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Abstract. We prove that for the flat surface defined by a holomorphic quadratic
differential the set of directions such that the corresponding Teichmüller geodesic
lies in a compact set in the corresponding stratum is a winning set in Schmidt
game. This generalizes a classical result in the case of the torus due to Schmidt and
strengthens a result of Kleinbock and Weiss.

1. Statement of theorem

The purpose of this paper is to prove the following theorem.

Theorem 1. Let q be a holomorphic quadratic differential on a closed Riemann sur-
face of genus g > 1. Then the set E of directions θ in the circle S1 such that the
Teichmüller geodesic defined by eiθq stays in a compact set of the corresponding stra-
tum in the moduli space of quadratic differentials is a winning set for Schmidt game
and absolute winning in the sense of McMullen.

We call the directions in E bounded directions. Here is an equivalent formulation
of the theorem (Proposition 1 establishes equivalence).

Theorem 2. Let

S = {(θ, L) : θ is the direction of a saddle connection of q of length L}.
Then the set E of bounded directions ψ in the circle is the same as {ψ : inf

(θ,L)∈S
L2|θ −

ψ| > 0} and this is an absolute winning set.

As an immediate corollary we get the following result which was first proved by
Kleinbock and Weiss [2] using quantitative non-divergence of horocycles [4].

Corollary 1. The set of directions such that the Teichmüller geodesic stays in a com-
pact set has Hausdorff dimension 1.

It is well-known that a billiard in a polygon ∆ whose vertex angles are rational
multiples of π gives rise to a translation surface by an unfolding process. We have the
following corollary to Theorem 2.

Corollary 2. Given any angle θ ∈ E, there is an ε > 0, such that no billiard path of
length smaller than L starting at a vertex enters an ε

L
neighborhood of another vertex

of ∆.
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Since for any 0 < α < 2π and n ∈ Z, the set E+nα (mod 2π) as an isometric image
of E, is also Schmidt winning with the same winning constant for each n Therefore
the infinite intersection ∩n∈Z(E + nα) is Schmidt winning, and thus has Hausdorff
dimension 1. This gives the following corollary.

Corollary 3. For any α there is Hausdorff dimension 1 set of angles θ such that for
any n, there is εn > 0 such that a billiard path at angle θ + nα(mod(2π)) and length
at most L from a vertex does not enter a neighborhood of radius εn

L
of any vertex.

Another corollary uses the absolute winning property but does not follow just from
Schmidt winning.

Corollary 4. Let E ′ = {θ : ∀n ∈ Z \ {0}, nθ ∈ E}. Then E ′ has Hausdorff dimension
1.

1.1. Acknowledgments. The authors would like to thank Dmitry Kleinbock and
Barak Weiss for telling the first author about this delightful problem and helpful
conversations.

2. Introduction

2.1. Schmidt games. We describe the Schmidt game in Rn. Suppose we are given
a set E ⊂ Rn. Suppose two players Bob and Alice take turns choosing a sequence of
closed Euclidean balls

B1 ⊃ A1 ⊃ B2 ⊃ A2 ⊃ B3 . . .

(Bob choosing the Bi and Alice the Ai) whose diameters satisfy, for fixed 0 < α, β < 1,
|Ai| = α|Bi| and |Bi+1| = β|Ai|. Following Schmidt

Definition 1. We say E is an (α, β) winning set if Alice has a strategy so that no
matter what Bob does, ∩∞i=1Bi ⊂ E. We say E is α-winning if it is (α, β) winning for
all 0 < β < 1 and winning if it is α winning for some α.

One important consequence of winning sets is they have full Hausdorff dimension.
McMullen [3] suggested an improvement of the Schmidt game as follows. Bob and
Alice in sequence choose a sequence of balls Bi, Ai such that the sets

B1 ⊃ B1 \ A1 ⊃ B2 ⊃ B2 \ A2 ⊃ B3 . . .

are nested and for fixed 0 < β < 1/3, |Bi+1| ≥ β|Bi| and |Ai| ≤ β|Bi|

Definition 2. We say E is a β-absolute winning set if Alice has a strategy so that
∩∞i=1Bi ∩ E 6= ∅.

Definition 3. We say E is absolute winning set if for all 0 < β < 1/3, E is β-absolute
winning.

