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We study the problem of optimal design of a two-phase composite material to maximize
the sum of thermal and electrical conductivity. We obtain a characterization of an
optimal configuration in terms of a free boundary type H̄ problem. In the process of
obtaining this result, we provide a new proof of the relevant case of Bergman’s cross-
property bound. We use our characterization to argue that the optimal interface is not,
as has been suggested, a periodic minimal surface.
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1. Introduction

In this paper, we consider periodic two-phase composites. If a composite is made of
two homogeneous materials with thermal (or electrical) conductivities s1 and s2,
then the effective conductivity se of the composite depends on the microstructure
and can be computed by solving the so-called cell problem (see §2).

Let f1 be the proportion of the n-dimensional unit cube covered by the first
material and f2 the proportion covered by the second. Assume that the
configuration is cubically symmetric, so that the resulting composite is isotropic.
When the thermal conductivities of the two materials are s1 and s2 and the
corresponding electrical conductivities are l1 and l2, Bergman (1978) derived the
following cross-property bound:

l2K l1

leK hliK
s2K s1

s�K hsi Z
nðl2s1K l1s2Þ

f1f2ðl2K l1Þðs2K s1Þ
;

where le is the effective electrical conductivity and hliZf1l1Cf2l2. From the
above equation, the value of s� is obtained and gives an upper bound for se as
long as (l2s1Kl1s2)/(s1Ks2)>0. In particular, if s1Z1, s2Z3, l1Z3, l2Z1, and
f1Zf2Z1/2, Bergman’s upper bound says that

seCle%ð1C3ÞK ð1K3Þ2

nð1C3Þ : ð1:1Þ

A question left open by Bergman’s work is whether or not this upper bound is
achievable. In recent works by Torquato et al. (2002, 2003) two microstructures
where the phases are separated by a minimal surface (either the Schwartz P

Proc. R. Soc. A (2007) 463, 2543–2556

doi:10.1098/rspa.2007.1884

Published online 17 July 2007

*silvestr@courant.nyu.edu

Received 13 January 2007
Accepted 13 May 2007 2543 This journal is q 2007 The Royal Society



surface (figure 1) or the diamond D surface) were tested numerically. Both
examples were shown to achieve the upper bound (1.1) within three digits of
accuracy when 3Z0.1. Based on this computation, it was natural to hypothesize
that these structures achieve equality in Bergman’s bound (1.1). However, it is
not clear whether this microstructure is truly optimal or just produces an
effective conductivity that is so close to optimal that it cannot be distinguished
by the numerical approximation. The same structure was shown by Torquato &
Donev (2004) to give at least a very close to optimal value for the sum of the
electrical (or thermal) conductivity and the bulk modulus.

In this paper, we find a new proof of the relevant case of Bergman’s upper
bound (1.1). Our proof is very simple and elementary, which allows us to derive
explicit optimality conditions. If the optimal structure has a minimal surface as
its interface, our conditions have implications that can be easily tested
numerically. We report some tests for the Schwartz P surface which strongly
suggest that it is not an optimal structure.

Whether or not the Schwartz P surface gives an optimal effective conductivity
may not be interesting for most practical engineering purposes if the difference is
less than 0.001. However, it is interesting to answer this question in order to
understand the theory better and, in particular, to learn whether there is a
connection (as suggested by Torquato et al. (2002, 2003) and Torquato & Donev
2004) between multifunctionality and the mean curvature of the interface.

The structure of the paper is as follows. In §2, we set up the problem and
notation in a precise way. In §3, we present a new proof of (1.1) and provide
explicit conditions for equality. In §4, we consider the possibility that an interface
would satisfy our optimality condition and also have mean curvature zero. We
derive some consequences (in any space dimension) and test them numerically for
the Schwartz P surface (in three space dimensions). The numerical results indicate
that the Schwartz P surface cannot be exactly optimal. Finally, in appendix A we
show a new proof of the well-known Hashin–Shtrikman bounds.

