then dY (a, b) ≤M ′ for all proper subsurfaces Y ( S.

Proof. First suppose that Y satisfies the reverse triangle inequality (4) along [x, y].
If Y is non-annular and dY (x, y) ≥ 3M, or if Y is an annulus and dC(Y )(x, y) ≥
3M or dY (x, y) ≥ P, then TY ⊂ W by definition. Therefore dY (a, b) ≤ M since
[a, b] ∩ TY = ∅. If this is not the case, then the reverse triangle inequality gives
dY (a, b) ≤ dY (x, y) +B ≤ 4M + P as claimed.

It remains to consider an annular subsurface A ⊂ S for which the reverse trian-
gle inequality fails. We may assume that dC(A)(x, y) ≤ 3M and dA(x, y) ≤ P, for
otherwise we have TA ⊂ W and dA(a, b) ≤ M as above. Let B′ be the constant
corresponding to the threshold 5M+P in Theorem 13 (R.T.I. exception). According
to that theorem, applied to the geodesic [a, y], we either have dA(a, b) + dA(b, y) ≤
dA(a, y)+B′, or there exist subsurfaces Wi that satisfy the reverse triangle inequal-
ity and which have dWi(a, b) ≥ 5M + P. However, as we have seen above, there
are no such proper subsurfaces. Therefore the former inequality must hold. We
similarly have d(x, a) + d(a, b) ≤ d(x, b) + B′. Adding these inequalities and using
the triangle inequality then gives dA(a, b) ≤ dA(x, y) +B′ ≤ P +B′. �

By the distance formula (3), it follows that long intervals in the complement of
W must travel a large distance the curve complex C(S) of the whole surface. The
following lemma says that each such subinterval contributes to the curve complex
distance along the total geodesic.

Lemma 32 (Cumulative contribution of subintervals). There exist constants 0 <
ρ1 < 1 and D1 > 0 such that for all d > D1, if [x, y] is a Teichmüller geodesic
that contains n subintervals [xi, yi] with disjoint interiors whose endpoints satisfy
dS(xi, yi) ≥ d, then

dS(x, y) ≥ ρ1nd.

Proof. Applying the reverse triangle inequality (4) to the points xi and yi we have
dS(x, xi) + dS(xi, yi) + dS(yi, y) ≤ dS(x, y) + 2B. By recursively applying this
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observation to [x, xi] and [yi, y] and then throwing out the complementary intervals,
we find have that

dS(x, y) ≥
∑

dS(xi, yi)− 2nB ≥ nd− 2nB.

Choose D1 > 4B and ρ1 = 1/2. Then for d ≥ D1 the quantity on the right side is
at least ρ1nd. �

We now fix once and for all a “definite progress” constant D > 0 sufficiently large
so that ρ1D > D1 (and thus D > D1 as well). Applying the distance formula (3)
with the threshold M ′ given by Lemma 31, we have quasi-isometry constants K,C
such that dT (a, b) ≤ KdS(a, b) + C for any connected interval [a, b] ⊂ [x, y] \ W.
This gives rise to a fixed value L such that any interval [a, b] of length at least L that
lies entirely in [x, y] \W satisfies dS(a, b) ≥ D; for example, any value L ≥ KD+C
will suffice. Thus according to Lemma 32, if I is any interval along a geodesic that
contains a subinterval of length L that is disjoint from W, then the distance in the
curve complex between the endpoints of I is at least ρ1D.

Furthermore by Proposition 29 associated to the constant t0 = ρ1D, there is a
constant N so that the conclusion of Proposition 29 holds.

Proposition 33 (Definite progress). For each 0 < δ < 1, there exist constants
ρ,R1 > 0 with the following property. If [x, y] is a Teichmüller geodesic of length
r ≥ R1 that spends at least time δr in Tε0 , then dS(x, y) ≥ ρr.

Proof. Let N denote the constant obtained by applying Proposition 29 with t0 =
ρ1D. Choose n so that nδ > 1 and make the following definitions:

δ′ =
nδ − 1

n− 1
, T0 ≥

L(N + h+ 1)

δ′
, R1 = 2T0, ρ =

ρ2
1D

2nT0
.

Let [x, y] be a Teichmüller geodesic of length r ≥ R1 that spends at least δr in
the thick part. Set m = br/T0c and divide [x, y] into m subsegments of length
r/m ≥ T0. Let us say that a subsegment [a, b] ⊂ [x, y] is stalled if dS(a, b) < ρ1D and
progressing if dS(a, b) ≥ ρ1D. Suppose that m1 of the subsegments are stalled, and
thus m2 = m−m1 are progressing. Given a stalled segment [a, b], we decompose it
into its primary thin portionW and the corresponding complementary subintervals.
Since the interval is stalled, Proposition 29 ensures that W is the union at most
N + h thin intervals. Therefore we can conclude that W has at most N + h + 1
complementary subintervals in [a, b]. Furthermore, each complementary subinterval
has length at most L, for otherwise we would have dS(a, b) ≥ ρ1D by the preceding
paragraph. Since W is contained in the thin part, we see that the total amount of
time that this interval [a, b] spends in the thick part is at most

(N + h+ 1)L ≤ δ′T0 ≤ δ′r/m.