As McMullen shows, absolute winning implies that the countable intersection of
their images under bi-lipshitz maps are non-empty. Unlike winning this holds even if
the Lipshitz constants go to zero [3]. McMullen also showed that unlike winning in the
sense of Schmidt absolute winning sets are invariant under quasisymmetric maps. He
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also showed absolute winning implies Schmidt winning. In the same paper McMullen
provided an example of a set which is Schmidt winning but not absolute winning.

2.2. Outline. The theorem in the case of the torus is equivalent to the statement
that there is a strategy such that the point y = ∩∞i=1Bi satisfies

inf
p
q
∈Q
q2|p
q
− y| > 0.

The key idea to finding a strategy so that y satisfies the above inequality begins with
the simple observation that distinct rationals are separated; that is, |p1

q1
− p2

q2
| ≥ 1

q1q2
.

In geometric terms this is the statement that two intersecting closed curves cannot be
simultaneously short on any torus. This allows one to conclude that in any interval
Bj, chosen by Bob, there is at most one fraction p

q
whose denominator is bounded in

terms of |Bj|. Then Alice chooses her interval to contain that fraction, blocking it in
the sense that q2|p

q
− y| is bounded below for any y in the complement.

In the game played with quadratic differentials on a higher genus surface we have
the same criterion for a Teichmüller geodesic to lie in a compact set as the above
criterion for fractions. This is given in Proposition 1. This says that in order to show
this set is winning we want to find a strategy giving us a point far from the direction
of any saddle connection. Unlike the genus 1 case we have the major complication
that directions of saddle connections in general need not be separated. It may happen
that on some flat surfaces there are many intersecting short saddle connections. This
forces us to consider complexes of saddle connections that become simultaneously
short under the flow. We call these complexes shrinkable.

The process of combining a pair of shrinkable complexes of a certain level or com-
plexity to build a shrinkable complex of higher level is given by Lemma 7 with the
preliminary Lemma 2. These ideas are not really new; having appeared in several
papers beginning in [1].

The main point in this paper and the strategy is given by Theorem 3. We show first
that complexes of highest level are separated as in the case of the torus for otherwise
we could build a complex of higher level which is shrinkable by combining them. This
is impossible by definition of highest level. We develop a strategy for Alice where, as in
the torus case, she blocks these highest level complexes. Then we consider complexes
of one lower level which essentially lie in the complementary interval and which are
not too long in a certain sense. We show these are separated as well, for if not,
we could combine them into a highest level complex of bounded size and these have
been blocked at the previous stage. Thus there can be at most one such lower level
complex and we block it. We continue this process inductively considering complexes
of decreaing level one step at a time, ending by blocking single saddle connections.
Then after a fixed number of steps we return to blocking highest level complexes and
so forth. From this strategy the main theorem will follow.

2.3. Quadratic differentials. We will denote q = φ(z)dz2 as a holomorphic qua-
dratic differential on a Riemann surface X of genus g > 1. We will denote by
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(X, q) the corresponding flat surface. Suppose q has zeroes of orders k1, . . . , kp with∑
ki = 4g− 4. There is a moduli space or stratum Q = Q(k1, . . . , kp,±) of quadratic

differentials all of which have zeroes of orders ki. The + sign occurs if q is the square
of an Abelian differential and the − sign otherwise.

A quadratic differential q defines an area form |φ(z)||dz2| and a metric |φ|1/2|dz|.
We assume that our quadratic differentials have area 1. Recall a saddle connection is
a geodesic in the metric joining a pair of zeroes which has no zeroes in its interior.

A choice of a branch of φ1/2(z) along a saddle connection β and an orientation of
β determines a holonomy vector

hol(β) =

∫
β

φ1/2dz ∈ C.

It is defined up to ±. Thinking of this as a vector in R2 gives us the horizontal and
vertical components defined up to ±. We will denote by h(γ) and v(γ) the absolute
value of these components. We will denote its length |γ| as the maximum of h(γ) and
v(γ). This slightly different definition will cause no difficulties in the sequel.

Given ε > 0, let Qε denote the compact set of unit area quadratic differentials in
the stratum such that the shortest saddle connection has length at least ε. The group
SL(2,R) acts on Q. (In the action we will suppress the underlying Riemann surface).
Let

gt =

(
et 0
0 e−t

)
denote the Teichmüller flow acting on Q and

rθ =

(
cos θ sin θ
− sin θ cos θ

)
denote the rotation subgroup.