The new proof of (1.1) that we present in §3 is based on the observation that in
the optimal configurations the solutions of the cell problem agree with the
directional derivatives of a potential function. This idea may have some interest

Figure 1. The Schwartz P surface divides the unit cube into two phases.
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in itself. It was motivated by looking at the known proofs of the Hashin–
Shtrikman bounds and especially at the constructions that achieve the bounds.
After this observation is made, the proof comes quickly after very straightfor-
ward elementary computations. The same idea can be used to prove the classical
Hashin–Shtrikman bounds. We include the proof in appendix A; it is different
from (and more elementary than) the previously known arguments.

2. Preliminaries

We start by recalling the definition of the effective conductivity of a periodic
composite.

Let Q be the unit cube in R
n: QZ[0,1]n. For a set A3Q, we define

aðxÞZ
1 if x2A;

3 if x2QnA;

(

and extend a periodically to R
n. This corresponds to a periodic two-phase

composite where one phase is a good conductor (of heat or electricity) and covers
a subset A of the cube, and the other phase is a poor conductor and covers the
rest of the cube.

The effective conductivity Aeff is a tensor obtained by solving the cell problem.
The value of Aeff is characterized by the following expression:

hAeffe; eiZ min
u2H 1

per

ð
Q
aðxÞjeCVuðxÞj2dx: ð2:1Þ

A standard source for the general theory of composites is Milton (2002).
If the set A is left invariant by any rigid motion that preserves the unit cube Q

(i.e. A is cubically symmetric), then Aeff must be a scalar matrix AeffZaeffI.
For two-phase composites, it is also interesting to define the problem switching

the phases

bðxÞZ
3 if x2A;

1 if x2QnA;

(

and

hBeffe; eiZ min
u2H 1

per

ð
Q
bðxÞjeCVuðxÞj2dx; ð2:2Þ

with BeffZbeffI for symmetric domains. Note that if ACeZQ\A (modulo the unit
cube), for eZ(1/2, 1/2,., 1/2), then automatically AeffZBeff. This follows by a
simple change of variables in (2.1).

We study the problem considered by Torquato et al. (2002, 2003), namely to
find the sets A that are cubically symmetric and maximize aeffCbeff.

In order to avoid the complications of restricting our analysis to cubically
symmetric sets A, we consider the quantity (tr AeffCtr Beff) instead of (aeffCbeff).
In case A is cubically symmetric, both quantities coincide (by a factor n).
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Note that the two-phase configuration separated by the Schwartz P surface is
cubically symmetric and also satisfies ACeZQ\A for eZ(1/2, 1/2,., 1/2). The
value of the sum (tr AeffCtr Beff) is invariant by all those symmetries.

3. Upper bound for trAeffDtrBeff

For any dimension n, we will prove an upper bound for tr AeffCtr Beff

independent of the set A. Then, we will check what conditions A must satisfy
in order to achieve this bound. Our upper bound coincides with equation (1.1) for
cubically symmetric composites, since in that case tr AeffZnaeff and tr BeffZnbeff.

Proposition 3.1. Given Aeff and Beff defined by (2.1) and (2.2), we have the
upper bound

tr Aeff Ctr Beff%nð1C3ÞK ð1K3Þ2

1C3
Z ðnK1Þð1C3ÞC 43

1C3
: ð3:1Þ

Remark 3.2. In the case when the conductivities are s1 and s2 instead of 1 and
3, the same proof gives the estimate

tr Aeff Ctr Beff%ðnK1Þðs1 Cs2ÞC
4s1s2
s1 Cs2

:

Proof. We start writing tr AeffCtr Beff in a long form

tr Aeff Ctr Beff Z min
ui ;vi2H 1

perðQÞ

ð
Q
aðxÞ je1CVu1ðxÞj2C/C jen CVunðxÞj2

� �

CbðxÞ je1CVv1ðxÞj2 C/C jen CVvnðxÞj2
� �

dx:

