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Preface

This book started as notes for courses given at the graduate level at the University of

Minnesota. It is intended to be used at the level of a second-year graduate course in an

American university. At this level the book should provide material for a year-long course

in representation theory.

It is supposed that the reader has already studied the material in a first-year graduate

course on algebra and is familiar with the basic properties, for example, of Sylow subgroups

and solvable groups, as well as the examples which are introduced in a first group theory

course, such as the dihedral, symmetric, alternating and quaternion groups. The reader

should also be familiar with other aspects of algebra which appear in or before a first-

year graduate course, such as Galois Theory, tensor products, Noetherian properties of

commutative rings, the structure of modules over a principal ideal domain, and the first

properties of ideals.

The Pure Mathematician for whom this course is intended may well have a primary in-

terest in an area of pure mathematics other than the representation theory of finite groups.

Group representations arise naturally in many areas, such as number theory, combinatorics

and topology, to name just three, and the aim of this course is to give students in a wide

range of areas the technique to understand the representations which they encounter. This

point of view has determined to a large extent the nature of this book: it should be suffi-

ciently short, so that students who are not specialists in group representations can get to

the end of it. Since the representations which arise in many areas are defined over rings

other than fields of characteristic zero, such as rings of algebraic integers or finite fields,

the theory is developed over arbitrary ground rings where possible. The student finishing

this course should feel no lack of confidence in working in characteristic p.

A selection of topics has been made at every stage, and where a result appears to

have predominantly technical interest, perhaps confined to those who specialize in group

representations, then in some cases it has been omitted.

The exercises at the ends of sections are an important part of this book. They provide

a place to indicate how the subject may be developed beyond what is described in the

text. They provide a stock of examples which provide a firmer basis for the expertize of

the reader. And they provide homework exercises so that the reader can learn by actively

doing, as well as by the more passive activity of reading.
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1. Representations, Maschke’s Theorem and Semisimplicity

We start by establishing some notation. We let G denote a finite group, and we will

work over a commutative ring R with a 1. For example, R could be any of the fields Q,

C, R, Fp, Fp etc, where the latter symbol denotes the algebraic closure of Fp, or we could

take R = Z or some other ring. If V is an R-module we denote by GL(V ) the group of

all invertible R-module homomorphisms V → V . In case V ∼= Rn is a free module of rank

n this group is isomorphic to the group of all non-singular n× n-matrices over R, and we

denote it GL(n,R) or GLn(R), or in case R = Fq is the finite field with q elements by

GL(n, q) or GLn(q).

A (linear) representation of G (over R) is a homomorphism

ρ : G→ GL(V ).

In a situation where V is free as an R-module, on taking a basis for V we obtain for each

element g ∈ G a matrix ρ(G), and these matrices multiply together in the manner of the

group. In this situation the rank of the free R-module V is called the degree of the repre-

sentation. Sometimes by abuse of terminology the module V is called the representation,

but it should more properly be called the representation module or representation space (if

R is a field).

(1.1) Examples. 1. For any group G and commutative ring R we can take V = R and

ρ(G) = 1 for all g ∈ G. This representation is called the trivial representation, and it is

often denoted simply by its representation module R.

2. Let G = Sn, the symmetric group on n symbols, V = R and

ρ(g) = multiplication by ǫ(g),

where ǫ(g) is the sign of g. This representation is called the sign representation of the

symmetric group.

3. Let R = R, V = R2 and G = S3. This group may be realized as the group of

automorphisms of V generated by reflections in the three lines
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In terms of matrices this gives a representation

() 7→

(
1 0
0 1

)

(1, 2) 7→

(
1 −1
0 −1

)

(1, 3) 7→

(
0 1
1 0

)

(2, 3) 7→

(
−1 0
−1 1

)

(1, 2, 3) 7→

(
0 −1
1 −1

)

(1, 3, 2) 7→

(
−1 1
−1 0

)

where we have taken basis vectors in the direction of two of the lines of reflection, making

an angle of 2π
3

to each other. In fact these matrices define a representation of degree 2

over any ring R, because although the representation was initially constructed over R, in

fact the matrices have integer entries which may be interpreted in every ring, and these

matrices always multiply together to give a copy of S3.

4. Let R = Fp, V = R2 and let G = Cp = 〈g〉 be cyclic of order p generated by an

element g. One checks that the assignment

ρ(gr) =

(
1 0
r 1

)

is a representation. In this case the fact that we have a representation is very much

dependent on the choice of R as the field Fp: in characteristic 0 it would not work!

We can think of representations in various ways, and one of them is that a represen-

tation is the specification of an action of a group on an R-module. Given a representation

ρ : G → GL(V ), an element v ∈ V and a group element g ∈ G we get another mod-

ule element ρ(g)(v). Sometimes we write just g · v or gv for this element. This rule for

multiplication satisfies
g · (λv + µw) = λg · v + µg ·w

(gh) · v = g · (h · v)

1 · v = v

for all g ∈ G, v, w ∈ V and λ, µ ∈ R. A rule for multiplication G × V → V satisfying

these conditions is called a linear action of G on V . To specify a linear action of G on V

is the same thing as specifying a representation of G on V , since given a representation

we obtain a linear action as indicated above, and evidently given a linear action we may

recover the representation.
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Another way to define a representation of a group is in terms of the group algebra.

We define the group algebra RG (or R[G]) of G over R to be the free R-module with

the elements of G as an R-basis, and with multiplication given on the basis elements by

group multiplication. The elements of RG are the (formal) R-linear combinations of group

elements, and the multiplication of the basis elements is extended to arbitrary elements

using bilinearity of the operation. A typical element of RG may be written
∑
g∈G agg

where ag ∈ R, and symbolically

(
∑

g∈G
agg)(

∑

h∈G
bhh) =

∑

k∈G
(
∑

gh=k

agbh)k.

More concretely, we may exemplify the definition by listing some elements of QS3. The

elements of S3 such as (1, 2) = 1 · (1, 2) are also elements of QS3 (they appear as basis

elements), and () serves as the identity element of QS3 (as well as of S3). In general,

elements of QS3 may look like (1, 2) − (2, 3) or 1
5 (1, 2, 3) + 6(1, 2) − 1

7 (2, 3). Here is a

computation:

((1, 2, 3) + (1, 2))((1, 2)− (2, 3)) = (1, 3) + ()− (1, 2)− (1, 2, 3).

Having defined the group algebra, we may now define a representation of G over R to

be a unital RG-module. The fact that this definition coincides with the previous ones is

the content of the next proposition.

(1.2) PROPOSITION. A representation of G over R has the structure of a unital

RG-module; conversely, every unital RG-module provides a representation of G over R.

Proof. Given a representation ρ : G→ GL(V ) we define a module action of RG on V

by (
∑
agg)v =

∑
agρ(g)(v).

Given a RG-module V , the linear map ρ(g) : v 7→ gv is an automorphism of V and

ρ(g1)ρ(g2) = ρ(g1g2) so ρ : G→ GL(V ) is a representation.

We have defined the group algebra without saying what an algebra is! For the record,

an (associative)R-algebra is a ringA with a 1, equipped with a (unital) ring homomorphism

R → A whose image lies in the center of A. The group algebra RG is indeed an example

of an R-algebra.

The group algebra gives another example of a representation, called the regular repre-

sentation. In fact for any ring A we may regard A itself as a left A-module with the action

of A on itself given by multiplication of the elements. We denote this left A-module by

AA when we wish to emphasize the module structure, and this is the (left) regular repre-

sentation of A. When A = RG we may describe action on RGRG by observing that each

element g ∈ G acts on RGRG by permuting the basis elements in the fashion g · h = gh.

Thus each g acts by a permutation matrix, namely a matrix in which in every row and

column there is precisely one non-zero entry, and that non-zero entry is 1. The regular



Printed Dec. 12, 2007 Finite Group Representations 4

representation is an example of a permutation representation, namely one in which every

group element acts by a permutation matrix.

Regarding representations of G as RG-modules has the advantage that many def-

initions we wish to make may be borrowed from module theory. Thus we may study

RG-submodules of an RG-module V , and if we wish we may call them subrepresentations

of the representation afforded by V . To specify an RG-submodule of V it is necessary to

specify an R-submodule W of V which is closed under the action of RG. This is equiva-

lent to requiring that ρ(g)w ∈ W for all g ∈ G and w ∈ W . We say that a submodule W

satisfying this condition is stable under G, or that it is an invariant submodule or invariant

subspace (if R happens to be a field). Such an invariant submodule W gives rise to a

homomorphism ρW : G→ GL(W ) which is the subrepresentation afforded by W .

(1.3) Examples. 1. Let C2 = {1,−1} be cyclic of order 2 and consider the represen-

tation
ρ : C2 → GL(R2)

1 7→

(
1 0
0 1

)

−1 7→

(
1 0
0 −1

)

One checks that the invariant subspaces are {0}, 〈
(
1
0

)
〉, 〈

(
0
1

)
〉, R2 and no others. Here

R2 = 〈
(
1
0

)
〉 ⊕ 〈

(
0
1

)
〉 is the direct sum of two invariant subspaces.

2. In Example 4 of 1.1 above, an elementary calculation shows that 〈
(
0
1

)
〉 is the only

1-dimensional invariant subspace, and so it is not possible to write the representation space

V as the direct sum of two non-zero invariant subspaces.

We also have the notions of a homomorphism and an isomorphism of RG-modules.

Since RG has as a basis the elements of G, to check that an R-linear homomorphism f :

V →W is in fact a homomorphism of RG modules, it suffices to check that f(gv) = gf(v)

for all g ∈ G — we do not need to check for every x ∈ RG. By means of the identification

of RG-modules with representations of G (in the first definition given here) we may refer to

homomorphisms and isomorphisms of group representations. In many books the algebraic

condition on the representations which these notions entail is written out explicitly, and

two representations which are isomorphic are also said to be equivalent.

If V and W are RG-modules then we may form their (external) direct sum V ⊕W ,

which is the same as the direct sum of V and W as R-modules together with an action

of G given by g(v, w) = (gv, gw). We also have the notion of the internal direct sum

of RG-modules and write U = V ⊕ W to mean that U has RG-submodules V and W

satisfying U = V + W and V ∩W = 0. In this situation we also say that V and W are

direct summands of U . We already met this property in (1.3) above, whose first part is

an example of a representation which is a direct sum of two non-zero subspaces; however,

the second part of (1.3) provides an example of a subrepresentation which is not a direct

summand.
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We come now to our first non-trivial result, and one which is fundamental to the

study of representations over fields of characteristic zero. Here, as in many other places,

we require that the ring R be a field, and in this situation we use the symbols R or k

instead of R.

(1.4) THEOREM (Maschke). Let V be a representation of the finite group G over a

field F in which |G| is invertible. Let W be an invariant subspace of V . Then there exists

an invariant subspace W1 of V such that V = W ⊕W1 as representations.

Proof. Let π : V → W be any projection of V onto W as vector spaces, i.e. a linear

transformation such that π(w) = w for all w ∈ W . Since F is a field, we may always

find such a projection by finding a vector space complement to W in V , and projecting

off the complementary factor. Then V = W ⊕Ker(π) as vector spaces, but Ker(π) is not

necessarily invariant under G. Consider the map

π′ =
1

|G|

∑

g∈G
gπg−1 : V → V.

Then π′ is linear and if w ∈W then

π′(w) =
1

|G|

∑

g∈G
gπ(g−1w)

=
1

|G|

∑

g∈G
gg−1w

=
1

|G|
|G|w

= w.

Since π′(v) ∈ W for all v ∈ V , π′ is a projection onto W and so V = W ⊕ Ker(π′). We

show finally that Ker(π′) is an invariant subspace. If h ∈ G and v ∈ Ker(π′) then

π′(hv) =
1

|G|

∑

g∈G
gπ(g−1hv)

=
1

|G|

∑

g∈G
h(h−1g)π((h−1g)−1v)

= hπ′(v)

= 0

since as g ranges over the elements of G, so does h−1g. This shows that hv ∈ Ker(π′) and

so Ker(π′) is an invariant subspace.
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Let A be a ring with a 1. An A-module V is said to be simple or irreducible if V

has no A-submodules other than 0 and V . A module which is the direct sum of simple

submodules is said to be semisimple or completely reducible and we saw in (1.3) examples

of modules, one of which was semisimple and the other of which was not. We know from

the Jordan-Hölder theorem in module theory that in some sense simple modules are the

building blocks for arbitrary modules of finite composition length. One way in which these

building blocks may be combined is as a direct sum — a construction we feel we understand

quite well — giving a semisimple module, but there may be other modules which are not

constructed from simple modules in this way.

The next results relate the property of semisimplicity to the property which appears

in the statement of Maschke’s theorem, namely that every submodule of a module is a

direct summand. Our immediate application of this will be an interpretation of Maschke’s

theorem, but the results have application in greater generality in situations where R is not

a field, or when |G| is not invertible in R. To simplify the exposition we have imposed a

finiteness condition in the statement of each result, thereby avoiding arguments which use

Zorn’s lemma. These finiteness conditions can be removed, and we leave the details to the

reader in an exercise at the end of this section.

In the special case when the ring A is a field and A-modules are vector spaces the

next result is a familiar statement from linear algebra.

(1.5) LEMMA. Let A be a ring with a 1 and suppose that U = S1 + · · ·+ Sn is an

A-module which can be written as the sum of finitely many simple modules S1, . . . , Sn.

If V is any submodule of U there is a subset I = {i1, . . . , ir} of {1, . . . , n} such that

U = V ⊕ Si1 ⊕ · · ·Sir . In particular,

(1) V is a direct summand of U , and

(2) (taking V = 0), U is the direct sum of some subset of the Si, and hence is necessarily

semisimple.

Proof. Choose a subset I maximal subject to the condition that the sum W =

V ⊕
⊕

i∈I Si is a direct sum. Note that I = ∅ has this property, so we are indeed taking a

maximal element of a non-empty set. We show that W = U . If W 6= U then Sj 6⊆ W for

some j. Now Sj ∩W = 0, being a proper submodule of Sj , so Sj +W = Sj ⊕W and we

obtain a contradiction to the maximality of I. Therefore W = U .

(1.6) PROPOSITION. Let A be a ring with a 1 and let U be an A-module. The

following are equivalent.

(1) U can be expressed as a direct sum of finitely many simple A-submodules.

(2) U can be expressed as a sum of finitely many simple A-submodules.

(3) U has finite composition length and has the property that every submodule of U is a

direct summand of U .
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When these three conditions hold, every submodule of U and every factor module of U

may also be expressed as the direct sum of finitely many simple modules.

Proof. The implication (1) ⇒ (2) is immediate and the implications (2) ⇒ (1) and

(2) ⇒ (3) follow from Lemma 1.5. To show that (3) ⇒ (1) we argue by induction on the

composition length of U , and first observe that hypothesis (3) passes to submodules of U .

For if V is a submodule of U and W is a submodule of V then U = W ⊕ X for some

submodule X , and now V = W ⊕ (X ∩ V ) by the modular law (Exercise 2). Proceeding

with the induction argument, when U has length 1 it is a simple module, and so the

induction starts. If U has length greater than 1, it has a submodule V and by condition

(3), U = V ⊕W for some submodule W . Now both V and W inherit condition (3) and

are of shorter length, so by induction they are direct sums of simple modules and hence

so is U .

We have already observed that every submodule of U inherits condition (3), and so

satisfies condition (1) also. Every factor module of U has the form U/V for some submodule

V of U . If condition (3) holds than U = V ⊕W for some submodule W which we have

just observed satisfies condition (1), and hence so does U/V since U/V ∼= W .

We now present a different statement of Maschke’s theorem. The statement remains

correct if the words ‘finite-dimensional’ are removed from it, but we leave the proof of this

stronger statement to the exercises.

(1.7) COROLLARY. Let R be a field in which |G| is invertible. Then every finite-

dimensional RG-module is semisimple.

Proof. This combines Theorem 1.4 with the equivalence of the statements of Propo-

sition 1.6.

This theorem puts us in very good shape if we want to know about the representations

of a finite group over a field in which |G| is invertible — for example any field of charac-

teristic zero. To obtain a description of all possible finite-dimensional representations we

need only describe the simple ones, and then arbitrary ones are direct sums of these.

The following corollaries to Lemma 1.5 will not immediately be used, but we present

them here because they have the same flavor as the results just considered. They could be

omitted at this point, and read as they are needed.

(1.8) COROLLARY. Let A be a ring with a 1, and let U be an A-module of finite

composition length.

(1) The sum of all the simple submodules of U is a semisimple module, which is the unique

largest semisimple submodule of U .
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(2) The sum of all submodules of U isomorphic to some given simple module S is a

submodule isomorphic to a direct sum of copies of S. It is the unique largest submodule

of U with this property.

Proof. The submodules described can be expressed as the sum of finitely many sub-

modules by the finiteness condition on U . They are the unique largest submodules with

their respective properties since they contain all simple submodules (in case (1)), and all

submodules isomorphic to S (in case (2)).

The largest semisimple submodule of a module U is called the socle of U , and is

denoted Soc(U).

(1.9) COROLLARY. Let U = Sa1
1 ⊕ · · · ⊕ S

ar
r be a semisimple module over a ring A

with a 1, where the Si are non-isomorphic simple modules and the ai are the multiplicities

to which they occur as summands of U . Then each submodule Sai
i is uniquely determined

and is characterized as the unique largest submodule of U expressible as a direct sum of

copies of Si.

Proof. It suffices to show that Sai
i contains every submodule of U isomorphic to Si. If

T is any non-zero submodule of U not contained in Sai
i then for some j 6= i its projection

to a summand Sj must be non-zero. If we assume that T is simple this projection will be

an isomorphism T ∼= Sj . Thus all simple submodules isomorphic to Si are contained in

the summand Sai
i .

Exercises for Section 1.

1. In Example 1 of 1.3 prove that there are no more invariant subspaces other than

the ones listed.

2. (The modular law.) Let A be a ring and U = V ⊕W an A-module which is the

direct sum of A-modules V and W . Show by example that if X is any submodule of U

then it need not be the case that X = (V ∩ X) ⊕ (W ∩ X). Show that if we make the

assumption that V ⊆ X then it is true that X = (V ∩X)⊕ (W ∩X).

3. Suppose that ρ is a finite-dimensional representation of a finite group G over C.

Show that for each g ∈ G the matrix ρ(g) is diagonalizable.

4. Let
ρ1 : G→ GL(V )

ρ2 : G→ GL(V )

be two representations of G on the same R-module V which are injective as homomor-

phisms. (One says that such a representation is faithful.) Consider the three statements

(a) the RG-modules given by ρ1 and ρ2 are isomorphic,

(b) the subgroups ρ1(G) and ρ2(G) are conjugate in GL(V ),
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(c) for some automorphism α ∈ Aut(G) the representations ρ1 and ρ2α are isomor-

phic.

Show that (a) ⇒ (b) and that (b) ⇒ (c). Show also that if α ∈ Aut(G) is an inner

automorphism (i.e. one of the form ‘conjugation by g’ for some g ∈ G) then ρ1 and ρ1α

are isomorphic.

5. One form of the Jordan-Zassenhaus theorem states that for each n, GL(n,Z)

(that is, Aut(Zn)) has only finitely many conjugacy classes of subgroups of finite order.

Assuming this, show that for each finite group G and each integer n there are only finitely

many isomorphism classes of representations of G on Zn.

6. (a) Write out a proof of Maschke’s theorem in the case of representations over C

along the following lines.

Given a representation ρ : G→ GL(V ) where V is a vectorspace over C, let ( , ) be any

positive definite Hermitian form on V . Define a new form ( , )1 on V by

(v, w)1 =
1

|G|

∑

g∈G
(gv, gw).

Show that ( , )1 is a positive definite Hermitian form, preserved under the action of G,

i.e. (v, w)1 = (gv, gw)1 always.

If W is a subrepresentation of V , show that V = W ⊕W⊥ as representations.

(b) Show that any finite subgroup of GL(n,C) is conjugate to a subgroup of U(n,C)

(the unitary group, consisting of n × n complex matrices A satisfying AĀT = I). Show

that any finite subgroup of GL(n,R) is conjugate to a subgroup of O(n,R) (the orthogonal

group consisting of n× n real matrices A satisfying AAT = I).

7. Let U = S1 ⊕ · · · ⊕ Sr be an A-module which is the direct sum of finitely many

simple modules S1, . . . , Sr. Show that if T is any simple submodule of U then T ∼= Si for

some i.

8. Suppose U is an A-module for which we have two expressions

U ∼= Sa1
1 ⊕ · · · ⊕ S

ar
r
∼= Sb11 ⊕ · · · ⊕ S

br
r

where S1, . . . , Sr are non-isomorphic simple modules. Show that ai = bi for all i.

9. Let G = 〈x, y
∣∣ x2 = y2 = 1 = [x, y]〉 be the Klein four-group, R = F2, and consider

the two representations ρ1 and ρ2 specified on the generators of G by

ρ1(x) =




1 1 0
0 1 0
0 0 1



 , ρ1(y) =




1 0 1
0 1 0
0 0 1





and

ρ2(x) =




1 0 0
0 1 1
0 0 1



 , ρ2(y) =




1 0 1
0 1 0
0 0 1



 .
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Calculate the socles of these two representations.

10. Let G = Cp = 〈x〉 and R = Fp for some prime p ≥ 3. Consider the two

representations ρ1 and ρ2 specified by

ρ1(x) =




1 1 0
0 1 1
0 0 1



 and ρ2(x) =




1 1 1
0 1 0
0 0 1



 .

Calculate the socles of these two representations. Show that the second representation is

the direct sum of two non-zero subrepresentations.

11. (a) Using 1.6 show that if A is a ring for which the regular representation AA is

semisimple, then every finitely generated A-module is semisimple.

(b) Extend the result of part (a), using Zorn’s lemma, to show that if A is a ring for

which the regular representation AA is semisimple, then every A-module is semisimple.

12. Let U be a module for a ring A with a 1. Show that the following three statements

are equivalent.

(1) U is a direct sum of simple A-submodules.

(2) U is a sum of simple A-submodules.

(3) every submodule of U is a direct summand of U .

[Use Zorn’s lemma to prove a version of Lemma 1.5 which has no finiteness hypothesis and

then copy Proposition 1.6. This deals with all implications except (3)⇒ (2). For that, use

the fact that A has a 1 and hence every (left) ideal is contained in a maximal (left) ideal,

combined with condition (3), to show that every submodule of U has a simple submodule.

Consider the sum of all simple submodules of U and show that it equals U .]

13. Let RG be the group algebra of a finite group G over a commutative ring R with

1. Let S be a simple RG-module and let I be the anihilator in R of S, that is

I = {r ∈ R
∣∣ rx = 0 for all x ∈ S}.

Show that I is a maximal ideal in R.

[This question requires some familiarity with standard commutative algebra. We conclude

from this result that when considering simple RG modules we may reasonably assume that

R is a field, since S may naturally be regarded as an (R/I)G-module and R/I is a field.]
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2. The structure of algebras for which every module is semisimple.

In this section we work with an abstract finite-dimensional algebra A over a field k

(unless greater generality is stated). In studying the simple A-modules it is no loss of

generality to assume that we are working over a field, as explained in an exercise at the

end of the last section. Furthermore, every simple A-module is isomorphic to one of the

form A/I where I is some maximal left ideal of A. This is because if x ∈ S is any non-zero

element of a simple module S then the mapping of left modules A→ S specified by a 7→ ax

is surjective, by simplicity of S, and so S ∼= A/I where I is the kernel, which is a maximal

ideal again by simplicity of S.

The following general result is basic, and will be used time and time again.

(2.1) THEOREM (Schur’s Lemma). Let S1 and S2 be simple A-modules where A

is a ring with 1. Then HomA(S1, S2) = 0 unless S1
∼= S2, in which case EndA(S1) is a

division ring. In case A is a finite-dimensional algebra over an algebraically closed ground

field k, then every endomorphism of S1 is scalar multiplication by an element of k. Thus

EndA(S1) ∼= k.

Proof. Suppose θ : S1 → S2 is a non-zero morphism. Then 0 6= θ(S1) ⊆ S2, so

θ(S1) = S2 by simplicity of S2 and θ is surjective. Thus Ker θ 6= S1, so Ker θ = 0 by

simplicity of S1, and θ is injective. Therefore θ is invertible, S1
∼= S2 and EndA(S1) is a

division ring.

If k is algebraically closed, let λ be an eigenvalue of θ. Now (θ − λI) : S1 → S1 is a

singular endomorphism of A-modules, so θ − λI = 0 and θ = λI.

The next result is straightforward and seemingly innocuous, but it has an important

consequence for representation theory. It is the main tool in recovering the structure of

an algebra from its representations. We use the notation Aop to denote the opposite ring

of A, namely the ring which has the same set and the same addition as A, but in which

there is a new multiplication · given by a · b = ba.

(2.2) LEMMA. For any ring A with a 1, EndA(AA) ∼= Aop.

Proof. The inverse isomorphisms are

φ 7→ φ(1)

(a 7→ ax)← x.

There are several things here which need to be checked: that the second assignment does

take values in EndA(AA), that the morphisms are ring homomorphisms, and that they are

mutually inverse. We leave most of this to the reader, observing only that under the first

homomorphism a composite θφ is sent to (θφ)(1) = θ(φ(1)) = θ(φ(1)1) = φ(1)θ(1), so that

this is indeed a homomorphism to Aop.
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Observe that the proof of Lemma 2.2 establishes that every endomorphism of the

regular representation is of the form ‘right multiplication by some element’.

We say that a ring A with 1 is semisimple if the regular representation AA is semisim-

ple. There are other equivalent definitions of a semisimple ring which will be explored

further in Chapter 6.

A ring A with 1 all of whose modules are semisimple is itself called semisimple. By

Exercise 1.11 it is equivalent to suppose that the regular representation AA is semisimple.

It is also equivalent to suppose that the Jacobson radical of the ring is zero, but we will

not deal with this point of view until Chapter 6.

(2.3) THEOREM (Artin-Wedderburn). Let A be a finite-dimensional algebra over

a field with the property that every finite-dimensional module is semisimple. Then A is a

direct sum of matrix algebras over division rings. Specifically, if

AA ∼= Sn1
1 ⊕ · · · ⊕ S

nr
r

where the S1, . . . , Sr are non-isomorphic simple modules occuring with multiplicities ni in

the regular representation, then

A ∼= Mn1
(D1)⊕ · · · ⊕Mnr

(Dr)

where Di = EndA(Si)
op.

More is true: every such direct sum of matrix algebras is a semisimple algebra, and

each matrix algebra over a division ring is a simple algebra, namely one which has no 2-sided

ideals apart from the zero ideal and the whole ring (see the exercises). Furthermore, the

matrix algebra summands are uniquely determined as subsets of A (although the module

decomposition of AA is usually only determined up to isomorphism). The uniqueness of

the summands will be established in Proposition 3.22. Notice that if k happens to be

algebraically closed then by Schur’s lemma the division rings Di which appear must all be

equal to k.

Proof. We first observe that if we have a direct sum decomposition U = U1⊕· · ·⊕Ur
of a module U then EndA(U) is isomorphic to the algebra of r × r matrices in which the

i, j entries lie in HomA(Uj , Ui). This is because any endomorphism φ : U → U may be

writen as components φ = (φij) where φij : Uj → Ui, and in terms of components these

endomorphisms compose in the manner of matrix multiplication. Since HomA(S
nj

j , Sni
i ) =

0 if i 6= j by Schur’s lemma, the decomposition of AA gives

EndA(AA) ∼= EndA(Sn1
1 )⊕ · · · ⊕ EndA(Snr

r )

and furthermore EndA(Sni
i ) ∼= Mni

(Dop
i ). By Lemma 2.2 we identify EndA(AA) as Aop.
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(2.4) COROLLARY. Let A be a finite-dimensional semisimple algebra over a field k

which is algebraically closed. In any decomposition

AA = Sn1
1 ⊕ · · · ⊕ S

nr
r

where the Si are pairwise non-isomorphic simple modules we have that S1, . . . , Sr is a

complete set of representatives of the isomorphism classes of simple A-modules, ni =

dimk Si and dimk A = n2
1 + · · ·+ n2

r.

Proof. All isomorphism types of simple modules must appear in the decomposition

because every simple module can be expressed as a homomorphic image of AA (as observed

at the start of this section), and so must be a homomorphic image of one of the modules Si.