The Teichmuller flow acts by expanding the horizontal component of saddle con-
nections by a factor of et and contracting the vertical components by et.

Definition 4. We say a direction θ is bounded if there exists ε such that gtrθq ∈ Qε
for all t ≥ 0.

2.4. Conditions for β absolute winning.

Definition 5. Given a saddle connection γ on (X, q) we denote by θγ the angle such
that γ is vertical with respect to rθγq.

We can think of the set of saddle connections as a subset of S1 × R by associating
to each γ the pair (θγ, |γ|).

The following proposition gives the equivalence of Theorem 1 and Theorem 2 and
will be the motivation for what follows.

Proposition 1. Let S = {(θ, L) : θ is the vertical direction of a saddle connection of length L}.
Then inf

(θ,L)∈S
L2|θ − ψ| > 0, if and only if ψ determines a bounded direction.
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Proof. If (θ, L) ∈ S, let c = |θ − ψ|. We can assume c ≤ π
4
. Then the length of

the saddle connection in gtrψq coming from (θ, L) is max{et sin(c)L, e−tL cos(c)} and

minimized when equality of the two terms holds; that is when e−t =
√

tan(c)). At
this time the length is

L
√

sin(c) cos(c) = L

√
sin(2c)

2
≥ L

√
c

2
.

So if c > δ
L2 , for some δ > 0, then

max{et sin(c)L, e−tL cos(c)} >
√
δ

2
.

Conversely, if the minimum length L
√

sin(2c)
2

is bounded below by some `0 then the

difference in angles c satisfies

2c ≥ sin(2c) ≥ 2`20
L2

.

�

2.5. Complexes.

Definition 6. We say two saddle connections of (X, q) are disjoint if they meet at
most at their endpoints.

Definition 7. A complex of (X, q) is a closed subset of the surface which is a union
of disjoint saddle connections. If every edge of a complex K on a surface (X, q) has
length at most ε then we say K is an ε-complex.

We adopt the convention that if saddle connections bound a triangle, then we add
the triangle to the complex. This allows for a complex to have an interior and allows
discussion of the boundary of a complex.

Definition 8. The level of a complex is the number of saddle connections in the
complex.

An Euler characteristic argument says that the number of saddle connections needed
to triangulate the surface is 6g − 6 + 3p where p is the number of singularities.

Lemma 1. There exists ε such that a 3ε-complex must have strictly fewer than 6g −
6 + 3p saddle connections.

Proof. Continually adding disjoint saddle connections forces a triangulation of the
surface. If the surface can be triangulated by edges of length ε then there is a bound
in terms of ε for the area. However we are assuming that the area of (X, q) is 1. �

Definition 9. Given q, there is a number M which is the maximum level of any
ε-complex for any gtrθq.
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Definition 10. Two complexes K1, K2 are combinatorially equivalent if they have
the same level and the same boundary saddle connections and their union is not the
whole surface.

The following lemma is the basic geometric construction.

Lemma 2. Suppose K is an ε-complex of level i on some (X, q) and γ is a saddle
connection of length at most ε that does not lie in the closure of K. Then there is a
complex K̃ of level i+ 1 on (X, q) formed by adding a new saddle connection σ to K
such that |σ| ≤ 4 maxγ1∈K∪{γ} |γ1|.

Proof. We have that γ must be either disjoint from K or cross the boundary of K.
Case I. γ is disjoint from K. Add γ to K to form K̃. It is clear that the estimate

on lengths holds.
Case II γ intersects ∂K crossing β ⊂ ∂K at a point p dividing β into segments

β1, β2.
Case IIa One endpoint p′ of γ lies in the exterior of K1.
Let γ̂ be the segment of γ that goes from p′ to p. We consider the homotopy class

of paths γ̂ ∗ βi. Together with β they bound a simply connected domain ∆. Replace
each path by the geodesic ωi joining the endpoints in the homotopy class. Then ∂∆
is made up of at most M saddle connections σ all of which have their horizontal and
vertical lengths bounded by the sum of the horizontal and vertical lengths of γ and
β. If some σ /∈ K we add it to form K̃. It is clear that the estimate on lengths holds.

The other possibility is that ∆ ⊂ ∂K. It cannot be the case that ∆ is a triangle,
since then ∆ would be a subset of K, contradicting the assumption on γ. Since the
edges of ∆ all have length at most ε we can find a diagonal σ in ∆ of length at most
2ε and add it to form K̃.

