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We discuss holomorphic and meromorphic functions on Riemann surfaces.

Definition 1. A Riemann surface X is a connected Hausdorff space with an atlas {(Ua, ϕa) : Ua → C}
of charts so that the transition maps {ϕb ◦ϕ−1a : ϕa(Ua ∩Ub)→ ϕb(Ua ∩Ub)} are holomorphic. In this sense
X is a 1-dimensional complex manifold. 4

We emphasize that these transition maps are actually conformal, since the holomorphic transition map
ϕb ◦ ϕ−1a is a bijection (the ϕ∗ are homeomorphisms, in particular bijections) with inverse ϕa ◦ ϕ−1b , which
is holomorphic because ϕa ◦ ϕ−1b is a transition map. This will be useful later.

Definition 2. A map f : X → Y between Riemann surfaces is called holomorphic if composing with the
charts give holomorphic maps in the usual sense, that is to say, given the commutative diagram

X Y

ϕa(Ua) ⊆ C ϕb(Ub) ⊆ C

ϕa

f

ϕb

fab

the dashed arrow is holomorphic for any a, b. Because notation is clunky, I lied slightly in the diagram above:
really, fab is only defined on the subset (ϕa ◦ f−1)(Ub) ∩ ϕa(Ua) ⊆ ϕa(Ua). 4

Recall that a function f : C→ C is meromorphic if it is holomorphic except at (at most) countably many
points {z1, z2, . . . } where f may have a pole, which means 1/f , defined to be 0 at zi, is holomorphic near
the zi. We remark that the zi are necessarily discrete.

This is saying that f : C→ C∪{∞} is a holomorphic map of Riemann surfaces. To spell this out for the
Riemann sphere, we have

C C ∪ {∞}

C

f

z 7→z z 7→1/z

and indeed we were saying that (z 7→ z)◦f = f should be holomorphic at the C-valued points, and when f is
going to infinity then (z 7→ 1/z)◦f = 1/f is holomorphic (we are using 1/∞ = 0, which is really the statement
that the chart z 7→ 1/z defined on (C∪{∞})\{0} sends the pole∞ of the Riemann sphere to the point 0 ∈ C).

For arbitrary Riemann surfaces, this definition generalizes:

Definition 3. A function f is meromorphic on X if it is a holomorphic map X → C ∪ {∞} that is not
identically ∞. 4

Let us fix some notation and make some easy observations.

Definition-Proposition 4. Let X be any Riemann surface.

1. The set of holomorphic functions H(X) is a complex vector space (the complex numbers sitting inside
H(X) should be interpreted as constant functions). This vector space also forms a commutative ring
(so one could call it a C-algebra), in fact an integral domain, and hence has a field of fractions, which
we denote FracH(X).
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2. The set of meromorphic functionsM(X) is also a complex vector space (as above, the complex numbers
should be interpreted as constant functions). This vector space is also field, so I guess one could call
it a field extension of C.

3. A function f ∈M(X) is said to have a pole (respectively, a zero) of order k at x ∈ X if for some chart
Ua 3 x, the holomorphic map (z 7→ 1/z) ◦ f ◦ ϕa = 1/f(ϕa(z)) (respectively, the holomorphic map
(z 7→ z) ◦ f ◦ ϕa = f(ϕa(z))) has a zero of order k as usual maps ϕa(Ua)→ C. This is independent of
choice of chart precisely because the transition maps are conformal (as opposed to just holomorphic),
as we now explain. Indeed, if Ub 3 x as well, then

(z 7→ 1/z) ◦ f ◦ ϕb︸ ︷︷ ︸
1/f(ϕb(z))

= (z 7→ 1/z) ◦ f ◦ ϕa︸ ︷︷ ︸
1/f(ϕa(z))

◦(ϕ−1a ◦ ϕb)

(z 7→ z) ◦ f ◦ ϕb︸ ︷︷ ︸
f(ϕb(z))

= (z 7→ z) ◦ f ◦ ϕa︸ ︷︷ ︸
f(ϕa(z))

◦(ϕ−1a ◦ ϕb)

and composing with a conformal map cannot change the order of a zero or a pole (for example because
conformal maps have nonvanishing derivative).

4. Functions on X analytically continue, because on each chart we have analytic continuation, and the
charts cover X.
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The last item is a powerful observation, as it immediately implies

Proposition 5. Holomorphic functions on compact Riemann surfaces X are constant.

Proof. Because X is compact |f | obtains a maximum, say at x; by the maximum modulus principle on a
chart containing x we see that f is constant on the chart, and by analytic continuation f must be constant
on all of X.

Let Λ = Z + τZ with τ ∈ C \ R denote a lattice in C. Then the torus C/Λ is a (compact) Riemann
surface, so the theory of holomorphic functions on C/Λ is degenerate. Meromorphic functions on C/Λ are
precisely elliptic functions, as in Chapter 9 of Stein/Shakarchi, and their theory is much richer, as the next
observation shows.