Since k is algebraically closed all the division rings Di coincide with k by Schur’s lemma,

and EndA(Sni
i ) ∼= Mni

(k). The ring decomposition A = Mn1
(k)⊕· · ·⊕Mnr

(k) immediately

gives dimk A = n2
1 + · · · + n2

r. From the way this decomposition was constructed as an

endomorphism ring in 2.3 we see that Mni
(k) has non-zero action on the summand Sni

i ,

and zero action on the other summands S
nj

j with j 6= i. It follows that as left A-modules,

Mni
(k) ∼= Sni

i since both sides are isomorphic to the quotient of A by the elements which

Mni
(k) annihilates. Hence

dimkMni
(k) = n2

i = dimk S
ni
i = ni dimSi,

and so dimSi = ni.

Let us now restate what we have proved specifically in the context of group represen-

tations.

(2.5) COROLLARY. Let G be a finite group and k a field in which |G| is invertible.

(1) As a ring, kG is a direct sum of matrix algebras over division rings,

(2) Suppose in addition that k is algebraically closed, let S1, . . . , Sr be a set of represen-

tatives of the simple kG-modules (up to isomorphism) and put di = dimk Si. Then di
equals the multiplicity with which Si is a summand of the regular representation of

G, and |G| = d2
1 + · · ·+ d2

r.

Part (2) of this result provides a numerical criterion which enables us to say when

we have constructed all the simple modules of a group over an algebraically closed field

k in which |G| is invertible. For if we have constructed a set of non-isomorphic simple

modules with the property that the squares of their degrees sum to |G|, then we have a

complete set. While this is an easy condition to verify, it will be superceded later on by the

even more straightforward criterion that the number of simple kG-modules (with the same

hypotheses on k) equals the number of conjugacy classes of elements of G. Once we have

proved this, the formula
∑
d2
i = |G| allows the degree of the last simple representation to

be determined once the others are known.
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(2.6) Example. Over R we have constructed for S3 the trivial representation, the sign

representation which is also of dimension 1 but not the same as the trivial representation,

and a 2-dimensional representation which is simple because visibly no 1-dimensional sub-

space of the plane is invariant under the group action. Since 12 + 12 + 22 = |S3| we have

constructed all the simple representations.

Exercises for Section 2.

1. Let A be a finite-dimensional semisimple algebra. Show that A has only finitely

many isomorphism types of modules in each dimension. [This is not in general true for

algebras which are not semisimple: The representations of C2×C2 = 〈x, y〉 over F2 specified

for each λ ∈ F2 by

ρλ(x) =




1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1


 ρλ(y) =




1 0 0 0
0 1 λ 0
0 0 1 0
1 0 0 1




all have dimension 4 and are non-isomorphic.]

2. Using Exercises 1.5 and 2.1 (which you may assume without proof), show that if

k is any field of characteristic 0 then for each natural number m, GLn(k) has only finitely

many conjugacy classes of subgroups of order m. [In view of the comment to problem 1,

the same is not true when when k = F2.]

3. Let D be a division ring and n a natural number.

(a) Show that the natural Mn(D)-module consisting of column vectors of length n is

a simple module.

(b) Show that Mn(D) is semisimple and has up to isomorphism only one simple

module.

(c) Show that every algebra of the form

Mn1
(D1)⊕ · · · ⊕Mnr

(Dr)

is semisimple.

(d) Show that Mn(D) is a simple ring, namely one in which the only 2-sided ideals

are the zero ideal and the whole ring.

4. Prove the following extension of 2.4:

THEOREM. Let A be a finite-dimensional semisimple algebra, S a simple A-module

and D = EndA(S). Then S may be regarded as a module over D and the multiplicity of

S as a summand of AA equals dimD S.

5. Using the fact that Mn(k) has a unique simple module prove the Noether-Skolem

theorem, that any algebra automorphism of Mn(k) is inner, i.e. of the form conjugation

by some invertible matrix.
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6. Show that for any field k we have Mn(k) ∼= Mn(k)
op, and in general for any division

ring D that given any positive integer n, Mn(D) ∼= Mn(D)op if and only if D ∼= Dop.

7. Let A be any algebra. An element e ∈ A is called idempotent if and only if e2 = e.

(a) Let V be any A-module. Show that an endomorphism e : V → V is a projection

onto a subspace W if and only if e is idempotent as an element of EndA(V ).

(b) Show that direct sum decompositions V = W1⊕W2 as A-modules are in bijection

with expressions 1 = e + f in EndA(V ), where e and f are idempotent elements with

ef = fe = 0. (In case ef = fe = 0, e and f are called orthogonal.)

(c) Let e1, e2 ∈ EndA(V ) be idempotent elements. Show that e1(V ) ∼= e2(V ) as A-

modules if and only if e1 and e2 are conjugate under the unit group EndA(V )∗ (i.e. there

exists an A-endomorphism α : V → V such that e2 = αe1α
−1).

(d) An idempotent element e is called primitive if it cannot be expressed as a sum of

orthogonal idempotent elements in a non-trivial way. Show that e ∈ EndA(V ) is primitive

if and only if e(V ) has no (non-trivial) direct sum decomposition. (In this case V is said

to be indecomposable.)

(e) Show that all primitive idempotent elements in Mn(k) are conjugate under the

action of the unit group GLn(k). Write down explicitly any primitive idempotent element

in M3(k).
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3. Characters

The characters of a finite group take values in a field of characteristic zero which

we may always take to be a subfield of the complex numbers, and so frequently in this

section we will restrict our attention to the complex numbers C. When ρ : G → GL(V )

is a finite-dimensional representation of G over C we define the character χ of ρ to be the

function

χ : G→ C

given by χ(g) = tr(ρ(g)), the trace of the linear map ρ(g). We say that the representation

ρ and the representation space V afford the character χ, and we may write χρ or χV when

we wish to specify this character more precisely.

(3.1) PROPOSITION.

(1) χ(1) is the degree of ρ.

(2) For every g ∈ G we have χ(g−1) = χ(g), the complex conjugate.

(3) χ(hgh−1) = χ(g) for all g, h ∈ G.

(4) If V and W are isomorphic CG-modules then χV (g) = χW (g) for all g ∈ G.

Proof. (1) is immediate because the identity of the group must act as the identity

matrix.

(2) Each element g has finite order so its eigenvalues λ1, . . . , λn are roots of unity. The

inverse g−1 has eigenvalues λ−1
1 , . . . , λ−1

n = λ1, . . . , λn and so χ(g−1) = λ1+· · ·+λn = χ(g).

(3) results from the fact that tr(ab) = tr(ba) for endomorphisms a and b, so that

χ(hgh−1) = tr ρ(hgh−1) = tr(ρ(h)ρ(g)ρ(h−1)) = tr ρ(g) = χ(g).

(4) Suppose that ρV and ρW are the representations of G on V and W , and that we

have an isomorphism of CG-modules α : V → W . Then αρV (g) = ρW (g)α for all g ∈ G,

so that χW (g) = tr ρW (g) = tr(αρV (g)α−1) = tr ρV (g) = χV (g).

Part (4) of the above result is a great convenience since when talking about characters

we do not have to worry about the possibility that two modules may be isomorphic but

not actually the same.

From part (3) of 3.1 we see that the character of a representation takes the same

value on all elements in a conjugacy class of G. The table of complex numbers whose rows

are indexed by the isomorphism types of simple representations of G, whose columns are

indexed by the conjugacy classes of G and whose entries are the values of the characters of

the simple representations on representatives of the conjugacy classes is called the character

table of G. It is usual to index the first column of a character table by the (conjugacy

class of the) identity, and to put the character of the trivial representation as the top row.

With this convention the top row of every character table will be a row of 1’s, and the

first column will list the degrees of the simple representations. At the top of the table it is

usual to list two rows, the second of which (immediately above a horizontal line) is a list
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of representatives of the conjugacy classes of elements of G, in some notation. The very

top row lists the value of |CG(g)| for the element g underneath.

(3.2) Example. We present the character table of S3. We saw at the end of Section

2 that we already have a complete list of the simple modules for S3, and the values of

their characters on representatives of the conjugacy classes of S3 are computed from the

matrices which give these representations.

Centralizer orders 6 2 3
Conjugacy class representative 1 (12) (123)

Trivial 1 1 1
Sign 1 −1 1

2 0 −1

TABLE: The character table of S3.

We will see that the character table has remarkable properties, among which are

that it is always square, and its rows (and also its columns) satisfy certain orthogonality

relations. Our next main goal is to state and prove these results. In order to do this we

first introduce three ways to construct new representations of a group from existing ones.

These constructions have validity no matter what ring R we work over, although in the

application to the character table we will suppose that R = C.

Suppose that V and W are representations of G over R. The R-module V ⊗R W

acquires an action of G by means of the formula g · (v ⊗ w) = gv ⊗ gw, thereby making

the tensor product into a representation. This is what is called the tensor product of

the representations V and W , but it is not the only occurrence of tensor products in

representation theory, and as the other ones are different this one is sometimes also called

the Kronecker product. The action of G on the Kronecker product is called the diagonal

action.

For the second construction we form the R-module HomR(V,W ). This acquires an

action of G by means of the formula (g ·f)(v) = gf(g−1v) for each R-linear map f : V →W

and g ∈ G.

The third construction is the particular case of the second in which we take W to be

the trivial module R. We write V ∗ = HomR(V,R) and the action is (g · f)(v) = f(g−1v).

This representation is called the dual or contragredient representation of V , and it is usually

only considered when V is free as an R-module.

If R happens to be a field and we have bases v1, . . . , vm for V and w1, . . . , wn for

W then V ⊗W has a basis {vi ⊗ wj
∣∣ 1 ≤ i ≤ m, 1 ≤ j ≤ n} and V ∗ has a dual basis

v̂1, . . . , v̂m. With respect to these bases an element g ∈ G acts on V ⊗W with the matrix

which is the tensor product of the two matrices giving its action on V and W , and on V ∗ it

acts with the transpose of the inverse of the matrix in its action on V . The tensor product

of two matrices is not seen so often these days. If (apq), (brs) are an m×m matrix and an
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n× n matrix their tensor product is the mn ×mn matrix (cij) where if i = (p− 1)n+ r

and j = (q − 1)n+ s with 1 ≤ p, q ≤ m and q ≤ r, s ≤ n then cij = apqbrs. For example,

(
a b
c d

)
⊗

(
e f
g h

)
=




ae af be bf
ag ah bg bh
ce cf de df
cg ch dg dh


 .

If α : V → V and β : W → W are endomorphisms, then the matrix of

α⊗ β : V ⊗W → V ⊗W

is the tensor product of the matrices which represent α and β. We see from this that

tr(α⊗ β) = tr(α) tr(β).

In the following result we consider the sum and product of characters, which are

defined pointwise by the formulas

(χV + χW )(g) = χV (g) + χW (g)

(χV · χW )(g) = χV (g) · χW (g).

(3.3) PROPOSITION. Let V and W be finite-dimensional representations of G over

a field k of characteristic zero.

(1) V ⊕W has character χV + χW .

(2) V ⊗W has character χV · χW .

(3) V ∗ has character χV ∗(g) = χV (g−1) = χV (g).

(4) Homk(V,W ) ∼= V ∗ ⊗kW as kG-modules, and this representation has character equal

to χV ∗ · χW .

We will see in the proof that the isomorphism of modules in part (4) is in fact valid

without restriction on the characteristic of the field k.

Proof. (1), (2) and (3) are immediate on taking matrices for the representations. As

for (4), we define a linear map

α : V ∗ ⊗W → Homk(V,W )

f ⊗ w 7→ (v 7→ f(v) · w),

this being the specification on basic tensors. We show that α is injective. Assuming that

w1, . . . , wn is a basis of W , every element of V ∗ ⊗W can be written
∑n
i=1 fi ⊗ wi where

fi : V → k. Such an element is sent by α to the map v 7→
∑
fi(v)wi, where v ∈ V . If

this is the zero mapping then
∑
fi(v)wi = 0 for all v ∈ V , and by independence of the wi

we have fi(v) = 0 for all v ∈ V . Thus
∑n
i=1 fi ⊗ wi = 0 which shows that α is injective.
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Since V ∗ ⊗W and Homk(V,W ) have the same dimension (equal to dimV · dimW ), α is

a vector space isomorphism. It is also a map of kG-modules, since for g ∈ G,

α(g(f ⊗ w)) = α(gf ⊗ gw)

= (v 7→ (gf)(v) · gw)

= (v 7→ g(f(g−1v)w))

= g(v 7→ f(v)w)

= gα(f ⊗ w).

A fundamental notion in dealing with group actions is that of fixed points. If V is an

RG-module we define the fixed points V G = {v ∈ V
∣∣ gv = v for all g ∈ G}. This is the

largest RG-submodule of V on which G has trivial action.

(3.4) LEMMA. Over any ring R, HomR(V,W )G = HomRG(V,W ).

Proof. An R-linear map f : V → W is a morphism of RG-modules precisely if it

commutes with the action of G, which is to say f(gv) = gf(v) for all g ∈ G and v ∈ V , or

in other words gf(g−1v) = f(v) always. This is exactly the condition that f is fixed under

the action of G.

The next result is an abstraction of the idea which was used in proving Maschke’s

theorem, where the application was to the RG-module HomR(V, V ). We will use this idea

a second time in proving the orthogonality relations for characters.

(3.5) LEMMA. Let V be an RG-module where R is a ring in which |G| is invertible.

Then
1

|G|

∑

g∈G
g : V → V G

is a map of RG-modules which is projection onto the fixed points of V . In particular, V G

is a direct summand of V as an RG-module. When R is a field of characteristic zero we

have

tr(
1

|G|

∑

g∈G
g) = dimV G.

Proof. Let π : V → V denote the map ‘multiplication by 1
|G|

∑
g∈G g’. We check that

π is a linear map, and it commutes with the action of G since for h ∈ G and v ∈ V we
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have

π(hv) = (
1

|G|

∑

g∈G
gh)v

= π(v)

= (
1

|G|

∑

g∈G
hg)v

= hπ(v)

since as g ranges through the elements of G so do gh and hg. The same equations show

that every vector of the form π(v) is fixed by G. Furthermore, if v ∈ V G then

π(v) =
1

|G|

∑

g∈G
gv =

1

|G|

∑

g∈G
v = v

so π is indeed projection onto V G.

There is one more ingredient we describe before stating the orthogonality relations

for characters. We define an inner product on characters, but this does not make sense

without some further explanation, because an inner product must be defined on a vector

space and characters do not form a vector space. They are, however, elements in a vector

space, namely the vector space of class functions on G.

A class function on G is a function G → C which is constant on each conjugacy

class of G. Such functions are in bijection with the functions from the set of conjugacy

classes of G to C, a set of functions which we may denote Ccc(G) where cc(G) is the set

of conjugacy classes of G. These functions become an algebra when we define addition,

multiplication and scalar multiplication pointwise on the values of the function. In other

words, (χ · ψ)(g) = χ(g)ψ(g), (χ + ψ)(g) = χ(g) + ψ(g) and (λχ)(g) = λχ(g) where χ, ψ

are class functions and λ ∈ C. If G has n conjugacy classes, this algebra is isomorphic to

Cn, the direct sum of n copies of C, and is semisimple.

We define a Hermitian bilinear form on the complex vector space of class functions on

G by means of the formula

〈χ, ψ〉 =
1

|G|

∑

g∈G
χ(g)ψ(g).

As well as the usual identities which express bilinearity and the fact that the form is

evidently Hermitian, it satisfies

〈χφ, ψ〉 = 〈χ, φ∗ψ〉

where φ∗(g) = φ(g) is the class function obtained by complex conjugation. If χ and ψ

happen to be characters of a representation we have χ(g) = χ(g−1), ψ∗ is the character of
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the contragredient representation, and we obtain further expressions for the bilinear form:

〈χ, ψ〉 =
1

|G|

∑

g∈G
χ(g−1)ψ(g)

=
1

|G|

∑

g∈G
χ(g)ψ(g−1)

=
1

|G|

∑

g∈G
χ(g)ψ(g),

where the second equality is obtained by observing that as g ranges over the elements of

G, so does g−1.

With all this preparation we can now state and prove the orthogonality relations for

the rows of the character table. The picture will be completed once we have shown that

the character table is square and deduced the orthogonality relations for columns in 3.16

and 3.17.

(3.6) THEOREM (Row Orthogonality relations).

(1) If χ is the character of a simple representation over C then 〈χ, χ〉 = 1.

(2) If χ and ψ are the characters of non-isomorphic simple representations over C then

〈χ, ψ〉 = 0.

Proof. Suppose that V and W are simple complex representations affording characters

χ and ψ. By 3.3 the character of HomC(V,W ) is χ · ψ. By 3.4 and 3.5

dimHomCG(V,W ) = tr(
1

|G|

∑

g∈G
g) in its action on HomC(V,W )

=
1

|G|

∑

g∈G
χ(g)ψ(g)

= 〈χ, ψ〉.

Schur’s lemma asserts that this number is 1 if V ∼= W , and 0 if V 6∼= W .

We will describe many consequences of the orthogonality relations, and the first is

that they provide a way of determining the decomposition of a given representation as

a direct sum of simple representations. This procedure is similar to the way of finding

the coefficients in the Fourier expansion of a function using orthogonality of the functions

sin(mx) and cos(nx).
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(3.7) COROLLARY. Let V be a CG-module. In any expression

V = Sn1
1 ⊕ · · · ⊕ S

nr
r

in which S1, . . . , Sr are non-isomorphic simple modules, we have

ni = 〈χV , χi〉

where χV is the character of V and χi is the character of Si. In particular ni is determined

by V independently of the choice of decomposition.

(3.8) Example. Let G = S3 and denote by C the trivial representation, ǫ the sign

representation and V the 2-dimensional simple representation over C. We decompose the

4-dimensional representation V ⊗ V as a direct sum of simple representations. Since the

values of the character χV give the row of the character table

χV : 2 0 − 1,

V ⊗ V has character values

χV⊗V : 4 0 1.

Thus

〈χV⊗V , χC〉 =
1

6
(4 · 1 + 0 + 2 · 1 · 1) = 1

〈χV⊗V , χǫ〉 =
1

6
(4 · 1 + 0 + 2 · 1 · 1) = 1

〈χV⊗V , χV 〉 =
1

6
(4 · 2 + 0− 2 · 1 · 1) = 1

and we deduce that

V ⊗ V ∼= C⊕ ǫ⊕ V.

(3.9) COROLLARY. For finite-dimensional complex representations V and W we

have V ∼= W if and only if χV = χW .

Proof. We saw in 3.1 that if V and W are isomorphic then they have the same

character. Conversely, if they have the same character they both may be decomposed as a

direct sum of simple representations by 1.7, and by 3.7 the multiplicities of the simples in

these two decompositions must be the same. Hence the representations are isomorphic.
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The next result is a criterion for a representation to be simple. An important step in

studying the representation theory of a group is to construct its character table, and one

proceeds by compiling a list of the simple characters which at the end of the calculation will

be complete. At any stage one has a partial list of simple characters, and considers some

(potentially) new character. One finds the multiplicity of each previously obtained simple

character as a summand of the new character, and subtracts off the these simple characters

to the correct multiplicity. What is left is a character all of whose simple components are

new simple characters. This character will itself be simple precisely if the following easily

verified criterion is satisfied.

(3.10) COROLLARY. If χ is the character of a complex representation V then 〈χ, χ〉

is a positive integer, and equals 1 if and only if V is simple.

Proof. We may write V ∼= Sn1
1 ⊕ · · · ⊕ S

nr
r and then 〈χ, χ〉 =

∑r
i=1 n

2
i is a positive

integer, which equals 1 precisely if one ni is 1 and the others are 0.

(3.11) Example. We construct the character table of S4, since it illustrates some

techniques in finding simple characters.

24 4 8 4 3
1 (12) (12)(34) (1234) (123)

1 1 1 1 1
1 −1 1 −1 1
2 0 2 0 −1
3 −1 −1 1 0
3 1 −1 −1 0

TABLE: The character table of S4.

Immediately above the horizontal line we list representatives of the conjugacy classes of

elements of S4, and above them the orders of their centralizers. The first row below the

line is the character of the trivial representation, and below that is the character of the

sign representation.

There is a homomorphism σ : S4 → S3 specified by (12) 7→ (12), (34) 7→ (12),

(23) 7→ (23), (123) 7→ (123) which has kernel the normal subgroup 〈(12)(34), (13)(24)〉.

(One way to obtain this homomorphism is to identify S4 as the group of rotations of

a cube and observe that each rotation gives rise to a permutation of the three pairs of

opposite faces.) Any representation ρ : S3 → GL(V ) gives rise to a representation ρσ of

S4 obtained by composition with σ, and if we start with a simple representation of S3 we

will obtain a simple representation of S4 since σ is surjective and the invariant subspaces

for ρ and ρσ are the same. Thus the simple characters of S3 give a set of simple characters

of S4 obtained by applying σ and evaluating the character of S3. This procedure, which

in general works whenever one group is a homomorphic image of another, gives the trivial,

sign and 2-dimensional representations of S4.
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There is an isomorphism between S4 and the group of rotations of R3 which preserve

a cube. One sees this from the fact that the group of such rotations permutes the four

diagonals of the cube. This action is faithful and since every transposition of diagonals

may be realized through some rotation, so can every permutation of the diagonals. Hence

the full group of such rotations is isomorphic to S4. The character of this action of S4 on

R3 is the fourth row of the character table. To compute the traces of the matrices which

represent the different elements we do not actually have to work out what those matrices

are, relying instead on the observation that every rotation of R3 has matrix conjugate to

a matrix 


cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 .

Thus, for example, (12) and (123) must act as rotations through π and 2π
3 , respectively,

so act via matrices which are conjugates of



−1 0 0
0 −1 0
0 0 1



 and




−1

2
−

√
3

2
0√

3
2 −1

2 0
0 0 1





which have traces −1 and 0.

There is an action of S4 on C4 given by the permutation action of S4 on four basis

vectors. Since the trace of a permutation matrix equals the number of points fixed by the

permutation, this has character

χ : 4 2 0 0 1

and we compute

〈χ, 1〉 =
4

24
+

2

4
+ 0 + 0 +

1

3
= 1.

Thus χ = 1 + ψ where ψ is the character of a 3-dimensional representation:

ψ : 3 1 − 1 − 1 0.

Again we have

〈ψ, ψ〉 =
9

24
+

1

4
+

1

8
+

1

4
+ 0 = 1

so ψ is simple by 3.10, and this is the bottom row of the character table.

There are other ways to complete the calculation of the character table. Having

computed four of the five rows, the fifth is determined by the facts that it is orthogonal to

the other four, and that the sum of the squares of the degrees of the characters equals 24.

Equally we could have constructed the bottom row as χ⊗ ǫ where χ is the other character

of degree 3 and ǫ is the sign character.

Our next immediate goal is to prove that the character table of a finite group is square,

and to deduce the column orthogonality relations. Before doing this we show in the next

two results how part of the column orthogonality relations may be derived in a direct way.

Consider the regular representation of G on CG, and let χCG denote the character of

this representation.
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(3.12) LEMMA.

χCG(g) =
{
|G| if g = 1
0 otherwise.

Proof. Each g ∈ G acts by the permutation matrix corresponding to the permutation

h 7→ gh. Now χCG(g) equals the number of 1’s down the diagonal of this matrix, which

equals |{h ∈ G
∣∣ gh = h}|.

We may deduce an alternative proof of 2.5 (in case k = C), and also a way to do the

computation of the final row of the character table once the others have been determined.

(3.13) COROLLARY. Let χ1, . . . , χr be the simple complex characters of G, with

degrees d1, . . . , dr. Then 〈χCG, χi〉 = di, and hence

(1)
∑r
i=1 d

2
i = |G|, and

(2)
∑r
i=1 diχi(g) = 0 if g 6= 1.

Proof. Direct evaluation gives

〈χCG, χi〉 =
1

|G|
|G|χi(1) = di

and hence χCG = d1χ1 + · · ·+ drχr. Evaluating at 1 gives (1), and at g 6= 1 gives (2).

It is an immediate deduction from the fact that the rows of the character table are

orthogonal that the number of simple complex characters of a group is at most the number

of conjugacy classes of elements in the group. We shall now prove that there is always

equality here. For any ring A we denote by Z(A) the center of A.

(3.14) LEMMA.

(1) For any ring R, Z(Mn(R)) = {λI
∣∣ λ ∈ R} ∼= R.

(2) The number of simple complex characters of G equals dimZ(CG).

Proof. (1) Let Eij denote the matrix which is 1 in place i, j and 0 elsewhere. If

X = (xij) is any matrix then

EijX = the matrix with row j of X moved to row i, 0 elsewhere,

XEij = the matrix with column i of X moved to column j, 0 elsewhere.

If X ∈ Z(Mn(k)) these two are equal, and we deduce that xii = xjj and all other entries

in row j and column i are 0. Therefore X = x11I.

(2) In 2.3 we constructed an isomorphism

CG ∼= Mn1
(C)⊕ · · · ⊕Mnr

(C)

where the matrix summands are in bijection with the isomorphism classes of simple mod-

ules. On taking centres, each matrix summand contributes 1 to dimZ(CG).
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(3.15) LEMMA. Let x1, . . . , xt be representatives of the conjugacy classes of elements

of G and let R be any ring. For each i let xi ∈ RG denote the sum of the elements in the

same conjugacy class as xi. Then Z(RG) is free as an R-module, with basis x1, . . . , xt.

Proof. We first show that xi ∈ Z(RG). Write xi =
∑
y∼xi

y, where ∼ denotes

conjugacy. Then

gxi =
∑

y∼xi

gy = (
∑

y∼xi

gyg−1)g = xig

since as y runs through the elements of G conjugate to xi, so does gyg−1, and from this it

follows that xi is central.

Next suppose
∑

g∈G agg ∈ Z(RG). We show that if g1 ∼ g2 then ag1 = ag2 . Suppose

that g2 = hg1h
−1. The coefficient of g2 in h(

∑
g∈G agg)h

−1 is ag1 and in (
∑
g∈G agg) is

ag2 . Since elements of G are independent in RG, these coefficients must be equal. From

this we see that every element of Z(RG) can be expressed as an R-linear combination of

the xi.

Finally we observe that the xi are independent over R, since each is a sum of group

elements with support disjoint from the supports of the other xj .

(3.16) THEOREM. The number of simple complex characters of G equals the number

of conjugacy classes of elements of G.

Proof. In 3.14 we showed that the number of simple characters equals the dimension

of the centre, and 3.15 we showed that this is equal to the number of conjugacy classes.

We conclude that the character table of a finite group is always square. From this we

get orthogonality relations between the columns of the character table.

(3.17) COROLLARY (Column orthogonality relations). Let X be the character table

of G as a matrix, and let

C =




|CG(x1)| 0 · · · 0
0 |CG(x2)|
...

. . .
...

0 · · · |CG(xr)|




where x1, . . . , xr are representatives of the conjugacy classes of elements of G. Then

XTX = C,

where the bar denotes complex conjugation.

Proof. The orthogonality relations between the rows may be stated XC−1XT = I.

Since all these matrices are square, they are invertible, and in fact (XC−1)−1 = XT =

CX
−1

. Therefore XTX = C.
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A less intimidating way to state the column orthogonality relations is

r∑

i=1

χi(g)χi(h) =

{
|CG(g)| if g ∼ h,
0 if g 6∼ h.

The special case of this in which g = 1 has already been seen in Corollary 3.13.

We conclude this section on the properties of characters with the result which states

that the degrees of the simple complex characters of a finite group G divide |G|. This is, of

course, a big restriction on the possible degrees which may occur, and it is proved by means

of an algebraic excursion which otherwise will not be used in the immediate development

of the theory. This means that it is quite a good idea to skip the proof on first reading.

We need to use the notion of integrality. Suppose that S is a commutative ring with

1 and R is a subring of S with the same 1. An element s ∈ S is said to be integral over

R if f(s) = 0 for some monic polynomial f ∈ R[X ]. Here, a monic polynomial is one in

which the coefficient of the highest power of X is 1. We say that the ring S is integral

over R if every element of S is integral over R. An element of C integral over Z is called

an algebraic integer. We summarize the properties of integers which we will need.

(3.18) THEOREM. Let R be a subring of a commutative ring S.

(1) The following are equivalent for an element s ∈ S:

(a) s is integral over R,

(b) R[s] is contained in some finitely generated R-submodule M of S such that sM ⊆

M .

(2) The elements of S integral over R form a subring of S.

(3) {x ∈ Q
∣∣ x is integral over Z} = Z.

(4) Let g be any element of a finite group G and χ any character of G. Then χ(g) is an

algebraic integer.