If we write UZ(u1,.,un) and VZ(v1,.,vn), the above expression takes the
cleaner form

tr Aeff Ctr Beff Z min
U ;V2H 1

perðQ;RnÞ

ð
Q
aðxÞjI CDU j2CbðxÞjI CDV j2dx: ð3:2Þ

In order to find an upper bound, we restrict the minimum to a smaller set. In
this case, it will be those U and V such that there exists a periodic potential
function p so that

UðxÞZVp ð3:3Þ

V ðxÞZKVp: ð3:4Þ

Thekey idea in this proof is that oncewe restrict our set of test functionsU andV to
this smaller set of gradients of a potential, the value of the minimum in (3.2) will
magically become independent of the set A. We do the computations below.
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We rewrite the expression (3.2) in terms of p,

trAeffCtrBeff % min
p2H 2

perðQÞ

ð
Q
aðxÞjICD2pj2CbðxÞjIKD2pj2 dx

Z min
p2H 2

perðQÞ

ð
Q
ð1C3Þ jI j2CjD2pj2

� �
C2ðaðxÞKbðxÞÞI$D2pdx

Zð1C3Þ min
p2H 2

perðQÞ
nC

ð
Q
jD2pj2 dxC2

ð
A

1K3

1C3
DpdxK2

ð
QnA

1K3

1C3
Dpdx

Zð1C3Þ min
p2H 2

perðQÞ
nC

ð
Q
jDpj2 dxC2

ð
A

1K3

1C3
DpdxK2

ð
QnA

1K3

1C3
Dpdx

Zð1C3Þ min
p2H 2

perðQÞ
nC

ð
A
jDpj2C2

1K3

1C3
DpdxC

ð
QnA

jDpj2K2
1K3

1C3
Dpdx

The value of Dp can be any function we choose as long as its average in the unit
cubeQ is zero.Wecan take thebest choice ofDp(x) pointwise,which is theminimum
of the respective quadratic function inside the integral in the expression above. If x is
in A, the minimum of jDpðxÞj2C2ðð1K3Þ=ð1C3ÞÞDpðxÞ would be achieved for
DpðxÞZKðð1K3Þ=ð1C3ÞÞeKq. On the other hand, for x in Q\A, the best choice
would beDp(x)Zq. Sincewe have jAjZ(1/2)jQj, this choice forDp has average zero
in Q. Note that the value of q is independent of A and we obtain exactly

tr Aeff Ctr Beff%nð1C3ÞK ð1K3Þ2

1C3
Z ðnK1Þð1C3ÞC 43

1C3
: ð3:5Þ

&

Now, we want to check the conditions for the upper bound in proposition 3.1
to be achieved. We follow the proof and see that the upper bound is achieved if
the optimal U and V for (3.2) happen to have the form given by (3.3) and (3.4).

For a given set A, the function p is easily computed by the equation

DpZ
Kq in A;

q in QnA:

(

Equivalently, we can first solve the equation

aDq Z
1 in A;

K1 in QnA;

(
ð3:6Þ

then set pZKqq. We also have UZKqVq and VZqVq.
In theorem 3.3, we provide necessary and sufficient conditions for a set A to be

optimal.

Theorem 3.3. A set A3U with a smooth boundary vA realizes the upper bound
of proposition 3.1 if the corresponding function q defined in (3.6) has the following
behaviour near each point x2vA:

D 2qðxÞZ
MðxÞCn5n on the A side of vA;

MðxÞKn5n on the QnA side of vA;

(
ð3:7Þ

for some matrix M(x) depending on each point x2vA such that M(x)$nZ0.
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Note that D2q(x) has a jump on vA; that is why we give two different values on
each side of the surface.