Observation 6. There exists a nonconstant meromorphic function f ∈ M(C/Λ). For any nonconstant
meromorphic function f , the field M(C/Λ) is an algebraic extension of the field C(f), that is to say, given
any f, g ∈M(C/Λ), there is a polynomial P ∈ C[x, y] so that P (f, g) is identically 0 on C/Λ. 4

Let us see why this is the case. Associated to Λ is a distinguished (nonconstant) elliptic function, called
the Weierstrass p function, denoted ℘. Theorem 9.1.8 in Stein/Shakarchi says that M(C/Λ) = C(℘, ℘′),
where ℘′ is the derivative of ℘ (one might need to do some gymnastics to ensure everything works, e.g. take
the derivative of ℘ on the C-valued points, obtain a series representation of ℘′, and use analytic continuation).

Note that (℘′)2 is a cubic polynomial in ℘, as Theorem 9.1.7 states. So M(C/Λ) is a finite dimensional
extension, and hence an algebraic extension, of C(℘) (alternatively, it’s an algebraic extension of C(℘′)).
Standard algebraic nonsense implies that M(C/Λ) is an algebraic extension of C(f) for any nonconstant
f ∈M(C/Λ):

Definition-Proposition 7. The transcendence degree of a field extension M/K is the maximum number
of algebraically independent elements of M over K, denoted trdeg(M/K). Transcendence degree is additive
with respect to towers of extensions, that is to say, if M/L/K is a tower of extensions, then

trdeg(M/K) = trdeg(M/L) + trdeg(L/K).
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Since trdeg(M(C/Λ)/C(℘)) = 0 and trdeg(C(℘)/C) = 1, it follows that trdeg(M(C/Λ)/C) = 1. Any
nonconstant f ∈M(C/Λ) is transcendental over C because meromorphic functions can only have countably
many zeros, so we have the tower of inclusions

trdeg 1︷ ︸︸ ︷
C ⊆ C(f)︸ ︷︷ ︸

trdeg 1

⊆M(C/Λ) .

This means that M(C/Λ)/C(f) is an algebraic extension.

Contrast Observation 6 with the following observation, which is a rephrasing of things we have already
seen in class:

Observation 8. Given a (possibly infinite) set of points {a1, a2, . . . } ∈ C with no points of accumulation
and equally many complex numbers {b1, b2, . . . }, there exists a holomorphic function f with f(ai) = bi.
Furthermore, M(C) = FracH(C). 4

Indeed, we showed that given a (possibly infinite) set of points {a1, a2, . . . } ∈ C with no points of accu-
mulation and equally many other complex numbers {b1, b2, . . . }, there exists a holomorphic function f with
f(ai) = bi (Exercise 5.6.17 in Stein/Shakarchi). On that same set, we also showed that every meromorphic
function in C is the quotient of two entire functions (this is Exercise 5.6.15).

These two observations are special cases of the following (very deep) theorem, which is a nontrivial
corollary of Riemann-Roch. As far as I can tell these statements were only proven after the introduction of
algebraic geometry, and fall out naturally out of that theory, even though these are basic questions about
Riemann surfaces (which were indeed studied since the time of Riemann).

Theorem 9. We have the following dichotomy for H(X) and M(X) on Riemann surfaces:

1. Let X be a compact Riemann surface. Then H(X) = C. Given a set of points {a1, a2, . . . , an} ∈ X,
and complex numbers {b1, b2, . . . , bn}, there exists a meromorphic function f ∈M(X) with f(ai) = bi.
For any nonconstant meromorphic function f , the field M(X) is an algebraic extension of the field
C(f), that is to say, given any f, g ∈ M(X), there is a polynomial P ∈ C[x, y] so that P (f, g) is
identically 0 on X.

2. Let X be a noncompact Riemann surface. Given a (possibly infinite) set of points {a1, a2, . . . } ∈ X with
no points of accumulation, and equally many complex numbers {b1, b2, . . . }, there exists a holomorphic
function f with f(ai) = bi. Furthermore, M(X) = FracH(X).

Let us gather which parts of this theorem we have already seen. That compact Riemann surfaces X
have H(X) = C is just Proposition 5. Furthermore, when X is a torus we have seen that M(X) is a finite
dimensional extension of C(℘), and an algebraic extension of C(f) for any nonconstant f ∈M(X)..

When X = C∪{∞} is the Riemann sphere, Theorem 3.3.4 in Stein/Shakarchi asserts thatM(X) = C(z).
Thus given a finite set of points in X, we can pick a chart that contains them all; this chart is homeomorphic
to an open subset U of C and we can Lagrange interpolate on U to get the prescribed function values.
Polynomials always be extended onto the Riemann sphere since either lim|z|→∞ |f(z)| is infinity, or f is
constant.

When X = C, this theorem is precisely Observation 8.

The references we used are as follows. Up until Proposition 5, we mostly follow Terry Tao’s 246c notes 1.
Part 1 of Theorem 9 is Corollary 14.13 in Otto Forster’s Lectures on Riemann Surfaces and Exercise 26 in
Terry Tao’s 246c notes 1. Part 2 of Theorem 9 is Theorem 26.7 and Exercise 26.3 of Otto Forster’s Lectures
on Riemann Surfaces.
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https://terrytao.wordpress.com/2018/03/28/246c-notes-1-meromorphic-functions-on-riemann-surfaces-and-the-riemann-roch-theorem/
https://www.springer.com/us/book/9780387906171
https://terrytao.wordpress.com/2018/03/28/246c-notes-1-meromorphic-functions-on-riemann-surfaces-and-the-riemann-roch-theorem/
https://www.springer.com/us/book/9780387906171
https://www.springer.com/us/book/9780387906171