In the statement of this result, R[s] denotes the subring of S generated by R and s.

Proof. (1) (a)⇒ (b). Suppose s is an element integral over R, satisfying the equation

sn + an−1s
n−1 + · · ·+ a1s+ a0 = 0

where ai ∈ R. Then R[s] is generated as an R-module by 1, s, s2, . . . , sn−1. This is because

the R-span of these elements is also closed under multiplication by s, using the fact that

s · sn−1 = −an−1s
n−1 − · · · − a1s− a0.

Thus we may take M = R[s].

(b) ⇒ (a). Suppose R[s] ⊆ M = Rx1 + · · ·Rxn with sM ⊆ M . Thus for each i we

have sxi =
∑n
j=1 λijxj for certain λij ∈ R. Consider the n × n matrix A = sI − (λij)

with entries in S, where I is the identity matrix. We have Ax = 0 where x is the vector
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(x1, . . . , xn)
T , and so adj(A)Ax = 0 where adj(A) is the adjugate matrix of A satisfying

adj(A)A = det(A) · I. Hence det(A) · xi = 0 for all i. Since 1 ∈ R ⊆ M is a linear

combination of the xi we have det(A) = 0 and so s is a root of the monic polynomial

det(X · I − (λij)).

(2) We show that if a, b ∈ S are integral over R then a + b and ab are also integral

over R. These lie in R[a, b], and we show that this is finitely generated as an R-module.

We see from the proof of part (1) that each of R[a] and R[b] is finitely generated as an

R-module. If R[a] is generated by x1, . . . , xm and R[b] is generated by y1, . . . , yn, then

R[a, b] is evidently generated as an R-module by all the products xiyj . Now R[a, b] also

satisfies the remaining condition of part (b) of (1), and we deduce that a + b and ab are

integral over R.

(3) Suppose that a
b is integral over Z, where a, b are coprime integers. Then

(a
b

)n
+ cn−1

(a
b

)n−1

+ · · ·+ c1
a

b
+ c0 = 0

for certain integers ci, and so

an + cn−1a
n−1b+ · · ·+ c1ab

n−1 + c0b
n = 0.

Since b divides all terms in this equation except perhaps the term an, b must also be a

factor of an. Since a and b are coprime, this is only possible if b = ±1, and we deduce that
a
b
∈ Z.

(4) χ(g) is the sum of the eigenvalues of g in its action on the representation which

affords χ. Since gn = 1 for some n these eigenvalues are all roots of Xn − 1 and so are

integers.

(3.19) PROPOSITION. The centre Z(ZG) is integral over Z. Hence if x1, . . . , xr are

representatives of the conjugacy classes of G, xi ∈ ZG is the sum of the elements conjugate

to xi, and λ1, . . . , λr ∈ C are algebraic integers then
∑r
i=1 λixi is integral over Z.

Proof. In the statement of this result we are identifying Z with the scalar multiples

of the identity Z · 1 ⊆ Z(ZG). We also regard ZG as a subset of CG when we form the

linear combination
∑r
i=1 λixi.

It is the case that every commutative subring of ZG is integral over Z, using condition

1(b) of 3.18, since such a subring is in particular a subgroup of the finitely-generated free

abelian group ZG, and hence is finitely generated as a Z-module.

We have seen in 3.15 that the elements x1, . . . , xr lie in Z(ZG), so they are integral

over Z, and by part (2) of 3.18 the linear combination
∑r
i=1 λixi is integral also. (We note

that the xi are in fact a finite set of generators for Z(ZG) as an abelian group, but we did

not need to know this for the proof.)
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Let ρ1, . . . , ρr be the simple representations of G over C with degrees d1, . . . , dr and

characters χ1, . . . , χr. Then each ρi : G → Mdi
(C) extends by linearity to a C-algebra

homomorphism

ρi : CG =

r⊕

i=1

Mdi
(C)→Mdi

(C)

projecting onto the ith matrix summand. The fact that the group homomorphism ρi
extends to an algebra homomorphism in this way comes formally from the construction

of the group algebra. The fact that this algebra homomorphism is projection onto the ith

summand arises from the way we decomposed CG as a sum of matrix algebras, in which

each matrix summand acts on the corresponding simple module as matrices on the space

of column vectors.

(3.20) PROPOSITION. If x ∈ Z(CG) then ρi(x) = λI for some λ ∈ C. In fact

ρi(x) =
1

di
· trace of ρi(x) · I.

Writing x =
∑

g∈G agg we have

ρi(x) =
1

di

∑

g∈G
agχi(g) · I.

Proof. Since x is central the matrix ρi(x) commutes with the matrices ρi(g) for all

g ∈ G. Therefore by Schur’s lemma, since ρi is a simple complex representation, ρi(x) = λI,

some scalar multiple of the identity matrix. Evidently λ = 1
di

tr(λI). Substituting into

this expression we obtain

1

di
tr(ρi(

∑

g∈G
agg)) =

1

di

∑

g∈G
ag tr(ρi(g))

=
1

di

∑

g∈G
agχi(g).

(3.21) THEOREM. The degrees di of the simple complex representations of G all

divide |G|.

Proof. Let x =
∑
g∈G χi(g

−1)g. This element is central in CG since the coefficients

of group elements are constant on conjugacy classes. By 3.20

ρi(x) =
1

di

∑

g∈G
χi(g

−1)χi(g) · I

=
|G|

di
· I



Printed Dec. 12, 2007 Finite Group Representations 30

the second equality arising from the fact that 〈χi, χi〉 = 1. Now x is integral over Z · 1

so ρi(x) is integral over ρi(Z · 1) = Z · I. Thus |G|
di

is integral over Z, hence |G|
di
∈ Z so

di
∣∣ |G|.

At this point we may very quickly deduce a formula for the central primitive idempo-

tent elements in CG. We use some of the same ideas that arose in proving Theorem 3.21

and for that reason we present this further application here. However, the formula has no

immediate use in this text and can be omitted without loss of understanding at this point.

We start with some generalities about central primitive idempotent elements.

An element e of an algebra A is said to be idempotent if e2 = e, and we say it is a

central idempotent element if it lies in the centre Z(A). Two idempotent elements e and

f are orthogonal if ef = fe = 0. An idempotent element e is called primitive if whenever

e = e1 + e2 where e1 and e2 are orthogonal idempotent elements then either e1 = 0 or

e2 = 0. We say that e is a primitive central idempotent element if it is primitive as an

idempotent element in Z(A), that is, e is central and has no proper decomposition as a

sum of orthogonal central idempotent elements. Some properties of idempotent elements

relating to these definitions are described in the exercises to Section 2.

Given a set of rings with identity A1, . . . , Ar we may form their direct sum A =

A1 ⊕ · · · ⊕ Ar which acquires the structure of a ring with componentwise addition and

multiplication. In this situation each ring Ai may be identified as the subset of A consisting

of elements which are zero except in component i, but this subset is not a subring of A

because it does not contain the identity element of A. It is, however, a 2-sided ideal.

Equally, in any decomposition of a ring A as a direct sum of 2-sided ideals, these ideals

have the structure of rings with identity.

(3.22) PROPOSITION. Let A be a ring with identity. Decompositions

A = A1 ⊕ · · · ⊕Ar

as direct sums of 2-sided ideals Ai biject with expressions

1 = e1 + · · ·+ er

as a sum of orthogonal central idempotent elements, where ei is the identity element of

Ai and Ai = Aei. The Ai are indecomposable as rings if and only if the ei are primitive

central idempotent elements. If every Ai is indecomposable as a ring then the Ai, and also

the primitive central idempotents ei, are uniquely determined as subsets of A, and every

central idempotent can be written as a sum of certain of the ei.

Proof. Given any ring decomposition A = A1⊕· · ·⊕Ar we may write 1 = e1 + · · ·+er
where ei ∈ Ai and now it is clear that the ei are orthogonal central idempotent elements.

Conversely, given an expression 1 = e1 + · · · + er where the ei are orthogonal central

idempotent elements we have A = Ae1 ⊕ · · · ⊕Aer as rings.



Printed Dec. 12, 2007 Peter Webb 31

To say that the ring Ai is indecomposable means that it cannot be expressed as a

direct sum of rings, except in the trivial way, and evidently this happens precisely if the

corresponding idempotent element cannot be decomposed as a sum of orthogonal central

idempotent elements.

What is perhaps surprising is that there is at most one decomposition of A as a

sum of indecomposable rings. Suppose we have two such decompositions, and that the

corresponding primitive central idempotent elements are labelled ei and fj , so that

1 = e1 + · · ·+ er = f1 + · · ·+ fs.

We have

ei = ei · 1 =

s∑

j=1

eifj ,

and so ei = eifj for some unique j and eifk = 0 if k 6= j, by primitivity of ei. Also

fj = 1 · fj =

r∑

k=1

ekfj

so that ekfj 6= 0 for some unique k. Since eifj 6= 0 we have k = i and eifj = fj. Thus

ei = fj . We proceed by induction on r, starting at r = 1. If r > 1 we now work with the

ring A ·
∑
k 6=i ek = A ·

∑
k 6=j fk in which the identity is expressible as sums of primitive

central idempotent elements
∑

k 6=i ek =
∑
k 6=j fk. The first of these expressions has r − 1

terms, so by induction the ek’s are the same as the fk’s after some permutation.

If e is any central idempotent and the ei are primitive then eei is either ei or 0 since

e = eei + e(1− ei) is a sum of orthogonal central idempotents. Thus

e = e

r∑

k=1

ei =

r∑

k=1

eei

is a sum of certain of the ei.

In view of the last result when we speak of the primitive central idempotent elements

of an algebra we are referring to the set which determines the unique decomposition of the

algebra as a direct sum of indecomposable rings.

(3.23) THEOREM. Let χ1, . . . , χr be the simple complex characters ofG with degrees

d1, . . . , dr. The primitive central idempotent elements in CG are the elements

di
|G|

∑

g∈G
χi(g

−1)g
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where 1 ≤ i ≤ r, the corresponding indecomposable ring summand of CG having a simple

representation which affords the character χi.

Proof. Using the notation of 3.20 we have that the representation ρi which affords

χi yields an algebra map ρi : CG → Mdi
(C) which is projection onto the ith matrix

summand in a decomposition of CG as a sum of matrix rings. For any field k the matrix

ring Mn(k) is indecomposable, since we have seen in 3.14 that Z(Mn(k)) ∼= k and the

only non-zero idempotent element in a field is 1. Thus the decomposition of CG as a

direct sum of matrix rings is the unique decomposition of CG as a sum of indecomposable

ring summands. The corresponding primitive central idempotent elements are the identity

matrices in the various summands, and so they are the elements ei ∈ CG such that

ρi(ei) = I and ρj(ei) = 0 if i 6= j. From the formula of 3.20 and the orthogonality

relations we have

ρj(
di
|G|

∑

g∈G
χi(g

−1)g) =
di
|G|dj

∑

g∈G
χi(g

−1)χj(g) · I

=
di
dj
〈χi, χj〉 · I

=
di
dj
δi,j · I

= δi,j · I,

so that the elements specified in the statement of the theorem do indeed project correctly

onto the identity matrices, and are therefore the primitive central idempotent elements.

While the identity matrix is a primitive central idempotent element in the matrix

ring Mn(k), where k is a field, it is never a primitive idempotent element if n > 1 since

it is the sum of the orthogonal (non-central) primitive idempotent elements I = E1,1 +

· · ·+ En,n. Furthermore, removing the hypothesis of centrality we can no longer say that

decompositions of the identity as a sum of primitive idempotent elements are unique;

indeed, any conjugate expression by an invertible matrix will also be a sum of orthogonal

primitive idempotent elements. Applying these comments to a matrix summand of CG, the

primitive idempotent decompositions of 1 will never be unique if we have a non-abelian

matrix summand — which, of course, happens precisely when G is non-abelian. It is

unfortunately the case that in terms of the group elements there is in general no known

formula for primitive idempotent elements of CG lying in a non-abelian matrix summand.

We conclude this section with Burnside’s remarkable ‘paqb theorem’, which establishes

a group-theoretic result using the ideas of representation theory we have so far developed,

together with some admirable ingenuity. In the course of the proof we again make use of

the idea of integrality, but this time we also require Galois theory at one point. This is

needed to show that if ζ is a field element which is expressible as a sum of roots of unity,
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then every algebraic conjugate of ζ is again expressible as a sum of roots of unity. We

present Burnside’s theorem here because of its importance as a theorem in its own right,

not because anything later depends on it. In view of this the proof (which is fairly long)

can be omitted without subsequent loss of understanding.

Recall that a group G is soluble if it has a composition series in which all of the

composition factors are cyclic. Thus a group is not soluble precisely if it has a non-abelian

composition factor.

(3.24) THEOREM (Burnside’s paqb theorem). Let G be a group of order paqb where

p and q are primes. Then G is soluble.

Proof. We suppose the result is false, and consider a group G of minimal order subject

to being not soluble and of order paqb.

Step 1. The group G is simple, not abelian and not of prime-power order; for if it

were abelian or of prime-power order it would be soluble, and if G had a normal subgroup

N then one of N and G/N would be a smaller group of order pαqβ which was not soluble.

Step 2. We show that G contains an element g whose conjugacy class has size qd

for some d > 0. Let P be a Sylow p-subgroup, 1 6= g ∈ Z(P ). Then CG(g) ⊇ P so

|G : CG(g)| = qd for some d > 0, and this is the number of conjugates of g.

Step 3. We show that there is a simple non-identity character χ of G such that q 6
∣∣ χ(1)

and χ(g) 6= 0. To prove this, suppose to the contrary that whenever χ 6= 1 and q 6
∣∣ χ(1)

then χ(g) = 0. Let R denote the ring of algebraic integers in C. Consider the orthogonality

relation between the column of 1 (consisting of character degrees) and the column of g:

1 +
∑

χ 6=1

χ(1)χ(g) = 0.

Then q divides every term apart from 1 in the sum on the left, and so 1 ∈ qR. Thus

q−1 ∈ R. But q−1 ∈ Q and so q−1 ∈ Z by 3.18, a contradiction. We now fix a non-identity

character χ for which q 6
∣∣ χ(1) and χ(g) 6= 0.

Step 4. Recall that the number of conjugates of g is qd. We show that

qdχ(g)

χ(1)

is an algebraic integer. To do this we use results 3.15 and 3.20. These imply that if

g =
∑

h∼g h ∈ CG is the sum of the elements conjugate to g and ρ is a representation

affording the character χ then g ∈ Z(CG) and

ρ(g) =
1

χ(1)

∑

h∼g
χ(h) · I

=
qdχ(g)

χ(1)
· I,
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where I is the identity matrix. Now by 3.19 this is integral over ρ(Z) = Z · I, which proves

what we want.

Step 5. We deduce that χ(g)
χ(1) is an algebraic integer. This arises from the fact that

q 6
∣∣ χ(1). We can find λ, µ ∈ Z so that λqd + µχ(1) = 1. Now

χ(g)

χ(1)
= λ

qdχ(g)

χ(1)
+ µχ(g)

is a sum of algebraic integers.

Step 6. We show that |χ(g)| = χ(1) and put ζ = χ(g)/χ(1). We consider the algebraic

conjugates of ζ, which are the roots of the minimal polynomial of ζ over Q. They are all

algebraic integers, since ζ and its algebraic conjugates are all roots of the same polynomials

over Q. Thus the product N(ζ) of the algebraic conjugates is an algebraic integer. Since

it is also ± the constant term of the minimal polynomial of ζ, it is rational and non-zero.

Therefore 0 6= N(ζ) ∈ Z by 3.18.

Now χ(g) is the sum of the eigenvalues of χ(g), of which there are χ(1), each of which is

a root of unity. Hence by the triangle inequality, |χ(g)| ≤ χ(1). By Galois theory the same

is true and a similar inequality holds for each algebraic conjugate of χ(g). We conclude

that all algebraic conjugates of ζ have absolute value at most 1. Therefore |N(ζ)| ≤ 1.

The only possibility is |N(ζ)| = 1 and |ζ| = 1.

Step 7. We deduce that G has a proper normal subgroup by considering

H = {h ∈ G
∣∣ |χ(h)| = χ(1)}

where χ is the simple non-identity character introduced in Step 3. We argue first that H

is a normal subgroup. If the eigenvalues of ρ(h) are λ1, . . . , λn then, since these are roots

of unity, |λ1 + · · ·+ λn| = n if and only if λ1 = · · · = λn. Thus |χ(h)| = χ(1) if and only if

ρ(h) is multiplication by some scalar, and from this we see immediately that H is a normal

subgroup. It also implies that H/Ker ρ is abelian. From Step 6 we see that |H/Kerρ| > 1,

but this forces a contradiction since simplicity of G implies that H = G and Ker ρ = 1,

from which we deduce that G is abelian. This contradiction terminates the proof.

Exercises for Section 3.

1. Suppose that V is a representation of G over C for which χV (g) = 0 if g 6= 1. Show

that dimV is a multiple of |G|. Deduce that V ∼= CGn for some n. Show that if W is any

representation of G over C then CG⊗C W ∼= CGdimW as CG-modules.

2. (a) By using characters show that if V and W are any CG-modules then (V ⊗C

W )∗ ∼= V ∗ ⊗C W
∗, and (CGCG)∗ ∼= CGCG.

(b) If k is any field and V , W are kG-modules, show that (V ⊗k W )∗ ∼= V ∗ ⊗k W ∗,

and (kGkG)∗ ∼= kGkG.
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3. Consider a ring with identity which is the direct sum (as a ring) of subrings

A = A1 ⊕ · · · ⊕ Ar. Suppose that A has exactly n isomorphism types of simple modules.

Show that r ≤ n.

4. Let g be any non-identity element of a group G. Show that G has a simple complex

character χ for which χ(g) has negative real part.

5. Show that if every element of a finite group G is conjugate to its inverse, then every

character on G is real-valued.

Conversely, show that if every character on G is real-valued, then every element of G

is conjugate to its inverse.

[Note here that the quaternion group of order 8 in its action on the algebra of quater-

nions provides an example of a complex representation which is not equivalent to a real

representation, but whose character is real-valued. In this example, the representation has

complex dimension 2, but there is no basis over C for the representation space such that

the group acts by matrices with real entries.]

6. (Jozsef Pelikan) While walking down the street you find a scrap of paper with the

following character table on it:

1 1
1 −1

· · · 2 · · · −1 · · ·
3 1
3 −1

All except two of the columns are obscured, and while it is clear that there are five rows

you cannot read anything of the other columns, including their position. Prove that there

is an error in the table. Given that there is exactly one error, determine where it is, and

what the correct entry should be.

7. A finite group has seven conjugacy classes with representatives c1, . . . , c7 (where

c1 = 1), and the values of five of its irreducible characters are given by the following table:

c1 c2 c3 c4 c5 c6 c7
1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1
4 1 −1 0 2 −1 0
4 1 −1 0 −2 1 0
5 −1 0 1 1 1 −1

Calculate the numbers of elements in the various conjugacy classes and the remaining

simple characters.

8. Let g ∈ G. Prove that g lies in the centre of G if and only if |χ(g)| = |χ(1)| for

every simple complex character χ of G.
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9. Here is a column of a character table:

g

1
−1
0
−1
−1

−1+i
√

11
2

−1−i
√

11
2
0
1
0

(a) Find the order of g.

(b) Prove that g 6∈ Z(G).

(c) Show that there exists an element h ∈ G with the same order as g but not conjugate

to g.

(d) Show that there exist two distinct simple characters of G of the same degree.
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4. The Construction of Modules and Characters

We start with the particular case of cyclic groups over C.

(4.1) PROPOSITION. Let G = 〈x
∣∣ xn = 1〉 be a cyclic group of order n, and let

ζ ∈ C be a primitive nth root of unity. Then the simple complex characters of G are the

n functions

χr(x
s) = ζrs

where 0 ≤ r ≤ n− 1.

Proof. We merely observe that the mapping

xs 7→ ζrs

is a group homomorphism

G→ GL(1,C) = C∗

giving a 1-dimensional representation with character χr, which must necessarily be simple.

These characters are all distinct, and since the number of them equals the group order we

have them all.

We next show how to obtain the simple characters of a product of groups in terms

of the characters of the groups in the product. Combining this with the last result we

obtain the character table of any finite abelian group. We describe a construction which

works over any ring R. Suppose that ρ1 : G1 → GL(V1) and ρ2 : G2 → GL(V2) are

representations of groups G1 and G2. We may define an action of G1 × G2 on V1 ⊗R V2

by the formula

(g1, g2)(v1 ⊗ v2) = g1v1 ⊗ g2v2

where gi ∈ Gi and vi ∈ Vi. When R is a field we may choose bases for V1 and V2, and

now (g1, g2) acts via the tensor product of the matrices by which g1 and g2 act. It follows

when R = C that

χV1⊗V2
(g1, g2) = χV1

(g1)χV1
(g1).

(4.2) THEOREM. Let V1, . . . , Vm and W1, . . . ,Wn be complete lists of the simple

complex representations of groups G1 and G2. Then the representations Vi⊗Wj with 1 ≤

i ≤ n and 1 ≤ j ≤ m form a complete list of the simple complex G1 ×G2 representations.

Remark. The statement of this theorem actually works over an arbitrary field, which

need not be C. There is a still more general statement to do with representations of finite-

dimensional algebras A and B over a field k, which is that the simple representations of

A⊗kB are precisely the S⊗kT , where S is a simple A-module and T is a simple B-module.

The connection with groups is that the group algebra R[G1 ×G2] over any commutative
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ring R is isomorphic to RG1 ⊗R RG2, which we may see by observing that the basis of
RG1 ⊗R RG2 consisting of elements g1 ⊗ g2 with gi ∈ Gi multiplies the same way as the

group G1 ×G2.
Proof. We first verify that the representations Vi ⊗Wj are simple using the criterion

of 3.10:

〈χVi⊗Wj
, χVi⊗Wj

〉 =
1

|G1 ×G2|

∑

(g1,g2)∈G1×G2

χVi⊗Wj
(g1, g2)χVi⊗Wj

(g1, g2)

=
1

|G1||G2|

∑

(g1,g2)∈G1×G2

χV1
(g1)χV1

(g1)χV2
(g2)χV2

(g2)

=
1

|G1|

∑

g1∈G1

χV1
(g1)χV1

(g1) ·
1

|G2|

∑

g2∈G2

χV2
(g2)χV2

(g2)

= 1.

The characters of these representations are distinct, since by a similar calculation if (i, j) 6=
(r, s) then 〈χVi⊗Wj

, χVr⊗Ws
〉 = 0. To show that we have the complete list, we observe that

if dimVi = di and dimWj = ej then Vi ⊗Wj is a representation of degree diej and
m∑

i=1

n∑

j=1

(diej)
2 =

m∑

i=1

d2
i ·

n∑

j=1

e2j = 1.

This establishes what we need, using 2.5 or 3.13.

Putting the last two results together enables us to compute the character table of any

finite abelian group. To give a very small example, let

G = 〈x, y
∣∣ x2 = y2 = [x, y] = 1〉 ∼= C2 × C2.

The character tables of 〈x〉 and 〈y〉 are

2 2
1 x

χ1 1 1
χ2 1 −1

2 2
1 y

ψ1 1 1
ψ2 1 −1

TABLE: Two copies of the character table of C2.

and the character table of C2 × C2 is
4 4 4 4
1 x y xy

χ1ψ1 1 1 1 1
χ2ψ1 1 −1 1 −1
χ1ψ2 1 1 −1 −1
χ2ψ2 1 −1 −1 1

TABLE: The character table of C2 × C2.

We immediately notice that this construction gives the character table of C2 × C2 as the
tensor product of the character tables of C2 and C2, and without further argument we see

that this is true in general.
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(4.3) COROLLARY. The character table of a direct product G1 × G2 is the tensor

product of the character tables of G1 and G2.

We see from this that all simple complex characters of an abelian group have degree

1, and in fact this property characterizes abelian groups.

(4.4) THEOREM. The following are equivalent for a finite group G:

(1) G is abelian,

(2) all simple complex representations of G have degree 1.

Proof. Since the simple representations of every finite cyclic group all have degree

1, and since every finite abelian group is a direct product of cyclic groups, the last result

shows that all simple representations of a finite abelian group have degree 1.

Conversely, we may use the fact that |G| =
∑r
i=1 d

2
i where d1, . . . , dr are the degrees of

the simple representations. We deduce that di = 1 for all i ⇔ r = |G| ⇔ every conjugacy

class has size 1 ⇔ every element is central ⇔ G is abelian.

Another proof of this result may be obtained from the fact that CG is a direct sum of

matrix algebras over C, a summand Mn(C) appearing precisely if there is a simple module

of dimension n. The group and hence the group ring are abelian if and only if n is always

1.

We may construct the part of the character table of any finite group which consists

of characters of degree 1 by combining the previus results with the next one.

(4.5) PROPOSITION. The degree 1 representations of any finite group G over any

field are precisely the degree 1 representations of G/G′, lifted to G via the homomorphism

G→ G/G′.

Proof. We only have to observe that a degree 1 representation of G over a field k is

a homomorphism G→ GL(1, k) = k× which takes values in an abelian group, and so has

kernel containing G′. Thus such a homomorphism is always a composite G → G/G′ →

GL(1, k) obtained from a degree 1 representation of G/G′.

(4.6) Example. Neither implication of 4.4 holds if we do not assume that our represen-

tations are defined over C (or more generally, an algebraically closed field in characteristic

prime to |G|). Over R the cyclic group 〈x
∣∣ x3 = 1〉 of order 3 has a 2-dimensional repre-

sentation in which x acts as rotation through 2π
3

. This representation is simple since there

is no 1-dimensional subspace stable under the group action. We need to pass to C to split

it as a sum of two representations of degree 1. This is an example of an abelian group not

all of whose simple representations have degree 1, and equally one may find a non-abelian

group all of whose simple representations do have degree 1. As we shall see later, this

happens whenever G is a p-group and we consider representations in characteristic p.
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Induction and Restriction

We now consider an extremely important way of constructing representations of a

group from representations of its subgroups. Let H be a subgroup of G and V an RH-

module where R is a commutative ring with 1. We define an RG-module

V ↑GH= RG⊗RH V

with the action of G coming from the left module action on RG:

x · (
∑

g∈G
agg ⊗ v) = (x

∑

g∈G
agg)⊗ v

where x, g ∈ G, ag ∈ R and v ∈ V . We refer to this module as V induced from H to G,

and say that V ↑GH is an induced module. In many books the notation V G is used for this

induced module, but for us this conflicts with the notation for fixed points.

We denote the set of left cosets {gH
∣∣ g ∈ G} by G/H.

(4.7) PROPOSITION. Let V be an RH-module and let g1H, . . . , g|G:H|H be a list

of the left cosets G/H. Then

V ↑GH=

|G:H|⊕

i=1

gi ⊗ V

as R-modules, where gi ⊗ V = {gi ⊗ v
∣∣ v ∈ V } ⊆ RG⊗RH V . Each gi ⊗ V is isomorphic

to V as an R-module, and in case V is free as an R-module we have

rankR V ↑
G
H= |G : H| rankR V.

If x ∈ G then x(gi⊗V ) = gj⊗V where xgi = gjh for some h ∈ H. Thus the R-submodules

gi⊗V of V ↑GH are permuted under the action of G. This action is transitive, and if g1 ∈ H
then StabG(g1 ⊗ V ) = H.

Proof. We have RGRH =
⊕|G:H|

i=1 giRH ∼= RH |G:H| as right RH-modules, since H

has a permutation action on the basis of RG with |G : H| orbits g1H, . . . , g|G:H|H, and

each orbit spans a right RH-submodule R[giH] of RG, which is isomorphic to RHRH as

right RH-modules via the isomorphism specified by gih 7→ h, where h ∈ H. Now

RG⊗RH V = (

|G:H|⊕

i=1

giRH)⊗RH V

=

|G:H|⊕

i=1

(giRH ⊗RH V )

=

|G:H|⊕

i=1

gi ⊗RH V
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and as R-modules giRH ⊗RH V ∼= RH ⊗RH V ∼= V .

We next show that with its left action on RG⊗RH V coming from the left action on

RG, G permutes these R-submodules. If x ∈ G and xgi = gjh with h ∈ H then

x(gi ⊗ v) = xgi ⊗ v

= gjh⊗ v

= gj ⊗ hv,

so that x(gi ⊗ v) ⊆ gj ⊗ V . We argue that we have equality using the invertibility of

x. For, by a similar argument to the one above, we have x−1gj ⊗ V ⊆ gi ⊗ V , and so

gj ⊗ V = xx−1(gj ⊗ V ) ⊆ x(gi ⊗ V ). This action of G on the subspaces is transitive since

given two subspaces gi ⊗ V and gj ⊗ V we have (gjg
−1
i )gi ⊗ V = gj ⊗ V .