Case IIb Both endpoints of γ lie in K. Let γ successively cross ∂K at p1, p2, and
let γ1 be the segment of γ lying in the exterior of K between p1 and p2.

The first case is where p1, p2 lie on different β1, β2 which have endpoints q1
1, q

2
1 and

q1
2, q

2
2. Then p1, p2 divide βi into segments β′i, β

′′
i . We can form a homotopy classe

β′1 ∗ γ1 ∗ β′2 joining q1
1 to q2

2 and a homotopy class β′′1 ∗ γ1 ∗ β′′2 joining q2
1 to q1

2. We
replace these with their geodesics with the same endpoints and then together with
β1, β2 they bound a simply connected domain. We are then in a situation similar to
Case IIa.

The last case is that p1, p2 lie on the same saddle connections β of ∂K. Let β̂ be
the segment between p2 and p1. Let β1 and β2 be the segments joining the endpoints
q1, q2 of β to p1, p2. Find the geodesic in the homotopy class of β1 ∗ γ1 ∗ β2 joining
q1 to q2 and the geodesic in the class of the loop β1 ∗ γ1 ∗ β2 ∗ β−1 from q1 to itself.
These two geodesics together with β bound a simply connected domain. The analysis
is similar to the previous cases. �

Definition 11. We say two ε complexes K1, K2 of level i are topologically combinable
if there exists a saddle connection γ2 ⊂ ∂K2 that intersects the exterior of K1 and a
saddle connection γ1 ⊂ ∂K1 that intersects the exterior of K2.
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Lemma 3. There is a constant N0 just depending on the topology of the surface such
that if K1, K2, . . . KN0+1 are combinatorially distinct ε complexes of level i, then there
exists Kn, Km that are topologically combinable.

Proof. Suppose Kn, Km are not combinable because no component of ∂Kn intersects
the exterior of Km; that is, every component of ∂Kn is either contained in the interior
of Km or is contained in ∂Km. This implies that every component of X \Km either
coincides with, is contained in, or is disjoint from every component of X \Kn. Thus
given a collection of combinatorially distinct complexes no two of which are combinable
there would be a collection of subsurfaces of X such that any two are disjoint or
nested. Each complementary region contains a triangle that does not intersect any
other complementary domain. The number of complementary domains therefore is
bounded by the number of triangles needed to triangulate the surface. We take N0 to
be this number. �

Now fix the base surface (X0, q).
All angles, lengths will be measured on the base surface. Now let K be a level m

complex.

Definition 12. Denote by L(K) the length of the longest saddle connection in K.
Let θ(K) the angle that makes the longest saddle connection vertical.

We assume that the complexes considered now have the property that for any saddle
connection γ ∈ K we have |θγ − θ(K)| ≤ π

4
. This implies that measured with respect

to the angle θ(K) we have |γ| = v(γ). In other words the vertical component is larger
than the horizontal component. This will exclude at most finitely many complexes
from our game and these will be excluded in any case by our choice of cM in Theorem
2.

Definition 13. We say a complex K is τ shrinkable if for any saddle connection β
of K we have |θβ − θ(K)| ≤ τ2

|β|L(K)
.

We note that this condition could equally well be stated as follows. Let h(β) be
the horizontal component the holonomy vector of β makes with the direction θ(K).

Then K is τ shrinkable if for all β, h(β) ≤ τ2

L(K)
.

The following is immediate.

Lemma 4. If τ1 < τ2 and K is τ1 shrinkable, then it is τ2 shinkable.

Definition 14. A complex K and a saddle connection that γ intersects the exterior
of K are jointly τ shrinkable if K is shrinkable and

• if |γ| ≤ L(K) then |θ(K)− θγ| ≤ τ2

|γ|L(K)
.

• if L(K) < |γ| then |θγ − θω| ≤ τ2

|γ||ω| for all ω ∈ K.

The point of this definition is the following lemma.

Lemma 5. Suppose K and γ are jointly τ shrinkable. Set et = max(L(K),|γ|)
τ

. If
L(K) ≥ |γ|, set θ = θ(K) and if |γ| > L(K), set θ = θγ. Then on the surface gtrθq
every saddle connection of K and γ have length at most τ .
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Proof. Suppose the first possibility holds. For any saddle connection ω of K (resp. γ)
its horizontal component h(ω) (resp. h(γ)) with respect to the angle θ(K) satisfies

h(ω) ≤ τ2

L(K)
. (resp. h(γ) ≤ τ2

L(K)
). That means that on the surface gtrθq both its

horizontal and vertical components are at most τ .
If the second possibility holds then we use the angle θγ and now horizontal lengths

are bounded by τ2

|γ| and the same analysis holds.

