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1 Measure theory preliminaries
1.1 Sep 4, 2019

Our main book, Durrett’s Probability theory and examples (5th ed) is online on his webpage. We’ll cover
chapters 2, 3, and a little of 4 and 5. Another useful book is Williams’ Probability with martingales. [This week
Prof Levine’s office hours will be on Thursday at 1-2 in 438 MLT, and our TA Jason’s office hours will be on
Wednesday at 2-4 in 218 MLT.]

Definition 1.1.1. A probability space (Ω,F ,P) is a triple, where:

• Ω is a set of “outcomes”,

• F is a set of “events”, so F ⊆ 2Ω = {all subsets of Ω},

• P : F → [0, 1], where P(A) is interpreted as the probability that A occurs. 4

Example 1.1.2. Consider:

1. Perhaps Ω = {1, 2, 3, 4, 5, 6}, and we are rolling a die. If it is fair, then P({1, 2, 3, 4}) = 4
6 .

2. Perhaps Ω = N = {0, 1, . . . }. Perhaps the experiment consists of flipping a coin until we get heads, and
the outcome is the number of tails before the first heads. If the coin is fair, it is clear that P({n}) = 1

2n+1 .
Since any subset A ⊂ N is a countable union of singleton sets A = {n1, n2, . . . }, we have P(A) =∑
i≥1 P({ni}). The moral is that for Ω countable, we can do probability theory while avoiding measure

theory.

3. Suppose Ω = [0, 1]2, and we are dropping a pin on a square table. Since Ω is (necessarily!) uncountable
here, there are a variety of “paradoxes” which require measure theory to resolve.

4. Suppose Ω = {0, 1}N (cf. HW 0); perhaps we are flipping an infinite sequence of coins.
If the coin flips are independent and fair, for A = {ω ∈ Ω: ω2 = ω3 = 1}, we have P(A) = 1

4 . For
B = {ω ∈ Ω: ωn = 1 for all n ≥ 100}we have P(B) = 0. Let C = {ω ∈ Ω: ωn = 1 eventually}. Then

C = {ω : there is N so that ωn = 1 for all n ≥ N}

=
⋃
N∈N
{ω : ωn = 1 for all n ≥ N}

=
⋃
N∈N

⋂
n≥N

{ωn = 1},

where {ωn = 1} is shorthand for {ω ∈ Ω: ωn = 1}. We will later show the union bound, which implies

P(C) ≤
∑
N∈N

P
( ⋂
n≥N

{ωn = 1}
)
,

which is a countable sum of zeros. Suppose

D =

{
ω ∈ Ω: lim

n→∞

ω1 + · · ·+ ωn
n

=
1

2

}
.

Then P(D) = 1; this is the strong law of large numbers. 4

Let’s review measure theory. It can be thought of as an abstraction of the idea of length/area/volume,
and along with this comes an abstraction of the idea of integration. Let us begin with

Definition 1.1.3. Let F ⊆ 2Ω. We say F is a σ-field (also known as a σ-algebra) if:

(i) A ∈ F =⇒ Ac ∈ F ,

3



(ii) A1, A2, · · · ∈ F =⇒
⋃
n≥1An ∈ F ,

(iii) ∅ ∈ F .

From these axioms it follows that Ω ∈ F , and that F is stable under countable intersections. A tuple (Ω,F)
is called a measurable space, and the elements of F are called measurable sets. 4

Definition 1.1.4. A measure is a function

µ : F → R ∪ {∞}

satisfying, for A,A1, A2, · · · ∈ F ,

(i) µ(A) ≥ µ(∅) = 0, and

(ii) if A1, A2, . . . are disjoint (meaning Ai ∩Aj = ∅ for i 6= j), then

µ

( ⋃
n≥1

An

)
=
∑
n≥1

µ(An). 4

To have the second condition above, one needs to be careful (e.g. with well-definedness). In particular,
one cannot always just pick F to be 2Ω.

Definition 1.1.5. A probability measure also satisfies µ(Ω) = 1. 4

We’ll use the notation µ for a general measure and P for a probability measure.

Lemma 1.1.6. Let µ be a measure on (Ω,F). We have

(i) If A,B ∈ F satisfy A ⊆ B, then µ(A) ≤ µ(B).

(ii) If A1, A2, · · · ∈ F , not necessarily disjoint, then

µ

( ⋃
n≥1

An

)
≤
∑
n≥1

µ(An).

(iii) If Ai ↑ A, then µ(Ai) ↑ µ(A).

(iv) (cf. HW 1) If Ai ↓ A, and µ(Ai) <∞ for some i, then µ(Ai) ↓ µ(A).

(For sets Ai, A, the notation Ai ↑ A means A1 ⊆ A2 ⊆ . . . and ∪Ai = A, and for xi, x ∈ R, the notation
xi ↑ x means x1 ≤ x2 ≤ . . . and limi→∞ xi = x.)

Proof. Part (i) follows from writing B = A t (B \ A) and applying axiom (ii) required of a measure. Note
that B \A = B ∩Ac ∈ F .

Part (ii) follows from defining Bi = Ai \ (A1 ∪ · · · ∪Ai−1); note that the Bi ⊆ Ai are disjoint and satisfy⋃
i≥1

Ai =
⋃
i≥1

Bi.

Hence we have
µ

( ⋃
n≥1

An

)
=
∑
n≥1

µ(Bn) ≤
∑
i≥1

µ(An),

where the inequality is part (i) of the lemma.
Part (iii) follows from writing, as before, A = ti≥1Bi. Moreover, we have An = tni=1Bi. Hence

µ(A) = lim
n→∞

n∑
i=1

µ(Bi) = lim
n→∞

µ(An),

as desired.
Part (iv) will be in HW 1.
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In HW 1 we will also prove the following. For any A ⊆ 2Ω, we let σ(A) be the intersection of all σ-fields
containing A. Then σ(A) is in fact a σ-field.

Definition 1.1.7. Let T be a topological space. The Borel σ-field is σ(A), whereA consists of all open subsets
of T . 4

The most important examples for probability arise from T = Rd or T = {0, 1}N. The latter is topologized
by taking the open sets to be cylinder sets, which are sets of the form

{ω ∈ T : ω1 = a1, . . . , ωn = an}

for fixed (a1, . . . , an) ∈ {0, 1}n.
Let’s see why we can’t always take every subset to be measurable.

Example 1.1.8. Let T = R/Z be the unit circle. Let us show that there does not exist a rotationally invariant
probability measure on (T, 2T ). (Here, rotational invariance means P(A) = P(A+ c) for all c ∈ R.)

Define an equivalence relation ≡ on T by x ≡ y if x − y ∈ Q. By the axiom of choice, we may consider
the set A consisting of one representative from each equivalence class. Note that for each q ∈ Q/Z, we may
consider Aq = A+ q; it follows that

R/Z =
⋃

q∈Q/Z

Aq =⇒ 1 = P(R/Z) =
∑
q∈Q/Z

P(Aq).

By rotational invariance, P(Aq) are all equal to each other. We obtain a contradiction by considering sepa-
rately the cases P(A) = 0 and P(A) > 0. 4
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1.2 Sep 9, 2019
We’ll continue with our quick review of measure theory today. Problem set 1 will be posted later today,

due a week from now. [We’ll have weekly problem sets. If the class size remains the same, we will have a
takehome final, but if it drops we may replace the final with presentations.]

Definition 1.2.1. A collection of sets A ⊆ 2Ω is called a (boolean) algebra if:

(i) A ∈ A =⇒ Ac ∈ A, and

(ii) A1, . . . , An ∈ A =⇒ A1 ∪ · · · ∪An ∈ A. 4

Boolean algebras are often easier to handle than σ-algebras, because we only require finite unions.

Example 1.2.2. Some examples of boolean algebras:

(i) The open and closed sets of a topological space form a boolean algebra.

(ii) For Ω = Z, the set A = {finite subsets} ∪ {cofinite subsets} forms a boolean algebra. (A cofinite set is
one in which the complement is finite.) 4

Definition 1.2.3. We call µ : A → R ∪ {∞} a measure if

(i) µ(A) ≥ µ(∅) = 0, and

(ii) µ(t∞i=1Ai) =
∑∞
i=1 µ(Ai), whenever both Ai ∈ A and t∞i=1Ai ∈ A.

We say µ is σ-finite if there exist A1, A2, . . . so that⋃
i≥1

Ai = Ω and µ(Ai) <∞ for all i. 4

The following theorem says that we don’t really have to worry about σ-algebras:

Theorem 1.2.4 (Caratheodory Extension Theorem). If A is a boolean algebra and µ : A → R ∪ {∞} is a σ-finite
measure on A, then there exists a unique extension of µ to a measure on the σ-algebra σ(A) generated by A.

The following theorem can be deduced from the Caratheodory Extension theorem.

Theorem 1.2.5. Suppose F : R → R is a nondecreasing and right-continuous function. Then there exists a unique
measure µ on the Borel sets (R,B) such that µ(a, b] = F (b)− F (a).

(Here, right-continuous means limy↓x F (y) = F (x), and the Borel sets are the σ-algebra generated by
open sets in R.) The most important case of the above theorem is F (x) = x. The resulting measure is called
Lebesgue measure.

Proof idea of Theorem 1.2.5. Let us consider the boolean algebra

A = {(a1, b1] ∪ · · · ∪ (an, bn] : −∞ ≤ a1 ≤ b1 ≤ · · · ≤ bn ≤ ∞},

where by convention (a, a]
def
= {a}. (One should check that this actually is an algebbra.)

To get the conclusion of Theorem 1.2.5 it is clear that we should define

µ

(
(a1, b1] ∪ · · · ∪ (an, bn]

)
= F (b1)− F (a1) + · · ·+ F (bn)− F (an);

the real issue is well-definedness. For example, with a < b < c, we have (a, c] = (a, b] ∪ (b, c], and so we
potentially have two formulas for µ(a, c]. Fortunately, the formulas agree.

So if you believe that µ is well defined on A, the Caratheodory extension theorem guarantees the exis-
tence (and uniqueness!) of a measure on σ(A) = B.
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Definition 1.2.6. A family I ⊆ 2Ω is called a π-system if I1, I2 ∈ I =⇒ I1 ∩ I2 ∈ I. (Intuitively, think about
intervals in R.) 4

The following theorem is an observation of Dynkin.

