Exercise 1. Prove the following linear properties for integrals.

- Let \(f, g \in \text{Ri}(\mathbb{R}^n) \). Prove that if \(\alpha, \beta \in \mathbb{R} \) then \(\alpha f + \beta g \in \text{Ri}(\mathbb{R}^n) \) and that:
 \[
 \int_{\mathbb{R}^n} (\alpha f + \beta g) = \alpha \int_{\mathbb{R}^n} f + \beta \int_{\mathbb{R}^n} g .
 \]
 (Hint: Prove first that for any grid \(G \) and for any \(R_i \in G \), \(M_i(\alpha f) = \alpha M_i(f) \) and \(m_i(\alpha f) = \alpha m_i(f) \). Deduce that \(Lf(G) = \alpha Lf(G) \); \(Uf(G) = \alpha Uf(G) \). Prove moreover that \(U(f + g, G) \leq U(f, G) + U(g, G) \); \(L(f + g, G) \geq L(f, G) + L(g, G) \).)

- Deduce that if \(f, g : D \rightarrow \mathbb{R} \) are integrable on a Jordan region \(E \subseteq D \) then \(\alpha f + \beta g \), for \(\alpha, \beta \in \mathbb{R}^n \) is integrable on \(E \) and
 \[
 \int_E (\alpha f + \beta g) = \alpha \int_E f + \beta \int_E g .
 \]

- Let \(f, g : \mathbb{R}^n \rightarrow \mathbb{R} \), two functions in \(\text{Ri}(\mathbb{R}^n) \), with \(f \leq g \). Prove that
 \[
 \int_{\mathbb{R}^n} f \leq \int_{\mathbb{R}^n} g .
 \]

- Prove that if \(f, g : D \rightarrow \mathbb{R} \) are bounded functions, \(E \) is a Jordan region \(E \subseteq D \), with \(f, g \) integrable on \(E \), and if \(f \big|_E \leq g \big|_E \) then
 \[
 \int_E f \leq \int_E g .
 \]

- Prove that if \(E_1 \) and \(E_2 \) are non overlapping Jordan regions, for any bounded function \(f : D \rightarrow \mathbb{R} \), \(D \supset E_1 \cup E_2 \), \(f \) integrable on \(E_1 \) and \(E_2 \) then \(f \) is integrable on \(E_1 \cup E_2 \) and that
 \[
 \int_{E_1 \cup E_2} f = \int_{E_1} f + \int_{E_2} f .
 \]
 (Hint: show first that \(f(E_1 \cup E_2) = f(E_1) + f(E_2) - f(E_1 \cap E_2) \))

- If \(E_1 \) and \(E_2 \) are any two Jordan regions, and \(f : D \rightarrow \mathbb{R}^n \) is nonnegative and bounded, \(D \supset E_1 \cup E_2 \), prove that
 \[
 \int_{E_1 \cap E_2} f \leq \min\{\int_{E_1} f, \int_{E_2} f\} \leq \max\{\int_{E_1} f, \int_{E_2} f\} \leq \int_{E_1 \cup E_2} f \leq \int_{E_1} f + \int_{E_2} f .
 \]

After reading Theorems 12.25 and 12.26 from Wade, Exercises, 5, 6, 10 from Wade, chapter 12.2.