Now to compute the stabilizer of g1 ⊗ V where g1 ∈ H, if x ∈ H then x(g1 ⊗ V ) =

g1(g
−1
1 xg1)⊗ V = g1 ⊗ V , and if x 6∈ H then x ∈ giH for some i 6= 1 and so x(g1 ⊗ V ) =

gi ⊗ V . Thus StabG(g1 ⊗ V ) = H.

The structure of induced modules described in the last result in fact characterizes

these modules, giving an extremely useful criterion for a module to be of this form which

we will use several times later on.

(4.8) PROPOSITION. Let M be an RG-module which has an R-submodule V with

the property that M is the direct sum of the R-submodules {gV
∣∣ g ∈ G}. Let H = {g ∈

G
∣∣ gV = V }. Then M ∼= V ↑GH .

Proof. We define a map of R-modules

RG⊗RH V →M

g ⊗ v 7→ gv

extending this specification from the generators to the whole of RG⊗RH V by R-linearity.

This is in fact a map of RG-modules. The R-submodules gV of M are in bijection with

the cosets G/H, since G permutes them transitively, and the stabilizer of one of them is

H. Thus each of RG⊗RH V and M is the direct sum of |G : H| R-submodules g⊗ V and

gV respectively, each isomorphic to V via isomorphisms g ⊗ v ↔ v and gv ↔ v. Thus on

each summand the map g ⊗ v 7→ gv is an isomorphism, and so RG⊗RH V → M is itself

an isomorphism.
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(4.9) Examples. 1. Immediately from the definitions we have RG = R ↑G1 .

2. More generally, suppose that Ω is a G-set, that is a set with an action of G. We

may form RΩ, the free R-module with the elements of Ω as a basis, and it acquires the

structure of an RG-module via the permutation action of G on this basis. This is the

permutation module determined by Ω. Now RΩ =
⊕

ω∈ΩRω is the direct sum of rank 1

R-submodules, each generated by a basis vector. In case G acts transitively on Ω these

are permuted transitively by G. If we pick any ω ∈ Ω and let H = Stabω then H is also

the stabilizer of the space Rω and RΩ ∼= R ↑GH . This shows that permutation modules on

transitive G-sets are induced modules.

The general function of induced representations is that they are a mechanism which

relates the representations of a group to those of a subgroup. When working over C they

provide a way of constructing new characters, and with this in mind we give the formula

for the character of an induced representation. If χ is the character of a representation V

of a subgroup H, let us simply write χ ↑GH for the character of V ↑GH . We will also write

[G/H] to denote a set of representatives of the left cosets of H in G.

(4.10) PROPOSITION. Let H be a subgroup of G and let V be a CH-module with

character χ. Then the character of V ↑GH is

χ ↑GH (g) =
1

|H|

∑

t∈G

t−1gt∈H

χ(t−1gt)

=
∑

t∈[G/H]

t−1gt∈H

χ(t−1gt).

Proof. The two formulas on the right are in fact the same, since if t−1gt ∈ H and

h ∈ H then (th)−1gth ∈ H also, and so {t ∈ G
∣∣ t−1gt ∈ H} is a union of left cosets of

H. Since χ(t−1gt) = χ((th)−1gth) the terms in the first sum are constant on the cosets

of H, and we obtain the second sum by choosing one representative from each coset and

multiplying by |H|.

Using the vector space decomposition of 4.7 we obtain that the trace of g on V ↑GH is

the sum of the traces of g on the spaces t⊗V which are invariant under g, where t ∈ [G/H].

This is because if g does not leave t⊗V invariant, we get a matrix of zeros on the diagonal

at that point in the block matrix decomposition for the matrix of g. Thus we only get a

non-zero contribution from subspaces t⊗V with gt⊗V = t⊗V . This happens if and only

if t−1gt⊗ V = 1⊗ V , that is t−1gt ∈ H. We have

χ ↑GH (g) =
∑

t∈[G/H]

t−1gt∈H

trace of g on t⊗ V.
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Now g acts on t⊗ V as

g(t⊗ v) = t(t−1gt)⊗ v = t⊗ (t−1gt)v

and so the trace of g on this space is χ(t−1gt). Combining this with the last expression

gives the result.

We see in the above proof that g leaves invariant t ⊗ V if and only if t−1gt ∈ H,

or in other words g ∈ tHt−1. Thus StabG(t ⊗ V ) = tHt−1. Furthermore, if we identify

t⊗ V with V by means of the bijection t⊗ v ↔ v, then g acts on t⊗ V via the composite

homomorphism

〈g〉
ct−1

−→H
ρ
−→GL(V )

where ρ is the homomorphism associated to V and ca(x) = axa−1 is the automorphism of

G which is conjugation by a ∈ G.

(4.11) Example. To make clearer what the terms in the expression for the induced

character are, consider G = S3 and H = 〈(123)〉 the normal subgroup of order 3. To avoid

expressions such as (()) we will write the identity element of S3 as e. We may take the

coset representatives [G/H] to be {e, (12)}. If χ is the trivial character of H then

χ ↑GH (e) = χ(ee) + χ(e(12)) = 2

χ ↑GH ((12)) = the empty sum = 0

χ ↑GH ((123)) = χ((123)e) + χ((123)(12)) = 2

Recalling the character table of S3 we find that χ ↑GH is the sum of the trivial character

and the sign character of S3.

Before giving examples of how induced characters may be used in the construction of

character tables, we describe some formalism of the relationship between a group and its

subgroups which will allow us to compute more easily with induced representations. The

companion notion to induction is that of restriction of representations. If H is a subgroup

of G and W is a representation of G we denote by W ↓GH the representation of H obtained

by letting the elements of H the way they do when regarded as elements of G. Restriction

and induction are a particular case of the following more general situation. Whenever we

have a (unital) homomorphism of rings A → B, an A-module V and an B-module W

we may form the B-module B ⊗A V and the A-module W ↓BA. On taking A = RH and

B = RG we obtain the induction and restriction we have been studying.

(4.12) LEMMA. Let A→ B be a homomorphism of rings, V an A-module and W a

B-module.

(1) (Adjointness of ⊗ and Hom) HomB(B ⊗A V,W ) ∼= HomA(V,W ↓A).
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(2) If φ : B → C is another ring homomorphism then C ⊗B (B ⊗A V ) ∼= C ⊗A V .

Proof. In the case of (1) the mutually inverse isomorphisms are

f 7→ (v 7→ f(1⊗ v))

and

(b⊗ v 7→ bg(v))← g.

In the case of (2) the mutually inverse isomorphisms are

c⊗ b⊗ v 7→ cφ(b)⊗ v

and

c⊗ 1⊗ v ← c⊗ v.

(4.13) COROLLARY. Let H ≤ K ≤ G be subgroups of G, let V be an RH-module

and W an RG-module.

(1) (Frobenius reciprocity) HomRG(V ↑GH ,W ) ∼= HomRH(V,W ↓GH).

(2) (Transitivity of induction) (V ↑KH ) ↑GK
∼= V ↑GH .

(3) (Transitivity of restriction) (W ↓GK) ↓KH= W ↓GH .

(4) V ↑GH ⊗RW
∼= (V ⊗RW ↓

G
H) ↑GH .

Proof. The first two are the translation of 4.12 into the language of group represen-

tations and the third statement is clear. Part (4) is the statement

(RG⊗RH V )⊗RW ∼= RG⊗RH (V ⊗RW )

and is not a corollary of 4.12. Here the mutually inverse isomorphisms are

(g ⊗ v)⊗ w 7→ g ⊗ (v ⊗ g−1w)

and

(g ⊗ v)⊗ gw← g ⊗ (v ⊗ w).
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In the case of representations in characteristic zero all of these results may be trans-

lated into the language of characters. By analogy with the notation χ ↑GK for the character

of an induced representation V ↑GK , let us write χ ↓KH for the character of V ↓KH .

(4.14) COROLLARY. Let H ≤ K ≤ G be subgroups of G, let χ be a complex

character of H and ψ a character of G.

(1) (Frobenius reciprocity)

〈χ ↑GH , ψ〉G = 〈χ, ψ ↓GH〉H

and

〈ψ, χ ↑GH〉G = 〈ψ ↓GH , χ〉H .

In fact all four numbers are equal.

(2) (Transitivity of induction) (χ ↑KH ) ↑GK= χ ↑GH .

(3) (Transitivity of restriction) (ψ ↓GK) ↓KH= ψ ↓GH .

(4) χ ↑GH ·ψ = (χ · ψ ↓GH) ↑GH .

Proof. In (1) we write 〈 , 〉G and 〈 , 〉H to denote the inner product of characters

of G and H, respectively. The four parts are translations of the four parts of 4.13 into

the language of characters. In part (1) we use the fact that the inner products are the

dimensions of the Hom groups in 4.13(1) and that the inner product is symmetric.

The statement of Frobenius reciprocity for complex characters is equivalent to the

statement that if ψ and χ are simple characters of G and H respectively then the multi-

plicity of ψ as a summand of χ ↑GH equals the multiplicity of χ as a summand of ψ ↓GH .

At a slightly more sophisticated level we may interpret induction, restriction and

Frobenius reciprocity in terms of the space Ccc(G) of class functions introduced in Section

3, that is, the vector space of functions cc(G) → C where cc(G) is the set of conjugacy

classes of G. Since each conjugacy class of H is contained in a unique conjugacy class

of G we have a mapping cc(H) → cc(G) and this gives rise by composition to a linear

map ↓GH : Ccc(G) → Ccc(H) which on characters is the restriction operation we have already

defined. We may also define a linear map ↑GH : Ccc(H) → Ccc(G) which on characters sends

a character χ of H to the character χ ↑GH . It would be possible to define this on arbitrary

class functions of H by means of the explicit formula given in 4.10, but the trouble with

this is that transitivity of induction is not entirely obvious. It is perhaps easier to observe

that the characters of simple representations of H form a basis of Ccc(H). We have defined

χ ↑GH on these basis elements, and we may define ↑GH on arbitrary class functions so that

it is a linear map. With these definitions the formulas of 4.14 hold for arbitrary class

functions. We may also interpret Frobenius reciprocity within this framework. The inner

products 〈 , 〉G and 〈 , 〉H provide us with the notion of the transpose of a linear

map between the vector spaces Ccc(H) and Ccc(G). Now Frobenius reciprocity states that

induction and restriction are the transpose of each other. We know that the characters
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of simple modules form orthonormal bases of these vector spaces. Taking matrices with

respect to these bases, the matrix of induction is the transpose of the matrix of restriction.

(4.15) Examples. 1. Frobenius reciprocity is a most useful tool in calculating with

induced characters. In the special case that V and W are simple representations over C of

H and G, respectively, where H ≤ G, it says that the multiplicity of W as a summand of

V ↑GH equals the multiplicity of V as a summand of W ↓GH . As an example we may take

both V and W to be the trivial representations of their respective groups. As explained

in 4.9, C ↑GH is a permutation module. We deduce from Frobenius reciprocity that as

representations of G, C is a direct summand of C ↑GH with multiplicity one.

2. Let G = 〈x, y
∣∣ xn = y2 = 1, yxy−1 = x−1〉 = D2n, the dihedral group of order 2n.

Suppose that n is odd. We compute that the commutator [y, x] = xn−2, and since n is odd

we have G′ = 〈xn−2〉 = 〈x〉 ∼= Cn and G/G′ ∼= C2. Thus G has two complex characters of

degree 1 which we denote 1 and −1.

Let χs denote the degree 1 character of 〈x〉 specified by χs(x
r) = ζrs where ζ = e

2πi
n .

Then χs ↑
G
〈x〉 has values given in the following table.

2n n n n 2
1 x x2 · · · x

n−1
2 y

1 1 1 1 · · · 1 1
−1 1 1 1 · · · 1 −1

χs ↑
G
〈x〉 2 ζs + ζs ζ2s + ζ2s · · · ζ

n−1
2 s + ζ

n−1
2 s 0

(1 ≤ s ≤ n−1
2 )

TABLE: The character table of D2n, n odd.

We verify that

〈χs ↑
G
〈x〉,±1〉G = 〈χs,±1 ↓G〈x〉〉〈x〉 = 0

if n 6
∣∣ s, using Frobenius reciprocity (or a direct calculation), and hence the characters χs

are simple when n 6
∣∣ s. For 1 ≤ s ≤ n−1

2 they are distinct, and so we have constructed
n−1

2
+ 2 = n+3

2
simple characters. This equals the number of conjugacy classes of G, so

we have the complete character table.
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Symmetric and Exterior Powers

As further ways of constructing new representations from old ones we describe the

symmetric powers and exterior powers of a representation. If V is a vector space over a

field k its nth symmetric power is the vector space

Sn(V ) = V ⊗n/I

where V ⊗n = V ⊗ · · · ⊗ V with n factors, and I is the subspace spanned by tensors

(· · · ⊗ vi ⊗ · · · ⊗ vj ⊗ · · · − · · · ⊗ vj ⊗ · · · ⊗ vi ⊗ · · ·) where vi, vj ∈ V . We write the image

of the tensor v1 ⊗ · · · ⊗ vn in Sn(V ) as a (commutative) product v1 · · · vn, noting that

in Sn(V ) it does not matter in which order we write the terms. A good way to think

of Sn(V ) is as the space of homogeneous polynomials of degree n in a polynomial ring.

Indeed, if u1, . . . , ur is any basis of V and we let k[u1, . . . , ur]n denote the vector space

of homogeneous polynomials of degree n in the ui as indeterminates, there is a surjective

linear map
V ⊗n → k[u1, . . . , ur]n

ui1 ⊗ · · · ⊗ uin 7→ ui1 · · ·uin

(extended by linearity to the whole of V ⊗n). This map contains I in its kernel, so there is

induced a map

Sn(V )→ k[u1, . . . , ur]n.

This is now an isomorphism since, modulo I, the tensors u⊗a1
1 ⊗ u⊗a2

2 ⊗ · · · ⊗ u⊗ar
r

where
∑r

i−1 ai = n, span V ⊗n, and they map to the monomials which form a basis of

dimk k[u1, . . . , ur]n. As is well-known, dimk k[u1, . . . , ur]n =
(
n+r−1
n

)
.

The nth exterior power of V is the vector space

Λn(V ) = V ⊗n/J

where J is the subspace spanned by tensors (· · ·⊗vi⊗· · ·⊗vj⊗· · ·+ · · ·⊗vj⊗· · ·⊗vi⊗· · ·)

and (· · ·⊗vi⊗· · ·⊗vi⊗· · ·) where vi, vj ∈ V . We write the image of v1⊗· · ·⊗vn in Λn(V )

as v1 ∧ · · · ∧ vn, so that interchanging vi and vj changes the sign of the symbol, and if two

of vi and vj are equal the symbol is zero. If the characteristic of k is not 2 the second

of these properties follows from the first, but for the sake of characteristic 2 we impose it

anyway. By an argument similar to the one used for symmetric powers we see that Λn(V )

has as a basis {ui1 ∧ · · · ∧ uin
∣∣ 1 ≤ i1, · · · in ≤ r}, and its dimension is

(
n
r

)
. In particular,

Λn(V ) = 0 if n > dimV .

Suppose now that a group G acts on V and consider the diagonal action of G on V ⊗n.
The subspaces of relations I and J are preserved by this action, and so there arise actions

of G on Sn(V ) and Λn(V ):

g · (v1v2 · · · vn) = (gv1)(gv2) · · · (gvn)

g · (v1 ∧ · · · ∧ vn) = (gv1) ∧ · · · ∧ (gvn).
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Because we substitute the expressions for gvi into the monomials which form the bases of

Sn(V ) and Λn(V ), we say that G acts on these spaces by linear substitutions. With these

actions we have described the symmetric and exterior powers of the representation V .

(4.16) Example. Consider the representation of G = 〈x
∣∣ x3 = 1〉 on the vector space

V with basis {u1, u2} given by
xu1 = u2

xu2 = −u1 − u2.

Then S2(V ) has a basis {u2
1, u1u2, u

2
2} and

x · u2
1 = u2

2

x · (u1u2) = u2(−u1 − u2) = −u1u2 − u
2
2

x · u2
2 = (−u1 − u2)

2 = u2
1 + 2u1u2 + u2

2.

Similarly Λ2(V ) has basis {u1 ∧ u2} and

x · (u1 ∧ u2) = u2 ∧ (−u1 − u2) = u1 ∧ u2.

The symmetric and exterior powers fit into a more general framework where we con-

sider tensors with different symmetry properties. There is an action of the symmetric

group Sn on the n-fold tensor power V ⊗n given by permuting the positions of vectors in a

tensor, so that for example if α, β, γ are vectors in V then

(1, 2)(α⊗ β ⊗ γ) = β ⊗ α⊗ γ,

(1, 3)(β ⊗ α⊗ γ) = γ ⊗ α⊗ β.

From the above very convincing formulas and the fact that (1, 2, 3) = (1, 3)(1, 2) we deduce

that

(1, 2, 3)(α⊗ β ⊗ γ) = γ ⊗ α⊗ β

which is evidence that if σ ∈ Sn then

σ(v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(n),

a formula which is not quite so obvious. With this action it is evident that Sn(V ) is the

largest quotient of V ⊗n on which Sn acts trivially, and when char(k) 6= 2, Λn(V ) is the

largest quotient of V ⊗n on which Sn acts as a sum of copies of the sign representation.

We define the symmetric tensors to be the fixed points (V ⊗n)Sn , and when char k 6= 2

we define the skew-symmetric tensors to be the largest kSn-submodule of V ⊗n which is a

sum of modules isomorphic to the sign representation. Thus

symmetric tensors = {w ∈ V ⊗n ∣∣ σ(w) = w for all σ ∈ Sn},

skew-symmetric tensors = {w ∈ V ⊗n ∣∣ σ(w) = sign(σ)w for all σ ∈ Sn}.
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When we let G act diagonally on V ⊗n the symmetric tensors, the skew-symmetric

tensors, as well as the subspaces I and J defined earlier remain invariant for the action of

G. We easily see this directly, but at a more theoretical level the reason is that the actions

of G and Sn on V ⊗n commute with each other (as is easily verified), so that V ⊗n acquires

the structure of a k[G× Sn]-module, and elements of G act as endomorphisms of V ⊗n as

a kSn-module, and vice-versa. Every endomorphism of the kSn-module V ⊗n must send

the Sn-fixed points to themselves, for example, and so the symmetric tensors are invariant

under the action of G. One sees similarly that the other subspaces are also invariant under

the action of G.

We remark that, in general, the symmetric power Sn(V ) and the symmetric tensors

provide non-isomorphic representations of G, as do Λn(V ) and the skew-symmetric tensors.

This phenomenon is investigated in the exercises at the end of this section. However these

pairs of kG-modules are isomorphic in characteristic zero, and we now consider in detail the

case of the symmetric and exterior square. Suppose that k is a field whose characteristic

is not 2. In this situation the only tensor which is both symmetric and skew-symmetric

is 0, and furthermore any tensor may be written as the sum of a symmetric tensor and a

skew-symmetric tensor in the following way:

∑
λijvi ⊗ vj =

1

2

∑
λij(vi ⊗ vj + vj ⊗ vi) +

1

2

∑
λij(vi ⊗ vj − vj ⊗ vi).

We deduce from this that

V ⊗ V = symmetric tensors⊕ skew-symmetric tensors

as kG-modules. The subspace I which appeared in the definition S2(V ) = (V ⊗ V )/I is

contained in the space of skew-symmetric tensors, and the subspace J for which Λ2(V ) =

(V ⊗ V )/J is contained in the space of symmetric tensors. By counting dimensions we see

that dim I + dim J = dimV ⊗ V and putting this together we see that

I = skew-symmetric tensors

J = symmetric tensors, and

V ⊗ V = I ⊕ J.

From this information we see on factoring out I and J that

S2(V ) ∼= symmetric tensors

Λ2(V ) ∼= skew-symmetric tensors

and we have proved the following result.
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(4.17) PROPOSITION. Suppose V is a representation for G over a field k whose

characteristic is not 2. Then

V ⊗ V ∼= S2(V )⊕ Λ2(V ),

as kG-modules, where G acts diagonally on V ⊗ V and by linear substitutions on S2(V )

and Λ2(V ).

Our application of this is that when constructing new representations from an existing

representation V , the tensor square will always decompose in this fashion.

Suppose now that k = C. If χ is the character of a representation V we write S2χ

and Λ2χ for the characters of S2(V ) and Λ2(V ).

(4.18) PROPOSITION. Let χ be the character of a representation V of G over C.

Then

S2χ(g) =
1

2
(χ(g)2 + χ(g2))

Λ2χ(g) =
1

2
(χ(g)2 − χ(g2)).

Proof. For each g ∈ G, V ↓G〈g〉 is the direct sum of 1-dimensional representations of

the cyclic group 〈g〉, and so we may choose a basis u1, . . . , ur for V such that g · ui = λiui
for scalars λi. The monomials u2

i with 1 ≤ i ≤ r and uiuj with 1 ≤ i < j ≤ r form a basis

for S2V , and so the eigenvalues of g on this space are λ2
i with 1 ≤ i ≤ r and λiλj with

1 ≤ i < j ≤ r. Therefore

S2χ(g) =
r∑

i=1

λ2
i +

∑

1≤i<j≤r
λiλj

=
1

2
((λ1 + · · ·+ λr)

2 + (λ2
1 + · · ·+ λ2

r))

=
1

2
(χ(g)2 + χ(g2)).

Similarly Λ2V has a basis ui ∧ uj with 1 ≤ i < j ≤ r, so the eigenvalues of g on Λ2V are

λiλj with 1 ≤ i < j ≤ r and

Λ2χ(g) =
∑

1≤i<j≤r
λiλj

=
1

2
((λ1 + · · ·+ λr)

2 − (λ2
1 + · · ·+ λ2

r))

=
1

2
(χ(g)2 − χ(g2)).
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The Construction of Character Tables

We may now summarize some major techniques used in constructing complex charac-

ter tables. The first things to do are to determine

the conjugacy classes in G,

the abelianization G/G′,
the 1-dimensional characters of G.

We construct characters of degree larger than 1 as

natural representations of G,

representations induced from subgroups,

tensor products of other representations,

symmetric and exterior powers of other representations,

contragredients of other representations.

As a special case of the induced representations, we have permutation representations.

The representations obtained by these methods might not be simple, so we test them for

simplicity and subtract off known character summands using the

orthogonality relations

which are assisted in the case of induced characters, by

Frobenius reciprocity.

The orthogonality relations provide a check on the accuracy of our calculations, and also

enable us to complete the final row of the character table. The facts that the character

degrees divide |G| and that the sum of the squares of the degrees equals |G| also help in

this.

Exercises for Section 4.

1. Compute the character table of the dihedral group D2n when n is even.

2. Let G be the non-abelian group of order 21:

G = 〈x, y
∣∣ x7 = y3 = 1, yxy−1 = x2〉.

Show that G has 5 conjugacy classes, and find its character table.

3. Find the character table of the following group of order 36:

G = 〈a, b, c
∣∣ a3 = b3 = c4 = 1, ab = ba, cac−1 = b, cbc−1 = a2〉.

[It follows from these relations that 〈a, b〉 is a normal subgroup of G of order 9.]



Printed Dec. 12, 2007 Finite Group Representations 52

4. Given any representation ρ : G→ GL(V ) where V is a vector space over any field

k, evidently Ker ρ is a normal subgroup of G. Prove the following ‘converse’ to the last

statement, namely: given a normal subgroup N ⊳ G, there exists a representation ρ with

Ker ρ = N . If we assume further that k = C, show how to identify Ker ρ knowing only the

character of ρ.

5. Let k be any field, H a subgroup of G, and V a representation of H over k. Show

that V ∗ ↑GH
∼= (V ↑GH)∗. Deduce that kG ∼= (kG)∗ and (more generally) that permutation

modules are self-dual (i.e. isomorphic to their dual).

6. Let k be any field, and V any representation of G over k. Prove that V ⊗ kG is

isomorphic to a direct sum of copies of kG.

7. Three-suffix tensors have components τijk ∈ R where i, j, k ∈ {1, 2, 3}, and form a

vector space V of dimension 27 over R. The symmetric group S3 acts on V by permuting

the suffixes. Decompose the space V as a direct sum of simple representations of S3,

giving the mutiplicities of each simple representation. [Observe that V is a permutation

representation.]

Give also the decomposition of V as a direct sum of three subspaces consisting of

tensors with different symmetry properties under S3. What are the dimensions of these

subspaces?

8. Let V be a representation of G over a field k of characteristic zero. Prove that the

symmetric power Sn(V ) is isomorphic as a kG-module to the space of symmetric tensors

in V ⊗n.

9. Let U, V be kG-modules where k is a field, and suppose we are given a non-

degenerate bilinear pairing

〈 , 〉 : U × V → k

which has the property 〈u, v〉 = 〈gu, gv〉 for all u ∈ U , v ∈ V , g ∈ G. If U1 is a subspace

of U let U⊥
1 = {v ∈ V

∣∣ 〈u, v〉 = 0 for all u ∈ U1} and if V1 is a subspace of V let

V ⊥
1 = {u ∈ U

∣∣ 〈u, v〉 = 0 for all v ∈ V1}.

(a) Show that V ∼= U∗ as kG-modules, and that there is an identification of V with

U∗ so that 〈 , 〉 identifies with the canonical pairing U × U∗ → k.

(b) Show that if U1 and V1 are kG-submodules, then so are U⊥
1 and V ⊥

1 .

(c) Show that if U1 ⊆ U2 are kG-submodules of U then

U⊥
1 /U

⊥
2
∼= (U2/U1)

∗

as kG-modules.

(d) Show that the composition factors of U∗ are the duals of the composition factors

of U .

10. Let Ω be a G-set and kΩ the corresponding permutation module, where k is a

field. Let 〈 , 〉 : kΩ× kΩ→ k be the symmetric bilinear form specified on the elements

of Ω as

〈ω1, ω2〉 =
{

1 if ω1 = ω2,
0 otherwise.
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(a) Show that this bilinear form is G-invariant, i.e. 〈ω1, ω2〉 = 〈gω1, gω2〉 for all g ∈ G.

(b) Show that kΩ is self-dual, i.e. kΩ ∼= (kΩ)∗.

11. Let V be a kG-module where k is a field, and let 〈 , 〉 : V × V ∗ → k be the

canonical pairing between V and its dual, so 〈v, f〉 = f(v).

(a) Show that the specification 〈v1 ⊗ · · · ⊗ vn, f1 ⊗ · · · ⊗ fn〉 = f1(v1) · · ·fn(vn) deter-

mines a non-degenerate bilinear pairing 〈 , 〉 : V ⊗n × (V ∗)⊗n → k which is invariant

both for the diagonal action of G and the action of Sn given by permuting the positions

of the tensors.

(b) Let I and J be the subspaces of V ⊗n which appear in the definitions of the

symmetric and exterior powers, so Sn(V ) = V ⊗n/I and Λ⊗n = V ⊗n/J . Show that I⊥

equals the space of symmetric tensors in (V ∗)⊗n, and that J⊥ equals the space of skew-

symmetric tensors in (V ∗)⊗n (at least, when char k 6= 2).

(c) Show that (Sn(V ))∗ ∼= STn(V ∗), and that (Λn(V ))∗ ∼= SSTn(V ∗), where STn

denotes the symmetric tensors, and in general we define the skew-symmetric tensors

SSTn(V ∗) to be J⊥.

12. Let G = C2 × C2 be the Klein four group with generators a and b, and k = F2

the field of two elements. Let V be a 3-dimensional space on which a and b act via the

matrices 


1 0 0
1 1 0
0 0 1



 and




1 0 0
0 1 0
1 0 1



 .

Show that S2(V ) is not isomorphic to either ST 2(V ) or ST 2(V )∗, where ST denotes the

symmetric tensors. [Hint: Compute the dimensions of the spaces of fixed points of these

representations.]

13. (Artin’s Induction Theorem) Let Ccc(G) denote the vector space of class functions

on G and let C be a set of subgroups of G which contains a representative of each conjugacy

class of cyclic subgroups of G. Consider the linear mappings

resC : Ccc(G) →
⊕

H∈C
Ccc(H)

and

indC :
⊕

H∈C
Ccc(H) → Ccc(G)

whose component homomorphisms are the linear mappings given by restriction

↓GH : Ccc(G) → Ccc(H)

and induction

↑GH : Ccc(H) → Ccc(G)
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(a) With respect to the usual inner product 〈 , 〉G on Ccc(G) and the inner product

on
⊕

H∈C Ccc(H) which is the orthogonal sum of the 〈 , 〉H , show that resC and indC are

the transpose of each other.