Therefore the total amount of time that the full interval [x, y] spends in the thick
part is at most (

δ′
r

m

)
m1 +

( r
m

)
m2 =

r

m
(δ′m1 +m2).

We claim that m2 ≥ m/n. If this were not the case, then we necessarily have
m1 > (n− 1)m/n. Since δ′ < 1, it follows that

δ′ ·m1 + 1·m2 < δ′ ·mn− 1

n
+ 1·m 1

n
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where the inequality is valid by the elementary fact that for any constants a, b, c, d, α, β
such that a+ b = c+ d and 0 < α < β we have

(8) α·a+ β ·b < α·c+ β ·d ⇐⇒ a > c.

But then the amount of time that [x, y] is thick is less than

r

m

(
δ′m

n− 1

n
+m

1

n

)
= r

(
nδ − 1

n− 1
· n− 1

n
+

1

n

)
= rδ,

which contradicts the assumption on [x, y]. Therefore m2 ≥ m/n, as claimed.
On each of the m2 progressing intervals, the curve complex distance between end-

points is at least ρ1D. Therefore, cumulative contribution of subintervals (Lemma 32)
implies that

dS(x, y) ≥ ρ1m2(ρ1D) ≥ ρ2
1D
m

n
≥ ρ2

1D

n

(
r

T0
− 1

)
≥ ρ2

1D

2nT0
r = ρr. �

4.3. Distance between rays in the curve complex. We next establish a tech-
nical lemma which says that if we have a pair of geodesic segments from a common
basepoint, we can “back up” from the endpoints to earlier points that admit dis-
tance estimates for both dT and dS .

Lemma 34 (Backing up to eliminate thin parts). There exist constants k0 and M0

with the following property. Suppose γ1, γ2 are a pair of geodesic rays based at x and
let y = γ1(t1) and z = γ2(t2). Then there are times 0 ≤ t′i ≤ ti and corresponding
points y′ = γ1(t′1), z′ = γ2(t′2) such that

(i) dS(y, y′) ≤ k0 ·dS(y, z) and dS(z, z′) ≤ k0 ·dS(y, z);
(ii) either dS(y′, z′) ≤ 6 or dY (y′, z′) ≤M0 for all proper subsurfaces Y .

We will call these the backup points and backup times for the segments [x, y], [x, z].
Furthermore,

(iii) given any d, there are N0 and c0 such that if dT (y, z) ≥ N0 and dS(y, z) ≤
d, then the backup points satisfy

dT (y, y′) ≥ c0 ·dT (y, z) or dT (z, z′) ≥ c0 ·dT (y, z)

Conclusion (i) says that the backup points are not much farther from the end-
points in the curve complex than the endpoints are from each other. The interpre-
tation of (ii) is that in the distance formula (3), a significant contribution is made
either by the whole curve complex distance or by projection distances to proper
subsurface (but not both). These properties of backup points hold in general; (iii)
says that if the Teichmüller distance between endpoints is long enough relative to
their curve-complex distance, then on at least one side the distance backed up was
significant. (Compare (i) and (iii).)

Proof. First, we will construct backup points satisfying (i) and (ii). Then we will
verify (iii).

Let
Ω = {V ( S : dV (y, z) ≥ 10M}.

If Ω = ∅, let y′ = y and z′ = z and we are done, since (i) is trivially satisfied and
(ii) works with M0 = 10M. So assume Ω is nonempty.

For each V ∈ Ω, there is a thin interval TV along [y, z]. By the triangle inequality,
for each V ∈ Ω, either dV (x, y) or dV (x, z) is at least 5M and so there is a nonempty
thin interval TV along at least one of [x, y] or [x, z], as in Figure 2.
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TV1

x

y z

y′′
z′′

TV1

Figure 2. Two rays. Some thin intervals are shown, and two thin
intervals for the same subsurface V1 ⊂ Ω are marked.

Now let y′′ and z′′ be the earliest endpoints on γi of any TV for V ∈ Ω. That
is, we move back in time until we have passed through each thin interval TV for
V ∈ Ω. Let us use the notation V1 and V2 for the last surfaces in Ω whose thin
interval one passes through in going from y to y′′ and z to z′′, respectively. Thus
we have a short curve at y′′ which is also short somewhere along [y, z], which means
that the image of y′′ under the projection T (S) → C(S), which sends a surface to
its Bers marking, shares a point with the image of [y, z] in the curve complex. By
the reverse triangle inequality, this means dS(y, y′′) is bounded above relative to
dS(y, z), as in (i).