Theorem 1.2.7 (“Thm 1”). Let I be a π-system and let F = σ(I). If µ1, µ2 : F → R∪ {∞} are measures such that
µ1(Ω) = µ2(Ω) <∞, and µ1 = µ2 on I, then µ1 = µ2 on F .

Example 1.2.8. Suppose Ω = [0, 1] and I = {[0, x] : 0 ≤ x ≤ 1}. One can check that the Borel subsets B([0, 1])
is equal to σ(I), so by Theorem 1.2.7 defining a measure on I is enough to define a measure on B([0, 1]). 4

Definition 1.2.9. A family L ⊆ 2Ω is called a λ-system if

(i) Ω ∈ L,

(ii) A,B ∈ Lwith A ⊆ B, then B \A ∈ L, and

(iii) If An ∈ L and An ↑ A, then A ∈ L. 4

Lemma 1.2.10 (“Lemma 2”). A family of sets F ⊆ 2Ω is a σ-algebra if and only if F is both a π-system and a
λ-system.

We’ll be using this a lot.

Proof. The forward direction is trivial.
The other direction follows from the following observations:

(i) A ∈ F implies Ac ∈ F , by λ-system’s axioms (i) and (ii).

(ii) For a countable family of sets An ∈ F , define Bn = A1 ∪ · · · ∪ An. By definition of π-system, and
λ-system axiom (ii), Bn ∈ F . The Bn ↑ ∪mAm, so by λ-system axiom (iii) we get ∪mAm ∈ F .

Theorem 1.2.11 (Dynkin π-λ theorem). Let I be a π-system and L be a λ-system. If I ⊆ L, then σ(I) ⊆ L.

Proof. Let λ(I) be the smallest λ-system containing I. (Formally, this means we consider all λ-systems
containing I and intersect them. [It is immediate to check that an arbitrary intersection of λ-systems is
again a λ-system.])

We must show that λ(I) = σ(I), and by Lemma 1.2.10 it is enough to show that λ(I) is a π-system. Let

L1 = {B ∈ λ(I) : B ∩ C ∈ λ(I)∀C ∈ I}.

Since I is a π-system, I ⊆ L1. The claim is that L1 is a λ-system, because we then get L1 = λ(I). We check
the three axioms required of a λ-system as follows:

(i) Note that Ω ∈ L1.

(ii) Let us now takeB1, B2 ∈ L1 withB1 ⊆ B2. Recall that (B2\B1)∩C = (B2∩C)\(B1∩C); furthermore,
B2 ∩ C ∈ λ(I) and B1 ∩ C ∈ λ(I) by assumption. Hence their difference is also in λ(I).

(iii) Finally, consider a countable family of setsBn ∈ L1 withBn ↑ B, and letC ∈ I. Since (Bn∩C) ↑ (B∩C),
it follows that B ∩ C ∈ λ(I). This proves that B ∈ L1.

SinceL1 = λ(I), we need to prove thatL1 is a π-system. We’ve shown that it is stable under intersections
with I. To show it is stable under intersections in λ(I), we iterate this process, defining L2 and arguing
analogously to above. (This detail will be omitted.)

Proof of Theorem 1.2.7. Let L = {A ∈ F : µ1(A) = µ2(A)}. We claim that L is a λ-system. We check the
axioms required of a λ-system as follows:

(i) By hypothesis, L contains Ω.
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(ii) If A ⊆ B ∈ L, then

µ1(B \A) = µ1(B)− µ1(A) = µ2(B)− µ2(A) = µ2(B \A)

and B \ A ∈ L. Note that the above computation only holds when µ1(B) < ∞, which is true by
hypothesis.

(iii) If An ∈ L is such that An ↑ A, then

µ1(A) = lim
n→∞

µ1(An) = lim
n→∞

µ2(An) = µ2(A)

and A ∈ L.

By the π-λ Theorem (Theorem 1.2.11), and the assumption that I ⊆ L, we get F = σ(I) ⊆ L.

In Durrett’s book, Appendix A1.5 in the 4th edition contains a σ-finite version of Theorem 1.2.7. To wrap
up our measure theoretic excursion, let’s talk about why Caratheodory Extension works.

Proof idea for Theorem 1.2.4. There are four steps to this proof:

1. For any E ⊆ Ω, define the outer measure

µ∗(E) = inf
{Ai} : Ai∈A
E⊆∪Ai

∑
i

µ(Ai).

2. Let us define E to be measurable if for all F ⊆ Ω,

µ∗(F ) = µ∗(E ∩ F ) + µ∗(Ec ∩ F ).

3. Now we can check that if A ∈ A, then µ∗(A) = µ(A). Moreover, A is measurable as in the definition
above.

4. Finally, let
A∗ = {E ⊆ Ω: E is measurable}

and check that A∗ is a σ-field and that the restriction of µ∗ to A∗ is a measure.

The key properties of µ∗ that allow us to do steps 3 and 4 above are:

(i) µ∗(∅) = 0,

(ii) E ⊆ F =⇒ µ∗(E) ≤ µ∗(F ), and

(iii) F ⊆ ∪n≥1Fn =⇒ µ∗(F ) ≤
∑
n≥1 µ

∗(Fn).
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1.3 Sep 11, 2019
We have just a little bit of abstract measure theory nonsense to cover, before getting into the concrete

probability theory.
We’d like to understand which sets are measurable. We have, for A an algebra and A∗ the measurable

sets, the inclusions
σ(A) ⊆ A∗ ⊆ 2Ω,

and for most interesting applications these inclusions are strict. [For example, Ω = R,A = {Borel sets ⊂
2R},A∗ = {Lebesgue measurable sets ⊂ 2R}.]

Definition 1.3.1. A set N ⊆ Ω is a null set if µ∗(N) = 0. Note that any null set is measurable, since for all
F ∈ 2Ω, we have F ⊆ (F ∩N c) tN and

µ∗(F ) ≤ µ∗(F ∩N c) + µ∗(N)︸ ︷︷ ︸
=0

≤ µ∗(F ),

so these inequalities are equalities and N is measurable. 4

The philosophy is that we don’t need to worry about null sets. In particular:

Definition 1.3.2. A measure space (Ω,F , µ) is called complete if wheneverA ⊆ B andB ∈ F with µ(B) = 0,
then A ∈ F . 4

Theorem 1.3.3. Let (Ω,F , µ) be a measure space. There exists a complete measure space (Ω,F , µ) that extends the
original space, that is,

1. E ∈ F ⇐⇒ E = A ∪N for A ∈ F and N ⊆ B ∈ F with µ(B) = 0,

2. µ = µ on F .

(The triple (Ω,F , µ) is called the completion of (Ω,F , µ).)

Example 1.3.4. LetB be the Borel sets, and λ denote the Lebesgue measure onR. The completion is (R,B, λ),
where B are Lebesgue sets in the usual sense and λ is Lebesgue measure in the usual sense. (There exist
null sets N 6∈ B.) 4

There is this notion of a Borel Hierarchy. Let us take Ω = R and A0 = {open intervals ⊂ R}. Let
An = A∗n−1, where

A∗ =

{
Ac,

⋃
k≥1

Ak : A,Ak ∈ A
}
.

Note that B ⊇ An for every n. One might guess

B =
⋃
n≥0

An = A∞,

but no!
We’d need a transfinite hierarchy to exhaust B.

Theorem 1.3.5 (Durrett, 4th ed, Appendix A2.2). For all Lebesgue measurable E ⊆ R, we can write

E = A \N,

for A ∈ A2 an element of the second level of the Borel Hierarchy, and N a null set.

Let’s start interpreting things in probabilistic language.
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2 Probability preliminaries
2.3 Sep 11, 2019

Let (Ω,F ,P) be a probability space (that is, a measure space with P(Ω) = 1).

Definition 2.3.1. We say X : Ω→ R is a random variable (R.V.) if X−1(B) ∈ F for all B ∈ B. 4

Definition 2.3.2. The distribution of X is the measure on (R,B) defined by

µX(B) = P(X−1(B)) = P({ω ∈ Ω: X(ω) ∈ B}).

We write
P(X ∈ B)

def
= P({ω ∈ Ω: X(ω) ∈ B})

to suppress the ω from the notation. 4

Example 2.3.3. Consider the indicator random variable of F is defined as follows: for A ∈ F , we set

1A(ω) =

{
1 for ω ∈ A
0 for ω 6∈ A.

The map 1A : Ω→ R is a random variable, because

1
−1
A (B) =


Ω for 0, 1 ∈ B
A for 0 6∈ B, 1 ∈ B
Ac for 0 ∈ B, 1 6∈ B
∅ for 0, 1 6∈ B.

(More to come later.) 4

Definition 2.3.4. In general, given measurable spaces (Ω,F) and (S,S), a function X : Ω → S is called
measurable if X−1(B) ∈ F for all B ∈ S. 4

Hence, a (real-valued) random variable is the case when Ω has a probability measure and (S,S) =
(R,B). But one might be interested in, e.g., random graphs, random trees, random complex numbers,
or random extended reals (so S is a set of graphs, a set of trees, C, or R = R ∪ {∞}). In general, an
S-valued random variable is a measurable function (Ω,P)→ (S,S).

Definition 2.3.5. If X : (Ω,F ,P)→ (S,S) is a measurable function, the pushforward µ of P is defined as

µ(B)
def
= P(X−1(B)),

for all B ∈ S. 4

Hence, the case S = R, µ = µX is a special case of pushforwards of measures.

Lemma 2.3.6. With notation as in Definition 2.3.5, µ is a measure.

Proof. We check µ(∅) = P(X−1(∅)) = P(∅) = 0, and

µ

( ⊔
n≥1

Bn

)
= P

(
X−1

( ⊔
n≥1

Bn

))
= P

( ⊔
n≥1

X−1(Bn)

)
=
∑
n≥1

P(X−1(Bn)) =
∑
n≥1

µ(Bn).

Definition 2.3.7. The distribution function (sometimes denoted C.D.F.) of a random variable X : Ω → R is
the function F = FX : R→ R defined by

F (x) = P(X ≤ x)
def
= P({ω ∈ Ω: X(ω) ≤ x}). 4

10



We note that since {ω ∈ Ω: X(ω) ≤ x} = X−1((−∞, x]), we really have

FX(x) = µX((−∞, x]).