�

The following is a converse to Lemma 5.

Lemma 6. If there is θ, t such that every saddle connection of a complex K has length
at most τ

2
on gtrθq, then K is τ shrinkable.

Proof. Let h(γ) = |γ||θ − θγ| the horizontal component a saddle connection γ of K
makes with θ. Since the vertical component of the longest saddle must have length

at most τ
2

on gtrθq, we have et ≥ 2L(K)
τ

. Then since eth(γ) ≤ τ
2
, we conclude that

|θ − θγ| ≤
τ 2

4|γ|L(K)
,

and so by the triangle inequality

|θγ − θ(K)| ≤ τ 2

2L(K)|γ|
.

�

Lemma 7. Suppose K is a i complex and K and γ are jointly τ shrinkable. Then
there exists an i+ 1 complex K̃ found by adding a new saddle connection σ such that

(1) L(K̃) ≤ 4 max(L(K), |γ|).
(2) K̃ is 8τ shrinkable

(3) |θσ − θ(K)| ≤ 5τ2

L(K)|σ| .

Proof. We use Lemma 5 to find a flat surface gtrθq where et = max(L(K),|γ|)
τ

on which

K is a τ complex and |γ| ≤ τ . We apply Lemma 2 to find a 4τ complex K̃ by adding
a new saddle connection σ. Since on that surface |σ| ≤ 4 max(L(K), |γ|) flowing back
to the original surface (X, q) we get the first conclusion. Since L(K̃) ≤ 4τ , K̃ is is 8τ
shrinkable by Lemma 6.

On the surface gtrθq we have h(σ) ≤ 4τ , This implies

|θσ − θ| ≤
e−th(σ)

|σ|
≤ 4e−tτ

|σ|
.

If |γ| ≤ L(K) so that θ = θ(K), the third conclusion is immediate from the definition
of et. If L(K) < |γ| then θ = θγ and the third conclusion follows from the definition

of et, the fact that |θγ − θ(K)| ≤ τ2

L(K)|γ| and the triangle inequality. �
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In what follows we will be considering shrinkable complexes. In each combinatorial
equivalence class of such shrinkable complexes we will consider the complex K which
minimizes L(K) and the corresponding angle θ(K). We note that this complex is
perhaps not unique and so there is ambiguity in θ(K) but this will not matter.

The statement and proof of the next theorem are fairly technical and long so we
give an outline of the main ideas first. In our game Bob presents Alice with an initial
interval. We will first consider shrinkable complexes of maximal level M of a certain
bounded size, whose angles are close to the given interval. We show that no two of
them be combinable. Otherwise they could be combined to form a shrinkable complex
of bigger level, which is impossible since M was the maximum level. We think of these
complexes as separated. By Lemma 3 there are at most N0 of these. In N0 successive
steps then we block this set of at most N0 maximal level complexes. Then we proceed
to level M − 1 complexes whose angles are close to the new interval given by the
game after these N0 steps, and show that there is no pair of combinable complexes;
for otherwise we could combine them to form a level M complex which however was
blocked in one of the previous N0 steps. Then in the next N0 steps we block all
possible level M − 1 complexes. We repeat this procedure and finish by considering
level 1 complexes; that is, saddle connections. After these are blocked we then begin
again after a total of N0M steps with maximal level complexes of a slightly longer

size, (roughly β−
N0M

2 ) and the game continues.
We set up the following notation for the theorem that follows. Given j ≥ 1 let

j′ = j′(j) be determined by

(1) j −N0 + 1 ≤ j′ ≤ j and j′ ≡ 1 modN0

Then for each j, let i = i(j) ∈ {1, . . . ,M} be determined by

(2) i+ [
j − 1

N0

] = i+
j′ − 1

N0

= 0 modM.