Now with respect to the new points y′′ and z′′, let

Ω′′ = {Y : dY (y′′, z′′) ≥ 100M + 2B′},
where B′ is the constant obtained by applying Theorem 13 (R.T.I. exception) with
the threshold 50M. Note that Ω∩Ω′′ = ∅ because no V ∈ Ω has a thin interval along
[x, y′′] or [x, z′′], so we would get a violation of the triangle inequality if V were also
in Ω′′. If Ω′′ = ∅, then by setting y′ = y′′, z′ = z′′, and letting M0 = 100M + 2B′,
we are again done. So assume Ω′′ 6= ∅.

Fix some Y ∈ Ω′′. We know that either dY (x, y′′) or dY (x, z′′) is at least 50M+B′;
let us suppose that the first of these is true. First assume that Y satisfies the reverse
triangle inequality (Lemma 12). Then

dY (x, y) ≥ 50M +B′ −B ≥ 49M.

Since dY (y, z) < 10M, the triangle inequality then implies

dY (x, z) ≥ dY (x, y)− 10M ≥ 39M.

That is, for any Y ∈ Ω′′ that satisfies the reverse triangle inequality we have
dY (x, y), dY (x, z) ≥ 39M.

If Y is an exception to the reverse triangle inequality, it must be an annulus, say
with core curve α. Then by Theorem 13 we either have dY (x, y) ≥ dy(x, y′′)−B′, or
there exists W disjoint from α such that W satisfies the reverse triangle inequality
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along [x, y] and dW (x, y′′) ≥ 50M. In the former case we have dY (x, y) ≥ 50M
so that dY (x, z) ≥ 40M by the triangle inequality. In the latter case, we have
dW (x, y) ≥ dW (x, y′′) − B ≥ 49M by (4). Furthermore, since W must have a thin
interval along [x, y′′], it cannot be in Ω and so we conclude dW (x, z) ≥ 39 as above.

In summary, to each Y ∈ Ω′′ we have associated a domain W /∈ Ω (equal to Y
except in the one case) such that both dW (x, y) ≥ 39M and dW (x, z) ≥ 39M. Notice
that we need only resort to the exceptional case W 6= Y when dY (y′′, y) ≥ M (still
assuming here that dY (x, y′′) ≥ 50M + B′), for otherwise we may again conclude
dY (x, z) ≥ 39 by the triangle inequality. The inequalities dY (x, y′′), dY (y′′, y) ≥M
require that Y is thin along both [x, y′′] and [y′′, y]; by the connectedness of TY , this
implies that α = ∂Y is thin at y′′ and consequently disjoint from ∂V1. Therefore,
since W is disjoint from α, we may safely assume that dS(∂W, ∂V1) ≤ 2 in the
exceptional case W 6= Y .

We now make the following observation:

(9) Z /∈ Ω, Z t V1 and dZ(x, y) ≥ 39M =⇒ TZ < TV1
along γ1,

and likewise for z, V2, γ2. We argue by contradiction. Otherwise TV1
< TZ and so

we have dZ(x, y′′) ≤ M which implies dZ(y′′, y) ≥ 38M. Since dZ(y, z) < 10M and
dV1(y, z) ≥ 10M this would violate Lemma 11 viewed from y. Namely along [y, y′′]
we pass through TZ and then TV1 while along [y, z] we pass through TZ with a
much smaller projection.

For each Y ∈ Ω′′, we now see that the associated subsurface W /∈ Ω satisfies
dS(∂W, ∂Vi) ≤ 2 for either i = 1 or i = 2. We have already observed this when
W 6= Y , and in the case that W = Y we in fact have that Y is disjoint or nested
with respect to either V1 or V2. Indeed, if Y t Vi for both i = 1, 2, then (9) would
imply that TY ⊂ [x, y′′] and TY ⊂ [x, z′′]. But then dY (y′′, y), dY (z′′, z) ≤ M and
since dY (y, z) ≤ 10M we have contradicted dY (y′′, z′′) ≥ 50M.

We are ready to define the back up points y′ and z′. Choose any Y ∈ Ω′′ (recall
that we are assuming Ω′′ 6= ∅) and let W be the associated subsurface. If W is
disjoint or nested with respect to V1 then define y′ = y′′. Otherwise (9) implies
that TW < TV1 along γ1; in this case we back up farther and define y′ to be the
beginning of TW along [x, y]. Define the point z′ similarly.

Since either V1 or W is thin at y′ and dS(∂W,Z) ≤ 2 for some surface that
is thin along [y, z] (namely, V1 or V2), we conclude that dS(y, y′) (and similarly
dS(z, z′)) is bounded relative to dS(y, z), as in (i). If we have backed up farther
on both sides, then W is thin at both y′ and z′ so that dS(y′, z′) ≤ 4 (recall that
a Bers marking has diameter 2 in C(S)). If we backed up on just one side, then
we have a path of length 1 in the curve complex (either ∂W − ∂V2 or ∂V1 − ∂W )
showing that dS(y′, z′) ≤ 5. Finally, if we didn’t back up on either side, then the
path ∂V1 − ∂W − ∂V2 of length 2 in the curve complex implies dS(y′, z′) ≤ 6. This
verifies (ii).