(b) Show that resC is injective.

[Use the fact that Ccc(G) has a basis consisting of characters, which take their information

from cyclic subgroups.]

(c) Prove Artin’s induction theorem: In Ccc(G) every character χ can be written as a

rational linear combination

χ =
∑

aH,ψψ ↑
G
H

where the sum is taken over cyclic subgroups H of G, ψ ranges over characters of H and

aH,ψ ∈ Q.

[Deduce this from surjectivity of indC and the fact that it is given by a matrix with integer

entries. A stronger statement of Artin’s theorem is possible: there is a proof due to Brauer

which gives an explicit formula for the coefficients aH,ψ; from this we may deduce that

when χ is the character of a QG-module the ψ which arise may all be taken to be the

trivial character.]

(d) Show that if U is any CG-module then there are CG-modules P and Q, each a

direct sum of modules of the form V ↑GH where H is cyclic, for various V and H, so that

Un ⊕ P ∼= Q for some n, where Un is the direct sum of n copies of U .

14. (Molien’s Theorem) (a) Let ρ : G→ GL(V ) be a complex representation of G, so

that V is a CG-module, and for each n let χSn(V ) be the character of the nth symmetric

power of V . Show that for each g ∈ G there is an equality of formal power series

∞∑

n=0

χSn(V )(g)t
n =

1

det(1− tρ(g))
.

Here t is an indeterminate, and the determinant which appears in this expression is of a

matrix with entries in the polynomial ring C[t], so that the determinant is a polynomial in

t. On expanding the rational function on the right we obtain a formal power series which

is asserted to be equal to the formal power series on the left.

[Choose a basis for V so that g acts diagonally, with eigenvalues ξ1, . . . , ξd. Show that on

both sides of the equation the coefficient of tn is equal to
∑

i1+···+id=n ξ
i1
1 · · · ξ

id
d .]

(b) If W is a simple CG-module we may write the multiplicity of W as a summand

of Sn(V ) as 〈χSn(V ), χW 〉 and consider the formal power series

MV (W ) =
∞∑

i=0

〈χSn(V ), χW 〉t
n.

Show that

MV (W ) =
1

|G|

∑

g∈G

χW (g−1)

det(1− tρ(g))
.
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(c) When G = S3 and V is the 2-dimensional simple CS3-module show that

MV (C) =
1

(1− t2)(1− t3)
= 1 + t2 + t3 + t4 + t5 + 2t6 + t7 + 2t8 + 2t9 + 2t10 + · · ·

MV (ǫ) =
t3

(1− t2)(1− t3)
= t3 + t5 + t6 + t7 + t8 + 2t9 + t10 + · · ·

MV (V ) =
t(1 + t)

(1− t2)(1− t3)
= t+ t2 + t3 + 2t4 + 2t5 + 2t6 + 3t7 + 3t8 + 3t9 + 4t10 + · · ·

where C denotes the trivial module and ǫ the sign representation. Deduce, for example,

that the eighth symmetric power S8(V ) ∼= C2 ⊕ ǫ⊕ V 3.
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5. More on Induction and Restriction: Theorems of Mackey and Clifford

We start with Mackey’s decomposition formula, which is a further relationship between

induction and restriction. For this we need to consider double cosets. Given subgroups H

and K of G we define for each g ∈ G the (H,K)-double coset

HgK = {hgk
∣∣ h ∈ H, k ∈ K}.

If Ω is a left G-set we use the notation G\Ω for the set of orbits of G on Ω, and denote a

set of representatives for the orbits by [G\Ω]. Similarly if Ω is a right G-set we write Ω/G

and [Ω/G]. We will use all the time the fact that if Ω is a transitive G-set and ω ∈ Ω then

Ω ∼= G/ StabG(ω), the set of left cosets of the stabilizer of ω in G.

(5.1) PROPOSITION. Let H,K ≤ G.

(1) Each (H,K)-double coset is a disjoint union of right cosets of H and a disjoint union

of left cosets of K.

(2) Any two (H,K)-double cosets either coincide or are disjoint. The (H,K)-double cosets

partition G.

(3) The set of (H,K)-double cosets is in bijection with the orbits H\(G/K), and with

the orbits (H\G)/K under the mappings

HgK 7→ H(gK) ∈ H\(G/K)

HgK 7→ (Hg)K ∈ (H\G)/K.

Proof. (1) If hgk ∈ HgK and k1 ∈ K then hgk · k1 = hg(kk1) ∈ HgK so that the

entire left coset of K which contains hgk is contained in HgK. This shows that HgK is

a union of left cosets of K, and similarly it is a union of right cosets of K.

(2) If h1g1k1 = h2g2k2 ∈ Hg1K ∩ Hg2K then g1 = h−1
1 h2g2k2k

−1
1 ∈ Hg2K so that

Hg1K ⊆ Hg2K, and similarly Hg2K ⊆ Hg1K. Thus if two double cosets are not disjoint,

they coincide.

(3) In the statement of this result, G acts from the left on the left cosets G/K, hence so

does H by restriction of the action. We denote the set of H-orbits on G/K by H\(G/K).

The mapping

{double cosets} → H\(G/K)

HgK 7→ H(gK)

is evidently well-defined and surjective. If H(g1K) = H(g2K) then g2K = hg1K for some

h ∈ H, so g2 ∈ Hg1K and Hg1K = Hg2K by (2). Hence the mapping is injective.

The proof that double cosets biject with (H\G)/K is similar.
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In view of (3) we denote the set of (H,K)-double cosets in G by H\G/K. We denote

a set of representatives for these double cosets by [H\G/K].

(5.2) Example. Consider S2 = {1, (12)} as a subgroup of S3. We have

S2\S3/S2 = {{1, (12)}, {(123), (132), (13), (23)}},

while, for example,

[S2\S3/S2] = {1, (123)}.

S3 acts transitively on {1, 2, 3} with StabS3
(3) = S2, so as S3-sets we have

S3/S2
∼= {1, 2, 3}.

Thus the set of orbits on this set under the action of S2 is

S2\(S3/S2)↔ {{1, 2}, {3}}.

We observe that these orbits are indeed in bijection with the double cosets S2\S3/S2.

This example illustrates the point that when computing double cosets it may be

advantageous to identify G/K as some naturally occuring G-set, rather than as the set of

left cosets.

In the next result we distinguish between conjugation on the left and on the right:
gx = gxg−1 and xg = g−1xg. Later on we will write cg(x) = gx, so that cg : H → gH is

the homomorphism which is left conjugation by g, and cg−1(x) = xg.

(5.3) PROPOSITION. Let H,K be subgroups of G and g ∈ G an element. We have

isomorphisms

HgK/K ∼= H/(H ∩ gK) as left H-sets

and

H\HgK ∼= (Hg ∩K)\K as right K-sets.

Thus the double coset HgK is a union of |H : H ∩ gK| left K-cosets and |K : Hg ∩ K|

right H-cosets. We have

|G : K| =
∑

g∈[H\G/K]

|H : H ∩ gK|

and

|G : H| =
∑

g∈[H\G/K]

|K : Hg ∩K|.
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Proof. HgK is the union of a single H-orbit of left K-cosets. The stablizer in H of

one of these is
StabH(gK) = {h ∈ H

∣∣ hgK = gK}

= {h ∈ H
∣∣ hgK = K}

= {h ∈ H
∣∣ hg ∈ K}

= H ∩ gK.

Thus HgK/K ∼= H/(H ∩ gK) as left H-sets and the number of left K-cosets in HgK

equals |H : H ∩ gK|. By summing these numbers over all double cosets we obtain the total
number of left K-cosets |G : K|.

The argument with right H-cosets is similar.

We next introduce conjugation of representations, a concept we have in fact already

met with induced representations. Suppose H is a subgroup of G, g ∈ G and V is a

representation of H. We define a representation gV of gH by specifying that gV = V as a

set, and if gh ∈ gH then gh·v = hv. Thus if ρ : H → GL(V ) was the original representation,

the conjugate representation is the composite homomorphism gH
cg−1

−→H
ρ
−→GL(V ) where

cg−1(gh) = h.

When studying the structure of induced representations V ↑GH=
⊕

g∈[G/H] g ⊗ V , the

subspace g ⊗ V is in fact a representation for gH; for

ghg−1 · (g ⊗ v) = ghg−1g ⊗ v = gh⊗ v = g ⊗ hv.

When g ⊗ V is identified with V via the linear isomorphism g ⊗ v 7→ v the action of gH

on V which arises coincides with the action we have just described on gV .

(5.4) THEOREM (Mackey decomposition formula). Let H,K be subgroups of G

and V a representation for K over a commutative ring R. Then

(V ↑GK) ↓GH
∼=

⊕

g∈[H\G/K]

(g(V ↓KHg∩K)) ↑HH∩gK

as RH-modules.

Proof. We have V ↑GK=
⊕

x∈[G/K] x ⊗ V . Consider a particular double coset HgK.

The terms ⊕

x∈[G/K]
x∈HgK

x⊗ V

form an R-submodule invariant under the action of H, since it is the direct sum of an orbit

of R-submodules permuted by H. Now

StabH(g ⊗ V ) = {h ∈ H
∣∣ hg ∈ gK}

= H ∩ gK.

Therefore as a representation for H this subspace is (g ⊗ V ) ↑HH∩gK . As observed before

the statement of this theorem we have g⊗V ∼= g(V ↓KHg∩K) as a representation of H ∩ gK.

Putting these expressions together gives the result.
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As an application of Mackey’s theorem we consider permutation modules arising from

multiply transitive G-sets. We say that a G-set Ω is n-transitive if for every pair of n-

tuples (a1, . . . , an) and (b1, . . . , bn) in which the ai are distinct elements of Ω and the bi

are distinct elements of Ω, there exists g ∈ G with gai = bi for every i. For example,

Sn acts n-transitively on {1, . . . , n}, and one may show that An acts (n − 2)-transitively

on {1, . . . , n} provided n ≥ 3. Notice that if G acts n-transitively on Ω then it also acts

(n− 1)-transitively.

(5.5) LEMMA. Let Ω be a G-set. Then G acts n-transitively on Ω if and only if G

acts transitively on Ω and for any ω ∈ Ω, StabG(ω) acts (n− 1)-transitively on Ω− {ω}.

Proof. If G acts n-transitively then G also acts transitively, and if a2, . . . , an and

b2, . . . , bn are two sets of n − 1 distinct points of Ω, none of them equal to ω, then there

exists g ∈ G so that g(ω) = (ω) and g(ai) = bi for all i. This shows that StabG(ω) acts

(n− 1)-transitively on Ω− {ω}.

Conversely, suppose G acts transitively on Ω and StabG(ω) always acts (n − 1)-

transitively on Ω − {ω}. Let a1, . . . , an and b1, . . . , bn be two sets of n distinct points

of Ω. We may find g1 ∈ G so that g1a1 = b1. Now find g2 ∈ StabG(b1) so that g2g1ai2 = bi

for 2 ≤ i ≤ n and put g = g2g1. Then g(ai) = (bi) for all i.

(5.6) PROPOSITION. Whenever Ω is a G-set the permutation module CΩ may be

written as a direct sum of CG-modules

CΩ = C⊕ V

Suppose that |Ω| ≥ 1, so V 6= 0. The representation V is simple if and only if G acts

2-transitively on Ω. In that case, V is not the trivial representation.

Proof. Pick any orbit of G on Ω. It is isomorphic as a G-set to G/H for some subgroup

H ≤ G and so C[G/H] is a direct summand of CΩ, with character 1 ↑GH . Since

〈1, 1 ↑GH〉G = 〈1, 1〉H = 1

we deduce that C is a summand of C[G/H] and hence of CΩ.

In the equivalence of statements which forms the third sentence, neither side is true

if G has more than one orbit on Ω, so we may assume Ω = G/H. The character of CΩ is
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1 ↑GH , and we compute

〈1 ↑GH , 1 ↑
G
H〉G = 〈(1 ↑GH) ↓GH , 1〉H

= 〈
∑

g∈[H\G/H]

(g1) ↑HH∩gH , 1〉H

=
∑

g∈[H\G/H]

〈1 ↑HH∩gH , 1〉H

=
∑

g∈[H\G/H]

〈1, 1〉H∩gH

=
∑

g∈[H\G/H]

1

= |H\G/H|,

using Frobenius reciprocity twice and Mackey’s formula. Now |H\G/H| is the number

of orbits of H (the stabilizer of a point) on G/H. By Lemma 5.5 this number is 2 if

G acts 2-transitively on Ω, and otherwise it is greater than 2 (since |Ω| ≥ 1). Writing

C[G/H] = S1⊕· · ·⊕Sn as a direct sum of simple representations we have 〈1 ↑GH , 1 ↑
G
H〉G ≥ n

and we get the value 2 for the inner product if and only if there are 2 simple representations

in this expression, and they are non-isomorphic. One of S1 and S2 must be C and the

other V , so V is not the trivial representation.

(5.7) Example. Let Ω = {1, . . . , n} acted upon by Sn and also An. Then CΩ ∼= C⊕V

where V is a simple representation of Sn, which remains simple on restriction to An

provided n ≥ 4.

We now turn to Clifford’s theorem, which we present in a weak and a strong form.

The weak form is used as a step in proving the strong form a little later, and as a result in

its own right it only has force in a situation where |G| is not invertible in the ground ring.

(5.8) THEOREM (Weak form of Clifford’s theorem). Let k be any field, U a simple

kG-module and N a normal subgroup of G. Then U ↓GN is semisimple as a kN -module.

Proof. Let V be any simple kN -submodule of U . For every g ∈ G, gV is also a

kN -submodule since if n ∈ N we have n(gv) = g(g−1ng)v ∈ gV , using the fact that N is

normal. Evidently gV is also simple, since if W were a kN -submodule of gV then g−1W

would be a submodule of V . Now
∑
g∈G gV is a non-zero G-invariant subspace of the

simple kG-module U , and so
∑
g∈G gV = U . As a kN -module we see that U ↓GN is the

sum of simple submodules, and hence U ↓GN is semisimple by the results of Section 1.
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The kN -submodules gV which appear in the proof of 5.8 are isomorphic to modules

we have seen before. Since N⊳G, the conjugate module gV is a representation for gN = N .

The mapping
gV → gV

v 7→ gv

is an isomorphism of kN -modules, since if n ∈ N the action on gV is n · v = g−1ngv and

the action on gV is n(gv) = g(g−1ngv). Recall also that these modules appeared when we

described induced modules. Part of Clifford’s theorem states that the simple module U is

in fact an induced module.

(5.9) THEOREM (Clifford’s theorem). Let k be any field, U a simple kG-module and

N a normal subgroup of G. Write U ↓GN= Sa1
1 ⊕· · ·⊕S

ar
r where the Si are non-isomorphic

simple kN -modules and the ai are the multiplicities to which they occur. (We refer to the

summands Sai
i as the homogeneous components.) Then

(1) G permutes the homogeneous components transitively,

(2) a1 = a2 = · · · = ar, and

(3) if H = StabG(Sa1
1 ) then U ∼= Sa1

1 ↑
G
H .

Proof. We start by observing that the homogeneous component Sai
i is characterized

as the unique largest kN -submodule which is isomorphic to a direct sum of copies of Si,

as stated in Corollary 1.9. If g ∈ G then g(Sai

i ) is a direct sum of isomorphic simple

modules gSi, and so by this characterization must be contained in another homogeneous

component: g(Sai
i ) ⊆ S

aj

j for some j. Since U = g(Sa1
1 ) ⊕ · · · ⊕ g(Sar

r ), by counting

dimensions we have g(Sai
i ) = S

aj

j . Thus G permutes the homogeneous components. Since∑
g∈G g(S

a1
1 ) is a non-zero G-invariant submodule of the simple module U , it must equal

U , and so the action on the homogeneous components is transitive. This establishes (1),

and (2) follows since for any pair (i, j) we can find g ∈ G with g(Si)
ai = S

aj

j , so ai = aj.

Finally, (3) is a direct consequence of Proposition 4.8.

For now, we give just one application of Clifford’s theorem; we will see more when we

come to consider representations of p-groups in characteristic p. Although true as stated,

the next corollary only has force when k is a field of characteristic zero, as we will see in

the next section that the only simple representation for a p-group in characteristic p is the

trivial representation.

(5.10) COROLLARY. Let k be any algebraically closed field and G a p-group. Then

every simple module for G has the form U ↑GH where U is a 1-dimensional module for some

subgroup H.

Proof. We proceed by induction on |G|. Let ρ : G→ GL(S) be a simple representation

of G over k and put N = Ker ρ. Then S is really a representation of G/N . If N 6= 1 then
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G/N is a group of smaller order than G, so by induction S has the claimed structure as

a representation of G/N , and hence also as a representation of G. Thus we may assume

N = 1 and G embeds in GL(S).

If G is abelian then all simple representations are 1-dimensional, so we are done.

Assume now that G is not abelian. Then G has a normal abelian subgroup A which is not

central. To construct this subgroup A, let Z2(G) denote the second centre of G, that is,

the preimage in G of Z(G/Z(G)). If x is any element of Z2(G)−Z(G) then A = 〈Z(G), x〉

is a normal abelian subgroup not contained in Z(G).

We apply Clifford’s theorem:

S ↓GA= Sa1
1 ⊕ · · · ⊕ S

ar
r

and S = V ↑GK where V = Sa1
1 and K = StabG(Sa1

1 ). We argue that V must be a

simple kK-module, since if it had a proper submodule W then W ↑GK would be a proper

submodule of S, which is simple. If K 6= G then by induction V = U ↑KH where U is

1-dimensional, and so S = (U ↑KH ) ↑GK= U ↑GH has the required form.

We show finally that the case K = G cannot happen. For if it were to happen then

S ↓GA= Sa1
1 and since A is abelian dimS1 = 1. The elements of A must therefore act via

scalar multiplication on S. Since such action would commute with the action of G, which

is faithfully represented on S, we deduce that A ⊆ Z(G), a contradiction.

The conclusion of Corollary 5.10 also applies to supersoluble groups, which also have

the property, if they are not abelian, that they have a non-central normal abelian subgroup.

Exercises for Section 5.

1. Let k be any field, and g any element of a finite group G.

(a) If K ≤ H ≤ G are subgroups of G, V a kH-module, and W a kK-module, show

that ((gV ) ↓
gH
gK
∼= g(V ↓HK) and ((gW ) ↑

gH
gK
∼= g(W ↑HK). [This allows one to interchange

conjugation with induction, or with restriction, in Mackey’s formula.]

(b) If U is any kG-module, show that gU ∼= U .

2. Consider the complex representations of Sn and An. Show that if S is any simple

representation of Sn then S ↓An
is the sum of at most 2 simple representations of An, and

that if the degree of S is odd then S ↓An
is simple.

In the situation where S ↓An
is the sum of 2 simple representations of An, show that S is

induced from a representation of An.

In the situation where S ↓An
is simple, show that S ↓An

↑Sn∼= S ⊕ (ǫ ⊗ S) where ǫ is the

sign representation, and that S 6∼= ǫ⊗ S.
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6. Representations of p-groups in characteristic p

The study of representations of a group over a field whose characteristic divides the

group order is more delicate than the case of ordinary representation theory (character-

istic zero), since modules need not be semisimple, and we have to do more than count

multiplicities of simple modules. The notion of a direct sum decomposition is still the

first consideration in describing the structure of a representation, but now we may find

ourselves in the situation where we have broken apart the modules as far as possible into

direct summands, and still these summands are not simple. An example of this was given

in 1.2.2. In view of this phenomenon we make the definition that a module U for an algebra

A is indecomposable if it cannot be expressed as a direct sum of two modules except in a

trivial way, that is if U ∼= V ⊕W then either V = 0 or W = 0.

We start with an explicit description of the representations of cyclic p-groups.

(6.1) PROPOSITION. Let k be any field of characteristic p and let G = 〈g
∣∣ gpn

= 1〉.

Then there is a ring isomorphism kG ∼= k[X ]/(Xpn

), where k[X ] is the polynomial ring in

an indeterminate X .

Proof. We define a mapping

G→ k[X ]/(Xpn

)

gs 7→ (X + 1)s.

Since

(X + 1)p
n

= Xpn

+ p(· · ·) + 1 ≡ 1 (mod(Xpn

))

this mapping is a group homomorphism, and hence it extends to a linear map

kG→ k[X ]/(Xpn

)

which is an algebra homomorphism. Since gs is sent to Xs plus terms of lower degree,

the images of 1, . . . , gp
n−1 form a basis of k[X ]/(Xpn

). The mapping therefore gives a

bijection between a basis of kG and a basis of k[X ]/(Xpn

), and so is an isomorphism.

A module over a ring is said to be cyclic if it can be generated by one element. We now

exploit the structure theorem for finitely-generated modules over a principal ideal domain,

which says that such modules are direct sums of cyclic modules.
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(6.2) THEOREM. Let k be any field of characteristic p. Every finitely-generated

k[X ]/(Xpn

)-module is a direct sum of cyclic modules Ur = k[X ]/(Xr) where 1 ≤ r ≤ pn.

The only simple module is the 1-dimensional module U1. Each module Ur has a unique

composition series, and hence is indecomposable.

Proof. The modules for k[X ]/(Xpn

) may be identified with the modules for k[X ] on

which Xpn

acts as zero. Every finitely-generated k[X ]-module is a direct sum of modules

k[X ]/I where I is an ideal. Hence every k[X ]/(Xpn

)-module is a direct sum of modules

k[X ]/I on which Xpn

acts as zero, which is to say (Xpn

) ⊆ I. The ideals I which satisfy

this last condition are the ideals (a) where a
∣∣ Xpn

. This forces I = (Xr) where 1 ≤ r ≤ pn,

and k[X ]/I = Ur.

The submodules of Ur must have the form J/(Xr) where J is some ideal containing

(Xr), and they are precisely the submodules in the chain

0 ⊂ (Xr−1)/(Xr) ⊂ (Xr−2)/(Xr) ⊂ · · · ⊂ (X)/(Xr) ⊂ Ur.

This is a composition series, since each successive quotient has dimension 1, and since it

is a complete list of submodules, it is the only one. If we could write Ur = V ⊕W as

a non-trivial direct sum, then Ur would have at least 2 composition series, obtained by

taking first a composition series for V , then one for W , or vice-versa. Hence each Ur is

indecomposable and we have a complete list of the indecomposable modules. The only Ur
which is simple is U1, which is the trivial module.

A module with a unique composition series is said to be uniserial. We see from the

description of k[X ]/(Xpn

)-modules that Ur has a basis 1+(Xr), X+(Xr), . . . , Xr−1+(Xr)

so that X acts on Ur with matrix




0
1 0

. . .
. . .

1 0


 .

Translating now to modules for kG where G is a cyclic p-group, the generator g acts on

Ur as X + 1, which has matrix




1
1 1

. . .
. . .

1 1


 .

Thus we see that the indecomposable kG-modules are exactly given by specifying that the

generator g acts via a matrix which is a single Jordan block, of size up to pn. It is often
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helpful to picture Ur as the diagram

Ur =

•yX=g−1

•yX=g−1

...
•yX=g−1

•

One way to interpret this is that the vertices are in bijection with a basis of Ur, and the

action of X or g − 1 is given by the arrows. Where no arrow is shown starting from a

particular vertex (as happens in this case only with the bottom one), the interpretation is

that X and g − 1 act as zero.

(6.3) PROPOSITION. Let k be any field of characteristic p and G a p-group. The

only simple kG-module is the trivial module.

Proof. We offer two proofs of this.

Proof 1. We proceed by induction on |G|, the induction starting when G is the identity

group, for which the result is true. Suppose G 6= 1 and the result is true for p-groups of

smaller order. There exists a normal subgroup N of G of index p. If S is any simple

kG-module then by Clifford’s theorem S ↓GN is semisimple. By induction, N acts trivially

on S. Thus S is really a representation of G/N which is cyclic of order p. We have just

proved that the only simple representation of this group is the trivial representation.

Proof 2. Let S be any simple kG-module and let 0 6= x ∈ S. The subgroup of S

generated by the elements {gx
∣∣ g ∈ G} is invariant under the action of G, it is abelian

and of exponent p, since it is a subgroup of a vector space in characteristic p. Thus it is a

finite p group acted on by G. Consider the orbits of G on this finite group. Since G is a

p-group the orbits have the form G/H where H is a subgroup, and so have size a power

of p (or 1). The zero element is fixed by G, and we deduce that there must be another

element fixed by G since otherwise the other orbits would all have size pn with n ≥ 1, and

their union would not be a p-group. Thus there exists y ∈ S fixed by G, and now 〈y〉 is a

trivial submodule of S. By simplicity it must equal S.

As an application of this we can give some information about the simple representa-

tions of arbitrary finite groups in characteristic p. For this we observe that in every finite

group G there is a unique largest normal p-subgroup of G, denoted Op(G). For if H and

K are normal p-subgroups of G then so is HK, and thus the subgroup generated by all

normal p-subgroups of G is a again a normal p-subgroup, which evidently contains all the

others.
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(6.4) COROLLARY. Let k be any field of characteristic p, G any finite group and

S a simple kG-module. Then Op(G) acts trivially on S. Thus the simple kG-modules are

precisely the simple k[G/Op(G)]-modules, made into kG-modules via the homomorphism

G→ G/Op(G).

Proof. By Clifford’s theorem, S ↓GOp(G) is semisimple. Therefore, by 6.3, Op(G) acts

trivially on S.

(6.5) Example. Let k be a field of characteristic 2, and consider the representations

of A4 over k. Since O2(A4) = C2 × C2, the simple kA4 modules are the simple C3 =

A4/O2(A4)-representations, made into representations of A4. Now kC3 is semisimple, and

if k contains a primitive cube root of unity ω (i.e. if F4 ⊆ k) there are three 1-dimensional

simple representations, on which the generator of C3 acts as 1, ω or ω2.

At this point we examine further the structure of representations which are not

semisimple, and we work in the context of modules for a ring A. If U is an A-module

we defined the socle of U to be the sum of all the simple submodules of U , and we showed

(at least in the case that U is finite-dimensional) that it is the unique largest semisimple

submodule of U . We now work with quotients and define a dual concept, the radical of U .

We work with quotients instead of submodules, and use the fact that if M is a submodule

of U , the quotient U/M is simple if and only if M is a maximal submodule of U . We put

RadU =
⋂
{M

∣∣ M ⊂ U is a maximal submodule}.

In our applications U will always be Noetherian, so this intersection will be non-empty.

(6.6) LEMMA. Let U be a module for a ring A.

(1) Suppose that M1, . . . ,Mn are maximal submodules of U . Then there is a subset

I ⊆ {1, . . . , n} such that

U/(M1 ∩ · · · ∩Mn) ∼=
⊕

i∈I
U/Mi

which, in particular, is a semisimple module.

(2) Suppose further that U has the descending chain condition on submodules. Then

U/RadU is a semisimple module, and RadU is the unique smallest submodule of U

with this property.

Proof. (1) Let I be a subset of {1, . . . , n} maximal with the property that the

quotient homomorphisms U/(
⋂
i∈IMi) → U/Mi induce an isomorphism U/(

⋂
i∈IMi) ∼=⊕

i∈I U/Mi. We show that
⋂
i∈IMi = M1 ∩ · · · ∩Mn and argue by contradiction. If it

were not the case, there would exist Mj with
⋂
i∈IMi 6⊆Mj . Consider the homomorphism

f : U → (
⊕

i∈I
U/Mi)⊕ U/Mj
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whose components are the quotient homomorphisms U → U/Mk. This has kernel Mj ∩⋂
i∈IMi, and it will suffice to show that f is surjective, because this will imply that the

larger set I ∪ {j} has the same property as I, thereby contradicting the maximality of I.

To show that f is surjective let g : U → U/
⋂
i∈IMi ⊕ U/Mj and observe that

(
⋂
i∈IMi) + Mj = U since the left-hand side is strictly larger than Mj, which is max-

imal in U . Thus if x ∈ U we can write x = y + z where y ∈
⋂
i∈IMi and z ∈ Mj . Now

g(y) = (0, x +Mj) and g(z) = (x +
⋂
i∈IMi, 0) so that both summands U/

⋂
i∈IMi and

U/Mj are contained in the image of g and g is surjective. Since f is obtained by composing

g with the isomorphism which identifies U/
⋂
i∈IMi with

⊕
i∈I U/Mi, we deduce that f

is surjective.