Theorem 3. Given β, and Bob’s first move I1 in the game, there exist positive con-
stants ci, i = 1, . . . ,M + 1, and a strategy for Alice such that regardless of the choices
Ij made by Bob, the following will hold. For all ciβ

3+N0M shrinkable level i-complexes
K either

(a) |γb| · |L(K)| · |Ij′ | ≥ c2i or

(b) d(θ(K), Ij′) >
βN0M c2i

4|γb|·|L(K)| , where γb is the longest saddle connection in ∂K.

Note that the conditions depend on the interval j′ and not on j.

Proof. We choose

(3) cM+1 < ε,

where ε is the constant given by Lemma 1. Then choose

(4) c2M < L2
0β

2N0M |I1|,
where L0 is the length of the shortest saddle connection on (X, q).
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Then inductively we choose ci so that

(5) c2i (4 + 4β−N0M +
β−6−2N0M

4
(1 + βN0M + 4β−N0M)) ≤

c2i+1

9
,

The particular choice of constants satisfying these conditions will not be important.
Now recall that given j, then j′ is determined by (1) and i by (2). Then let Ω(j) be
the set of ciβ

3+N0M shrinkable level i complexes K such that

(A’) |Ij′ |·L(K)·|γb| < β−N0Mc2i , where γb is the longest boundary saddle connection
and

(b’) d(θ(K), Ij′) <
βN0M c2i

4|γb|·L(K)
.

We note that (b’) is the opposite of (b) whereas (A’) is the opposite of the following
strengenthing of (a):

(A) |Ij′ | · L(K) · |γb| ≥ β−N0Mc2i
Note that Ω(j) = Ω(j′) since the conditions depend on the interval Ij′ and not the

interval Ij. In the game the combinatorial classes in Ω(j) will be dealt with one at
a time starting at step j′, but because they show up at stage j′ we wished not to
distinguish between them and so we have put the same condition on each of them.
We also set the condition

(a’) |Ij′ | · L(K) · |γb| < c2i
as the opposite of (a).

We will now describe Alice’s strategy in any block of N0 steps starting with a step
j = j′ or equivalently j ≡ 1 mod N0. If Ω(j) 6= ∅ choose a combinatorial equivalence
class [K1] of such K and let z1

j be the midpoint of the smallest interval that contains
all θ(K1) for K1 ∈ Ω(j) in that equivalence class. Alice’s strategy is to choose Uj to

be an interval of length β|Ij| centered at z1
j if d(z1

j , ∂Ij) ≥
β
2
|Ij| and an interval of the

same length that contains z1
j and abuts Ij at the endpoint closest to z1

j otherwise. If
Ω(j) = ∅ Alice chooses any subinterval of Ij that has length β|Ij|.

Next Alice is presented with an interval Ij+1. Now consider Ω(j)\ [K1]. If this set is
nonempty choose a remaining equivalence class [K2] and corresponding Uj+1 of length
β|Ij+1| just as above using the midpoint z2

j+1 of the smallest interval that contains all
θ(K2) for K2 in this equivalence class. If it is empty Alice chooses any subinteral of
Ij+1 that has length β|Ij+1|. We continue this a total of N0 steps ending with Ij+N0 .

We shall argue by induction on all j that

(i) for every ciβ
3+N0M shrinkable level i complex K, either (a) or (b) holds.

(ii) there are at most N0 combinatorially distinct K ∈ Ω(j).
(iii) for any two combinatorially equivalent K1, K2 ∈ Ω(j), |θ(K1) − θ(K2)| ≤

βN0

3
|Ij′|.

Note that since the conditions are the same for all j in this block of N0 indices in
some sense this is really an induction on j′.

For 1 ≤ j ≤ N0M , we note that (a) holds for any i-complex K since

(6) L(K) · |γb| · |Ij′| ≥ L2
0β

N0M |I1| > c2M ≥ c2i .
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Moreover Ω(j) = ∅ since (A’) implies

L(K) · |γb| · |Ij′| < β−N0Mc2i ≤ β−N0Mc2M < βN0ML2
0|I1|.

This contradicts the first inequality in (6). This verifies (i)-(iii) for these j.
Now let j > N0M and suppose that (i)-(iii) have been verified for n = 1, . . . , j − 1.