Proof. To check if the computed estimate in proposition 3.1 is achieved for a
given set A, we must check whether the computed U and V satisfy the Euler–
Lagrange equation of (3.2). In other words,

div aðxÞVU Z 0 ð3:8Þ

div bðxÞVV Z 0: ð3:9Þ

SinceDq is constant inA andQ\A, the above equalities are automatically satisfied
within those sets. The only place to check is their boundary vA, where wemust have
the following jump in the normal derivative (at least if vA is smooth):

nCvCn U Z 3ðnCvKnUÞ ð3:10Þ

3ðnCvCn V ÞZ nCvKnV ; ð3:11Þ

wherevCn denotes the normal derivative tovA on theA side and vKn denotes the normal
derivative to vA on the Q\A side.

Note that from constructions DUZKqD2q and DVZqD2q, a jump in DU
corresponds to a jump in D2q. From (3.6), Dq is a discontinuous function across
vA. The Hessian matrix D2q will be a continuous function on both sides and up to
vA, but on vA it has two different values from each side. Note also that q2C 1,a

for every a!1 and q2C 1,1 if vA is smooth. Assuming that vA is smooth, we
rewrite the equations (3.10) and (3.11) as

nKqD 2q$n on the A sideð ÞZ 3ðnKqD 2q$nÞ on the QnA sideð Þ and ð3:12Þ

3ðnCqD 2q$nÞ on the A sideð ÞZ nCqD 2q$n on the QnA sideð Þ: ð3:13Þ

The vector field Vq is well defined since q2C 1,a. Taking derivatives
tangentially on the surface vA, we see that D2q$t must have the same value
on both sides A and Q\A. Since D2q is self-adjoint, the tangential component of
D2q$n must be equal on both sides of vA. But from the identities above, this
implies that D2q$n has no tangential component if 3s1. Thus, n is an eigenvector
of D2q on vA and D2q can only differ on each side of vA by a multiple of n5n.
Moreover, recalling that qZ(1K3)/(1C3), the above equations tell us exactly
what the eigenvalues are. Let us write D2qnZlCn in the A side, and D2qnZlKn
in the Q\A side. We have

1KqlCZ 3ð1KqlKÞ and ð3:14Þ

3ð1CqlCÞZ 1CqlK; ð3:15Þ

which mean that lCZ1 and lKZK1. This finishes the proof. &

Remark 3.4. The proof is slightly simpler if we assume Q\AZACe, for
eZ(1/2,., 1/2). In this case AeffZBeff, the upper bound on the sum becomes an
upper bound for each trace, and (3.3) implies (3.4).
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Remark 3.5. All that the proof requires is that a(x)Cb(x) is a constant, so that
we can apply the identityð

Q
ðaðxÞCbðxÞÞjD 2qj2 dx Z

ð
Q
ðaðxÞCbðxÞÞjDqj2 dx:

We could consider periodic functions a(x) and b(x) that do not take only two
values as long as aCb is a constant. The effective conductivities Aeff and Beff are
defined accordingly by (2.1) and (2.2). After redoing the computation in the
proof of proposition 3.1, we would obtain some upper bound for tr AeffCtr Beff

depending on the possible choices of a and b.

Note that the function q is completely defined by (3.6). The extra equation
(3.7) can be understood as a free boundary condition; thus it imposes a
restriction on the form of an optimal set A.

From theorem 3.3, we can draw an interesting conclusion. As expected, the
optimality of a set A does not depend on the value of 3. This was pointed out by
Torquato et al. (2003) based on their numerical computations.

It is also simple to show that a laminar composite is optimal. Indeed, if we
choose AZ{(x, y, z): 1/4!x!3/4}, then the function q depends only on one
dimension and

qðx; y; zÞZ

1

2
xC

1

4

 !
xK

1

4

 !
if x!

1

4
;

1

2
xK

1

4

 !
3

4
Kx

 !
if

1

4
!x!