We now consider (iii), so we are assuming that dS(y, z) ≤ d. The distance
formula (3) says

dT (y, z) ≤ K

(
dS(y, z) +

∑
Ω

dV (y, z)

)
+ C ≤ Kd+ C +K

∑
Ω

dV (y, z)

where K,C are the constants coming from threshold M0 = 10M. Let us write
d12 for dT (y, z). Take N0 ≥ 2Kd + 2C, so that the assumption of (iii) says that
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d12 ≥ 2Kd+ 2C. This gives∑
Ω

dV (y, z) ≥ d12 −Kd− C
K

≥ d12 − d12/2

K
=
d12

2K
.

For each V ∈ Ω, the definition of y′ and z′ ensures that TV ∩[x, y′] = TV ∩[x, z′] =
∅; therefore dV (y′, z′) ≤ 2M. Therefore

dV (y, z) ≤ dV (y, y′) + dV (z, z′) + 2M.

Furthermore, since dV (y, z) ≥ 10M, it follows that

dV (y, y′) + dV (z, z′) ≥ dV (y, z)− 2M ≥ 4

5
dV (y, z).

Notice that it cannot be the case that dV (y, y′) ≤ 3M and dV (z, z′) ≤ 3M, for
this would imply that dV (y, z) ≤ 3M + 3M + 2M < 10M, which is not the case.
Therefore at least one of dV (y, y′) or dV (z, z′) is larger than 3M. We now have that

[dV (y, y′)]3M + [dV (z, z′)]3M ≥dV (y, y′) + dV (z, z′)− 3M

≥4

5
dV (y, z)− 3M ≥

(
4

5
− 3

10

)
dV (y, z) =

1

2
dV (y, z).

Let K ′, C ′ be the constants in (3) for the threshold M0 = 3M and enlarge N0 if
necessary to ensure that d12 ≥ 16C ′K ′K. The distance formula then gives

dT (y, y′) + dT (z, z′) ≥ 1

K ′

(
dS(y, y′) + dS(z, z′) +

∑
Ω

[dV (y, y′)]3M + [dV (z, z′)]3M

)
− 2C ′

≥ 1

K ′

∑ 1

2
dV (y, z)− 2C ′ ≥ d12

4K ′K
− 2C ′

≥ d12

4K ′K
− d12

8K ′K
=

d12

8K ′K
,

so we are done if we take c0 = 1
16K′K . �

Next we show that a pair of long geodesic segments which both stay far apart
from each other in T (S) and spend a large fraction of their time in Tε0 must have
big curve complex distance at some point. We will repeatedly use Lemma 34 to
“back up” along each of the two rays in order to make distance estimates.

Theorem 35 (Big curve complex distance). For all d > 6, T > 0, and 0 < δ < 1,
there exist two constants D0 ≥ 0, R0 ≥ T with the following property. Let γ1 = [x, y]
and γ2 = [x, z] be two Teichmüller geodesics based at x with lengths r1, r2 ≥ R0.
Suppose that

(1) the fraction of [0, ri] that γi spends in Tε0 is at least δ for each of i = 1, 2;
and

(2) for all t ≥ T , the point γ1(t) is not contained in the D0–neighborhood of
the geodesic [x, z], and similarly for γ2(t) and [x, y].

Then dS(y, z) ≥ d.

Proof. Choose n such that nδ > 1 and define δ′ = nδ−1
n−1 ; notice that 0 < δ′ < δ.

Let ρ,R1 and ρ′, R′1 be the corresponding constants guaranteed by the Definite
Progress lemma (Proposition 33). Set k0, M0, N0, and c0 to be the constants from
the backing up lemma (Lemma 34) for our given d, and let K ≥ 1 and C ≥ 0 be
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large enough to be constants in the distance formula (3) for the threshold M0. Let
D0 and R0 be any constants which satisfy

D0 >max

{
N0,

2k0d

c0ρ′
,
R′1
c0
, K(2k0 + 1)d+ C

}
, and

R0 >max

{
nT, nR1,

2dn

ρ

}
.

In order to derive a contradiction, assume furthermore that dS(y, z) < d.
Set y0 = y and z0 = z. By repeatedly backing up along γ1 and γ2, we will

recursively define sequences of points {yi}, {zi}. Each step of the sequence will cover
a large Teichmüller distance and a comparatively small curve complex distance.
After backing up sufficiently far, we will eventually contradict the fact that each
geodesic γi spends a large fraction of its time in Tε0 .

Suppose that the points yi, zi have been defined and satisfy

(?) dS(yi, zi) < d; dT (yi, zi) ≥ D0; yi, zi 6= x.

(Notice that these conditions hold for the initial points y0 and z0.) Backing up
along the rays as in Lemma 34, we then obtain new points yi+1 ∈ [x, yi] and
zi+1 ∈ [x, zi]. For these, we have that dS(yi+1, yi) and dS(zi+1, zi) are bounded
above by k0 · dS(yi, zi) < k0d, by property (i) of backup points. We also have that
either [yi+1, yi] or [zi+1, zi] (or both) has length at least c0 · dT (yi, zi) ≥ c0D0, by
(iii). We are free to continue defining new points in this manner as long as the
conditions of (?) remain satisfied.