Although FX only contains the information of µX on sets of the form (−∞, x], observe that FX actually
determines µX . This is because:

1. B = σ({(−∞, x] : x ∈ R}), where {(−∞, x] : x ∈ R} is a π-system.

2. By the π-λ theorem (Theorem 1.2.11), the values µX((−∞, x]) for x ∈ R determine the values of µX(B)
for all B ∈ B.

Note also that FX has the following properties:

1. It is nondecreasing, that is, x ≤ y means F (x) ≤ F (y),

2. limx→∞ F (x) = 1 and limx→−∞ F (x) = 0, and

3. It is right continuous, so limy↓x F (y) = F (x).

Example 2.3.8 (More random variables). Consider:

1. Let X = 1A. Then P(X ≤ x) = FX(x) is given piecewise by

FX(x) =


0 if x < 0

P(Ac) if 0 ≤ x < 1

1 if x ≥ 1.

2. For a λ > 0 we have the exponential random variable Exp(λ), whose distribution function is

F (x)
def
=

{
0 if x < 0

1− e−λx if x ≥ 0.

3. We have the normal distribution N(0, 1) with

F (x)
def
=

∫ x

−∞

1√
2π
e−t

2/2 dt.

The graph of F looks like

11



4. Consider the (usual) Cantor set
C =

⋂
n≥1

Cn

for C0 = [0, 1], C1 = [0, 1
3 ] ∪ [ 2

3 , 1], C2 = [0, 1
9 ] ∪ [ 2

9 ,
3
9 ] ∪ [ 6

9 ,
7
9 ] ∪ [ 8

9 , 1], and so on, as in the following
picture.

Note that a choice of an element in the Cantor set corresponds exactly to a choice of countable sequence
of L’s and R’s. Now let X = “a uniform random element of C”. Let F = FX ; we have

F (x) =


1
2 ∀x ∈ [ 1

3 ,
2
3 ]

1
4 ∀x ∈ [ 1

9 ,
2
9 ]

3
4 ∀x ∈ [ 7

9 ,
8
9 ]

...
...

(An approximation of) the graph of F is:

Note that F is continuous (since if F had a jump, say at x ∈ [0, 1], then X would assign a positive
probability of choosing x.) 4
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2.4 Sep 16, 2019
Last time we saw some random variables, which were measurable maps X : (Ω,F ,P)→ (R,B).
We had a notion of distribution, denoted µX(B) = P({ω ∈ Ω: X(ω) ∈ B}) = P({X ∈ B}), and a notion

of the distribution function FX(x) = P(X ≤ x). The π-λ theorem implies that FX determines µX .
We talked about the uniform distribution on the Cantor set, namely example #4 in 2.3.8. Even though

the distribution function is continuous, this is not always the case. However, it is always right-continuous.

Definition 2.4.1. Let us denote by

F (x−)
def
= lim

y↑x
F (y) = lim

y↑x
P(X ≤ y) = P(X < x).

(Note that the inequality is strict.) The last equality follows from⋃
y<x

{X ≤ y} = {X < x}. 4

Thus F (x)− F (x−) = P(X ≤ x)− P(X < x) = P(X = x), and discontinuities occur at points which are
assigned a positive probability by P .

Definition 2.4.2. We say x is an atom of µX if P(X = x) > 0. (See the picture below for an example of a
distribution function which has an atom.)

x

4

Definition 2.4.3. We say X is discrete if µX(S) = 1 for some countable set S. 4

Example 2.4.4. The standard example is that of an indicator function, see Example 2.3.3. (We denote this
distribution by Bernoulli(p).) 4

Example 2.4.5. Let q1, q2, . . . be an enumeratorion of Q. Note that

F (x) =
∑
n≥1

2−n1[qn,∞)

is the distribution of a random variable X with P(X = qn) = 2−n. Note that F is discontinuous at every
rational. (!) 4

In HW 2, we’ll see that F is the distribution of some R∪{±∞}-valued random variable if and only if F is
nondecreasing and right-continuous. (If we wanted R-valued random variables, we’d need some condition
on the limit.)

Recall our abstract framework about S-valued random variables. That is, a function X : (Ω,F)→ (S,S)
is called measurable if X−1(B) ∈ F for all B ∈ S.

Definition 2.4.6. The σ-field generated by X is denoted σ(X) and is defined as

σ(X)
def
= σ({X ∈ B} : B ∈ S).

4
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We should think of this σ-field as all the information we know if we are given the value ofX . Put another
way, it should be thought of as all the yes-no questions we can answer (namely, “is X in B?”), if we know
the value of X .

In HW 2, we’ll see that if C ⊂ S generates S (i.e., σ(C) = S), then the sets {X ∈ C : C ∈ C} generate σ(X).

Example 2.4.7. We’ve seen an example of this, namely with (S,S) = (R,B) and C = {(−∞, x] : x ∈ R}. This
is why FX determines µX . 4

Lemma 2.4.8. Let X, f be maps
(Ω,F)

X−→ (S,S)
f−→ (T, T )

such that X and f are measurable. Then f ◦X is also measurable.

This is trivial to check from the definitions, but it gives rise to very rich functions:

Example 2.4.9. Let S, T = R. Lemma 2.4.8 in this case implies that if X is a random variable, then so is X2,
|X|, eX , sin(X), and so on. 4

Lemma 2.4.10. If f : (Rn,Bn) → (R,B) is measurable, and X1, . . . , Xn are random variables, then so is Y =
f(X1, . . . , Xn).

(Here Bn denotes the Borel sets of Rn.)

Proof. We saw in HW 1 that

Bn = σ(half-open rectangles)

= σ(A1 × · · · ×An : Ai ∈ B).

The Lemma now follows from the observation that

{Y ∈ A1 × · · · ×An} =

n⋂
i=1

{Xi ∈ Ai}.

Lemma 2.4.10 also gives you many new examples from old ones, namely

Example 2.4.11. For random variables X1, . . . , Xn, Lemma 2.4.10 implies that X1 + · · · + Xn, X1 . . . Xn,
max(X1, . . . , Xn), and min(X1, . . . , Xn) are random variables, too. 4

Lemma 2.4.12. If X1, X2, . . . are R-valued random variables, then inf Xn, supXn, lim inf Xn, and lim supXn are
(R ∪ {±∞})-valued random variables.

Proof. We write
{inf Xn < a} =

⋃
n≥1

{Xn < a} ∈ F , for all a ∈ R.

Checking that supXn is also a (R ∪ {±∞})-valued random variable is completely analogous. We also have

lim inf
n→∞

Xn = sup
N≥1

inf
n≥N

Xn, and lim sup
n→∞

Xn = inf
N≥1

sup
n≥N

Xn.

Recall HW 0, where we were wondering whether

A = {ω ∈ Ω: lim
n→∞

Xn exists} =
⋃
`∈R
{ω ∈ Ω: lim

n→∞
Xn = `}

was measurable. Unfortunately the union is uncountable, so the problem is not immediate from the mea-
surability of all {ω ∈ Ω: limn→∞Xn = `}. Here’s a quick solution to this problem, now that we have some
theory:

Observe thatA = f−1({0}), where f : Ω→ R is given by f(ω) = lim supn→∞Xn(ω)− lim infn→∞Xn(ω).
(Note that f is measurable.)

This set A is important.
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Definition 2.4.13. We say the random variables Xn converge almost surely if P(A) = 1, where

A = {ω ∈ Ω: lim
n→∞

Xn exists}.

The notation
Xn → X a.s.

means P(ω ∈ Ω: limn→∞Xn(ω) = X(ω)) = 1. 4

Example 2.4.14. The strong law of large numbers says that for Ω = {0, 1}N, and Xn = ω1+···+ωn
n , and

P =
∏

Bernoulli( 1
2 ), then Xn → 1

2 a.s.. 4

(As a fun exercise, think of an example of Xn → X a.s. where X is nonconstant.)
We take a break from probability to develop some more measure theory (in particular, the theory of

integration, which will be needed to take expected values.)
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3 Integration
3.4 Sep 16, 2019

We let (Ω,F , µ) be a σ-finite measure space. Our goal is to define the integral∫
f dµ

for as many functions f : Ω→ R as possible. The integral has alternate notations∫
f dµ =

∫
Ω

f(ω) dµ(ω) =

∫
Ω

f(ω)µ(dω).

Let us build up our integral:

Definition 3.4.1 (Integral).

0. If we are reasonable, we should have ∫
1A dµ

def
= µ(A).

1. We want the integral to be linear. Thus, let ϕ(ω) denote a simple function, which, by definition, is a
finite sum

ϕ =

n∑
i=1

ai1Ai

for ai ∈ R and Ai ∈ F . We can assume Ai are disjoint (so Ai ∩ Aj = ∅ for i 6= j), and in this case we
define ∫

ϕdµ
def
=

n∑
i=1

aiµ(Ai).

Intuitively, we can think of ϕ as a density and µ as a volume, and then the integral of ϕ with respect
to µ can be thought of as mass. Alternatively, we can think of the integral as the “area under the
graph”. 4

Definition 3.4.2. We say f ≤ g almost everywhere if µ({ω : g(ω < f(ω)}) = 0. 4

(The philosophy of integration is that measure zero sets shouldn’t matter, so the integral shouldn’t know
whether f ≤ g everywhere or just almost everywhere.)

Here are some properties of the integral that we would like:

(i) If f ≥ 0 almost everywhere, then we should have∫
f dµ ≥ 0.

(ii) We should have ∫
(af) dµ = a

∫
f dµ.

(iii) We should also have ∫
(f + g) dµ =

∫
f dµ+

∫
g dµ.

Let’s prove these properties about integrals of simple functions:
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Proof. If f is a simple function with f ≥ 0 almost everywhere, then ai ≥ 0 for all i such that µ(Ai) > 0. Then∫
f dµ =

∑
aiµ(Ai) ≥ 0.

The second property is obvious.
The third property is a bit more nuanced. First observe that if f, g are simple, then f + g is simple. For

f =
∑

ai1Ai and g =
∑

bj1Bj ,

then

f + g =

n∑
i=1

m∑
j=1

(ai + bj)1Ai∩Bj

and ∫
(f + g) dµ =

n∑
i=1

m∑
j=1

(ai + bj)µ(Ai ∩Bj).

To write
∫

(f + g) dµ as
∫
f dµ +

∫
g dµ, first observe that we can assume that ∪Ai = ∪Bj = Ω (otherwise,

we could add the complement and give it a coefficient of 0.) Then

n∑
i=1

aiµ(Ai) =

n∑
i=1

ai

m∑
j=1

µ(Ai ∩Bj).