(2) By the assumption that U has the descending chain condition on submodules,

RadU must be the intersection of finitely many maximal submodules. Therefore U/RadU

is semisimple by part (1). If V is a submodule such that V is semisimple, say U/V ∼=

S1⊕· · ·⊕Sn where the Si are simple modules, let Mi be the kernel of U → U/V
projection
−→ Si.

Then Mi is maximal and V = M1 ∩ · · · ∩Mn. Thus V ⊇ RadU , and RadU is contained

in every submodule V for which U/V is semisimple.

As a particular case, we define the radical of a ring A to be the radical of the regular

representation RadAA and write simply RadA. Thus by 6.6, if A has the descending chain

condition on left ideals (for example, if A is a finite-dimensional algebra over a field) then

RadA is the smallest left ideal of A such that A/RadA is a semisimple module.

(6.7) PROPOSITION. Let A be a ring. Then,

(1) RadA = {a ∈ A
∣∣ a · S = 0 for every simple A-module S}, and

(2) RadA is a 2-sided ideal of A.

(3) Suppose further that A is a finite-dimensional algebra over a field. Then

(a) RadA is the smallest left ideal of A such that A/RadA is a semisimple A-module,

(b) A is semisimple if and only if RadA = 0,

(c) RadA is nilpotent, and is the largest nilpotent ideal of A.

Proof. (1) Given a simple module S and 0 6= s ∈ S, the module homomorphism

AA → S given by a 7→ as is surjective and its kernel is a maximal left ideal Ms. Now if

a ∈ RadA then a ∈ Ms for every S and s ∈ S, so as = 0 and a annihilates every simple

module. Conversely, if a · S = 0 for every simple module S and M is a maximal left ideal

then A/M is a simple module. Therefore a · (A/M) = 0, which means a ∈ M . Hence

a ∈
⋂

maximalM M = RadA.

(2) Being the intersection of left ideals, RadA is also a left ideal of A. Suppose that

a ∈ RadA and b ∈ A, so a · S = 0 for every simple S. Now a · bS ⊆ a · S = 0 so ab has the

same property that a does.

(3) (a) and (b) are immediate from 6.6. We prove (c). Choose any composition series

0 = An ⊂ An−1 ⊂ · · · ⊂ A1 ⊂ AA
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of the regular representation. Since each Ai/Ai+1 is a simple A-module, RadA ·Ai ⊆ Ai+1

by part (1). Hence (RadA)r ·A ⊆ Ar and (RadA)n = 0.

Suppose now that I is a nilpotent ideal of A, say Im = 0, and let S be any simple

A-module. Then

0 = Im · S ⊆ Im−1 · S ⊆ · · · ⊆ IS ⊆ S

is a chain of A-submodules of S, which are either 0 or S since S is simple. There must

be some point where 0 = IrS 6= Ir−1S = S. Then IS = I · Ir−1S = IrS = 0, so in fact

that point was the very first step. This shows that I ⊆ RadA by part (1). Hence RadA

contains every nilpotent ideal of A, so is the unique largest such ideal.

We may now determine the radical of kG when k is a field of characteristic p and G

is a p-group. If R is any commutative ring, the ring homomorphism

ǫ : RG→ R

g 7→ 1 for all g ∈ G

is called the augmentation map. Regarded as a homomorphism of modules it expresses the

trivial representation as a homomorphic image of the regular representation. The kernel

of ǫ is called the augmentation ideal, and is denoted IG. Evidently IG consists of those

elements
∑

g∈G agg ∈ RG such that
∑
g∈G ag = 0.

(6.8) PROPOSITION.

(1) Let R denote the trivial RG-module. Then IG = {x ∈ RG
∣∣ x ·R = 0}.

(2) IG is free as an R-module with basis {g − 1
∣∣ 1 6= g ∈ G}.

(3) If R = k is a field of characteristic p and G is a p-group then IG = Rad(kG). It

follows that IG is nilpotent in this case.

Proof. (1) The augmentation map ǫ is none other than the linear extension to RG

of the homomorphism ρ : G → GL(1, R) which is the trivial representation. Thus each

x ∈ RG acts on R as multiplication by ǫ(x), and so will act as 0 precisely if ǫ(x) = 0.

(2) The elements g − 1 where g ranges through the non-identity elements of G are

linearly independent since the elements g are, and they lie in IG. We show that they span

IG. Suppose
∑
g∈G agg ∈ IG, which means that

∑
g∈G ag = 0 ∈ R. Then

∑

g∈G
agg =

∑

g∈G
agg −

∑

g∈G
ag1 =

∑

1 6=g∈G
ag(g − 1)

is an expression as a linear combination of elements g − 1.

(3) When G is a p-group and char(k) = p we have seen in 6.3 that k is the only simple

kG-module. The result follows by part (1) and 6.7.
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Working in the generality of a finite-dimensional algebra A again, the radical of A

allows us to give a further description of the radical and socle of a module.

(6.9) PROPOSITION. Let A be a finite-dimensional algebra over a field k, and U an

A-module.

(1) The following are all descriptions of RadU :

(a) the intersection of the maximal submodules of U ,

(b) the smallest submodule of U with semisimple quotient,

(c) RadA · U .

(2) The following are all descriptions of SocU :

(a) the sum of the simple submodules of U ,

(b) the largest semisimple submodule of U ,

(c) {u ∈ U
∣∣ RadA · u = 0}.

Proof. We have seen the equivalence of descriptions (a) and (b) in 1.10 and 6.6.

Let us show that the submodule RadA · U in (1)(c) satisfies condition (1)(b). Firstly

U/(RadA·U) is a module for A/RadA, which is a semisimple algebra. Hence U/(RadA·U)

is a semisimple module and so RadA · U contains the submodule of (1)(b). On the other

hand if V ⊆ U is a submodule for which U/V is semisimple then RadA · (U/V ) = 0 by

6.7, so V ⊇ RadA · U . In particular, the submodule of (1)(b) contains RadA · U .

As for {u ∈ U
∣∣ RadA · u = 0}, this is the largest submodule of U annihilated by

RadA. It is thus an A/RadA-module and hence is semisimple. Since every semisimple

submodule of U is annihilated by RadA, it is the unique largest such submodule.

(6.10) Example. Consider the situation of 6.1 and 6.2 in which G is a cyclic group of

order pn and k is a field of characteristic p. We see that RadUr ∼= Ur−1 and SocUr ∼= U1

for 1 ≤ r ≤ pn, taking U0 = 0.

We now iterate the notions of socle and radical and for each A-module U we define

inductively
Radn(U) = Rad(Radn−1(U))

Socn(U)/ Socn−1(U) = Soc(U/ Socn−1 U).

It is immediate from 6.9 that

Radn(U) = (RadA)n · U

Socn(U) = {u ∈ U
∣∣ (RadA)n · u = 0}

and these submodules of U form chains

· · · ⊆Rad2 U ⊆ RadU ⊆ U

0 ⊆ SocU ⊆Soc2 U ⊆ · · ·

which are called, respectively, the radical series and socle series of U . They are also known

as the lower Loewy series and upper Loewy series of U .
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(6.11) PROPOSITION. Let A be a finite-dimensional algebra over a field k, and U

an A-module. The radical series of U is the fastest descending series of submodules of U

with semisimple quotients, and the socle series of U is the fastest ascending series of U

with semisimple quotients. The two series terminate, and if m and n are the least integers

for which Radm U = 0 and Socn U = U then m = n.

Proof. Suppose that · · · ⊆ U2 ⊆ U1 ⊆ U0 = U is a series of submodules of U with

semisimple quotients. We show by induction on r that Radr(U) ⊆ Ur. This is true when

r = 0. Suppose that r > 0 and Radr−1(U) ⊆ Ur−1. Then

Radr−1(U)/(Radr−1(U) ∩ Ur) ∼= (Radr−1 +Ur)/Ur ⊆ Ur−1/Ur

is semsimple, so Radr−1(U)∩Ur ⊇ Rad(Radr−1(U)) = Radr(U). Therefore Radr(U) ⊆ Ur.

This shows that the radical series descends faster than the series Ui. The argument that

the socle series ascends faster is similar.

Since A is a finite-dimensional algebra we have (RadA)r = 0 for some r. Then

Radr U = 0 and Socr U = U by 6.9. By what we have just proved, the radical series

descends at least as fast as the socle series and so has equal or shorter length. By a similar

argument (using the fact that the socle series is the fastest ascending series with semisimple

quotients) the socle series ascends at least as fast as the radical series and so has equal or

shorter length. We conclude that the two lengths are equal.

The common length of the radical series and socle series of U is called the Loewy

length of the module U .

We conclude this section by mentioning without proof the theorem of Jennings on the

Loewy series of kG when G is a p-group and k is a field of characteristic p and summarize

its implications. For proofs, see Benson’s book [Ben]. Jennings constructs a decreasing

series of subgroups

κr(G) = {g ∈ G
∣∣ g ≡ 1 modulo Radr(kG)},

which is sometimes called the Jennings series of G. This series of subgroups has the

properties

1) [κr, κs] ⊆ κr+s,

2) gp ∈ κip for all g ∈ κi,

3) κr/κ2r is elementary abelian.

Furthermore, we may generate κr as

κr = 〈[κr−1, G], κ
(p)
⌈r/p⌉〉,

where κ1 = G, ⌈r/p⌉ is the least integer greater than or equal to r/p, and κ
(p)
r is the set

of pth powers of elements of κr. Evidently the first term in this series is κ1(G) = G and

we may see that the second term κ2(G) is the Frattini subgroup of G (the smallest normal
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subgroup of G for which the quotient is elementary abelian). After that the terms need to

be calculated on a case-by-case basis.

For each i ≥ 1 let di be the dimension of κi/κi+1 as a vector space over Fp, and choose

any elements xi,s of G such that the set {xi,sκi+1

∣∣ 1 ≤ s ≤ di} forms a basis for κi/κi+1.

Let x̄i,s = xi,s−1 ∈ kG. There are |G| products of the form
∏
x̄
αi,s

i,s , where the factors are

taken in some predetermined order, and 0 ≤ αi,s ≤ p− 1. The weight of such a product is

defined to be
∑
iαi,s. Jenning’s theorem states that the set of products of weight w lie in

Radw(kG), and forms a basis of Radw(kG) modulo Radw+1(kG). Thus the set of all these

products is a basis for kG compatible with the powers of the radical.

For example, if we take an element x of order 4 and an element y of order 2 which

generate the dihedral group of order 8, so D8 = 〈x, y
∣∣ x4 = y2 = 1, yxy = x−1〉, we have

κ1 = D8, κ2 = 〈x2〉, κ3 = 1. We may choose x1,1 = x, x1,2 = y, x2,1 = x2, and note that

x̄2 = x̄2. Now the products x̄α1,1 x̄2α2,1 ȳα1,2 = x̄α1,1+2α2,1 ȳα1,2 , where 0 ≤ αi,s ≤ 1, form a

basis of kD8 which is compatible with the powers of the radical. In this special case, these

elements may be simplified as x̄iȳj with 0 ≤ i ≤ 3 and 0 ≤ j ≤ 1.

When doing calculation with group rings of p-groups in characteristic p the basis given

by Jennings is often to be preferred over the basis given by the group elements. This basis

gives a description of the powers of the radical in group-theoretic terms, and it allows

us to deduce a result about the socle series as well. Since each element x̄i,s of weight i

contributes factors of weights 0, i, 2i, 3i, . . . , (p− 1)i in Jennings’ basis , the total number

of products of weight w is the coefficient of tw in

(1 + t+ t2 + · · ·+ tp−1)d1(1 + t2 + · · ·+ t2(p−1))d2 · · · =
∏

i≥1

(
(1− tip)

(1− ti)

)di

,

and this equals the polynomial
∑
w≥0(dimRadw(kG)/ dimRadw+1(kG))tw. We see from

this that the dimensions of the factors in the radical series of kG are symmetric, in that

they are the same if taken in reverse order. Jumping ahead of ourselves for a moment and

using the fact that kG ∼= kG∗ (see Section 8) and also using Exercise 6 to this section,

we may see that when G is a p-group and k is a field of characteristic p the terms of the

radical series and the socle series of kG coincide, although these terms appear in the two

series in the opposite order.

Exercises for Section 6.

1. Let A be a ring. Prove that for each n, Socn AA is a 2-sided ideal of A.

2. Let G =
∑
g∈G g as an element of kG, where k is a field. Show that the subspace

kG of kG spanned by G is an ideal. Show that this ideal is nilpotent if and only if the

characteristic of k divides |G|. Deduce that if kG is semisimple then char(k) 6
∣∣ |G|.

3. Prove that if N is a normal subgroup of G and k is a field then Rad(kN) =

kN ∩ Rad(kG).
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4. Suppose that U is an indecomposable module with just two composition factors.

Show that U is uniserial.

5. Show that the following conditions are equivalent for a module U which has a

composition series.

(a) U is uniserial (i.e. U has a unique composition series).

(b) The set of all submodules of U is totally ordered by inclusion.

(c) Radr U/Radr+1 U is simple for all r.

(d) Socr+1 U/ Socr U is simple for all r.

6. Let U be a kG-module and U∗ its dual. Show that for each n

Socn(U∗) = {f ∈ U∗ ∣∣ f(Radn(U) = 0}

and

Radn(U∗) = {f ∈ U∗ ∣∣ f(Socn(U) = 0}.

Deduce that Socn+1(U∗)/ Socr(U∗) ∼= (Radn(U)/RadN+1(U))∗ as kG-modules. [Hint:

recall Exercise 9 to Section 4.]

7. Let H be a subgroup of G.

(a) Let H =
∑
h∈H h be the sum of the elements of H, as an element of RG. Show

that RG ·H ∼= R ↑GH as RG-modules.

(b) Let IH be the augmentation ideal of RH, as a subset of RG. Show that RG·IH ∼=
IH ↑GH as RG-modules, and that RG/(RG · IH) ∼= R ↑GH as RG-modules.

The next five exercises give a direct proof of the result stated in 6.8, that for a p-group

in characteristic p the augmentation ideal is nilpotent.

8. Show that if elements g1, . . . , gn generate G as a group, then (g1 − 1), . . . , (gn − 1)

generate the augmentation ideal IG as a left ideal of kG.

[Use the formula (gh− 1) = g(h− 1) + (g − 1).]

9. Suppose that k is a field of characteristic p and G is a p-group. Prove that each

element (g − 1) is nilpotent. (More generally, every element of IG is nilpotent.)

10. Show that if N is a normal subgroup of G then the left ideal

RG · IN = {x · y
∣∣ x ∈ RG, y ∈ IN}

of RG generated by IN is the kernel of the ring homomorphism RG→ R[G/N ] and is in

fact a 2-sided ideal in RG.

[One approach to this uses the formula g(n− 1) = (gn− 1)g.]

Show that (RG · IN)r = RG · (IN)r for all r.

11. Show that if a particular element (g − 1) appears n times in a product

(g1 − 1) · · · (gr − 1)

then

(g1 − 1) · · · (gr − 1) ≡ (g − 1)n · x modulo kG · (IG′)
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for some x ∈ kG, where G′ denotes the commutator subgroup.

[Use the formula (g − 1)(h− 1) = (h− 1)(g − 1) + (ghg−1h−1 − 1)hg.]

Show that if G is a p-group and k a field of characteristic p then IGr ⊆ kG · IG′ for some

power r.

12. Prove that if G is a p-group and k is a field of characteristic p then (IG)r = 0 for

some power r.

13. Calculate the Loewy length of kCnp , the group algebra of the direct product of n

copies of a cycle of order p.

14. The dihedral group of order 2n has a presentation

D2n = 〈x, y
∣∣ x2 = y2 = (xy)n = 1〉.

Let k be a field of characteristic 2. Show that when n is a power of 2, each power (ID2n)
r

of the augmentation ideal is spanned modulo (ID2n)
r+1 by the two products (x− 1)(y −

1)(x − 1)(y − 1) · · · and (y − 1)(x − 1)(y − 1)(x − 1) · · · of length r. Hence calculate

the Loewy length of kD2n and show that Rad(kD2n)/ Soc(D2n) is the direct sum of two

kD2n-modules which are uniserial.

15. When n ≥ 3, the generalized quaternion group of order 2n has a presentation

Q2n = 〈x, y
∣∣ x2n−1

= 1, y2 = x2n−2

, yxy−1 = x−1〉.

Let k be a field of characteristic 2. Show that when r ≥ 1 each power (IQ2n)r of the

augmentation ideal is spanned modulo (IQ2n)r+1 by (x−1)r and (x−1)r−1(y−1). Hence

calculate the Loewy length of kQ2n .

16. Show that for each RG-module U , U/(IG · U) is the largest quotient of U on

which G acts trivially. Prove that U/(IG · U) ∼= R ⊗RG U .

17. (a) Let G be any group and IG ⊂ ZG the augmentation ideal over Z. Prove that

IG/(IG)2 ∼= G/G′ as abelian groups.

[Consider the homomorphism of abelian groups IG → G/G′ given by g − 1 7→ gG′. Use

the formula ab− 1 = (a− 1) + (b− 1) + (a− 1)(b− 1) to show that (IG)2 is contained in

the kernel, and that the homomorphism G/G′ → IG/(IG)2 given by gG′ 7→ g− 1 + (IG)2

is well defined.]

(b) If now R is any commutative ring with 1 and IG ⊂ RG is the augmentation ideal,

show that IG/(IG)2 ∼= R ⊗Z G/G
′ as R-modules.

18. Let Ω be a transitive G-set and k a field. Let kΩ be the corresponding permutation

module. There is a homomorphism of kG-modules ǫ : kΩ→ k defined as ǫ(
∑
ω∈Ω aωω) =∑

ω∈Ω aω. Let Ω =
∑
ω∈Ω ω ∈ kΩ.

(a) Show that every kG-module homomorphism kΩ→ k is a scalar multiple of ǫ.

(b) Show that the fixed points of G on kΩ are kΩG = k ·Ω.

(c) Show that ǫ(Ω) = 0 if and only if char k
∣∣ |Ω|, and that if this happens then

Ω ∈ Rad kΩ and the trivial module k occurs as a composition factor of kΩ with multiplicity

≥ 2.
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(d) Show that if ǫ(Ω) 6= 0 then ǫ is a split epimorphism and Ω 6∈ Rad kΩ.

(e) Show that kG is semisimple if and only if the regular representation kG has the

trivial module k as a direct summand (i.e. k is a projective module).

19. Let Ω be a transitive G-set for a possibly infinite group G and let RΩ be the

corresponding permutation module. Show that Ω is infinite if and only if (RΩ)G = 0 and

deduce that G is infinite if and only if (RG)G = 0.

20. Let Ur be the indecomposable kCp-module of dimension r, 1 ≤ r ≤ p, where k is

a field of characteristic p. Prove that Ur = Sr−1(U2), the (r − 1) symmetric power.

[One way to proceed is to show that if Cp = 〈g〉 then (g − 1)r−1 does not act as zero on

Sr−1(U2) and use the classification of indecomposable kCp-modules.]

21. Let G = SL(2, p), the group of 2× 2 matrices over Fp which have determinant 1,

where p is a prime. The subgroups

P1 = {

(
1 λ
0 1

) ∣∣ λ ∈ Fp}, P2 = {

(
1 0
λ 1

) ∣∣ λ ∈ Fp}

have order p. Let U2 be the natural 2-dimensional module on which G acts. When

0 ≤ r ≤ p − 1 prove that Sr(U2) is a uniserial FpP1-module, and also a uniserial FpP2-

module, but that the only subspaces of Sr(U2) which are invariant under both P1 and P2

are 0 and Sr(U2). Deduce that Sr(U2) is a simple FpG-module.

[Background to the question which is not needed to solve it: |G| = p(p2 − 1); both P1

and P2 are Sylow p-subgroups of G. In fact, the simple modules constructed here form a

complete list of the simple FpSL(2, p)-modules.]

22. Let g be an endomorphism of a finite-dimensional vector space V over a field k

of characteristic p, and suppose that g has finite order pd for some d. Show that as a

k〈g〉-module, V has an indecomposable direct summand of dimension at least pd−1 + 1.

[You may assume the classification of indecomposable modules for cyclic p-groups in char-

acteristic p.]

Deduce that if such an endomorphism g fixes a subspace of V of codimension 1 then

g has order p or 1.

[An endomorphism (not necessarily of prime-power order) which fixes a subspace of codi-

mension 1 is sometimes referred to as a reflection in a generalized sense.]
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7. Projective modules for finite-dimensional algebras

In previous sections we have seen the start of techniques to describe modules which are

not semisimple. The most basic decomposition of such a module is one that expresses it as

a direct sum of modules which cannot be decomposed as a direct sum any further. These

summands are called indecomposable modules. We have also examined the notions of rad-

ical series and socle series of a module, which are series of canonically defined submodules

which may shed light on submodule structure. We combine these two notions in the study

of projective modules for group rings, working at first in the generality of modules for finite

dimensional algebras over a field. In this situation the indecomposable projective modules

are the indecomposable summands of the regular representation. We will see that they are

identified by the structure of their radical quotient. The projective modules are important

because their structure is part of the structure of the regular representation. Since every

module is a homomorphic image of a direct sum of copies of the regular representation, by

knowing the structure of the projectives one knows, in some sense, all modules.

Recall that a module M over a ring A is said to be free if it has a basis, that is, a

subset which spans M as an A-module, and is linearly independent over A. Whenever

{xi
∣∣ i ∈ I} is a basis it follows that M =

⊕
i∈I Axi with Axi ∼= A for all i. Thus M

is a finitely generated free module if and only if M ∼= An for some n, that is, M may be

identified with the module of n-tuples of elements of A.

(7.1) PROPOSITION. Let A be a ring and M an A-module. Then M is free on a

subset {xi
∣∣ i ∈ I} if and only if for every module N and mapping of sets φ : {xi

∣∣ i ∈
I} → N there exists a unique morphism of modules ψ : M → N which extends φ.

We omit the proof.

We define a module homomorphism f : M → N to be a split epimorphism if and only

if there exists a homomorphism g : N →M so that fg = 1N , the identity map on N . Note

that a split epimorphism is necessarily an epimorphism since if x ∈ N then x = f(g(x)) so

that x lies in the image of f . We define similarly f to be a split monomorphism if there

exists a homomorphism g : N → M so that gf = 1M . Necessarily a split monomorphism

is a monomorphism. We are about to show that if f is a split epimorphism then N is

(isomorphic to) a direct summand of M . To combine both this and the corresponding

result for split monomorphisms it is convenient to introduce short exact sequences. We

say that a diagram of modules and module homomorphisms L
α
−→M

β
−→N is exact at M

if Imα = Ker β. A short exact sequence of modules is a diagram 0 → L
α
−→M

β
−→N → 0

which is exact a each of L,M and N . Exactness at L and N means simply that α is a

monomorphism and β is an epimorphism.
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(7.2) PROPOSITION. Let 0 → L
α
−→M

β
−→N → 0 be a short exact sequence of

modules over a ring. The following are equivalent:

(1) α is a split monomorphism,

(2) β is a split epimorphism, and

(3) there is a commutative diagram

0 → L
α
−→ M

β
−→ N → 0

‖
yγ ‖

0 → L
ι1−→ L⊕N

π2−→ N → 0

where ι1 and π2 are inclusion into the first summand and projection onto the second

summand.

In any diagram such as the one in (3) the morphism γ is necessarily an isomorphism. Thus

if any of the three conditions is satisfied it follows that M ∼= L⊕N .

Proof. Condition (3) implies the first two, since the existence of such a commutative

diagram implies that α is split by π1γ and β is split by γ−1ι2.

Conversely if condition (1) is satisfied, so that δα = 1L for some homomorphism

δ : M → L, we obtain a commutative diagram as in (3) on taking the components of γ

to be δ and β. If condition (2) is satisfied we obtain a commutative diagram similar to

the one in (3) but with a homomorphism ζ : L ⊕ N → M in the wrong direction, whose

components are α and a splitting of β. We obtain the diagram of (3) on showing that in

any such diagram the middle vertical homomorphism must be invertible.

The fact that the middle homomorphism in the diagram must be invertible is a con-

sequence of both the ‘five lemma’ and the ‘snake lemma’ in homological algebra. We leave

it here as an exercise.

In the event that α and β are split, we say that the short exact sequence in Proposition

7.2 is split. Notice that whenever β : M → N is an epimorphism it is part of the short exact

sequence 0→ Ker β →֒M
β
−→N → 0 and so we deduce that if β is a split epimorphism then

N is a direct summand ofM . A similar comment evidently applies to split monomorphisms.

(7.3) PROPOSITION. The following are equivalent for an A-module U .

(1) U is a direct summand of a free module.

(2) Every epimorphism V → U is split.

(3) For every pair of morphisms
U
yα

V
β
−→ W
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where β is an epimorphism, there exists a morphism γ : U → V with βγ = α.

(4) For every short exact sequence of A-modules 0→ V →W → X → 0 the corresponding

sequence

0→ HomA(U, V )→ HomA(U,W )→ HomA(U,X)→ 0

is exact.

Proof. This result is standard and we do not prove it here. In condition (4) the

sequence of homomorphism groups is always exact at the left-hand terms HomA(U, V ) and

HomA(U,W ) without requiring any special property of U (we say that HomA(U, ) is left

exact). The force of condition (4) is that the sequence should be exact at the right-hand

term.

We say that a module U satisfying any of the four conditions of 7.3 is projective.

Notice that direct sums and also direct summands of projective modules are projective.

An indecomposable module which is projective is an indecomposable projective module,

and these modules will be very important in our study. In other texts the indecomposable

projective modules are also known as PIMs, or Principal Indecomposable Modules, but we

will not use this terminology here.

One way to obtain projective A-modules is from idempotents of the ring A. If e2 =

e ∈ A then AA = Ae⊕A(1− e) as A-modules, and so the submodules Ae and A(1− e) are

projective. We formalize this with the next result, which should be compared with 3.22 in

which we were dealing with ring summands of A and central idempotents.

(7.4) PROPOSITION. Let A be a ring. The decompositions of the regular represen-

tation as a direct sum of submodules

AA = A1 ⊕ · · · ⊕Ar

biject with expressions 1 = e1 + · · · + er for the identity of A as a sum of orthogonal

idempotents, in such a way that Ai = Aei. The summand Ai is indecomposable if and

only if the idempotent ei is primitive.

Proof. Suppose that 1 = e1 + · · · + er is an expression of the identity as a sum of

orthogonal idempotents. Then

AA = Ae1 ⊕ · · · ⊕Aer,

for the Aei are evidently submodules of A, and their sum is A since if x ∈ A then x =

xe1 + · · · + xer. The sum is direct since if x ∈ Aei ∩
∑
j 6=iAej then x = xei and also

x =
∑
j 6=i ajej so x = xei =

∑
j 6=i ajejei = 0.

Conversely, suppose that AA = A1 ⊕ · · · ⊕ Ar is a direct sum of submodules. We

may write 1 = e1 + · · · + er where ei ∈ Ai is a uniquely determined element. Now
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ei = ei1 = eie1 + · · · + eier is an expression in which eiej ∈ Aj , and since the only such

expression is ei itself we deduce that

eiej =
{
ei if i = j,
0 otherwise.

The two constructions just described, in which we associate an expression for 1 as a

sum of idempotents to a module direct sum decomposition and vice-versa, are mutually

inverse, giving a bijection as claimed.

If a summand Ai decomposes as the direct sum of two other summands, this gives

rise to an expression for ei as a sum of two orthogonal idempotents, and conversely. Thus

Ai is indecomposable if and only if ei is primitive.

In 3.22 there was a statement about the uniqueness of summands in a decomposition of

A as a direct sum of indecomposable rings, and we should point out that the corresponding

uniqueness statement need not hold with module decompositions of AA. For an example

of this we might take A = M2(R), the ring of 2× 2-matrices over a ring R, in which

AA = A

(
1 0
0 0

)
⊕A

(
0 0
0 1

)
= A

(
0 1
0 1

)
⊕ A

(
1 −1
0 0

)
.

The submodules here are all different. We will see later that if A is a finite-dimensional

algebra over a field then in any two decompositions of AA as a direct sum of indecomposable

submodules, the submodules are isomorphic in pairs.