Suppose then that we have applied this procedure m times and arrived at points
ym and zm. At each step of this process we traveled back a Teichmüller distance of
at least c0D0 along one of the two segments γ1 or γ2. Therefore on at least one of the
geodesics we have traveled a total Teichmüller distance of at least c0D0m/2. With-
out loss of generality, suppose γ1 has this property; then dT (ym, y0) ≥ c0D0m/2.
On the other hand we have dS(ym, y0) ≤ k0dm, since at each step we travel at most
k0d in the curve complex. Therefore, along the geodesic segment [ym, y0] the ratio
of curve-complex distance to Teichmüller distance is

dS(ym, y0)

dT (ym, y0)
≤ 2k0dm

c0D0m
< ρ′.

Proposition 33 now implies that the fraction of [ym, y0] spent in Tε0 is strictly less
than δ′.

Let tm ∈ [0, r1] be the time for which γ1(tm) = ym. We claim that if tm ≥ r1/n,
then the points ym, zm satisfy (?) so that we may reapply Lemma 34 and back up
farther to points ym+1 and zm+1. Firstly, since tm ≥ r1/n ≥ R0/n ≥ T , hypothesis
(ii) in the theorem implies that ym = γ1(tm) is not within D0 of any point on γ2;
whence dT (ym, zm) ≥ D0. Applying the triangle inequality to the series of points
ym, ym−1, zm−1, zm implies that dS(ym, zm) ≤ (2k0 + 1)d. Now if dY (ym.zm) ≤M0

for all proper subsurfaces Y , then the distance formula (3) gives

dT (ym, zm) ≤ K · dS(ym, zm) + C ≤ K(2k0 + 1)d+ C < D0,

which is a contradiction. Thus by Lemma 34 we have dS(ym, zm) ≤ 6 ≤ d. Finally,
since the fraction of [tm, r1] that γ1 spends in Tε0 is at most δ′ < δ, it must be
that the thick fraction along [0, tm] is at least δ (since the thick fraction of the
whole γ1 is δ). By Proposition 33, since tm ≥ R0/n ≥ R1, it now follows that
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dS(ym, x) ≥ ρtm ≥ ρR0/n ≥ 2d. As dS(ym, zm) ≤ d, we see that zm 6= x. Thus we
have verified the conditions of (?).

We have thus verified that we can repeatedly back up until we reach a point
ym = γ1(t) on [x, y] (or similarly a point on [x, z]) such that t < r1/n and the
fraction of [t, r1] that γ1 spends in Tε0 is strictly less than δ′. It now follows that
the amount of time that γ1 spends in Tε0 along [0, r1] is strictly less than

t+ δ′(r1 − t) <
r1

n
+
nδ − 1

n− 1

(
n− 1

n
r1

)
= δr1,

again by shifting weight as in (8). This contradicts the first hypothesis of this
theorem. �

4.4. Teichmüller distance. The previous theorem implies that, under suitable
conditions, we may assume our two Teichmüller geodesics stay far apart in the
curve complex beyond some radius R0. We now show that in this situation, the
distance between two points on the sphere of radius r � R0 is on the order of 2r.

x

y = γ1(r1)

γ1(R)

y′ = γ1(t′1)

γ1(t1)

y0 = γ1(R0)

γ2(r2) = z

γ2(R)

γ2(t′2) = z′

γ2(t2)

γ2(R0) = z0

p′ q′

p q

Figure 3. We will end up showing that [y, z] “dips back” to within
bounded distance of the basepoint and thus has length nearly 2r.

Theorem 36 (Teichmüller distance estimate). Fix any 0 < δ < 1. Then for all
sufficiently large R0, d there exists a constant H as follows. For any geodesic rays
γ1, γ2 based at x ∈ T (S) which satisfy

(a) for all r ≥ R0, the fraction of [0, r] that γi spends in Tε0 is at least δ, and
(b) for all t1, t2 ≥ R0 we have dS(γ1(t1), γ2(t2)) ≥ d,

they also must satisfy

dT (γ1(r1), γ2(r2)) ≥ r1 + r2 −H

for all r1, r2.

Proof. We fix some constants.
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• Let K ≥ 1 and C ≥ 0 be large enough to be quasi-isometry constants in
the distance formula (3) for threshold 10M, and such that the projection of
every geodesic in T (S) to C(S), concatenated with a geodesic segment of
length 5, is an unparameterized (K,C)-quasigeodesic in C(S);
• Let d > 10+τ , where τ is a constant such that (K,C)-quasigeodesic quadri-

laterals in the curve complex are τ–thin;
• Let ρ,R1 be the constants corresponding to δ from Lemma 33;
• Take R0 > max(R1, 4 + C).