We shall prove (i) first, by contradiction. Suppose K is a ciβ
3+N0M shrinkable i

complex and neither (a) nor (b) holds. Let us write (aj′), (bj′), etc. to indicate the
dependence on j′. (Again note that (a) and (b) are conditions that depend on j′.)
Note that (Aj′−N0M) implies (aj′) because |Ij′ | ≥ βN0M |Ij′−N0M |. Thus, (Aj′−N0M)
does not hold, or equivalently, (A′j′−N0M

) holds. Note also that (bj′−N0M) implies (b′j)
because Ij′ ⊂ Ij′−N0M . Thus, (bj′−N0M) does not hold, or equivalently, (b′j′−N0M

) holds.
By the induction hypothesis (i) for n = j −N0M it follows that (aj′−N0M) holds.

Now set n = j − N0M and let n′ be the corresponding value n′ ≡ 1 mod N0. We
have shown K ∈ Ω(n). The induction hypothesis (ii) says that there are at most N0

combinatorially distinct K ∈ Ω(n). In Alice’s strategy this combinatorial class was
considered at some stage m where n′ ≤ m ≤ n′ +N0 − 1. Alice chose an interval Um
of size β|Im| centered at the midpoint of the smallest interval that contains all θ(K ′)
for K ′ in the same class as K. Now since m− n′ ≤ N0 − 1, the induction hypothesis
(iii) implies that θ(K) is contained in the middle third of Um. Therefore

d(θK , Ij′) ≥
β

3
|Im| ≥

βN0

3
|In′ | ≥ βN0c2i

4L(K)|γb|
.

This shows that (bj′) holds for these values of j′, contrary to assumption. This verifies
(i).

Now we prove (ii), also by contradiction. Suppose K1, K2 ∈ Ω(j) are combinatori-
ally distinct ciβ

3+N0M -shrinkable level i-complexes. Without loss of generality we can
assume L(K1) ≤ L(K2). Assume that they are combinable so that there is γ̃2 ∈ ∂K2

that intersects the exterior of K1. We will arrive at a contradiction.
By the preceding paragraphs, either (aj′) or (bj′) holds for both complexes, but by

definition of Ω(j), (bj′) does not hold. Thus (aj′) and (A′j′) hold and therefore, we
have

(7)
c2i

L(K1)|γ1
b |
≤ |Ij′ | ≤

β−N0Mc2i
L(K2)|γ2

b |
.

which we note implies

(8) L(K1)|γ2
b | ≤ L(K2)|γ2

b | ≤ β−N0ML(K1)|γ1
b |.

By Lemma 7, there exists a saddle connection σ disjoint from K1 such that

K ′ = K1 ∪ {σ} is ci+1β
3+N0M -shrinkable, provided K1 and γ̃2 are jointly ci+1β

3+N0M

8
-

shrinkable. We now check this condition. Using (8), the assumption that L(K1) ≤
L(K2), and |γ̃2| ≤ |γ2

b |, we have

L(K1)|γ1
b | ≥ βN0ML(K2)|γ2

b | ≥ βN0ML(K1)|γ̃2|.
Together with the assumption that both complexes satisfy (b′j) we have
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|θ(K1)− θ(K2)| ≤ |Ij′ |+
βN0Mc2i

4L(K1)|γ1
b |

+
βN0Mc2i

4L(K2)|γ2
b |
≤ β−N0Mc2i
L(K1)|γ̃2|

+
c2i (1 + βN0M)

4|γ̃2|L(K1)
.

Since K2 is ciβ
3+N0M -shrinkable, we have

|θ(K2)− θγ̃2| ≤
c2iβ

6+2N0M

|γ̃2|L(K2)
≤ c2iβ

6+2N0M

|γ̃2|L(K1)
.

Then by the triangle inequality,

(9) |θ(K1)− θγ̃2| ≤
4c2iβ

6+2N0M + c2i (1 + βN0M + 4β−N0M)

4|γ̃2|L(K1)
≤
β6+2N0Mc2i+1

64|γ̃2|L(K1)
.

The last inequality is a consequence of (5). If |γ̃2| ≤ L(K1) this says that K1 and γ̃2

are jointly ci+1

8
β3+N0M shrinkable.

The other case is L(K1) ≤ |γ̃2|. Since K1 is ciβ
3+N0M shrinkable we have

(10) |θ(K1)− θω| ≤
c2iβ

6+2N0M

L(K1)|ω|
for all ω ∈ K1.

Then combining (9) and (10), and the facts that L(K1) ≥ βN0M |γ̃2| and L(K1) ≥ |ω|
we conclude by the triangle inequality that
(11)

|θγ̃2 − θω| ≤
4c2iβ

6+2N0M(1 + β−N0M) + c2i (1 + βN0M + 4β−N0M)

4|γ̃2||ω|
≤
c2i+1β

6+2N0M

64|γ̃2||ω|
.