Then∫
f dµ+

∫
g dµ =

n∑
i=1

ai

m∑
j=1

µ(Ai ∩Bj) +

m∑
j=1

bj

n∑
i=1

µ(Ai ∩Bj) =

n∑
i=1

m∑
j=1

(ai + bj)µ(Ai ∩Bj) =

∫
(f + g) dµ.

17



3.5 Sep 18, 2019
[Office Hours: Jason will have his on Wednesdays from 11-1 in 218, and Prof Levine’s will be on Thurs-

days from 1-2 in 438.]

Let’s recall the properties of integration (which we will prove in general):

(i) If f ≥ 0 almost everywhere, then
∫
f dµ ≥ 0.

(ii) We have
∫

(af) dµ = a
∫
f dµ for a ∈ R,

(iii) We have
∫

(f + g) dµ =
∫
f dµ+

∫
g dµ,

(iv) If f ≤ g almost everywhere, then
∫
f dµ ≤

∫
g dµ,

(v) If f = g almost everywhere, then
∫
f dµ =

∫
g dµ, and

(vi) We have |
∫
f dµ| ≤

∫
|f | dµ.

Lasttime we defined
∫
f dµ for simple functions f =

∑n
i=1 ai1Ai , for A1, . . . , An ∈ F and a1, . . . , an ∈ R,

and checked (i)-(iii).

Lemma 3.5.1. For any theory of integration, properties (iv)-(vi) follow from (i)-(iii).

Proof. For property (iv), write g = f + (g − f) and observe that by property (iii) we have∫
g dµ =

∫
f dµ+

∫
(g − f) dµ,

and since g − f ≥ 0 almost everywhere, the last term in the above equation is nonnegative by (i).
For property (v), we just apply property (iv) twice: if f = g almost everywhere then f ≥ g almost

everywhere and f ≤ g almost everywhere. Hence, by property (iv) we have∫
f dµ ≤

∫
g dµ and

∫
f dµ ≥

∫
g dµ,

so they’re equal.
For property (vi), note that∫

f dµ ≤
∫
|f | dµ and

∫
(−f) dµ ≤

∫
|f | dµ,

since f ≤ |f | and −f ≤ |f |. By property (ii) we get∫
(−f) dµ = −

∫
f dµ,

so combining the resulting inequalities gives∣∣∣∣ ∫ f dµ

∣∣∣∣ ≤ ∫ |f | dµ.

We want to extend our theory of integration to more than just the simple functions. Recall that through-
out we are working with a σ-finite measure space (Ω,F , µ): this means that there exist subsets An ↑ Ω with
µ(An) <∞. Let’s continue to build up our integral:

Definition 3.5.2 (Integral; cf. Definition 3.4.1).
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2. Let us consider (horizontally and vertically) bounded functions: fix an E ∈ F with µ(E) <∞, and fix
M ∈ R, and let us consider f : (Ω,F)→ (R,B) satisfying |f | ≤M and f(ω) = 0 for all ω ∈ Ω \ E.
We approximate f from below by simple functions ϕ.
We define ∫

f dµ
def
= sup

ϕ≤f
ϕ simple

supp(ϕ)⊆E

{∫
ϕdµ

}
. 4

Lemma 3.5.3. With the assumptions on f as above, we have∫
f dµ = inf

ψ≥f
ψ simple

supp(ψ)⊆E

{∫
ψ dµ

}
.

Proof. By property (iv), we have ∫
ϕdµ ≤

∫
ψ dµ

for all ϕ ≤ f ≤ ψ. Hence we have

sup
ϕ

{∫
ϕdµ

}
≤ inf

ψ

{∫
ψ dµ

}
To prove the other inequality, we fix n and let

Ek =

{
x ∈ E :

kM

n
≥ f(x) >

(k − 1)M

n

}
so that we’re partitioning the y-axis into equal intervals, and taking the preimage, as below:

k

Ek

For k ∈ {−n, . . . , n}, we let

ψn =

n∑
k=−n

kM

n
1Ek and ϕn =

n∑
k=−n

(k − 1)M

n
1Ek .

By construction we have ϕn ≤ f ≤ ψn. Note that we have ψn − ϕn = M
n 1E , and hence∫

ψn dµ−
∫
ϕn dµ =

∫
(ψn − ϕn) dµ =

∫
M

n
1E dµ =

M

n
µ(E) ↓ 0 as n→∞.
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Note that the Riemann integral insists on breaking up the x-axis and then approximating the area under
the curve with “vertical” rectangles. The Lebesgue integral breaks up the x-axis into the Ek, and this base
is adapted to the function f . This is one reason why the Lebesgue integral is more flexible.

In the proof of Lemma 3.5.3, we used that f is measurable when we asserted ϕn and ψn were simple: we
need Ek = f−1(( (k−1)M

n , kMn ]) ∈ F .
Let us check properties (i) to (vi) for bounded functions. For property (i), we suppose f ≥ 0 almost

everywhere, and let N = {ω ∈ Ω: f(ω) < 0}. Since µ(N) = 0, letting ϕ = −M1N , we have f ≥ ϕ
everywhere. Thus we get ∫

f dµ ≥
∫
ϕdµ = −Mµ(N) = 0.

Let us check property (ii). The case where a > 0 is boring, so let us consider the case a < 0. We have∫
(af) dµ = sup

aϕ simple
aϕ≤af

∫
(aϕ) dµ.

Note that (since a < 0) we have aϕ ≤ af if and only if ϕ ≥ f . Thus

sup
aϕ simple
aϕ≤af

∫
(aϕ) dµ = inf

ϕ simple
ϕ≥f

∫
(aϕ) dµ = a inf

ϕ simple
ϕ≥f

∫
ϕdµ

where the second equality is property (ii) for integrals of simple functions. Lemma 3.5.3 guarantees that

a inf
ϕ simple
ϕ≥f

∫
ϕdµ = a

∫
f dµ.

For property (iii), note that if ψ1 ≥ f and ψ2 ≥ g then ψ1 + ψ2 ≥ f + g. Hence∫
(f + g) dµ = inf

ψ≥f+g
ψ simple

∫
ψ dµ ≤ inf

ψ1≥f simple
ψ2≥g simple

∫
(ψ1 + ψ2) dµ = inf

ψ1≥f simple
ψ2≥g simple

∫
ψ1 dµ+

∫
ψ2 dµ.

For the other inequality, do exactly the same proof with ϕ1 ≤ f and ϕ2 ≤ g, and use sup instead of inf.
(Alternatively, we can use property (ii) and plug in −f,−g into the inequality above.)

As we observed earlier (Lemma 3.5.1), properties (iv)-(vi) follow from (i)-(iii).
Definition 3.5.4 (Integration; cf. Definitions 3.4.1 and 3.5.2).

3. Let us consider nonnegative (but possibly unbounded) functions. For f ≥ 0 we define∫
f dµ

def
= sup

{∫
h dµ : 0 ≤ h ≤ f and h bounded

}
,

where h bounded means that there exist M ∈ R, E ∈ F so that µ(E) < ∞, h(ω) = 0 for all ω ∈ Ec,
and h ≤M everywhere.

4

Lemma 3.5.5. If En ↑ Ω with µ(En) <∞, then∫
En

(f ∧ n) ↑
∫
f dµ.

To describe the notation in Lemma 3.5.5, we need to introduce: for real numbers a, b we write a ∧ b =
min(a, b), and for functions f, g we write (f ∧ g)(ω) = f(ω) ∧ g(ω). Now for A ∈ F we write∫

A

f dµ =

∫
(f1A) dµ.

Note that

(f1A)(ω) =

{
f(ω) if ω ∈ A
0 otherwise.
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Proof of Lemma 3.5.5. Let hn = (f ∧ n)1En ≤ f . Note that∫
hn dµ ≤

∫
f dµ.

For notational conciseness we letH be the family of functions

H def
= {h : 0 ≤ h ≤ f and h bounded},

where “bounded” is in the sense of Definition 3.5.4. Since it is bounded, there is M so that h ≤ M . Then
take n ≥M so that ∫

(f ∧ n) dµ ≥
∫
En

h dµ =

∫
Ωh dµ−

∫
Ecn

h dµ,

and ∫
En

h dµ ≤Mµ(Ecn ∩ F ) ↓ 0 as n→∞.

For every h ∈ H, we now have

lim inf
n→∞

∫
En

(f ∧ n) dµ ≥
∫

Ω

h dµ.

Passing to the supremum,

lim inf
n→∞

∫
En

(f ∧ n) dµ ≥ sup
h∈H

∫
h, dµ =

∫
f dµ.

With this lemma we’ll be able to check properties (i)-(vi), and then check it for general f .
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3.6 Sep 23, 2019
We’re finishing up the definition of the integral today. We’ve seen how to integrate simple functions,

bounded functions, and nonnegative functions. We note that the integral of a nonnegative function is R ∪
{±∞}-valued, since it was defined to be the limit of integrals of bounded functions.

Definition 3.6.1. We say a measurable function f is integrable if∫
|f | dµ <∞. 4

In this case, we can write f = f+ − f−, where

f+ def
= f ∨ 0; f−

def
= (−f) ∨ 0,

where the notation x∨ymeans max(x, y), and (f∨g)(ω) means the function f(ω)∨g(ω). Then |f | = f++f−.

Definition 3.6.2 (Integration; see Definitions 3.4.1, 3.5.2, and 3.5.4). If f is integrable, we set∫
f dµ

def
=

∫
f+ dµ−

∫
f− dµ. (1)

4

In case
∫
f+ dµ = ∞ and

∫
f− dµ < ∞, we can still make sense of equation (1) and set

∫
f dµ = ∞.

Likewise, if
∫
f+ dµ < ∞ and

∫
f− dµ = ∞, we can still make sense of equation (1) and set

∫
f dµ = −∞.

But if both
∫
f+ dµ =∞ and

∫
f− dµ =∞, then

∫
f dµ will be undefined.

We should check again properties (i)-(iii), but this is routine.
[As SL reminded me, the four step process in Definitions 3.4.1, 3.5.2, 3.5.4, and 3.6.2 is sometimes called

the standard machine.]
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3.7 Sep 23, 2019
[This subsection used to be part of Ch 4, but I feel it is better classified as part of Ch 3. Sorry!] Let’s

consider special cases of the theory of integration we’ve developed in Section 3.