Now write y = γ1(r1), y0 = γ1(R0), z = γ2(r2), z0 = γ2(R0), and let

Ω = {V ( S | TV ∩[y0, z0] 6= ∅}
be the set of subsurfaces which are thin somewhere along the geodesic segment
[y0, z0]. For each V ∈ Ω it is possible that it determines a nonempty thin interval
TV which intersects γi[R0,∞). We define

ti = sup
⋃
V ∈Ω

TV ∩γi[R0,∞).

In other words, ti ∈ [R0,∞) is the smallest time such that for any V ∈ Ω and for
s > ti, γi(s) /∈ TV . It follows that for each i = 1, 2, there exists some Vi ∈ Ω such
that the Bers marking at γi(ti) contains ∂Vi.

By definition of Vi ∈ Ω, there exists a point wi ∈ [y0, z0] such that Vi is thin at
wi; in particular dS(wi, γi(ti)) ≤ 4. Since wi is at most R0 away from an endpoint
of [y0, z0], the triangle inequality implies that dT (x,wi) ≤ 2R0. We then have that

dS(x, γi(ti)) ≤ 4 + dS(x,wi) ≤ 4 + 2KR0 + C < 3KR0,

where the middle inequality is an application of the distance formula (3) and last
inequality holds since R0 > 4 + C. Furthermore, since ti ≥ R0, our hypotheses
imply that γi spends at least δti time during [0, ti] in Tε0 . Since R0 ≥ R1, by
Lemma 33 we have that

ti ≤
1

ρ
dS(x, γi(ti)) <

3K

ρ
R0.

Let R = 3KR0

ρδ , and note that R > t1, t2. If the geodesic segment γi[ti, R] were

completely contained in the thin part, then the fraction of [0, R] that γi spends in
Tε0 would be at most

ti
R
<

3KR0

ρR
= δ.

As this is not the case, there must exist a time t′i ∈ [ti, R] at which γi(t
′
i) ∈ Tε0 .

Let y′ and z′ equal γi(t
′
i) for i = 1, 2, respectively. Note that in particular

(10) dT (x, y′), dT (x, z′) ≤ 3KR0

ρδ
.

By the above estimate, the theorem is trivially true if either ri ≤ t′i if we choose
H ≥ 6KR0

ρδ , so it is enough to prove the theorem for both ri > t′i. That is, [x, y′] ⊂
[x, y] and [x, z′] ⊂ [x, z]. Now let

Ω1 = {W ( S | dW (y′, y) ≥ 10M}, Ω2 = {W ( S | dW (z′, z) ≥ 10M}
Note that a marking projects to the curve complex as a set with diameter 2. Also
if W1 ∈ Ω1 and W2 ∈ Ω2 were disjoint or nested, then their boundaries would have
distance ≤ 1 in the curve complex, so markings where those boundaries are short
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would have distance ≤ 5. Thus in light of assumption (b) and since d > 10, we
have that W1 tW2 for all W1 ∈ Ω1 and W2 ∈ Ω2. The same argument shows that
W2 ∈ Ω2 cannot determine an thin interval along [y′, y] and similarly for W1 along
[z′, z]. In particular Ω1 ∩ Ω2 = ∅.

Suppose V is any subsurface which is thin somewhere along [y′, y] (for example,
if V ∈ Ω1). Since its thin interval TV along [x, y] is connected and y′ is thick, we see
that V is not thin along [y0, y

′]. Furthermore, the definition of ti implies that V is
not thin along [y0, z0], and assumption (b) plus the choice of d shows that V cannot
be thin along [z0, z

′]. Therefore, the triangle inequality gives dV (y′, z′) ≤ 3M for
these V . Letting

Ω′ = {Z ( S | dZ(y′, z′) ≥ 10M},

we conclude that each surface Z ∈ Ω′ cannot be thin along [y′, y] (or [z′, z]). In
particular, the three collections Ω1, Ω2, and Ω′ are pairwise disjoint.

Next we establish that for any W ∈ Ω1 ∪ Ω2 ∪ Ω′,

dW (y, z) ≥ 6M.

This is because we know that for each W ∈ Ω1, W is not thin along [z′, z] and that
dW (y′, z′) ≤ 3M as above. Since dW (y′, y) ≥ 10M, the triangle inequality gives
dW (y, z) ≥ 10M− 3M−M = 6M. The same argument applies to Ω2. Similarly, for
each Z ∈ Ω′, we have both dZ(y′, z′) ≥ 10M and dZ(y′, y), dZ(z′, z) ≤ M, so that
dZ(y, z) ≥ 8M. We conclude that each W ∈ Ω1 ∪ Ω2 ∪ Ω′ determines a nonempty
thin interval TW along [y, z].