The last inequality is a restatement of (5). This also says that γ̃2 and K1 are

jointly ci+1β
3+N0M

8
shrinkable. By Lemma 7, for some saddle connection σ we can

construct an i+1 complex K ′ = K ∪{σ} that is ci+1β
3+N0M -shrinkable and such that

L(K ′) ≤ 4 max(L(K1), |γ′b|).
If i = M , then the choice of cM+1 < ε and the fact that there are no level M + 1

ε complexes says that K ′ in fact cannot exist and gives the desired contradiction in
this case. Again let j′ be detrmined by j, and let j′′ = j′−N0. For i < M , we need to
verify that K ′ satisfies (a′j′′) and (b′j′′) to show that K ′ does not exist for the desired
contradiction. Let γ′b be the longest saddle connection on the boundary of K ′.

Since K2 satisfies (A′j′) we have

L(K ′)|γ′b||Ij′′| ≤ 16β−N0L(K2)|γ2
b ||Ij′| < 16β−N0M−N0c2i < c2i+1,

the last inequality a consequence of (5). Thus, K ′ satisfies (a′j′′).
Now

d(θ(K ′), Ij′′)

≤ d(θ(K ′), θγ′
b
) + d(θγ′

b
, θ(K1)) + d(θ(K1), Ij′′)

≤
c2i+1β

6+2N0M

L(K ′)|γ′b|
+

5c2iβ
6+2N0M

L(K1)|γ′b|
+

βN0Mc2i
4L(K1)|γ1

b |
.
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The first inequality comes from the fact that K ′ is ci+1β
3+N0M shrinkable. The second

inequality comes from the third conclusion of Lemma 7. The last inequality comes
from the assumption (b′j′) on K1 and the fact that Ij′ ⊂ Ij′′ . However L(K ′) ≤
4 max(L(K1), |γ′b|) and

|γ′b| ≤
4|γ1

b |
βN0M

≤ 4L(K1)

βN0M
,

so the above right hand side is at most

c2i+1β
6+2N0M

L(K ′)|γ′b|
+

20c2iβ
6+N0M

L(K ′)|γ′b|
+

16c2iβ
−N0M

4L(K ′)|γ′b|
<

βN0Mc2i+1

4L(K ′)|γ′b|
.

The last inequality is again a consequence of (5) and the fact that β < 1
3
. We have

shown (b′j′′) holds for K ′.
This is a contradiction to the induction hypothesis (i) with j′′ = j′ −N0. We have

shown that there cannot be combinatorially distinct K1, K2 that are combinable. But
then by Lemma 3 there can be at most N0 different combinatorial complexes in Ω(j).
This verifies (ii).

Now we prove (iii). Since all K are ciβ
3+N0M -shrinkable

|θK − θγb| ≤
c2iβ

6+2N0M

L(K)|γb|
.

Let K1, K2 ∈ Ω(j) be combinatorially equivalent, and hence share a longest boundary
saddle connection γb. Thus, by (7) and the triangle inequality, we have

|θ(K1)− θ(K2)| ≤
2c2iβ

6+2N0M

min(L(K1), L(K2))|γb|
≤ 2β6+2N0M |Ij′| ≤

βN0

3
|Ij′|.

This proves (iii). �

Proof of Theorem 1. By Theorem 3 we are able to ensure that for any level i complex
Ki and longest γb ∈ ∂Ki, we have

max{|γb| · L(K) · |Ij′|, |γb| · L(K) · d(θ(K), Ij′)} >
βN0Mc2i

4
.

In particular this holds when i = 1. Since there is only one saddle connection in a
1-complex, and since for any fixed saddle connection γ, |γ|2|Ij′ | → 0 as j′ → ∞, we
conclude that for all but finitely many intervals Ij′ we have

|γ|2d(θγ, Ij′) = max{|γ|2|Ij′|, |γ|2d(θγ, Ij′)} >
βN0Mc21

4
.

Thus if φ = ∩∞l=−1Ij′ is the point we are left with at the end of the game, and γ is

a saddle connection, then |γ|2|θγ − φ| > βN0M c21
4

, which by Proposition 1 establishes
Theorem 1. �
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