1. Let’s take (Ω,F , µ) = (R,B, λ): then ∫ ∞
−∞

f(x) dx
def
=

∫
f dλ.

2. For Ω countable and F = 2Ω, with the counting measure µ(A) = #A, we have∫
f dµ =

∑
ω∈Ω

f(ω).

So one of the things that is nice about the measure theoretic integration in Section 3 is that it unifies the two
settings above.

Let’s talk about Jensen’s inequality.

Definition 3.7.1. Recall that ϕ : R→ R is called convex if

λϕ(x) + (1− λ)ϕ(y) ≥ ϕ(λx+ (1− λ)y)

for all x, y ∈ R and all λ ∈ [0, 1]. 4

Examples of convex functions include x2, |x|, eαx, and so on.

Proposition 3.7.2 (Jensen’s Inequality). If µ is a probability measure and ϕ is convex, with f and ϕ(f) both inte-
grable, then

ϕ

(∫
f dµ

)
≤
∫
ϕ(f) dµ.

(The intuition of the proof is that
∫
f dµ is a weighted average of the values of f .)

Proof of Proposition 3.7.2. We claim that for all c ∈ R, there is a supporting line (at c), call it `(x) = ax+ b, so
that `(x) ≤ ϕ(x) with `(c) = ϕ(c), as in the picture below:

`(x)

ϕ(x)

c

Rigorously, the supporting line `(c) exists because

lim
h↑0

ϕ(h+ c)− ϕ(c)

h
and lim

h↓0

ϕ(h+ c)− ϕ(c)

h

both exist, by convexity of ϕ. Furthermore,

lim
h↑0

ϕ(h+ c)− ϕ(c)

h
≤ lim

h↓0

ϕ(h+ c)− ϕ(c)

h

by the convexity of ϕ.
Let us take c =

∫
f dµ and a supporting line ` at c. Now observe that∫

ϕ(f) dµ ≥
∫
`(f) dµ =

∫
(af + b) dµ = a

∫
f dµ+

∫
b dµ = `

(∫
f dµ

)
= ϕ

(∫
f dµ

)
.
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Let’s also talk about Hölder’s inequality.

Definition 3.7.3. Let 1 ≤ p <∞. We define the Lp norm of a measurable function f as follows:

||f ||p
def
=

(∫
|f |p dµ

) 1
p

.

4

Proposition 3.7.4 (Hölder’s Inequality). For any integrable f, g, with 1 < p <∞ and 1
p + 1

q = 1, we have∫
|fg| dµ ≤ ||f ||p||g||q.

The case p = q = 2 is often called the Cauchy-Schwarz inequality.

Proof. First note that for a constant a ∈ R, we have

||af ||p = |a| · ||f ||p.

Furthermore, if ||f ||p = 0 then |f |p = 0 almost everywhere (cf. HW 2 (!)). This implies in particular that
|fg| = 0 almost everywhere, so Proposition 3.7.4 holds in this case, too.

In light of the discussion above, we can assume ||f ||p, ||g||q 6= 0, and since we can scale by constants, it
suffices to consider the case ||f ||p = ||g||q = 1.

Now we can use the inequality

xy ≤ xp

p
+
yq

q
, for all x, y ∈ R.

This follows from standard calculus (take some partials, and check when they’re equal). Then, for x = |f(ω)|
and y = |g(ω)|, we get ∫

|fg| dµ ≤
∫
|f |p

p
dµ+

∫
|g|q

q
dµ =

1

p
+

1

q
= ||f ||p||g||q,

as desired.

Although the two inequalities we’ve just proven (Jensen and Hölder) are very nice, in Probability we
often have sequences of measurable functions and would like to understand their limit. With this in mind:

Let (Ω,F , µ) be a σ-finite measure space and let f1, f2, . . . : Ω → R be a sequence of functions. When
does

lim
n→∞

∫
fn dµ =

∫
( lim
n→∞

fn) dµ? (2)

To make this well-posed, we need to talk about what we mean by limn→∞ fn. There is:

• Pointwise convergence everywhere, where

lim
n→∞

fn
def
= f, where fn(ω)→ f(ω) for all ω ∈ Ω.

• Pointwise convergence almost everywhere, where

lim
n→∞

fn
def
= f, where fn(ω)→ f(ω) for all ω ∈ E, with µ(Ω \ E) = 0.

• Convergence in measure, where

lim
n→∞

fn
def
= f, where µ({ω : |fn(ω)− f(ω)| > ε}) ↓ 0 as n→∞ for every ε > 0.

When µ(Ω) = 1, convergence in measure is sometimes called convergence in probability.
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There are other types of convergence (e.g. convergence in Lp), which we’ll talk about eventually, but this
is enough for now. In HW 3 we’ll show that convergence in measure is slightly weaker than pointwise
convergence almost everywhere, i.e. we’ll show that if fn → f almost everywhere then fn → f in measure.

Let’s talk about potential counterexamples to our question (2).

1. Consider fn = 1
n1[0,n]. Then ∫

fn dλ =
1

n
· n = 1,

even though fn → 0 pointwise. This is a counterexample because

0 =

∫
(lim fn) dλ 6= lim

n→∞

∫
fn dλ = 1.

2. Consider fn = n1[0,n], where as before ∫
fn dλ = n · 1

n
= 1,

even though fn → 0 pointwise (a.e.). This is a counterexample for the same reason as before.

Basically, these two examples are representative counterexamples.

Lemma 3.7.5 (Fatou’s Lemma). If fn ≥ 0, then

lim inf
n→∞

∫
fn dµ ≥

∫
(lim inf
n→∞

fn) dµ.

We’ll prove this in a bit.

Lemma 3.7.6 (Bounded Convergence Theorem). Suppose E ∈ F with µ(E) < ∞, and suppose fn(ω) = 0 for
all ω 6∈ E. Suppose also that |fn| ≤M for some M ∈ R independent of n. Then, if fn → f in measure, then∫

fn dµ→
∫
f dµ.

Proof of Lemma 3.7.6. We have∣∣∣∣ ∫ f dµ−
∫
fn dµ

∣∣∣∣ =

∣∣∣∣ ∫ (f − fn) dµ

∣∣∣∣ ≤ ∫
Ω

|f − fn| dµ.

Fix a ε > 0 independent of n. For each n, we’ll split Ω into two sets Ω = Gn t Bn, where Gn = {ω : |f(ω)−
fn(ω)| < ε} and Bn = Ω \Gn. Since fn → f in measure, µ(Bn) ↓ 0 as n→∞.

Continuing the computation above, we have∫
Ω

|f − fn| dµ =

∫
Gn

|f − fn| dµ+

∫
Bn

|f − fn| dµ ≤ εµ(E) + (2M + ε) · µ(Bn).

As n→∞, the term (2M + ε) · µ(Bn)→ 0, and since ε was fixed independent of n, we can send it to 0 and
εµ(E)→ 0. We arrive at

lim
n→∞

∣∣∣∣ ∫ f dµ−
∫
fn dµ

∣∣∣∣ = 0.

Proof of Lemma 3.7.5. Note that
lim inf
n→∞

fn = lim
n→∞

inf
n≥m

fn.

Let us define
gm

def
= inf

n≥m
fn.

25



We have fm ≥ gm ≥ 0, and gm ↑ g, where g def
= lim inf fn. Thus it’s enough to show

lim inf
n→∞

∫
gn dµ ≥

∫
g dµ.

Let Em ↑ Ω with µ(Em) <∞. For a fixed m, note that

(gn ∧m)1Em → (g ∧m)1Em .

By Bounded Convergence (Lemma 3.7.6), we get∫
Em

(gn ∧m)→
∫
Em

(g ∧m)

for fixed m, as n→∞. We obtain in particular

lim inf
n→∞

∫
Em

(gn ∧m) =

∫
Em

(g ∧m)

and taking m→∞we get

lim inf
n→∞

∫
Ω

gn =

∫
Ω

g.

[... is this right?]
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3.8 Sep 25, 2019
[This subsection used to be part of Ch 4, but I feel it is better classified as part of Ch 3. Sorry!] [The office

hours are fixed for the rest of the semester. TA Jason’s office hours will be on Wednesdays, from 11-1, at 218
MLT. Professor Levine’s office hours will be on Thursdays, from 1-2, at 438 MLT.]

We begin today with the monotone convergence theorem, which states the following:

Theorem 3.8.1 (Monotone Convergence). If fn ≥ 0, and fn ↑ f , then∫
fn dµ→

∫
f dµ.

(Recall that fn ↑ f means that fn(ω) ↑ f(ω) for all ω ∈ Ω.)

Proof. The hard part is Fatou’s Lemma (Lemma 3.7.5). If fn ↑ f , then

lim sup
n→∞

∫
fn dµ ≤

∫
f dµ ≤ lim inf

n→∞

∫
fn dµ,

with the second inequality being Lemma 3.7.5. Note that we use fn ≥ 0 in this step. We’ll see in the HW 3
some ways to weaken the assumption fn ≥ 0.

Theorem 3.8.2 (Dominated Convergence). If fn → f almost everywhere, and |fn| ≤ g, where∫
g dµ <∞,

then ∫
fn dµ→

∫
f dµ.

Proof. Observe that |fn| ≤ g implies that fn + g ≥ 0. We can use Fatou’s Lemma (Lemma 3.7.5) on these
functions, that is,

lim inf

∫
(fn + g) dµ ≥

∫
lim inf(fn + g) dµ =

∫
(f + g) dµ.

By linearity, we write ∫
g dµ+ lim inf

∫
fn dµ ≥

∫
g dµ+

∫
f dµ

and the integrals of g cancel. The same argument for −fn + g gives

lim sup

∫
fn dµ ≤

∫
f dµ,

and these two inequalities together give the conclusion.

With these theorems in place, we talk about expected values of random variables. Let (Ω,F ,P) be a
probability space, and let X : Ω→ R∗ = R ∪ {±∞} be a random variable. We define

Definition 3.8.3. The expectation of X is

EX def
=

∫
Ω

X dP. 4

Note that EX is defined if X ≥ 0. In this case, EX ∈ R ∪ {∞}. It’s also defined when X is integrable, in
which case EX = E(X+)− E(X−). It’s undefined when E(X+) = E(X−) =∞.

