Exercise 1. Let \(f : \mathbb{R}^3 \to \mathbb{R} \) a \(C^1 \) function, and consider the differential form

\[
\omega = df = \frac{\partial f}{\partial x_1} \, dx_1 + \frac{\partial f}{\partial x_2} \, dx_2 + \frac{\partial f}{\partial x_3} \, dx_3 .
\]

Show that for any \(C^1 \) path \(\gamma : [a, b] \to \mathbb{R}^3 \) such that \(\gamma(a) = p, \, \gamma(b) = q \), we have:

\[
\int_{\gamma} \omega = f(q) - f(p) .
\]

Consider the differential form: \(\omega = 2xy \, dx + x^2 \, dy + dz \). Prove that for any \(C^1 \) curve \(\gamma : [a, b] \to \mathbb{R}^3 \), \(\gamma(t) = (\gamma_1(t), \gamma_2(t), \gamma_3(t)) \), we have:

\[
\int_{\gamma} \omega = \gamma_1(b)^2 \gamma_2(b) - \gamma_1(a)^2 \gamma_2(a) + \gamma_3(b) - \gamma_3(a) .
\]
Exercise 2. Consider the parameterized curve:

\[\gamma : [-1, 1] \rightarrow \mathbb{R}^2 \]
\[t \mapsto (1 - t^2, t + t^2) \]

- Show that \(\gamma \) is a smooth curve and write the tangent line in any point.
- Consider the vector field \(F := ye_1 + e_2 \) on \(\mathbb{R}^2 \). Compute the integral
 \[\int_{\gamma} F \cdot T. \]
- Can you find a potential for \(F \), that is, a function \(f \) such that \(\nabla f = F \)?
Exercise 3. Consider the parametrized surface:

\[\varphi : B(0, 1) \longrightarrow \mathbb{R}^3 \]

\[(u, v) \longmapsto (u, 1 - u^2 - v^2, v) \]

where \(B(0, 1) \) is the ball in \(\mathbb{R}^2 \), centered at the origin and of radius 1.

- Draw the surface.
- Prove that \(\varphi \) is a smooth surface.
- Compute the surface area \(\sigma(\varphi) \).
- Find an equation for the tangent plane in any point.
- What is the boundary of this surface?