We will also see that when A is a finite-dimensional algebra over a field, every in-

decomposable projective A-module may be realized as Ae for some primitive idempotent

e. For other rings this need not be true, and an example is ZG, for which it is the case

that the only idempotents are 0 and 1 (see the exercises to Section 8). For certain finite

groups (an example is the cyclic group of order 23, but this takes us beyond the scope of

this book) there exist indecomposable projective ZG-modules which are not free, so such

modules will never have the form ZGe.

(7.5) Example. We present an example of a decomposition of the regular representa-

tion in a situation which is not semisimple. Many of the observations we will make are

consequences of theory to be presented in later sections, but it seems worthwhile to show

that the calculations can be done by direct arguments.

Consider the group ring F4S3 where F4 is the field of 4 elements. By Proposition 4.5

the 1-dimensional representations of S3 are the simple representations of S3/S
′
3
∼= C2, lifted

to S3. But F4C2 has only one simple module, namely the trivial module, by Proposition

6.3, so this is the only 1-dimensional F4S3-module. The 2-dimensional representation of

S3 constructed in Section 1 over any coefficient ring is now seen to be simple here, since

otherwise it would have a trivial submodule; but the eigenvalues of the element (1, 2, 3) on

this module are ω and ω2, where ω ∈ F4 is a primitive cube root of 1, so there is no trivial

submodule.
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Let K = 〈(1, 2, 3)〉 be the subgroup of S3 of order 3. Now F4K is semisimple with

three 1-dimensional representations on which (1, 2, 3) acts as 1, ω and ω2, respectively. In

fact

F4K = F4Ke1 ⊕ F4Ke2 ⊕ F4Ke3

where
e1 = () + (1, 2, 3) + (1, 3, 2)

e2 = () + ω(1, 2, 3) + ω2(1, 3, 2)

e3 = () + ω2(1, 2, 3) + ω(1, 3, 2)

are orthogonal idempotents in F4K. We may see that these are orthogonal idempotents

by direct calculation, but it can also be seen by observing that the corresponding elements

of CK with ω replaced by e
2πi
3 are orthogonal and square to 3 times themselves (Theorem

3.23), and lie in Z[e
2πi
3 ]K. Reduction modulo 2 gives a ring homomorphism Z[e

2πi
3 ]→ F4

which maps these elements to e1, e2 and e3, while retaining their properties. Thus

F4S3 = F4S3e1 ⊕ F4S3e2 ⊕ F4S3e3

and we have constructed modules F4S3ei which are projective. We have not yet shown

that they are indecomposable.

We easily compute that

(1, 2, 3)e1 = e1, (1, 2, 3)e2 = ω2e2, (1, 2, 3)e3 = ωe3

and from this we see that K · F4ei = F4ei for all i. Since S3 = K ∪ (1, 2)K we have

F4S3ei = F4ei ⊕ F4(1, 2)ei, which has dimension 2 for all i. We have already seen that

when i = 2 or 3, ei is an eigenvector for (1, 2, 3) with eigenvalue ω or ω2, and a similar

calculation shows that the same is true for (1, 2)ei. Thus when i = 2 or 3, F4S3ei has

no trivial submodule and hence is simple by the observations made at the start of this

example. We have an isomorphism of F4S3-modules

F4S3e2 → F4S3e3

e2 7→ (1, 2)e3

(1, 2)e2 7→ e3.

On the other hand F4S3e1 has fixed points F4

∑
g∈S3

g of dimension 1 and so has two

composition factors, which are trivial. On restriction to F4〈(1, 2)〉 it is the regular repre-

sentation, and it is a uniserial module.

We see from all this that F4S3 = 1
1 ⊕ 2 ⊕ 2, in a diagrammatic notation. Thus the

2-dimensional simple F4S3-module is projective, and the trivial module appears as the

unique simple quotient of a projective module of dimension 2 whose socle is also the trivial

module. These summands of F4S3 are indecomposable, and so e1, e2 and e3 are primitive

idempotents in F4S3. We see also that the radical of F4S3 is the span of
∑
g∈S3

g.



Printed Dec. 12, 2007 Finite Group Representations 80

We now develop the theory of projective covers. We first make the definition that an

essential epimorphism is an epimorphism of modules f : U → V with the property that

no proper submodule of U is mapped surjectively onto V by f . An equivalent formulation

is that whenever g : W → U is a map such that fg is an epimorphism, then g is an

epimorphism. One immediately asks for examples of essential epimorphisms, but it is

probably more instructive to consider epimorphisms which are not essential. If U → V is

any epimorphism and X is a non-zero module then the epimorphism U ⊕X → V which is

zero on X can never be essential because U is a submodule of U ⊕X mapped surjectively

onto V . Thus if U → V is essential then U can have no direct summands which are

mapped to zero. One may think of an essential epimorphism as being minimal, in that

no unnecessary parts of U are present. The greatest source of essential epimorphisms is

Nakayama’s lemma.

(7.6) THEOREM (Nakayama’s Lemma). If U is any Noetherian module, the homo-

morphism U → U/RadU is essential.

Proof. Suppose V is a submodule of U . If V 6= U then V ⊆ M ⊂ U where

M is a maximal submodule of U . Now V + RadU ⊆ M and so the composite V →

U → U/RadU has image contained in M/RadU , which is not equal to U/RadU since

(U/RadU)/(M/RadU) ∼= U/M 6= 0.

Evidently an equivalent way to state Nakayama’s lemma is that if V is a submodule

of U with the property that V + RadU = U , then V = U .

As an example of an essential epimorphism we could consider the indecomposable kG-

module Ur of dimension r, where k is a field of characteristic p and G is cyclic of order pn.

Since Ur has a unique maximal submodule, of codimension 1, the epimorphism Ur → U1

is essential, by Nakayama’s lemma.

The next result is not at all difficult and could usefully be proved as an exercise.

(7.7) PROPOSITION.

(a) Suppose that f : U → V and g : V → W are two module homomorphsms. If two of

f , g and gf are essential epimorphisms then so is the third.

(b) Let f : U → V be a homomorphism of modules for a finite-dimensional algebra over a

field. Then f is an essential epimorphism if and only if the homomorphism of radical

quotients U/RadU → V/RadV is an isomorphism.

(c) Let fi : Ui → Vi be homomorphisms of modules for a finite-dimensional algebra over

a field, where i = 1, . . . , n. The fi are all essential epimorphisms if and only if

⊕fi :
⊕

i

Ui →
⊕

i

Vi
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is an essential epimorphism.

Proof. (a) Suppose f and g are essential epimorphisms. Then gf is an epimorphism

also, and it is essential because if U0 is a proper submodule of U then f(U0) is a proper

submodule of V since f is essential, and hence g(f(U0)) is a proper submodule of S since

g is essential.

Next suppose f and gf are essential epimorphisms. Since W = Im(gf) ⊆ Im(g) it

follows that g is an epimorphism. If V0 is a proper submodule of V then f−1(V0) is a

proper submodule of U since f is an epimorphism, and now g(V0) = gf(f−1(V0)) is a

proper submodule of S since gf is essential.

Suppose that g and gf are essential epimorphisms. If f were not an epimorphism

then f(U) would be a proper submodule of V , so gf(U) would be a proper submodule of

W since gf is essential. Since gf(U) = W we conclude that f is an epimorphism. If U0 is

a proper submodule of U then gf(U0) is a proper submodule of W , since gf is essential,

so f(U0) is a proper submodule of V since g is an epimorphism. Hence f is essential.

(b) Consider the commutative square

U −→ V
y

y

U/RadU −→ V/RadV

where the vertical homomorphisms are essential epimorphisms by Nakayama’s lemma. Now

if either of the horizontal arrows is an essential epimorphism then so is the other, using

part (a). The bottom arrow is an essential epimorphism if and only if it is an isomorphism;

for U/RadU is a semisimple module and so the kernel of the map to V/RadV has a direct

complement in U/RadU , which maps onto V/RadV . Thus if U/RadU → V/RadV is

an essential epimorphism its kernel must be zero and hence it must be an isomorphism.

(c) The map

(⊕iUi)/Rad(⊕iUi)→ (⊕iVi)/Rad(⊕iVi)

induced by ⊕fi may be identified as a map

⊕

i

(Ui/RadUi)→
⊕

i

(Vi/RadVi),

and it is an isomorphism if and only if each map Ui/RadUi → Vi/RadVi is an isomor-

phism. These conditions hold if and only if ⊕fi is an essential epimorphism, if and only if

each fi is an essential epimorphism by part (b).
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We define a projective cover of a module U to be an essential epimorphism P → U ,

where P is a projective module. Strictly speaking the projective cover is the homomor-

phism, but we may also refer to the module P as the projective cover of U . We are justified

in calling it the projective cover by the second part of the following result, which says that

projective covers (if they exist) are unique.

(7.8) PROPOSITION.

(1) Suppose that f : P → U is a projective cover of a module U and g : Q → U is an

epimorphism where Q is a projective module. Then we may write Q = Q1 ⊕ Q2 so

that g has components g = (g1, 0) with respect to this direct sum decomposition and

g1 : Q1 → U appears in a commutative triangle

Q1

γ

ւ
yg1

P
f
−→ U

where γ is an isomorphism.

(2) If any exist, the projective covers of a module U are all isomorphic, by isomorphisms

which commute with the essential epimorphisms.

Proof. (1) In the diagram
Q
yg

P
f
−→ U

we may lift in both directions to obtain maps α : P → Q and β : Q → P so that

the two triangles commute. Now fβα = gα = f is an epimorphism, so βα is also an

epimorphism since f is essential. Thus β is an epimorphism. Since P is projective β

splits and Q = Q1 ⊕ Q2 where Q2 = Ker β, and β maps Q1 isomorphically to P . Thus

g = (fβ|Q1
, 0) is as claimed with γ = β|Q1

.

(2) Supposing that f : P → U and g : Q → U are both projective covers, since Q1

is a submodule of Q which maps onto U and f is essential we deduce that Q = Q1. Now

γ : Q→ P is the required isomorphism.

(7.9) COROLLARY. If P and Q are Noetherian projective modules over a ring then

P ∼= Q if and only if P/RadP ∼= Q/RadQ.

Proof. By Nakayama’s lemma P and Q are the projective covers of P/RadP and

Q/RadQ. It is clear that if P and Q are isomorphic then so are P/RadP and Q/RadQ,

and conversely if these quotients are isomorphic then so are their projective covers, by

uniqueness of projective covers.
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If now P and Q are projective modules for a finite-dimensional algebra A over a field

the radical quotients P/RadP and Q/RadQ are semisimple, and to classify the inde-

composable projectives it will suffice to classify these semisimple quotients, by Corollary

7.9. We will see in this case that if P is an indecomposable projective A-module then

it is isomorphic to a module Af for some primitive idempotent f ∈ A, and the quotient

P/RadP is isomorphic to (A/RadA)e for some primitive idempotent e of A/RadA where

e = f + RadA.

In general if I is an ideal of a ring A and f is an idempotent of A then clearly f + I

is also an idempotent of A/I. On the other hand, given an idempotent e of A/I, if we can

always find an idempotent f ∈ A such that e = f + I we say we can lift idempotents from

A/I to A.

We state the next results about lifting idempotents in the context of a ring with a

nilpotent ideal I, but readers familiar with completions will recognize that these results

extend to a situation where A is complete with respect to the I-adic topology on A.

(7.10) THEOREM. Let I be a nilpotent ideal of a ring A and e an idempotent in

A/I. Then there exists an idempotent f ∈ A with e = f + I. If e is primitive, so is f .

Proof. We define idempotents ei ∈ A/Ii inductively such that ei + Ii−1/Ii = ei−1

for all i, starting with e1 = e. Suppose that ei−1 is an idempotent of A/Ii−1. Pick any

element a ∈ A/Ii mapping onto ei−1, so that a2−a ∈ Ii−1/Ii. Since (Ii−1)2 ⊆ Ii we have

(a2 − a)2 = 0 ∈ A/Ii. Put ei = 3a2 − 2a3. This does map to ei−1 ∈ A/I
i−1 and we have

e2i − ei = (3a2 − 2a3)(3a2 − 2a3 − 1)

= −(3− 2a)(1 + 2a)(a2 − a)2

= 0.

This completes the inductive definition, and if Ir = 0 we put f = er.

Suppose that e is primitive and that f can be written f = f1 + f2 where f1 and

f2 are orthogonal idempotents. Then e = e1 + e2, where ei = fi + I, is also a sum of

orthogonal idempotents. Therefore one of these is zero, say, e1 = 0 ∈ A/I. This means

that f2
1 = f1 ∈ I. But I is nilpotent, and so contains no non-zero idempotent.

We will very soon see in the situation of 7.10 that it is also true that if f is primitive,

so is e.

(7.11) COROLLARY. Let I be a nilpotent ideal of a ring A and let 1 = e1 + · · ·+ en
be a sum of orthogonal idempotents in A/I. Then we can write 1 = f1 + · · · + fn in

A, where the fi are orthogonal idempotents such that fi + I = ei for all i. If the ei are

primitive then so are the fi.

Proof. We proceed by induction on n, the induction starting when n = 1. Suppose that

n > 1 and the result holds for smaller values of n. We will write 1 = e1 +E in A/I where
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E = e2 + · · ·+en is an idempotent orthogonal to e1, and by Theorem 7.10 we may lift e1 to

an idempotent f1 ∈ A. Write F = 1−f1, so that F is an idempotent which lifts E. Now F

is the identity element of the ring FAF which has a nilpotent ideal FIF . The composite

homomorphism FAF →֒ A→ A/I has kernel FAF ∩ I and this equals FIF , since clearly

FAF ∩ I ⊇ FIF , and if x ∈ FAF ∩ I then x = FxF ∈ FIF , so FAF ∩ I ⊆ FIF .

Inclusion of FAF in A thus induces a monomorphism FAF/FIF → A/I, and its image is

E(A/I)E. In E(A/I)E the identity element E is the sum of n−1 orthogonal idempotents,

and this expression is the image of a similar expression for F + FIF in FAF/FIF . By

induction, there is a sum of orthogonal idempotents F = f2 + · · · + fn in FAF which

lifts the expression in FAF/FIF and hence also lifts the expression for E in A/I, so we

have idempotents fi ∈ A, i = 1, . . . , n with fi + I = ei. These fi are orthogonal; for

f2, . . . , fn are orthogonal in FAF by induction, and if i > 1 then Ffi = fi so we have

f1fi = f1Ffi = 0.

The final assertion about primitivity is the last statement of 7.10.

(7.12) COROLLARY. Let f be an idempotent in a ring A which has a nilpotent ideal

I. Then f is primitive if and only if f + I is primitive.

Proof. We have seen in 7.10 that if f+I is primitive, then so is f . Conversely, if f+I

can be written f + I = e1 + e2 where the ei are orthogonal idempotents of A/I, then by

applying 7.11 to the ring fAf (of which f is the identity) we may write f = g1 + g2 where

the gi are orthogonal idempotents of A which lift the ei.

We now classify the indecomposable projective modules over a finite-dimensional alge-

bra as the projective covers of the simple modules. We first describe how these projective

covers arise, and then show that they exhaust the possibilities for indecomposable projec-

tive modules. We postpone explicit examples until the next section, in which we consider

group algebras.

(7.13) THEOREM. Let A be a finite-dimensional algebra over a field. For each simple

module S there is an indecomposable projective module PS with PS/RadPS ∼= S. It

follows that PS is the projective cover of S, and is uniquely determined up to isomorphism

by this property. The projective module PS has the form PS = Af where f is a primitive

idempotent with the property that fS 6= 0, and if T is any simple module not isomorphic

to S then fT = 0.

Proof. Let e ∈ A/RadA be any primitive idempotent such that eS 6= 0, and let f be

any lift of e to A. Then fS 6= 0 and f is primitive. We define PS = Af , an indecomposable

projective module. Now

PS/RadPS = Af/RadA ·Af ∼= (A/RadA) · (f + RadA) = S
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the isomorphism arising because the map Af → (A/RadA) · (f + RadA) defined by

af 7→ (af + RadA) has kernel (RadA) · f . We have fS = eS 6= 0 and fT = eT = 0 if

T 6∼= S since a primitive idempotent e in the semisimple ring A/RadA is non-zero on a

unique isomorphism class of simple modules.

(7.14) THEOREM. Let A be a finite-dimensional algebra over a field k. Up to

isomorphism, the indecomposable projective A-modules are exactly the modules PS which

are the projective covers of the simple modules, and PS ∼= PT if and only if S ∼= T . Each

projective PS appears as a direct summand of the regular representation, with multiplicity

equal to the multiplicity of S as a summand of kG/Rad(kG). If k is algebraically closed

we have

A ∼=
⊕

simpleS

(PS)dimS .

Proof. Let P be an indecomposable projective module and write

P/RadP ∼= S1 ⊕ · · · ⊕ Sn.

Then P → S1 ⊕ · · · ⊕ Sn is a projective cover. Now

PS1
⊕ · · · ⊕ PSn

→ S1 ⊕ · · · ⊕ Sn

is also a projective cover, and by uniqueness of projective covers we have

P ∼= PS1
⊕ · · · ⊕ PSn

.

Since P is indecomposable we have n = 1 and P ∼= PS1
.

Suppose that each simple A module S occurs with multiplicity nS as a summand

of the semisimple ring A/RadA. Both A and
⊕

simpleS P
nS

S are the projective cover of

A/RadA, and so they are isomorphic. It is always the case that nS 6= 0, and when k is

algebraically closed nS = dimS.

(7.15) THEOREM. Let A be a finite-dimensional algebra over a field k, and U a

finitely-generated A-module. Then U has a projective cover.

Proof. Since U/RadU is semisimple we may write U/RadU = S1 ⊕ · · · ⊕ Sn, where

the Si are simple modules. Let PSi
be the projective cover of Si and h : PS1

⊕· · ·⊕PSn
→

U/RadU the projective cover of U/RadU . By projectivity there exists a homomorphism

f such that the following diagram commutes:

PS1
⊕ · · · ⊕ PSn

f

ւ
yh

U
g
−→ U/RadU

.

Since both g and h are essential epimorphisms, so is f by 7.7. Therefore f is a projective

cover.
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We should really learn more from 7.15 than simply that U has a projective cover: the

projective cover of U is the same as the projective cover of U/RadU .

(7.16) Example. The arguments which show the existence of projective covers have

a sense of inevitability about them and we may get the impression that projective covers

always exist in arbitrary situations. In fact they fail to exist in general for integral group

rings. If G = {e, g} is a cyclic group of order 2, consider the submodule 3Z · e+ Z · (e+ g)

of ZG generated as an abelian group by 3e and e+g. We rapidly check that this subgroup

is invariant under the action of G, and is a ZG-submodule, and it is not the whole of ZG

since it does not contain e. Applying the augmentation map ǫ : ZG→ Z we have ǫ(3e) = 3

and ǫ(e + g) = 2 so ǫ(3Z · e + Z · (e + g)) = 3Z + 2Z = Z, and thus ǫ is an epimorphism

which is not essential. If Z were to have a projective cover it would be a proper summand

of ZG by 7.8. On reducing modulo 2 we would deduce that F2G decomposes, which we

know not to be the case.

Now that we have classified the projective modules for a finite-dimensional algebra

we turn to one of their important uses, which is to determine the multiplicity of a simple

module S as a composition factor of an arbitrary module U (with a composition series). If

0 = U0 ⊂ U1 ⊂ · · · ⊂ Un = U

is any composition series of U , the number of quotients Ui/Ui−1 isomorphic to S is deter-

mined independently of the choice of composition series, by the Jordan-Hölder theorem.

We call this number the (composition factor) multiplicity of S in U .

(7.17) PROPOSITION. Let S be a simple module for a finite-dimensional algebra A

with projective cover PS , and let U be a finite-dimensional A-module.

(1) If T is a simple A-module then

dim HomA(PS , T ) =
{

dimEndA(S) if S ∼= T ,
0 otherwise.

(2) The multiplicity of S as a composition factor of U is

dimHomA(PS, U)/ dimEndA(S).

(3) If e ∈ A is an idempotent then dim HomA(Ae, U) = dim eU .

Proof. (1) If PS → T is any non-zero homomorphism, the kernel must contain RadPS,

being a maximal submodule of S. Since PS/RadPS ∼= S is simple, the kernel must be

RadPS and S ∼= T . Every homomorphism PS → S is the composite PS → PS/RadPS →

S of the quotient map and either an isomorphism of PS/RadPS with S or the zero map.

This gives an isomorphism HomA(PS, S) ∼= EndA(S).

(2) Let

0 = U0 ⊂ U1 ⊂ · · · ⊂ Un = U
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be a composition series of U . We prove the result by induction on the composition length

n, the case n = 1 having just been established. Suppose n > 1 and that the multiplicity

of S in Un−1 is dim HomA(PS , Un−1)/ dimEndA(S). The exact sequence

0→ Un−1 → U → U/Un−1 → 0

gives rise to an exact sequence

0→ HomA(PS , Un−1)→ HomA(PS , U)→ HomA(PS , U/Un−1)→ 0

by 7.3, so that

dimHomA(PS, U) = dim HomA(PS , Un−1) + dimHomA(PS, U/Un−1).

Dividing these dimensions by dim EndA(S) gives the result, by part (1).

(3) There is an isomorphism of vector spaces HomA(Ae, U) ∼= eU specified by φ 7→

φ(e). Note here that since φ(e) = φ(ee) = eφ(e) we must have φ(e) ∈ eU . This mapping

is injective since each A-module homomorphism φ : Ae → U is determined by its value

on e as φ(ae) = aφ(e). It is surjective since the equation just written down does define a

module homomorphism for each choice of φ(e) ∈ eU .

Notice in 7.17 that if the field over which A is defined is algebraically closed then

dim EndA(S) = 1, by Schur’s lemma, so that the multiplicity of S in U is just dim HomA(PS , U).

Again in the context of a finite-dimensional algebra A, we define for each pair of simple

A-modules S and T the integer

cST = the composition factor multiplicity of S in PT .

These are called the Cartan invariants of A, and they form a matrix C = (cST ) with rows

and columns indexed by the isomorphism types of simple A-modules, called the Cartan

matrix of A.

(7.18) COROLLARY. Let A be a finite-dimensional algebra over a field, let S and T

be simple A-modules and let eS , eT be idempotents so that PS = AeS and PT = AeT are

projective covers of S and T . Then

cST = dimHomA(PS, PT )/ dimEndA(S) = dim eSAeT / dimEndA(S).

While it is rather weak information just to know the composition factors of the pro-

jective modules, this is at least a start in describing these modules, and the information

may be conveniently displayed as a matrix. We will see later on in the case of group

algebras that there is an extremely effective way of computing the Cartan matrix using

the decomposition matrix.
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Exercises for Section 7.

1. Let A be a finite-dimensional algebra over a field. Show that A is semisimple if

and only if all finite-dimensional A-modules are projective.

2. Suppose that we have module homomorphisms U
f
−→V

g
−→W . Show that part of

Proposition 7.6(a) can be strengthened to say the following: if gf is an essential epimor-

phism and f is an epimorphism then both f and g are essential epimorphisms.

3. In this question U, V and W are modules for a finite-dimensional algebra over a

field.

(a) Show that U → W is an essential epimorphism if and only if U is a homomorphic

image of PW in such a way that the composite PW → U → W is the projective cover of

W .

(b) Prove the following ‘extension and converse’ to Nakayama’s lemma: let V be any

submodule of U . Then U → U/V is an essential epimorphism ⇔ V ⊆ RadU .

4. Let PS be an indecomposable projective module for a finite-dimensional algebra

over a field. Show that every homomorphic image of PS
(a) has a unique maximal submodule, and

(b) is indecomposable.

5. Let A be a finite-dimensional algebra over a field, and suppose that f, f ′ are

primitive idempotents of A. Show that the indecomposable projective modules Af and

Af ′ are isomorphic if and only if fS = f ′S for every simple module S.

6. Let A be a finite-dimensional algebra over a field, and suppose that Q is a projective

A-module. Show that in any expression

Q = Pn1

S1
⊕ · · · ⊕ Pnr

Sr

where S1, . . . , Sr are non-isomorphic simple modules, we have

ni = dim HomA(Q, Si)/ dimEndA(Si).

7. Let A be a finite-dimensional algebra over a field. Suppose that V is an A-module,

and that a certain simple A-module S occurs as a composition factor of V with multiplicity

1. Suppose that there exist non-zero homomorphisms S → V and V → S. Prove that S

is a direct summand of V .

8. Let G = Sn, let k be a field of characteristic 2 and let Ω = {1, 2, . . . , n} permuted

transitively by G.

(a) When n = 3, show that the permutation module kΩ is semisimple, being the direct

sum of the one-dimensional trivial module and the 2-dimensional simple module.

(b) When n = 4 there is a normal subgroup V ⊳ S4 with S4/V ∼= S3, where V =

〈(1, 2)(3, 4), (1, 3)(2, 4)〉. The simple kS4-modules are precisely the two simple kS3-modules,

made into kS4-modules via the quotient homomorphism to S3. Show that kΩ is unise-

rial with three composition factors which are the trivial module, the 2-dimensional simple

module and the trivial module.

[Use Exercise 18 from Section 6.]
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8. Projective modules for group algebras

This section is a mix of general facts about group algebras and specific examples to

do with certain types of group. We start with a summary of the situation for p-groups

over a field of characteristic p, much of which we have already seen.

(8.1) THEOREM. Let k be a field of characteristic p and G a p-group. The regular

representation is an indecomposable projective module, which is the projective cover of

the trivial representation. Every finitely generated projective module is free. The only

idempotents in kG are 0 and 1.

Proof. We have seen in 6.8 that Rad(kG) = IG and kG/Rad(kG) ∼= k. It follows

immediately that kG is indecomposable, either directly by arguing that kG = U ⊕ V

would imply k = U/RadU ⊕ V/RadV , or using the theory of Section 7. By Nakayama’s

lemma kG is the projective cover of k. By 7.13 and 6.3 every indecomposable projective is

isomorphic to kG. Every finitely generated projective is a direct sum of indecomposable

projectives, and so is free. Finally, every idempotent e ∈ kG gives a module decomposition

kG = kGe ⊕ kG(1 − e). If e 6= 0 then we must have kG = kGe, so kG(1 − e) = 0 and

e = 1.

We can deduce from this some information about projective modules for arbitrary

groups, using the following lemma, which is valid over an arbitrary commutative ring R.

(8.2) LEMMA. Let H be a subgroup of G.

(1) If P is a projective RG-module then P ↓GH is a projective RH-module.

(2) If Q is a projective RH-module then Q ↑GH is a projective RG-module.

Proof. (1) As a RH-module,

RG ↓H∼=
⊕

g∈[H\G]

RHg ∼= (RH)|G:H|

which is a free module. Hence a direct summand of RGn on restriction to H is a direct

summand of RH |G:H|n, which is again projective.

(2) We have

(RH) ↑GH
∼= (R ↑H1 ) ↑GH

∼= R ↑G1
∼= RG

so that direct summands of RHn induce to direct summands of RGn.

(8.3) COROLLARY. Let k be a field of characteristic p and let pa be the exact power

of p which divides |G|. If P is a projective kG-module then pa
∣∣ dimP .

Proof. Let H be a Sylow p-subgroup of G and P a projective kG-module. Then P ↓GH
is projective by 8.2, hence free as a kH-module by 8.1, and of dimension a multiple of

|H|.
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We now examine in detail the projective modules for several specific kinds of groups.

The following result will be used in constructing these modules. It is valid over an arbitrary

commutative ring R.

(8.4) PROPOSITION. Suppose that V is any RG-module which is free as an R-

module and P is a projective RG-module. Then V ⊗R P is projective.

Proof. If P ⊕ P ′ ∼= RGn then V ⊗ RGn ∼= V ⊗ P ⊕ V ⊗ P ′ and it suffices to show

that V ⊗RGn is free. We offer two proofs of the fact that V ⊗RG ∼= RGrankV . The first

is that V ⊗RG ∼= V ⊗ (R ↑G1 ) ∼= (V ⊗R) ↑G1
∼= V ↑G1 . As a module for the identity group,

V is just a free R-module and so V ↑G1
∼= (R ↑G1 )rankV ∼= RGrankV .

The second proof is really the same as the first, but we make the isomorphism explicit.

Let V triv be the same R-module as V , but with the trivial G-action, so V triv ∼= RrankV as

RG-modules. We define a linear map

V ⊗RG→ V triv ⊗RG

v ⊗ g 7→ g−1v ⊗ g
,

which has inverse gw ⊗ g ← w ⊗ g. One checks that these mutually inverse linear maps

are RG-module homomorphisms. Finally V triv ⊗RG ∼= RGrankV .