Lemma 3.8.4 (Markov’s Inequality). Let B ∈ B be a Borel set, and let ϕ : R→ [0,∞). Then

P(X ∈ B) ≤ E[ϕ(X)]

iB
, iB

def
= inf

x∈B
{ϕ(x)}.
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Proof. Consider the random variables iB1{X∈B} ≤ ϕ(X)1{X∈B} ≤ ϕ(X). Note that these inequalities are
pointwise (we use ϕ ≥ 0 for the second inequality). Hence

iBP(X ∈ B) =

∫
iB1{X∈B} dP ≤

∫
ϕ(X)1{X∈B} dP ≤

∫
ϕ(X) dP = E[ϕ(X)],

and dividing both sides by iB gives the desired inequality.

A very important special case of Markov’s inequality is the Chebyshev inequality, obtained by taking
ϕ(x) = x2. For fixed a ∈ R, we have

P(|X| ≥ a) ≤ E(X2)

a2
.

While Definition 3.8.3 is a good abstract definition, in practice we compute expectations by change of vari-
ables. Suppose we have measurable functions

(Ω,F)
X−→ (S,S)

f−→ (R,B).

Let µ(A) = P(X ∈ A) be the distribution ofX [It’s a measure on S]. Note thatX may not have an expectation
(since it may not be real valued). However:

Lemma 3.8.5 (Change of variables). With notation as above, we have

E[f(X)] =

∫
S

f(y)µ(dy).

Note that by definition, we have

E[f(x)]
def
=

∫
Ω

f(X(ω))P(dω),

in particular an integral over Ω rather than over S.

Proof. We use the “four step machine”, building up the truth of the lemma for increasingly complicated
classes of functions, like how we defined our integral.

1. If f = 1B , for B ∈ S, chasing definitions gives

E[1B(X)] = P(X ∈ B) = µ(B) =

∫
S

1B dµ.

2. For simple functions, it suffices to observe that both expectation and integration are linear.

3. For nonnegative functions f ≥ 0, we truncate

fn(x) =
b2nf(x)c

2n
∧ n.

Then fn is simple and fn ↑ f . We have

E[f(X)] = lim
n→∞

E[fn(X)] = lim
n→∞

∫
S

fn dµ =

∫
S

f dµ,

with the first and last equality being monotone convergence (Theorem 3.8.1).

4. For integrable functions f = f+ − f−, we use linearity to write

E[f(X)] = E[f+(X)]− E[f−(X)] =

∫
S

f+ dµ−
∫
S

f− dµ =

∫
f dµ.
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Probability gets very interesting when we start talking about independence of random variables. On the
measure theory side, this will correspond to a product measure:

Definition 3.8.6. Let (X,A, µ1) and (Y,B, µ2) be σ-finite measure spaces. Let:

Ω = X × Y = {(x, y) : x ∈ X, y ∈ Y },
I = {A×B : A ∈ A, B ∈ B},
F = σ(I). 4

Intuitively, we think of elements of I as rectangles (thinkX,Y = R). Durrett uses the notationA×B for
F , although we should note that it’s not actually a Cartesian product.

Theorem 3.8.7. There exists a unique measure µ on (Ω,A× B) satisfying

µ(A×B) = µ1(A)µ2(B)

for all A ∈ A, B ∈ B.

Example 3.8.8. Let us considerD = {(x, y) ∈ R2 : x2 +y2 < 1}. Note that it is not a rectangle, yetD ∈ A×B,
where A,B ⊆ 2R, since D can be written as a countable union of almost disjoint rectangles. Note that for
any decomposition D = tn≥1Rn, we always have∑

n≥1

µ(Rn) = π. 4

Proof of Theorem 3.8.7. Let’s prove uniqueness first. Note that I is a π-system, since

(A×B) ∩ (C ×D) = (A ∩ C)× (B ×D).

The π-λ theorem (Theorem 1.2.11), or Theorem 1.2.7, imply that if µ, ν are measures agreeing on I then they
agree on A× B.

To prove existence, note that

(A×B)c = Ac ×B ∪A×Bc ∪Ac ×Bc.

Hence the algebra generated by I is just the sets of the form

n⊔
k=1

Rk, Rk ∈ I.

By the Caratheodory extension theorem (Theorem 1.2.4), it is enough to check that

µ

( n⊔
k=1

Rk

)
=

n∑
k=1

µ(Rk)

is countably additive on the algebra. Let us suppose that

A×B =
⊔
i≥1

Ai ×Bi;

we need to check that
µ1(A)µ2(B) =

∑
i≥1

µ1(Ai)µ2(Bi).

For x ∈ A, let I(x) = {i : x ∈ Ai}. See the picture below, where we have labelled the first two rectangles
A1 ×B1 and A2 ×B2 in a decomposition of A×B into 6 such rectangles:
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x

B1

B2

A1

A2

Observe that
{x} ∈ B =

⊔
i∈I(x)

{x} ×Bi.

Note that B = ti∈I(x)Bi implies that
µ2(B) =

∑
i∈I(x)

µ2(Bi),

hence
1A(x)µ2(B) =

∑
i≥1

1Ai(x)µ2(Bi).

These are functions of x ∈ X , so we can integrate both sides over X (with respect to dµ1) to get∫
X

1A(x)µ2(B) dµ1 =

∫
X

∑
i≥1

1Ai(x)µ2(Bi) dµ1.

The left side is just µ1(A)µ2(B), whereas the right side is∫
X

∑
i≥1

1Ai(x)µ2(Bi) dµ1 =
∑
i≥1

(∫
X

1Ai dµ1

)
µ2(Bi) =

∑
i≥1

µ1(Ai)µ2(Bi),

where the first equality follows from monotone convergence (Theorem 3.8.1) applied to

n∑
i=1

1Ai ↑
∑
i≥1

1Ai .

See also HW 3.
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4 Independence
4.9 Sep 30, 2019

We’ll talk about Fubini’s Theorem today.
Let (X,A, µ1)and (Y,B, µ2) be σ-finite measure spaces, and let us define the measure space (Ω,F , µ)

with

Ω = X × Y,
F = A× B = σ({A×B : A ∈ A, B ∈ B}),
µ = µ1 × µ2 : F → R ∪ {∞}.

Here µ is the product measure; see Theorem 3.8.7.

Theorem 4.9.1 (Fubini Theorem). Suppose f : X × Y → R is measurable and either f ≥ 0 or
∫
X×Y |f | dµ <∞,

so that
∫
X×Y f dµ is defined. Then ∫

X×Y
f dµ =

∫
X

∫
Y

f(x, y)µ2(dy)︸ ︷︷ ︸
function of x

µ1(dx).

The nonnegative f case is due to Tonelli, whereas the integrable f case is due to Fubini. (The bounded
f case is due to Lebesgue, and the continuous f case was known to Euler.)

Let’s have some sanity checks before proving this theorem. We should definitely have:

(a) For fixed x ∈ X we’d need the function h(y)
def
= f(x, y) is B-measurable, and

(b) The function g(x)
def
=
∫
f(x, y)µ2(dy) is A-measurable.

To see (a), consider the commutative diagram

y (x, y) f(x, y)
ιx

h

f

so we need to check ιx : Y → X × Y is measurable, in light of Lemma 2.4.8.
Note that

ι−1
x (A×B) = {y : (x, y) ∈ A×B} =

{
∅, x 6∈ A
B, x ∈ A

This implies ιx is measurable for every x ∈ X ; here we use Exercise 2 on HW 2, which asserted that it suffices
to check preimages of a generating set are measurable.

Part (b) is a bit trickier, and it will lead us to the proof of Fubini. Let’s see the simplest case first, where
f = 1E for E ∈ F . Let Ex = ι−1

x (E) = {y ∈ Y : (x, y) ∈ E}. We have 1E(x, y) = 1Ex(y). Then

gE(x) =

∫
1Ex(y)µ2(dy) = µ2(Ex).

The following will be useful:

Lemma 4.9.2. If E ∈ F then

(i) gE is A-measurable, and

(ii)
∫
X
gE µ1(dx) = µ(E).

In other words, we can get the product measure of E by integrating the measure of the slices.
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Proof Strategy. As usual, the rectangles form a π-system. Let us define

L = {E ∈ F : (i) and (ii) hold}.

We want to check L is a λ-system and then use π-λ (Theorem 1.2.11).
We claim that if E = A×B is a rectangle, then E ∈ L. This is because, as we noted before already,

(A×B)x =

{
∅, x 6∈ A
B, x ∈ A

Then gE(x) = µ2(B)1A(x) is clearly measurable and its integral is∫
X

gE dµ1 = µ2(B)

∫
X

1A(x) dµ1 = µ2(B)µ1(A) = µ(A×B) = µ(E).

Our next claim is that if En ∈ L and En ↑ E then E ∈ L. To see that E satisfies (i), we observe that
(En)x ↑ Ex and hence gEn(x) = µ2((En)x) ↑ µ2(E) = gE(x). It follows that

gE(x) = sup
n
gEn(x)

is a pointwise supremum of measurable functions, hence is measurable (Lemma 2.4.12). To see that E sat-
isfies (ii), we observe that ∫

gE dµ1 = lim
n→∞

∫
gEn dµ1 = lim

n→∞
µ(En) = µ(E),

where the first equality is monotone convergence theorem (Theorem 3.8.1) and the second equality is because
En ∈ L.

Since (X,A, µ1) and (Y,B, µ2) are σ-finite, the previous claim allows us to reduce to the case where
µ1(X), µ2(Y ) < ∞, since otherwise we can take sequences Xn ↑ X and Yn ↑ Y , with µ1(Xn), µ2(Yn) < ∞
and observe that Xn × Yn ↑ X × Y .

Finally we claim that L is a λ-system. We need to check that if E ⊆ F with E,F ∈ L, we have F \E ∈ L
too. Indeed,

gF\E(x) = µ2((F \ E)x) = µ2(Fx \ Ex) = µ2(Fx)− µ2(Ex) = gF (x)− gE(x),

where we used µ2(Y ) <∞ to split µ2(Fx \ Ex) = µ2(Fx)− µ2(Ex).
Part (ii) follows from the computation∫

gF\E dµ1 =

∫
gF dµ1 −

∫
gE dµ1 = µ(F )− µ(E) = µ(F \ E).

Since L is a λ-system we can apply Dynkin π-λ (Theorem 1.2.11) to get F = σ({rectangles}) ⊆ L.

Proof of Fubini-Tonelli, Theorem 4.9.1. We four-step-machine it:

1. Lemma 4.9.2 gives the theorem for indicators,

2. Linearity gives the theorem for simples,

3. Monotone convergence gives the theorem for nonnegatives,

4. f = f+ − f− gives the theorem for integrables.