Let p ∈ [y, z] denote the last point (in traveling from y to z) at which any
subsurface in Ω1 is thin and let W1 ∈ Ω1 denote the corresponding subsurface.
Analogously define q and W2 ∈ Ω2 on [z, y]; p′ and Z1 ∈ Ω1 on [y, y′]; and q′ and
Z2 ∈ Ω2 on [z, z′]. (If Ωi = ∅ then we take the initial endpoints of the respective
intervals and leave the associated subsurfaces undefined.) Thus the Bers markings
at p, q, p′, q′ contain ∂W1, ∂W2, ∂Z1, ∂Z2, respectively.

It cannot be the case that W1 t Z1, as this would violate the time-order principle
(W1 occurs after Z1 on [y, z] but before Z1 on [y, y′]). Therefore ∂W1 and ∂Z1 either
coincide or are disjoint; in either case we have dS(p, p′) ≤ 5. The same argument
shows that dS(q, q′) ≤ 5.

Next we want to verify that p occurs before q along [y, z]. This is another
application of time ordering: suppose for contradiction that TW2

appeared before
TW1 along [y, z]. (Recall that W1 t W2, since this was verified for all subsurfaces
from Ω1 and Ω2 above.) Then since dW1(y, z), dW2(y, z), dW1(y′, y) are all more than
3M, Lemma 11 ensures that TW2

also appears along [y, y′]. But this contradicts
the fact that no surface in Ω2 has a thin interval along [y, y′].

The setup is now complete, and we are ready to prove the following:

Claim 37. There is a uniform bound (independent of r1, r2) on the minimal dis-
tance between the segments [y, z] and [y′, z′].

It is easy to see that the theorem follows from this claim. Suppose that the
geodesic segment [y, z] comes within distance N of the geodesic [y′, z′]. As this
latter segment is contained in the ball of radius 2R = 6K

ρδ R0 around x, this means

that there must be some point w on [y, z] whose distance from x satisfies dT (w, x) ≤
6K
ρδ R0 + N . Since y and z are on the spheres of radius r1, r2 centered at x, this
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proves that

dT (y, z) = dT (y, w) + dT (w, z) ≥ r1 + r2 − 2

(
6K

ρδ
R0 +N

)
,

establishing the theorem with H = 2
(

6K
ρδ R0 +N

)
.

Proof of claim. Consider any two points w′ ∈ [y′, z′] and w ∈ [p, q]. Aiming to
use the distance formula (3), we estimate the projections dV (w,w′) for all proper
subsurfaces V ( S.

First any subsurface W ∈ Ω1 is not thin along [z′, z] or [w, z]. Therefore

dW (w′, w) ≤ dW (w′, z′) + dW (z′, z) + dW (z, w)

≤ KdT (y′, z′) + C + M + M

= KdT (y′, z′) + 2M + C,

We have the same bound for W ∈ Ω2 using y′ and y instead of z′ and z.
Lastly, consider a proper subsurface V /∈ Ω1 ∪ Ω2 (such as V ∈ Ω′). We have

dV (w′, w) ≤ dV (w′, y′) + dV (y′, y) + dV (y, w)

≤ dV (y′, w′) + 10M + dV (y, w)

If V satisfies Lemma 12, then dV (y, w) ≤ dV (y, z) +B and so we have

dV (w′, w) ≤ dV (y′, w′) + 10M + dV (y, z) +B

≤ dV (y′, w′) + dV (y′, z′) + 30M +B

≤ 2KdT (y′, z′) + 2C + 30M +B.

If V does not satisfy Lemma 12 it must be an annulus. Applying Theorem 13 with
constant 35M, there exists B′ such that either dV (y, w) ≤ dV (y, z) + B′, in which
case we have dV (w′, w) ≤ 2KdT (y′, z′) + 2C + 30M + B′ as above, or there is a
collection {Uj} of subsurfaces that do satisfy Lemma 12 along [y, z], are disjoint
from V , and satisfy

dUj (y, w) ≥ 35M and dV (y, w) ≤
∑
Uj

dUj (y, w).

Together with Lemma 12, the first of these inequalities implies dUj (y, z) ≥ 34M
so that each Uj has a large projection along both [y, w] and [y, z]. The only such
subsurfaces are contained in Ω1∪Ω′. Running the argument with y′ and y replaced
by z′ and z, we obtain another such collection contained in Ω2 ∪ Ω′. Since all of
these subsurfaces are disjoint from V , the fact that elements of Ω1 and Ω2 are far
apart in C(S) implies that one of these collections must, in fact, be contained in Ω′.
Therefore we may assume that {Uj} ⊂ Ω′. We then have the bound

dUj (y, w) ≤ dUj (z, y) +B ≤ dUj (y′, z′) + 3M ≤ 5dUj (y
′, z′)

and so

dV (y, w) ≤
∑
Uj

dUj (y, w) ≤ 5
∑
Y(S

[dY (y′, z′)]10M ≤ 5KdT (y′, z′) + 5C.

In this case we conclude

dV (w′, w) ≤ 6KdT (y′, z′) + 6C + 10M.
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Putting these estimates together and taking a maximum we conclude that for
any proper subsurface V we have a bound

dV (w′, w) ≤ 6KdT (y′, z′) + 6C + 31M +B′.