3

4
;

1

2
xK

3

4

 !
xK

5

4

 !
if xO

3

4
;

8>>>>>>>>>>><
>>>>>>>>>>>:

which clearly satisfies the condition (3.7). Thus, the laminar structure achieves
the optimal value for tr AeffCtr Beff, though it is not cubically symmetric and Aeff

and Beff are not scalar matrices.
Note that the laminar structure achieves the optimal value in any dimension.

However, in dimension two, the upper bound can never be achieved by an
isotropic composite due to the well-known phase exchange identity in two
dimensions: aeff$beffZ3.

4. Further analysis of the free boundary problem

The free boundary problem given by (3.6) and (3.7) has never been studied to our
knowledge. At the present time, we are not able to show even the existence of
other solutions besides the one-dimensional laminar one shown above. The main
relevant question for the theory of composites would be whether or not a
cubically symmetric solution exists. The computations by Torquato et al. (2002,
2003) suggest that there might be a solution whose free boundary coincides with
or at least is very close to the Schwartz P surface. However, we have not been
able to find any link between the free boundary problem and the mean curvature
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of the interface. In this section, we study the potential implications of the
boundary vA being a minimal surface. We obtain indirect consequences that are
easy to test numerically. We report some numerical results that strongly suggest
that the structure with the Schwartz P minimal surface as the interface cannot
achieve the upper bound (1.1).

Let us assume that we have a cubically symmetric optimal configuration
corresponding to a set A. Equivalently, from theorem 3.3, we would have a
function q solving the following overdetermined problems:

Dq Z
1 in A;

K1 in QnA;

(
ð4:1Þ

and

D 2qðxÞZ
MðxÞCn5n on vA from the A side;

MðxÞKn5n on vA from the QnA side;

(
ð4:2Þ

where M(x) is a symmetric matrix for every point x2vA such that M(x)nZ0 and
n is the normal vector to vA at x.

Lemma 4.1. Assume that vA is a smooth connected periodic surface with mean
curvature zero for which the overdetermined problems (4.1) and (4.2) have a
solution q. Then, q and qn are constants on vA, where qn denotes the normal
derivative of q.

Remark 4.2. As it is well known, the smoothness assumption is a consequence
of the mean curvature zero up to dimension seven.

Proof. Given any smooth surface S, we can write the Laplacian of any C2

function u in the following way:

Du ZDSuCmunCunn;

where DSu is the intrinsic Laplacian of u on S; m is the sum of the principal
curvatures of S (which is (nK1) times the mean curvature); and unn is the second
derivative of u in the normal direction.

In case S has mean curvature zero, the formula simplifies to

Du ZDSuCunn:

The function q would be smooth on each side and up to vA. We can apply
the above formula to q on each side of vA. For example, on the ‘A’ side we
have DqZK1 from (4.1) and also qnnZK1 from (4.2). Then, K1ZDqZ
DSqCqnnZDSqK1. Therefore, we have DSqZ0. If we do the same reasoning
from the ‘Q\A’ side, we would also obtain DSqZ0 and no extra information.

Since vA is assumed to be connected, any harmonic function on it must be
constant. Therefore, q is constant on vA. This proves the first part of lemma 4.1.

In order to prove the second part, we consider qnZDq$n and take a derivative
in a direction t tangential to vA. We have

vtðqnÞZ vtðDq$nÞZ ttD 2qnCDq$vtn:

L. Silvestre2550
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From (4.2), ttD2qnZ0. Since vtn is a tangential vector (this is true for any
smooth surface) and q is constant on vA, Dq$vtnZ0. Therefore, vt(qn)Z0 and qn
must be constant on vA. This finishes the proof. &

Note that in the problems (4.1) and (4.2), we can add an arbitrary constant to
the function q. Thus, we can make qZ0 on vA in lemma 4.1. Using the maximum
principle on equation (4.1), we see that the function q would be negative in the
interior of A and positive outside of A. Therefore, if a set A was optimal and vA
had mean curvature zero, the function q would also be a solution of the following
free boundary problem:

Dq Z
K1 if qO0;

1 if q!0;

(
ð4:3Þ

which is completed by the compatibility condition that q must be C 1 across the
free boundary {qZ0}. A similar problem has attracted some attention recently
that is obtained by exchanging K1 and 1 in equation (4.3) (see Henrik
Shahgholian (in press) and references therein). However, our opposite choice of
signs greatly changes the nature of the problem. A more similar equation was
considered by Andersson & Weiss (2006). The function q is a critical point of the
nonconvex functional

JðuÞZ
ð
Q

jVuj2

2
Kjujdx: ð4:4Þ

On the other hand, if we consider the positive part of q only, we arrive at a
better known free boundary problem

DqCZK1 in fqCO0g;

qn Z const: on vfqCO0g:
ð4:5Þ

This is usually referred to as the one-phase problem and has been studied
extensively within the free boundary community (e.g. Aguilera et al. 1986;
Caffarelli 1998).

A strange consequence of a zero mean curvature free boundary would be that the
three equations (4.1) and (4.2), (4.3) and (4.5) would have the same solution q.

Recalling that UZqDq, we observe that one implication of lemma 4.1 is that
jUj would have to be constant on vA, if vA had zero mean curvature. We ran a
finite element code to solve the cell problem in [K1,1]3. We tried first with a
uniform mesh and then with more accurate adaptive mesh. We used different
nodal approximations to the P surface (Schwarz & Gompper 1999; Gandy et al.
2001). We tested the computed effective conductivities and indeed it was very
close to optimal. But the computed values of jUj showed a significant difference
at the points (1/2, 1/2, 1/2) and (1, 1/2, 0) which lie on the interface (approx.
0.32 and 0.39). These values did not vary much when we changed from the
uniform mesh to the adaptive mesh, or when we added more degrees of freedom.
This suggests that the optimal structure cannot be separated by the P surface.

The main idea for our test is that the effective conductivity may not be very
sensitive to small changes in the domain, and thus hard to test numerically.
However, the value of the normal derivative of q on vA is more sensitive to
changes in the shape of A and easier to compute. In this way, what we test is an
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indirect consequence of a zero mean curvature boundary. The results that we
obtained show strong evidence that if vA is the Schwartz P surface, then the
upper bound (1.1) is not attained.

Another test that we performed was to compute a solution to equation (4.3)
numerically. We set up an elementary finite difference scheme where the value of
q at each grid point is given by the average of the six neighbours plus h2/6 if q is
positive, or minus h2/6 if q is negative at that point (h is the distance between
two neighbouring points on the grid). Then we solved that equation on the grid
by an iterative method using a suitable relaxation parameter. We tested the
problem in the cube [K1,1]3 with various grid sizes (from 20 to 250) and in
every case we obtained that the normal derivative of q at the free boundary point
(1/2, 1/2, 1/2) is approximately 0.47 and the normal derivative at the free
boundary point (1, 1/2, 0) is 0.37. Even though we have not done any error
analysis for this finite element scheme, the values we obtain when varying the
grid size are all very similar. This seems to be a significant difference that also
suggests that the minimal surface structure may not be optimal.

At the present time, the source code of our tests can be found on the website of
the author (www.cims.nyu.edu/wsilvestr/source).

The second test that we described would not suffice to give a definitive answer
to the question. The functional (4.4) is not convex, thus we cannot prove
uniqueness for equation (4.3). We cannot rule out the possibility that our
numerical approximation is picking a different solution that is also cubically
symmetric; however, this seems to us unlikely. For that reason, the first test
provides stronger evidence.

If the Schwartz P surface is not the optimal configuration for the sum of two
effective conductivities, then the question is why does it approximate the upper
bound with such a high level of precision. According to Torquato et al. (2003), if the
conductivities of the two phases are 0.1 and 1, then the effective conductivities range
between0.38and0.427 for all possible structures.This is a small range.A surface that
has a similar shape to the optimal (assuming there is actually a surface that achieves
the upper bound) may have a very similar effective conductivity.