Here are two counterexamples to Fubini’s theorem when we mess with the assumptions. This is perhaps
more important than the proof of Fubini.

1. We may have
∫
X

∫
Y
f and

∫
Y

∫
X
f both finite and unequal! For example, let X = Y = N and take the

counting measure. Consider
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1 −1 0 0

0 1 −1 0

0 0 1 −1

0 0 0 1

. . .

. . .

. . .

. . .

...
...

...
...

Formally, we have

f(x, y) =


1, x = y

−1, x = y + 1

0, otherwise

and observe that the sum of the rowsums is 0, whereas the sum of the columnsums is 1. Note that
Fubini doesn’t apply because f is nonnegative and∫

X×Y
|f | dµ =

∑
(x,y)∈N2

|f(x, y)| =∞.

2. For the second counterexample, let X = Y = (0, 1), and let µ1 be the Lebesgue measure and µ2 be the
counting measure. Let us consider

f(x, y) =

{
1, x = y

0, otherwise

Then ∫
X

f(x, y) dµ1 = 0 for all y ∈ Y ; hence
∫
Y

∫
X

f(x, y) dµ1 dµ2 = 0.

On the other hand,
∫
Y
f(x, y) dµ2 = 1.

In this case, it turns out that the product measure µ onX × Y isn’t even defined, because we assumed
σ-finiteness in the definition of product of measures (see Theorem 3.8.7). So

∫
X×Y f dµ isn’t defined,

either.
Geometrically, we won’t be able to approximate {x = y} by finite-measure rectangles in A× B.

Let’s collect some words together.

Dictionary 4.9.3. We have the following dictionary between measure theory and probability.

(Ω,F , µ) measure space←→ (Ω,F ,P),P(Ω) = 1 probability space
Sets A ∈ F ←→ Events

Length, Area, Volume µ(A)←→ Probability
Measurable functions f ←→ Random variables X : Ω→ R

Integrals
∫
f dµ←→ Expectation EX =

∫
X dP

Product measures µ1 × µ2 ←→ Independence
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The new word on this dictionary is independence.

Definition 4.9.4. EventsA,B ∈ F are independent ifP(A∩B) = P(A)P(B). Random variablesX,Y : Ω→ R
are independent if

P(X ∈ C, Y ∈ D) = P(X ∈ C)P(Y ∈ D) for all C,D Borel.

Collections of events A,B ⊆ F are independent if

P(A ∩B) = P(A)P(B) for all A ∈ A and B ∈ B. 4

Remark 4.9.5. Note that A and B are independent events if and only if the random variables 1A and 1B are
independent random variables. Also, X and Y are independent random variables if and only if σ(X), σ(Y )
are independent collections of events. 4

Definition 4.9.6. The collections of events A1, . . .An are independent if

P(Ai1 ∩ · · · ∩Aik) = P(Ai1) . . .P(Aik) (3)

for any 1 ≤ i1 ≤ · · · ≤ ik ≤ n and any Aij ∈ Aij . 4

Note that A1, . . . ,An are independent if and only if A1 ∪ {Ω}, . . . ,An ∪ {Ω} are independent, since we
are in a probability space where P(Ω) = 1. Thus we can assume that Ω ∈ Ai for all i, and Condition (3) is
equivalent to

P(A1 ∩ · · · ∩An) =

n∏
i=1

P(Ai), for all A1 ∈ A1, . . . , An ∈ An.

Example 4.9.7. Let us define independent random variables X1, X2, X3 with P(Xi = 0) = P(Xi = 1) = 1
2 .

Define events
Aij = {Xi = Xj}, for i, j ∈ [3],

and observe that
P(A12 ∩A23) = P({X1 = X2 = X3}) =

1

4
= P(A12)P(A23).

However, as a triple, they’re not independent, since

P(A12 ∩A13 ∩A23) = P({X1 = X2 = X3}) =
1

4
6= P(A12)P(A13)P(A23),

so the events {A12, A13, A23} are pairwise independent but not independent. 4
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4.10 Oct 2, 2019
Let (Ω,F ,P) be a probability space.

Theorem 4.10.1. IfA1, . . . ,An ⊆ F areπ-systems which are also independent collections of events, thenσ(A1), . . . , σ(An)
are independent collections of events.

Proof. The proof boils down to the π-λ theorem (Theorem 1.2.11). Fix A2 ∈ A2, . . . , An ∈ An. Let F = A2 ∩
· · · ∩An. Let

L def
= {A ∈ F : P(A ∩ F ) = P(A)P(F )}.

We want to show that σ(A1) ⊆ L. By assumption, we are given A1 ⊆ L, since

P(A ∩ F ) = P(A1 ∩ · · · ∩An) = P(A1)P(A2) . . .P(An) = P(A1)P(F ), for all A1 ∈ A1.

Let us check that L is a λ-system. For A ⊆ B with A,B ∈ L, we should check that B \ A ∈ L. (This is
property (i) of a λ-system.)

Indeed, because (B \A) ∩ F = (B ∩ F ) \ (A ∩ F ), we have

P((B \A) ∩ F ) = P(B ∩ F )− P(A ∩ F ) = P(B)P(F )− P(A)P(F ) = P(B \A)P(F ).

Now suppose Bk ∈ Lwith Bk ↑ B. We should check B ∈ L. (This is property (ii) of a λ-system.)
Indeed, observe that Bk ∩ F ↑ B ∩ F , hence P(Bk ∩ F ) ↑ P(B ∩ F ). Since P(Bk) ↑ P(B), we also get

P(Bk)P(F ) ↑ P(B)P(F ). (Since limits are unique,) we get P(B ∩ F ) = P(B)P(F ), and B ∈ L as desired.
By the π-λ theorem, σ(A1) ⊆ L. This shows that σ(A1),A2, . . . ,An are independent. Repeating this n−1

times for A2, A3, and so on, shows that σ(A1), σ(A2), . . . are independent.

Corollary 4.10.2. The real-valued random variables X1, . . . , Xn are independent (equivalently, the collections of
events σ(X1), . . . , σ(Xn) are independent [see Remark 4.9.5]) if and only if

P(X1 ≤ x1, . . . , Xn ≤ xn) =

n∏
i=1

P(Xi ≤ xi) for all x1, . . . , xn ∈ R.

If the Xi were extended-real valued independent random variables, then we should check the condition for xi ∈ R∗ =
R ∪ {±∞}.

Proof. Because the {Xi ≤ x} are π-systems generating σ(Xi), Theorem 4.10.1 guarantees that all the σ(Xi)
are independent.

Theorem 4.10.3. If {Xij : 1 ≤ i ≤ n, 1 ≤ j ≤ mi} are independent, then so are {Yi : 1 ≤ i ≤ n}, where
Yi = fi(Xi1, . . . , Ximi) for measurable functions fi : Rmi → R.

For example, if X1, . . . , X6 are independent, then so are X1 +X2, eX3 , and X4X5X
2
6 .

Proof. Let Fij = σ(Xij), and say Gi = σ({Xij : 1 ≤ j ≤ mi}) = σ(∪mij=1Fij). We are given that the {Fij} are
independent, and we want to show that the {Gi} are independent. Let

Ai =

{ mi⋂
j=1

Aj : Aj ∈ Fij
}
.

By definition,Ai is a π-system for each i. Furthermore,Ai containsFij for all j, and hence contains ∪mij=1Fij .
Since the {Fij} are independent, so is {Ai}. By Theorem 4.10.1, the {σ(Ai)} are independent too. We are
done since Gi = σ(Ai).

Theorem 4.10.4. If X1, . . . , Xn are independent and Xi has distribution µi, then (X1, . . . , Xn) has distribution
µ1 × · · · × µn.
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Proof. We have

P((X1, . . . , Xn) ∈ A1×· · ·×An) = P(X1 ∈ A1) . . .P(Xn ∈ An) = µ1(A1) . . . µn(An) = (µ1×· · ·×µn)(A1×· · ·×An).

Since the rectangles A1 × · · · ×An are a π-system generating B(Rn), we are done by Theorem 4.10.1.

Definition 4.10.5. If X is a random variable, we write X ∼ µ to say that X has distribution µ. 4

Theorem 4.10.6. If X and Y are independent random variables, with X ∼ µ and Y ∼ ν, and h : R2 → R is
measurable with either h ≥ 0 or E|h(X,Y )| <∞, then

Eh(X,Y ) =

∫∫
h(x, y)µ(dx)ν(dy).

Proof. We have

Eh(X,Y ) =

∫
Ω

h(X,Y ) dP =

∫
R2

h d(µ× ν),

with the second equality following from change of variables (Lemma 3.8.5); note that µ×ν is the distribution
of (X,Y ) by Theorem 4.10.4. By Fubini (Theorem 4.9.1), this is equal to∫

R

∫
R
h(x, y)µ(dx)ν(dy).

Remark 4.10.7. Consider the special case h(x, y) = f(x)g(y) for f, g : R→ R measurable [and independent,
right...?], and either f, g ≥ 0 or E|f(X)|,E|g(Y )| <∞. Then

E(f(X)g(Y )) = Ef(X)Eg(Y ). 4

Proof. We have

E(f(X)g(Y )) =

∫∫
f(x)g(y)µ(dx)ν(dy) =

∫
g(y)

∫
f(x)µ(dx)ν(dy) =

∫
g(y)Ef(X) ν(dy) = Ef(X)Eg(Y ).

Theorem 4.10.8. If X1, . . . , Xn are independent and either Xi ≥ 0 or E|Xi| <∞, then

E(X1 . . . Xn) =

n∏
i=1

EXi.

Proof. Let X = X1 and Y = X2 . . . Xn. Let f = g = (x 7→ |x|). If each E|Xi| <∞ then

E|X1 . . . Xn| = (E|X1|) · (E|X2 . . . Xn|) = E|X1| . . .E|Xn| <∞,

with the second equality by induction, and hence

E(X1 . . . Xn) = E(X1) · E(X2 . . . Xn) = E(X1) . . .E(Xn),

with the second equality also by induction.

Theorem 4.10.8 can fail for infinite products. Consider independent random variables X1, X2, . . . given
by

P(Xi = 0) = P(Xi = 2) =
1

2
.

Then EXi = 1
2 (0) + 1

2 (2) = 1 but
∏
Xi = 0 almost surely (!). Thus

1 =
∏

EXi 6= E
∏

Xi = 0.