In the calculations which follow we will need to use the fact that for representations

over a field, taking the Kronecker product with a fixed representation preserves exactness.

(8.5) LEMMA. Let 0→ U → V →W → 0 be a short exact sequence of kG-modules

and X another kG-module, where k is a field. Then the sequence

0→ U ⊗k X → V ⊗k X →W ⊗k X → 0

is exact. Thus if U is a submodule of V then (V/U)⊗k X ∼= (V ⊗k X)/(U ⊗k X).

Proof. The exactness is a question of linear algebra which is independent of the group

action. For the reader who knows a little homological algebra, the result is equivalent

to the statement that higher Tor groups vanish over a field. We may also give a more

direct approach by taking bases for the modules concerned. We may suppose that U is a

submodule of V . Let v1, . . . , vn be a basis for V such that v1, . . . , vd is a basis for U and

let x1, . . . , xm be a basis for X . Now the vi ⊗k xj with 1 ≤ i ≤ n and 1 ≤ j ≤ m form a

basis for V ⊗k X , and the same elements with 1 ≤ i ≤ d and 1 ≤ j ≤ m form a basis for

U ⊗k X . This shows that U ⊗k X is a submodule of V ⊗k X , and the quotient has as a

basis the images of the vi ⊗k xj with d + 1 ≤ i ≤ n and 1 ≤ j ≤ m, which is in bijection

with a basis of W ⊗k X .
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(8.6) Example. We describe the projective kG-modules where k is a field of charac-

teristic p and G = H ×K where H is a p-group and K has order prime to p. Following

this example we will consider projective modules for the semidirect products H ⋊K and

K⋊H and the observations we will make when we do this also apply to the direct product.

However, it seems profitable to consider the simpler example first.

We make use of the following general isomorphism (not dependent on the particular

hypotheses we have here):

k[H ×K] ∼= kH ⊗ kK as k-algebras,

which arises because kG has as a basis the elements (h, k) where h ∈ H, k ∈ K, and

kH ⊗ kK has as a basis the corresponding elements h ⊗ k. These two bases multiply

together in the same fashion, and so we have an algebra isomorphism. In this calculation

the only tensor product which will appear is tensor product over the field k. We next

observe that

Rad kG = Rad kH ⊗ kK.

This is because the quotient

(kH ⊗ kK)/(Rad kH ⊗ kK) ∼= (kH/RadkH)⊗ kK ∼= k ⊗ kK

is semisimple, since kK is semisimple, so that

Rad(kH ⊗ kK) ⊆ Rad kH ⊗ kK.

On the other hand Rad kH ⊗ kK is a nilpotent ideal of kH ⊗ kK, so is contained in the

radical, and we have equality.

Let us write kK = Sn1
1 ⊕ · · · ⊕ S

nr
r , where S1, . . . , Sr are the non-isomorphic simple

kK-modules. Since H = Op(G), these are also the non-isomorphic simple kG-modules.

We have

kG = kH ⊗ kK = (kH ⊗ S1)
n1 ⊕ · · · ⊕ (kH ⊗ Sr)

nr

and so the kH ⊗Si are projective kG-modules. Each occurs with multiplicity equal to the

multiplicity of Si as a summand of kG/Rad(kG), and so must be indecomposable, using

7.13. We have therefore constructed all the indecomposable projective kG-modules, and

they are the modules PSi
= kH ⊗ Si.

Suppose that 0 ⊂ P1 ⊂ · · · ⊂ Pn = kH is a composition series of the regular represen-

tation of H. Since H is a p-group, all the composition factors are the trivial representation,

k. Because ⊗kSi preserves exact sequences, the series 0 ⊂ P1⊗Si ⊂ · · · ⊂ Pn⊗Si = PSi

has quotients k ⊗ Si = Si, which are simple, and so this is a composition series of PSi
.

As an example, suppose thatH is cyclic of order ps. Then kH = Ups has a composition

series in which Pj = Rad(kH)j ·kH ∼= Uj and from the description of the radical of kG we

see that the terms in the composition series of PSi
are Pj ⊗ Si = Rad(kG)j · PSi

. Because
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the radical series is in fact a composition series, it follows (as in Exercise 5 to Section 6)

that this is the unique composition series of PSi
, and that there are no more submodules

of PSi
other than the ones listed.

We move on now to describe the projective kG-modules where k is a field of charac-

teristic p and G = H⋊K where H is a p-group and |K| is prime to p. The last example is

a special case of this situation, and so the results about to be obtained also apply in that

case. However, our results will be less specific than in 8.6. Here, again, H = Op(G), and so

the simple kG-modules are precisely the simple kK-modules. Since G acts on these via the

ring surjection kG→ kK, the kernel of this map acts as zero on all simple modules and so

is contained in the radical. But also kK is a semisimple ring, so the kernel is the radical,

and in particular it is a nilpotent ideal. (The kernel is in fact the ideal kG·IH considered in

Exercise 10 of Section 6, but we do not need this here.) The idempotent e1 = 1
|K|

∑
g∈K g

is the primitive idempotent of kK which projects onto the unique 1-dimensional simple

summand of kK. It is already an idempotent in kG, so it is its own lift to kG, and hence

it is primitive in kG by 7.9. We conclude that Pk = kGe1, by 7.12. This identifies Pk as a

reasonably explicit subset of kG, but we now do better than this.

(8.7) PROPOSITION. Let k be a field of characteristic p and let G = H ⋊K where

H is a p-group and K has order prime to p. Then Pk ∼= kH where H acts on kH by left

multiplication and K acts by conjugation.

Proof. It comes as a surprise that there should be an action of G on kH in the manner

specified. Explicitly, if
∑
g∈H agg, x ∈ H and y ∈ K then x

∑
g∈H agg =

∑
g∈H agxg and

y
∑
g∈H agg =

∑
g∈H agygy

−1. We could verify that this does give an action of G on kH,

but instead we show that G acts on Pk via these formulae. We have kG = kH · kK and

kKe1 = ke1, so Pk ∼= kGe1 = kHe1. We claim that kHe1 ∼= kH as k-vector spaces via an

isomorphism in which he1 corresponds to h. Indeed the elements he1 are independent as

h ranges through H, so we have just specified a bijection between two bases. Now H and

K act on kHe1 as x · he1 = xhe1 for x ∈ H and y · he1 = yhy−1ye1 = yhy−1e1 for y ∈ K.

Identifying kHe1 with kH, these actions are as specified in the statement of the result.

We should point out that whenever we have a semidirect product G = H ⋊K there

is an action of G on kH in the way we have just described, but in general if H is not a

Sylow p-subgroup of G this module will not be Pk.

(8.8) PROPOSITION. Let k be a field of characteristic p and let G = H⋊K where H

is a p-group and K has order prime to p. If S is any simple kG-module then PS ∼= Pk ⊗S.

There is an isomorphism of kG-modules Pk ⊗ kK ∼= kG.
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Proof. By 8.4 Pk ⊗ S is projective. Tensoring the epimorphism Pk → k with S gives

an epimorphism Pk ⊗ S → S. Now

Rad(Pk ⊗ S) = Rad(kG) · (Pk ⊗ S) ⊇ Rad(kH) · (Pk ⊗ S) = (Rad(kH) · Pk)⊗ S

since H is a normal p-subgroup and so acts trivially on S. Since (Rad(kH) · Pk)⊗ S has

codimension in Pk ⊗ S equal to dimS we have that S ∼= (Pk ⊗ S)/Rad(Pk ⊗ S). This

shows that Pk⊗S is the projective cover of S. Finally, since kK is identified as the radical

quotient of kG, Pk ⊗ kK is the direct sum of projective modules PS , each appearing as

often as S appears as a summand of kK. This description identifies Pk ⊗ kK as kG.

Observe that since H is normal in G, IH is invariant under the conjugation action of

K, and so

Pk = kH ⊃ IH ⊃ IH2 ⊃ · · ·

is a chain of kG-submodules of Pk. Our next aim is to describe the kG-module structure

of the quotients IHs/IHs+1, and for this we specialize to the case H = 〈x〉 ∼= Cpn and

K = 〈y〉 ∼= Cq are cyclic groups with p 6
∣∣ q. Suppose that yx = xr, so that

G = 〈x, y
∣∣ xpn

= 1 = yq, yx = xr〉.

In this case the powers IHs are a complete list of the submodules of Pk, and so it is a

composition series of Pk as a kG-module. The action of y on IH is given by

y(x− 1) = yx− 1

= xr − 1

= (x− 1)(xr−1 + · · ·+ x+ 1− r) + r(x− 1)

≡ r(x− 1) (mod IH2).

More generally for some α ∈ IH2,

y(x− 1)s = (xr − 1)s

= (r(x− 1) + α)s

= rs(x− 1)s + sr(x− 1)s−1α+ · · ·

≡ rs(x− 1)s (mod IHs+1).

Thus y acts on the quotient IHs/IHs+1 as multiplication by rs. One way to describe

this is that if W = IH/IHs then IHs/IHs+1 = W⊗s, the s-fold tensor power. We now

summarize these assertions.
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(8.9) PROPOSITION. Let k be a field of characteristic p and let G = 〈x〉 ⋊ 〈y〉

where 〈x〉 = Cpn and 〈y〉 = Cq has order prime to p. Suppose that yx = xr and let W be

the 1-dimensional kG-module on which y acts as multiplication by r. If S is any simple

kG-module then PS has a unique composition series, equal to the radical series, in which

the quotients Radi PS/Radi+1 PS are S, S ⊗W,S ⊗W⊗2, . . . , S ⊗W⊗pn−1 = S.

The assertion about the uniqueness of the composition series follows from Exercise 5

of Section 6, since the factors in the radical series are all simple.

To continue this example we observe that the isomorphism types of the composition

factors of PS occur in a cycle which repeats itself. Since x 7→ xr is an automorphism of

Cpn there is a least positive integer f such that rf ≡ 1 (mod pn). Put pn−1 = ef . Then

the modules k,W,W⊗2,W⊗3, . . . give rise to f different representations. They repeat e

times in Pk, except for k which appears e+ 1 times, and a similar repetition occurs with

the composition factors S ⊗W⊗i of PS.

We now consider the projective modules for groups which are a semidirect product of

a p-group and a group of order prime to p, but with the roles of these groups the opposite

of what they were in the last example. We say that a group G has a normal p-complement

if and only if it has a normal subgroup K ⊳G of order prime to p with |G : K| a power of

p. Necessarily in this situation, if H is a Sylow p-subgroup of G then G = K ⋊H by the

Schur-Zassenhaus theorem.

(8.10) THEOREM. Let G be a finite group and k a field of characteristic p. The

following are equivalent.

(1) G has a normal p-complement.

(2) For every simple kG-module S, the composition factors of the projective cover PS are

all isomorphic to S.

(3) The composition factors of Pk are all isomorphic to k.

Proof. (1)⇒ (2): Let G = K⋊H where p 6
∣∣ |K| and H is a Sylow p-subgroup of G. We

show that kH, regarded as a kG-module via the homomorphism G → H, is a projective

module. In fact, since kK is semisimple we may write kK = k ⊕ U for some kK-module

U , and now kG = kK ↑GK= k ↑GK ⊕U ↑
G
K . Here k ↑GK

∼= kH as kG-modules (they are

permutation modules with stabilizer K) and so kH is projective, being a summand of kG.

Now if S is any simple kG-module then S ⊗k kH is also projective by 8.4, and all its

composition factors are copies of S = S ⊗k k since the composition factors of kH are all k

(using 6.3 and 8.5). The indecomposable summands of S ⊗k kH are all copies of PS , and

their composition factors are all copies of S.

(2) ⇒ (3) is immediate.

(3) ⇒ (1): Suppose that the composition factors of Pk are all trivial. If g ∈ G is any

element of order prime to p (we say such an element is p-regular) then Pk ↓
G
〈g〉
∼= kt for
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some t, since k〈g〉 is semisimple. Thus g lies in the kernel of the action on Pk and if we

put

K = 〈g ∈ G
∣∣ g is p-regular〉

then K is a normal subgroup of G, G/K is a p-group and K acts trivially on Pk. We show

that K contains no element of order p: if g ∈ K were such an element, then as Pk ↓
G
〈g〉 is

a projective k〈g〉-module, it is isomorphic to a direct sum of copies of k〈g〉 by 8.1, and so

g does not act trivially on Pk. It follows that p 6
∣∣ |K|, thus completing the proof.

We have already studied an example of the situation described in 8.10, namely kS3

where k is the field with four elements. In this example we may take H = 〈(1, 2)〉.

Observe that if V is the 2-dimensional simple kS3-module then V ⊗ kH ∼= V ⊕ V since V

is projective, so that the module S ⊗ kH which appeared in the proof of 8.10 need not be

indecomposable.

Working over a field k, we next examine the behaviour of projective modules under

the operation of dualization. We recall the definition U∗ = Homk(U, k) and record the

following properties:

(8.11) PROPOSITION. Let k be a field. Then

(1) U∗∗ ∼= U as kG-modules,

(2) U is semisimple if and only if U∗ is semisimple,

(3) U is indecomposable if and only if U∗ is indecomposable, and

(4) a morphism f : U → V is a monomorphism (epimorphism) if and only if f∗ : V ∗ → U∗

is an epimorphism (monomorphism).

(8.12) PROPOSITION. Let k be a field. Then

(1) kG∗ ∼= kG as kG-modules, and

(2) P is a projective kG-module if and only if P ∗ is a projective kG-module.

Proof. (1) We denote the elements of kG∗ dual to the basis elements {g
∣∣ g ∈ G} by

ĝ, so that ĝ(h) = δg,h ∈ k, the Kronecker δ. We define an isomorphism of vector spaces

kG→ kG∗
∑

g∈G
agg 7→

∑

g∈G
ag ĝ

.

To see that this is a kG-module homomorphism we observe that if x ∈ G then

(xĝ)(h) = ĝ(x−1h) = δg,x−1h = δxg,h = x̂g(h)

for g, h ∈ G, so that xĝ = x̂g.

(2) Since P ∗∗ ∼= P it suffices to prove one implication. If P is a summand of kGn then

P ∗ is a summand of (kGn)∗ ∼= kGn, and so is also projective.
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When we previously introduced projective modules we could at the same time have

defined injective modules, which enjoy properties similar to those of projective modules,

but in a dual form. We say that a module I is injective if and only if whenever there are

morphisms
I
xα

V
β
←− W

with β a monomorphism, then there exists a morphism γ : V → I so that γβ = α. Dually

to Proposition 7.3, it is equivalent to require that every monomorphism I → V is split; and

also that HomA( , I) sends exact sequences to exact sequences. We leave this equivalence

as an exercise. It is not true (in general) that injective modules are direct summands of

free modules, but what we now show is that for group algebras over a field this special

property does in fact hold.

(8.13) COROLLARY. Let k be a field.

(1) Projective kG-modules are the same as injective kG-modules.

(2) Each indecomposable projective kG-module has a simple socle.

Proof. (1) Suppose P is projective and that there are morphisms

P
xα

V
β
←− W

with β injective. Then in the diagram

P ∗

yα∗

V ∗ β∗

−→ W ∗

β∗ is surjective, and so by projectivity of P ∗ there exists f : P ∗ → V ∗ such that β∗f = α∗.
Since f∗β = α we see that P is injective.

To see that all injectives are projective, a similar argument shows that their duals are

projective, hence injective, whence the original modules are projective, being the duals of

injectives.

(2) One way to proceed is to quote Exercise 6 of Section 6 which implies that Soc(P ) ∼=
(P ∗/RadP ∗)∗. If P is an indecomposable projective module then so is P ∗ and P ∗/RadP ∗

is simple. Thus so is Soc(P ).
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Alternatively, since homomorphisms S → P are in bijection (via duality) with homo-

morphisms P ∗ → S∗, if P is indecomposable projective and S is simple then P ∗ is also

indecomposable projective and

dimHomkG(S, P ) = dimHomkG(P ∗, S∗)

=
{

dimEnd(S∗) if P ∗ is the projective cover of S∗,
0 otherwise.

Since dim End(S∗) = dim End(S) this implies that P has a unique simple submodule and

Soc(P ) is simple.

An algebra for which injective modules and projective modules coincide is called self-

injective or quasi-Frobenius, so we have just shown that group rings of finite groups over

a field are self-injective. For such an algebra, whenever a projective module occurs as a

quotient of a submodule of another module, it is a direct summand.

(8.14) COROLLARY. Suppose U is a kG-module, where k is a field, for which there

are submodules U0 ⊆ U1 ⊆ U with U1/U0 = P a projective module. Then U ∼= P ⊕U ′ for

some submodule U ′ of U .

Proof. The exact sequence 0→ U0 → U1 → P → 0 splits, and so U1
∼= P ⊕ U0. Thus

P is isomorphic to a submodule of U , and since P is injective the monomorphism P → U

must split.

We will now sharpen part (2) of 8.13 by showing that SocPS ∼= S, and we will also

show that the Cartan matrix for group algebras is symmetric. These are properties which

hold for a class of algebras called symmetric algebras, of which group algebras are examples.

We say that a finite dimensional algebra A over a field k is a symmetric algebra if there is

a non-degenerate bilinear form ( , ) : A× A→ k such that

(1) (symmetry) (a, b) = (b, a) for all a, b ∈ A,

(2) (associativity) (ab, c) = (a, bc) for all a, b, c ∈ A.

The group algebra kG is a symmetric algebra with the bilinear form defined on the

basis elements by

(g, h) =
{

1 if gh=1
0 otherwise

as is readily verified. Notice that this bilinear form may be described on general elements

a, b ∈ kG by (a, b) = coefficient of 1 in ab.

For the record, a finite-dimensional algebra over a field on which there is a non-

degenerate associative bilinear form is called a Frobenius algebra. It is the case that every

Frobenius algebra is a quasi-Frobenius algebra, and it would have been possible to present

a development leading to the results of Corollary 8.13 by proving this implication.

We will use the bilinear form on kG in the proof of the next result, whose statement

also holds for symmetric algebras in general.
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(8.15) THEOREM. Let P be an indecomposable projective module for a group al-

gebra kG. Then P/RadP ∼= SocP .

Proof. We may choose a primitive idempotent e ∈ kG so that P ∼= kGe as kG-modules.

We claim that Soc(kGe) = Soc(kG) · e, since Soc(kG) · e ⊆ Soc(kG) and Soc(kG) · e ⊆ kGe

so Soc(kG) · e ⊆ kGe ∩ Soc(kG) = Soc(kGe), since the last intersection is the largest

semisimple submodule of Ae. On the other hand Soc(kGe) ⊆ Soc(kG) since Soc(kGe) is

semisimple so Soc(kGe) = Soc(kGe) · e ⊆ Soc(kG) · e.

Next, Hom(kGe, Soc(kG)e) ∼= eSoc(kG)e by 7.16, and since Soc(kG)e is simple,

by 8.13, this is non-zero if and only if Soc(kG)e ∼= kGe/Rad(kGe). We show that

eSoc(kG)e 6= 0.

If eSoc(kG)e = 0 then

0 = (1, eSoc(kG)e)

= (e, Soc(kG)e)

= (Soc(kG)e, e)

= (kG · Soc(kG)e, e)

= (kG, Soc(kG)e · e)

= (kG, Soc(kGe)).

Since the bilinear form is non-degenerate this implies that Soc(kGe) = 0, a contradiction.

(8.16) COROLLARY. Let k be a field.

(1) If P is any projective kG-module and S is a simple kG-module, the multiplicity of S

in P/RadP equals the multiplicity of S in SocP . In particular

dimPG = dimPG = dim(P ∗)G = dim(P ∗)G,

where PG is the fixed points of G on P and PG denotes the largest trivial quotient of

P .

(2) For every simple kG-module S, (PS)∗ ∼= PS∗ .

Proof. (1) This is true for every indecomposable projective module, hence also for

every projective module. For the middle equality we may use an argument similar to the

one which appeared in the proof of 8.13 (2).

(2) We have seen in the proof of 8.13 that (PS)∗ is the projective cover of (SocPS)∗,

and because of 8.15 we may identify the latter module as S∗.
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From this last observation we are able to deduce that, over a large enough field, the

Cartan matrix of kG is symmetric. We recall that the Cartan invariants are the numbers

cST = multiplicity of S as a composition factor of PT

where S and T are simple. The precise condition we require on the size of the field is that

it should be a splitting field, and this is something which is discussed in the next section.

(8.17) THEOREM. Let k be a field and let S, T be simple kG-modules. The Cartan

invariants satisfy

cST · dimEndkG(T ) = cTS · dimEndkG(S).

If dim EndkG(S) = 1 for all simple modules S (for example, if k is algebraically closed)

then the Cartan matrix C = (cST ) is symmetric.

Proof. We recall from 7.17 that

cST = dimHomkG(PS, PT )/ dimEndkG(S)

and in view of this we must show that dimHomkG(PS, PT ) = dim HomkG(PT , PS). Now

HomkG(PS, PT ) = Homk(PS , PT )G ∼= (P ∗
S ⊗k PT )G

by 3.3 and 3.4. Since P ∗
S ⊗k PT is projective by 8.4, this is the same as

(P ∗
S ⊗k PT )∗G ∼= (PS ⊗k P

∗
T )G ∼= HomkG(PT , PS),

using 8.16.

We conclude this section by summarizing some further aspects of injective modules.

We define an essential monomorphism to be a monomorphism of modules f : V → U

with the property that whenever g : U → W is a map such that gf is a monomorphism

then g is a monomorphism. An injective hull (or injective envelope) of U is an essential

monomorphism U → I where I is an injective module. By direct arguments, or by taking

the corresponding results for essential epimorphisms and projective covers and applying the

duality U 7→ U∗ we may prove for finitely-generated kG-modules the following statements.

• The inclusion SocU → U is an essential monomorphism.

• Given homomorphisms W
g
→V

f
→U , if two of f , g and fg are essential monomorphisms

then so is the third.

• A homomorphism f : V → U is an essential monomorphism if and only if f |SocV :

SocV → SocU is an isomorphism.

• U → I is an injective hull if and only if I∗ → U∗ is a projective cover. Injective hulls

always exist and are unique. From Theorem 8.15 we see that S → PS is the injective

hull of the simple module S.
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• The multiplicity of a simple module S as a composition factor of a module U equals

dim Hom(U, PS)/ dimEnd(S).

Exercises for Section 8.

1. Prove that if G is any finite group then the only idempotents in the integral group

ring ZG are 0 and 1.

[If e is idempotent consider the rank of the free abelian group ZGe and also its image

under the homomorphism ZG→ FpG for each prime p dividing |G|, which is a projective

FpG-module. Show that rankZ ZGe is divisible by |G|. Deduce from this that if e 6= 0 then

e = 1.]

2. (a) Let H = C2 × C2 and let k be a field of characteristic 2. Show that (IH)2 is a

one-dimensional space spanned by
∑
h∈H h.

(b) Let G = A4 = (C2×C2) ⋊C3 and let F4 be the field with four elements. Compute the

radical series of each of the three indecomposable projectives for F4A4 and identify each

of the quotients

Radn PS/Radn+1 PS .

Now do the same for the socle series. Hence determine the Cartan matrix of F4A4.

[Start by observing that F4A4 has 3 simple modules, all of dimension 1, which one might

denote by 1, ω and ω2. This exercise may be done by applying the kind of calculation

which led to Proposition 8.9.]

(c) Now consider F2A4 where F2 is the field with two elements. Prove that the 2-

dimensional F2-vector space on which a generator of C3 acts via

(
0 1
1 1

)
is a simple

F2C3-module. Calculate the radical and socle series for each of the two indecomposable

projective modules for F2A4 and hence determine the Cartan matrix of F2A4.

3. Let G = H ⋊ K where H is a p-group, K is a p′-group, and let k be a field of

characteristic p. Regard kH as a kG-module via its isomorphism with Pk, so H acts as

usual and K acts by conjugation.

(a) Show that for each n, (IH)n is a kG-submodule of kH, and that (IH)n/(IH)n+1 is a

kG-module on which H acts trivially.

(b) Show that

Pk = kH ⊇ IH ⊇ (IH)2 ⊇ (IH)3 · · ·

is the radical series of Pk as a kG-module.

(c) Show that there is a map

IH/(IH)2 ⊗k (IH)n/(IH)n+1 → (IH)n+1/(IH)n+2

x+ (IH)2 ⊗ y + (IH)n+1 7→ xy + (IH)n+2

which is a map of kG-modules. Deduce that (IH)n/(IH)n+1 is a homomorphic image of

(IH/(IH)2)⊗n.
(d) Show that the abelianization H/H ′ becomes a ZG-module under the action g · xH ′ =
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gxg−1H ′. Show that the isomorphism IH/(IH)2 → k ⊗Z H/H
′ specified by (x − 1) +

(IH)2 7→ 1⊗ xH ′ of Section 6 Exercise 17 is an isomorphism of kG-modules.

4. The group SL(2, 3) is isomorphic to the semidirect product Q8 ⋊ C3 where the

cyclic group C3 acts on Q8 = {±1,±i,±j,±k} by cycling the three generators i, j and k.

Assuming this structure, compute the radical series of each of the three indecomposable

projectives for F4SL(2, 3) and identify each of the quotients

Radn PS/Radn+1 PS .

[Use Section 6 Exercise 15.]

5. Let G = P ⋊ S3 be a group which is the semidirect product of a 2-group P and

the symmetric group of degree 3. (Examples of such groups are S4 = V ⋊ S3 where

V = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉, and GL(2, 3) ∼= Q8 ⋊S3 where Q8 is the quaternion group of

order 8.)

(a) Let k be a field of characteristic 2. Show that kG has two non-isomorphic simple

modules.

(b) Let e1, e2, e3 ∈ F4S3 be the orthogonal idempotents which appeared in Example

7.5. Show that each ei is primitive in F4G and that dim F4Gei = 2|P | for all i.

[Use the fact that the F4Gei are projective modules.]

(c) Show that if e1 = () + (1, 2, 3)+ (1, 3, 2) then F4S4e1 is the projective cover of the

trivial module and that F4S4e2 and F4S4e3 are isomorphic, being copies of the projective

cover of a 2-dimensional module.

(d) Show that F4Gei ∼= F4〈(1, 2, 3)〉ei ↑
G
〈(1,2,3)〉 for each i.

6. Let A be a finite-dimensional algebra over a field k, and let AA be the right

regular representation of A. The vector space dual (AA)∗ = Homk(AA, k) becomes a left

A-module via the action (af)(b) = f(ba) where a ∈ A, b ∈ AA and f ∈ (AA)∗. Prove that

the following two statements are equivalent:

(a) (AA)∗ ∼= AA as left A-modules.

(b) There is a non-degenerate associative bilinear pairing A× A→ k.

An algebra satisfying these conditions is called a Frobenius algebra. Prove that, for a

Frobenius algebra, projective and injective modules are the same thing.

7. Let A be a finite-dimensional algebra over a field k and suppose that the left regular

representation AA is injective. Show that every projective module is injective and that

every injective module is projective.

8. Let S and T be simple kG-modules, with projective covers PS and PT , where k is

an algebraically closed field.

(a) For each n prove that

HomkG(PT , Socn PS) = HomkG(PT/Radn PT , Socn PS)

= HomkG(PT/Radn PT , PS).
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(b) Deduce Landrock’s theorem: the multiplicity of T in the nth socle layer of PS equals

the multiplicity of S in the nth radical layer of PT .

(c) Use Exercise 6 of Section 6 to show that these multiplicities equal the multiplicity of

T ∗ in the nth radical layer of PS∗ , and also the multiplicity of S∗ in the nth socle layer of

PT∗ .

9. Let U be an indecomposable kG-module, where k is a field of characteristic p, and

let Pk be the projective cover of the trivial module. Prove that

dim((
∑

g∈G
g) · U) =

{
1 if U ∼= Pk,
0 otherwise.

For an arbitrary finite dimensional module V , show that dim((
∑
g∈G g) · V ) is the multi-

plicity with which Pk occurs as a direct summand of V .

[Observe that kGG = PGk = k ·
∑
g∈G g. Remember that Pk is injective and has socle

isomorphic to k.]

10. Let U be a kG-module, where k is a field, and let PS be an indecomposable

projective kG-module with simple quotient S. Show that in any decomposition of U as a

direct sum of indecomposable modules, the multiplicity with which PS occurs is equal to

dim HomkG(PS , U)− dim HomkG(PS/ SocPS , U)

dimEndkG(S)

and also to
dim HomkG(U, PS)− dim HomkG(U,RadPS)

dim EndkG(S)
.