The high accuracy with which the Schwartz P surface configuration
approximates the upper bound suggests that the free boundary problems (4.1)
and (4.2) may have a cubically symmetric solution with a free boundary near the
Schwartz P surface. Our computations suggest, however, that the free boundary
does not coincide exactly with this surface. In any case, equations (4.1) and (4.2)
define a new type of free boundary problem that would be worth studying and
understanding better.

I would like to thank Luca Heltai for help with the implementation of an adaptive finite element
code for one of the numerical tests. I would also like to thank very specially Robert Kohn for telling
me about the problem and for several useful discussions related to this paper.

Appendix A. Yet another proof of the H–S bounds

Using the same idea of writing the vector field U as the gradient of a potential p,
we can provide an elementary proof of the Hashin–Shtrikman upper bounds for
two-phase composites in arbitrary dimension. The lower bounds can be obtained
similarly and are also proved below.
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Suppose a(x)Zs1 in a set A with measure f1, and a(x)Zs2 in Q\A with measure
f2Z1Kf1. We want to find an upper bound, independent of A, for the quantity

tr Aeff Z min
U2H 1ðQ;RnÞ

ð
Q
aðxÞjI CDU j2 dx: ðA 1Þ

The method is again to reduce the set of test vector fields to those which are the
gradient of a potential UZVp. In this way, we obtain the estimate

tr Aeff% min
p2H 2ðQÞ

ð
Q
aðxÞjI CD 2pj2 dxemin

p
JðpÞ:

The advantage is that upper bounds are easy to compute for the new functional
J(p). Moreover, we can consider only potentials p for whichDp is constant in bothA
andQ\A (the energy J is minimized for one of these potentials). LetDpZq1 inA and
DpZq2 in Q\A.

We have

JðpÞZ
ð
Q
aðxÞjI CD 2pj2 dx Z

ð
Q
aðxÞðjI j2C2DpC jD 2pj2Þ dx

Z ðf1s1 Cf2s2ÞnC2ðf1s1q1 Cf2s2q2ÞC
ð
Q
aðxÞjD 2pj2 dx:

We then use the following elementary relations:ð
Q
jD 2pj dx Z

ð
Q
jDpj2 dx; ðA 2Þ

and

jD 2pðxÞjR
X
i

jviipj2R
1

n
jDpj2: ðA 3Þ

With these relations in mind, we estimate the value of the remaining term.
Assuming s1!s2, we haveð

Q
aðxÞjD 2pj2 dx Zs2

ð
Q
jD 2pj2 dxCðs1K s2Þ

Ð
AjD 2pj2 dx

Zs2

ð
Q
jDpj2 dxCðs1Ks2Þ

ð
A
jD 2pj2 dx

%s2 f1q
2
1 Cf2q

2
2

� �
C

s1Ks2

n

ð
A
jDpj2 dx

%s2ðf1q
2
1 Cf2q

2
2ÞC

s1K s2

n
f1q

2
1;

where the equality holds as long as Dp is constant in both A and Q\A, and D2p is
a constant scalar matrix in A so that we have equality in (A 3) for any x2A.
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Putting it all back together we obtain

JðpÞ%ðf1s1 Cf2s2ÞnC2ðf1s1q1 Cf2s2q2ÞCs2 f1q
2
1 Cf2q

2
2

� �
C

s1K s2

n
f1q

2
1:

ðA 4Þ

Now it only remains to choose the optimal q1 and q2 to obtain optimal bounds.
Our only restriction is that f1q1Cf2q2Z0, since the average of the Laplacian of
the periodic function p in the whole cube must be zero. Using Lagrange
multipliers we can set up an equation for the optimal values of q1 and q2. After
solving the equations (with MATHEMATICA), we obtain

q1 Z
f2nðs2K s1Þ

f1ns2 Cf2ðs1 CðnK1Þs2Þ
and

q2 Z
f1nðs1Ks2Þ

f1ns2 Cf2ðs1 CðnK1Þs2Þ
;

which give the estimate when plugged back into (A 4). After simplifying the
expression, recalling that f1Cf2Z1 (using MATHEMATICA), we obtain

tr Aeff%min
p

JðpÞ%n f1s1 Cf2s2K
f1f2ðs2Ks1Þ2

ðns2Cf2ðs1Ks2ÞÞ

� �
:

So we obtained the Hashin–Shtrikman upper bounds in arbitrary dimension.
For completeness, we also prove the lower bound with more or less the same
computation. The lower bound is easier because we do not have to restrict the set
of test vector fields in (A 1).

The whole computation is based on the following elementary relations that
hold for any periodic vector field U: Q/R

n:ð
Q
jDU j2 dxR

ð
Q
jdiv U j2 dx with equality iff U is the gradient of a potential

ðA 5Þ

and

jDUðxÞj2R 1

n
jdiv UðxÞj2 for every x; with equality iff U Z lI for some scalar l:

ðA 6Þ
As before, we say f1ZjAj, f2ZjQ\Aj and

q1 Z
1

f1

ð
A
div U dx;

q2 Z
1

f2

ð
QnA

div U dx:

Note that f1q1Cf2q2Z0 since div U must have integral zero in the whole cube Q.
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The computation of the lower bound is now straightforward. Assume again
s1!s2, thenð

Q
aðxÞjI CDU j2 dx Z

ð
Q
aðxÞðjI j2 C2 div U C jDU j2Þdx

Z nðf1s1 Cf1s2ÞC2ðf1s1q1Cf2s2q2ÞC
ð
Q
aðxÞjDU j2 dx;

so we need to find a lower bound for the last term. We apply (A 5) and (A 6),
then ð

Q
aðxÞjDU j2 dx Zs1

ð
Q
jDU j2 dxCðs2Ks1Þ

ð
QnA

jDU j2 dx

Rs1

ð
Q
jdiv U j2 dxCðs2Ks1Þ

ð
QnA

1

n
jdiv U j2 dx

Rs1ðf1q
2
1Cf2q

2
2ÞC

s2Ks1

n
f2q

2
2;

and the equalities hold if UZVp for some potential p and DU is a constant scalar
matrix in Q\A.

Putting the estimate back in (A 1) we find that

tr AeffR min
q1 ;q2

f1q1Cf2q2Z0

nðf1s1Cf1s2ÞC2ðf1s1q1 C2f2s2q2ÞCs1 f1q
2
1Cf2q

2
2

� �

C
s2K s1

n
f2q

2
2Rn f1s1 Cf2s2K

f1f2ðs2Ks1Þ2

ðns1Cf1ðs2Ks1ÞÞ

� �

and we obtained the Hashin–Shtrikman lower bounds in arbitrary dimension.
Note that the condition to achieve the bound in either case is that there is a

potential function p for which

—UZVp ;
—Dp is constant in Q\A and A; and

—D2p is a constant scalar matrix, and thus p coincides with a quadratic
polynomial in any connected component of A for the upper bound or of Q\A
for the lower bound.

From these conditions, we derive that p is a solution to the obstacle problem
(Caffarelli & Salsa 2005), with a polynomial as the obstacle and periodic
boundary conditions. Either A or Q\A is the contact set depending on whether
we achieve the maximum or the minimum. This result agrees with Liu et al.
(submitted). By a straightforward computation it can be checked that indeed DU
satisfies the right jump conditions on vA in any dimension.

The idea of restricting the set of test functions to gradients of potentials
proved to be useful for the upper bound of the sum of two effective conductivities,
and also for the Hashin–Shtrikman upper bounds. We believe (or hope) that
more applications may be found in the future, since it provides an elementary
method for producing direct proofs.
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