Set

M1 := 6KdT (y′, z′) + 6C + 32M +B′ ≤ 36K2

ρδ
R0 + 6C + 32M +B′.

We now apply the distance formula (3) with this threshold to conclude that for
some constants K ′ and C ′ that just depend on M1 (hence on fixed constants),

(11) dT (w′, w) ≤ K ′dS(w′, w) + C ′

for all points w′ ∈ [y′, z′] and w ∈ [p, q].
Thus we have bounded the Teichmüller distance across the green quadrilateral

in Figure 3 by the corresponding curve complex distance; now we will use the
fact that quasigeodesic quadrilaterals in the curve complex are thin. Let π be
the projection map to the curve complex. On the left, we let γL be the con-
catenation of the quasi-geodesic segment π[y′, p′] with the geodesic [π(p′), π(p)];
likewise, on the right, γR is the concatenation of π[z′, q′] and [π(q′), π(q)]. These
are actually (K,C)-quasigeodesics because the second segment has bounded length:
dS(p, p′), dS(q, q′) ≤ 5 (recall the definition of K and C). Thus the quasi-geodesic
segments γL, π[p, q], γR, and π[y′, z′] form a (K,C)-quasigeodesic quadrilateral,
and we conclude that each side is contained in the τ -neighborhood of the union of
the other three sides.

Now, the separation hypothesis (b) of the theorem implies that no point on
π[y′, p′] is within d of any point on π[z′, q′]. Therefore, no point on γL is within
(d− 10) of any point on γR. Recall that d− 10 > τ , which implies that no point on
γL is contained in the τ–neighborhood of γR. This means that there exist points
on π[p, q] and π[y′, z′] that are within 2τ + 1 of each other (since each point on γL,
say, is within τ of one or the other, and the points of γL are separated by one). By
definition of projection distance, these correspond to points w ∈ [p, q], w′ ∈ [y′, z′]
with dS(w,w′) ≤ 2τ + 1. Combining this with (11) we find that

dT (w,w′) ≤ K ′(2τ + 1) + C ′.

This completes the proof of Claim 37 and Theorem 36. �

5. Statistical hyperbolicity

We can now assemble the results from §4 to prove Theorems 2 and 1.

Theorem 2. For any basepoint x ∈ T (S), and either of the normalized standard
visual measures µx = Visr(νx) or Visr(sx) on Sr(x), we have

lim
r1,r2→∞

1
r1+r2

∫
Sr1 (x)×Sr2 (x)

dT (y, z) dµx(y)dµx(z) = 1.

In particular, taking r1 = r2 = r, we get

E(T (S), µx) = 2.

Proof. Fix any ε > 0. We have shown (Proposition 24) that except for a subset of
Sr(x) of µx–measure at most ε, all long enough geodesics spend a definite fraction δ
of time in the thick part. We can use this to choose R0 = R0(ε) large enough so that
all but measure ε of pairs of rays both stay thick for fraction δ once they are longer
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than R0. We just established (Theorem 36) that if rays are thick for fraction δ and
if they stay d-separated in curve complex distance, then the Teichmüller geodesic
between the points at distance r1, r2 has length at least r1 + r2 − H (where the
constant H depends on the threshold R0 which in turn depends on ε). But curve
complex separation of d is ensured for our geodesics as long as they remain separated
by D0 in Teichmüller distance (Theorem 35). And that in turn is guaranteed after
throwing out another set of measure ε (and possibly increasing R0) because of
Proposition 23.

We conclude that except for a set of measure at most 2ε, every pair y ∈
Sr1(x), z ∈ Sr2(x) satisfies

dT (y, z) ≥ r1 + r2 −H.
Therefore

lim inf
r1,r2→∞

1
r1+r2

∫
dT (y, z) dµx(y)dµx(z) ≥ lim inf

r1,r2→∞
(1−2ε) 1

r1+r2
(r1+r2−H) = 1−2ε.

But the limsup is also ≤ 1, by the triangle inequality. Since ε was arbitrary, we
have shown that the limit exists and is 1. In the particular case that r1 = r2 = r
we conclude that E(T (S)) = 2. �

Theorem 1. Fix a basepoint x and let µ refer to either of the standard visual
measures Vis(νx) or Vis(sx), to the holonomy measure m, or to the Hausdorff
measure η on T (S). Then

lim
r→∞

1

r

1

µ(Br(x))2

∫
Br(x)×Br(x)

dT (y, z) dµ(y)dµ(z) = 2.

Proof. Fix any 0 < ρ < 1. Since the volume of balls for any of these measures grows
exponentially with the radius, almost all of the measure of Br(x) is contained in the
shell Br(x) \ Bρr(x) as r →∞; furthermore, ρr is eventually larger than any fixed
threshold R0. By Theorem 2, the average distance between points in Br(x)\Bρr(x)
is at least 2ρr, and since ρ can be taken arbitrarily close to 1 we are done. �
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