Exercise 1. Let V a vector space over a field F. Show that $(-1) \cdot v = -v$ for any $v \in V$.

Exercise 2. Prove that the following sets are vector spaces over the specified field.

- $\{(x, y, z) \in \mathbb{R}^3 \mid x - 2y + z = 0\}$ (over \mathbb{R})
- $\{f : A \rightarrow \mathbb{Q} \mid f \text{ function} \}$ where A is a nonempty set. (over \mathbb{Q}).
- $\mathbb{Q}[x]$ (polynomials with coefficients in \mathbb{Q}).
- $\{f : \mathbb{R} \rightarrow \mathbb{R} \mid f \text{ differentiable}, f'(0) = 0, f(0) = 0\}$ (over \mathbb{R})
- F, a field (over a subfield $E \subseteq F$) (Think to \mathbb{R} over \mathbb{Q}).

Exercise 3. Say if the following sets of vectors are linearly dependent, linearly independent, a spanning set, or a basis (over the indicated field).

- $V = \mathbb{R}^2$ (over \mathbb{R}^2); $v_1 = (1, 3), v_2 = (2, 6)$;
- $V = \mathbb{R}^2$ (over \mathbb{R}^2); $v_1 = (3, 5), v_2 = (-1, 6)$;
- $V = \mathbb{Q}^3$ (over \mathbb{Q}); $v_1 = (1, 0, 3); v_2 = (0, -1, 3) v_3 = (2, 3 - 3)$;
- $V = \mathbb{Q}^3$ (over \mathbb{Q}); $v_1 = (1, 0, 3); v_2 = (0, -1, 3) v_3 = (2, 3 - 3); v_4 = (0, 1, 0)$
- $V = \mathbb{Q}^3$ (over \mathbb{Q}); $v_1 = (1, 0, 3); v_2 = (0, -1, 3)$
- $V = \{f : \mathbb{R} \rightarrow \mathbb{R} \mid f \text{ differentiable}, f'(0) = 0, f(0) = 0\}$ (over \mathbb{R}) $v_1 = x^2; v_2 = e^x - 1 - x; v_3 = \cos x - 1$
- $V = \mathbb{R}^2$ (over \mathbb{Q}) $v_1 = (1, 2), v_2 = (\sqrt{2}, 2\sqrt{2})$;

Exercise 4. Let V and W two vector spaces over a field F. Let $f : V \rightarrow W$ a map between them such that $f(\lambda v_1 + \mu v_2) = \lambda f(v_1) + \mu f(v_2)$ for all $v_1, v_2 \in V$ and for all λ and μ in F (such a map between two vector spaces is called linear (or F-linear)). Show that for such a map $f(0) = 0$ and $f(-v) = -f(v)$. Show that ker $f := \{v \in V \mid f(v) = 0\}$ and im $f := \{w \in W \mid w = f(v) \exists v \in V\}$ are vector spaces over F. Prove moreover that f is injective if and only if ker $f = \{0\}$ and f is surjective if and only if im $f = W$.