Note also that independence is a strong condition. We’ll see in the homework that there are four independent
random variables that are 3-wise independent but not independent; there are examples of (n − 1)-wise
independent random variables which are not n-wise independent.

36



Definition 4.10.9. Random variablesX and Y are uncorrelated if EX2,EY 2 <∞ and E(XY ) = (EX)(EY ).
4

Pairwise independence implies uncorrelatedness, but not the other way around. For example, consider
the random variable

(X,Y ) =


(1, 0)

(−1, 0)

(0, 1)

(0,−1)

each with probability 1
4 . Then EX = EY = 0 and XY = 0 (so E(XY ) = 0 too), and yet

0 = P(X = 0, Y = 0) 6= P(X = 0)P(Y = 0) =
1

4
.

Earlier in our discussion of what could go wrong with Theorem 4.10.8 for infinite products, we assumed
the existence of countably many independent random variables X1, X2, . . . . In light of the fact that the
property of being independent gets stronger and stronger as we add more random variables, it is a subtle
(but nontrivial) point to construct countably many independent random variables. Our next goal is to make
this precise.

Let’s talk about infinite products of measures. The goal is that given distribution functionsF1, F2, . . . , we
want to construct a probability space (Ω,F ,P) supporting independent random variables X1, X2, . . . : Ω→
R such that each Xi has distribution Fi.

In the finite case, n = 1 follows from Caratheodory Extension (Theorem 1.2.4), and for other finite n we
can take Ω = Rn, F = B(Rn), and P = µX1

× · · · ×µXn . We use this probability measure because we’d want

P((a1, b1]× · · · × (an, bn]) = P(X1 ∈ (a1, b1], . . . , Xn ∈ (an, bn]) =

n∏
i=1

(Fi(bi)− Fi(ai)).

In the infinite case, we would need to take Ω = RN = {(ω1, ω2, . . . ) : ωi ∈ R}. (This is also called sequence
space; cf. {0, 1}N.)

Definition 4.10.10. A cylinder set in Ω is a set of the form

A = (a1, b1]× · · · × (an, bn]× R× R× . . .
= {ω ∈ Ω: a1 < ω1 ≤ bi, . . . , an < ωn ≤ bn, no other restrictions on other ωi}.

[As before, cf. the case with {0, 1}N, as we saw in HW 0.] 4

Let F = σ(S), where S denotes the cylinder sets.

Theorem 4.10.11 (Kolmogorov Extension Theorem). For n ≥ 1, let Pn be the probability measure on (Rn,B(Rn))
such that

Pn+1((a1, b1]× · · · × (an, bn]× R) = Pn((a1, bn]× · · · × (an, bn]) for all ai ≤ bi, i ∈ [n].

Then there exists a unique probability measure P on (RN,F) = (RN, σ(S)) such that

P((a1, b1]× · · · × (an, bn]× R× R× . . .︸ ︷︷ ︸
∈S

) = Pn((a1, b1]× · · · × (an, bn]).

Although this result seems obvious, it’s important that Pn are probability measures, and that they’re real-
valued.
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5 Laws of large numbers
5.11 Oct 7, 2019

Let’s talk about the different notions of convergence. Let (Ω,F ,P) be a probability space, and letYn, Y : Ω→
R be random variables.

Definition 5.11.1. We say Yn → Y in probability if for all ε > 0, we have P(|Yn−Y | > ε)→ 0 as n→∞. 4

Definition 5.11.2. We say Yn → Y in Lp if E|Yn − Y |p → 0 as n→∞. 4

Lemma 5.11.3. If Yn → Y in Lp for any p, then Yn → Y in probability.

Proof. We can reduce to the case Y = 0. Then Yn → Y if and only if Yn − Y → 0. Markov’s inequality
(Lemma 3.8.4) says that

E|Yn|p ≥ εpP(|Yn| > ε).

Thus if Yn → 0 in Lp, we get E|Yn|p → 0, hence P(|Yn| > ε) → 0 as well. This means that Yn → 0 in
probability.

Theorem 5.11.4 (L2 weak law of large numbers). Let X1, X2, . . . be uncorrelated (this means EXi < ∞, and
E(XiXj) = EXi · EXj), with EXi = µ for all i. Assume further that Var(Xi) ≤ C < ∞ (see Definition 5.11.5).
Let Sn = X1 + · · ·+Xn. Then,

Sn
n
→ µ in probability.

Proof. We have

E
(
Sn
n

)
=

1

n
ESn =

1

n

n∑
i=1

EXi =
1

n
· n · µ = µ.

Furthermore,

E
(
Sn
n
− µ

)2

= Var
(
Sn
n

)
=

1

n2
Var(Sn) =

1

n2

n∑
i=1

Var(Xi),

where the last equality above uses the fact that theXi are uncorrelated. Recall that we have a uniform bound
Var(Xi) ≤ C for all i. Hence, we get

1

n2

n∑
i=1

Var(Xi) ≤
1

n2
(Cn) =

C

n
→ 0

Hence Sn
n → µ in L2, and Lemma 5.11.3 implies the claim.

Let’s talk more about variance.
Let X be a random variable with EX2 < ∞. Then, (EX)2 ≤ EX2 by Jensen’s inequality (Proposi-

tion 3.7.2). In particular we have E|X| <∞.

Definition 5.11.5. The variance of X , denoted Var(X), is by definition

Var(X)
def
= E(X − EX)2 = E(X2)− 2(EX)(EX) + (EX)2 = E(X2)− (EX)2. 4

Thus Var(X) is measures how “spread out” the random variable is. Notice:

1. The variance Var(X) is always nonnegative (by Jensen; Proposition 3.7.2).

2. We have Var(X) = 0 if and only if P(X = µ) = 1. In words we say that X is almost surely constant, or
X is an a.s. constant.

3. Similarly, Var(X) = EX2 if and only if µ = 0.
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4. If Y = aX + b,then EY = aEX + b, and hence

(Y − EY )2 = (aX − aEX)2 = a2(X − EX)2.

In particular, Var(aX + b) = a2Var(X).

Note that item 4 above was what really made the proof of Theorem 5.11.4 work.

Lemma 5.11.6. If X1, . . . , Xn are uncorrelated, then

Var
( n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi).

Proof. Let Yi = Xi − EXi. Note that EYi = 0. Since we are shifting by a constant, we have

Var
( n∑
i=1

Xi

)
= Var

( n∑
i=1

Yi

)
.

Since
∑
Yi has mean zero, the variance is the expectation of the square, that is,

Var
( n∑
i=1

Yi

)
= E

( n∑
i=1

Yi

)2

= E
( n∑
i=1

n∑
j=1

YiYj

)
=

n∑
i=1

n∑
j=1

E(YiYj) =

n∑
i=1

EY 2
i +

∑
i 6=j

(EYi) · (EYj)︸ ︷︷ ︸
=0

.

Note that EY 2
i = Var(Yi) = Var(Xi), and the claim follows. The last equality uses the fact that the Yi are

uncorrelated; this follows from the more general claim that ifX and Y are uncorrelated, then the translations
X + a and Y + b (with a, b ∈ R) are uncorrelated too.

Remark 5.11.7. Later we will prove the strong law of large numbers (cf. the weak law, Theorem 5.11.4),
which says that Snn → µ almost surely. In other words, we have P(limn→∞

Sn
n = µ) = 1.

Let’s see an example of a sequence of random variables for which Xn → X in probability but Xn 6→ X
almost surely. Let A1, A2, . . . be independent random variables with P(An) = 1

n . Let Xn = 1An . Then

P(|Xn| > ε) =
1

n
→ 0.

We will be able to prove soon (via the Borel-Cantelli lemma) that

P( lim
n→∞

Xn = 0) = 0. 4

Let’s talk about densities.

Definition 5.11.8. A random variable X has a density function f if

P(X ∈ B) =

∫
B

f(t) dλ(t)

for all Borel sets B ∈ B. As usual, λ here denotes the Lebesgue measure. Note that it’s enough to check this
for a generating set of B, i.e. it’s sufficient to check that

P(X ≤ x) =

∫ x

−∞
f(t) dλ(t). 4

Note that any nonnegative function f : R → R≥0 with
∫
R f = 1 is the density function of some random

variable. However, some random variables have no density function. (Examples include discrete random
variables, the Cantor example from Example 2.3.8, and anything with an atom.)
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Lemma 5.11.9. Let (S,S, µ) be a σ-finite measure space. Let f : S → R≥0 with
∫
f dµ <∞. Define

ν(A)
def
=

∫
A

f dµ.

Then we have ∫
g(x) dν(x) =

∫
f(x)g(x) dµ(x).

Example 5.11.10. Consider
(Ω,F ,P)

X−→ R ϕ−→ R.

Suppose X has density f ; recall that

µX(B) = P(X ∈ B) =

∫
B

f dλ.

Note also that
Eϕ(X) =

∫
ϕdµX =

∫
ϕ(x)f(x) dλ,

with the second equality from Lemma 5.11.9. To make things explicit, suppose X ∼ Unif[−1, 1] which has
density 1

21[−1,1]. Suppose also that ϕ(x) = xn. Then,

Eϕ(X) =

∫ ∞
−∞

xn
1

2
1[−1,1](x) dλ(x) =

∫ 1

−1

1

2
xn dλ(x) =

{
0 n odd

1
n+1 n even

Thus, densities make it easy to compute expected values. 4

Example 5.11.11. Let X1, X2, . . . be independent uniform distributions on (−1, 1). Let Yi = X2
i . Then the

Yi are independent. By the previous computation (in Example 5.11.10) we have EYi = 1
3 and EY 2

i = 1
5 , the

L2 weak law of large numbers (Theorem 5.11.4) says

Y1 + · · ·+ Yn
n

→ 1

3
in probability.

In other words,

P
(∣∣∣∣X2

1 + · · ·+X2
n

n
− 1

3

∣∣∣∣ > ε

)
→ 0.

Now X2
1 + · · · + X2

n is the squared length of the random vector (X1, . . . , Xn); in other words, we pick a
random point in the cube [−1, 1]n, and observed that the point is lying very close to the sphere of radius√
n/3: more precisely,

P
(∣∣∣∣||(X1, . . . , Xn)||22 −

n

3

∣∣∣∣ > nε

)
→ 0.

Stated another way, we can consider the “thin shell” around the sphere of radius
√
n/3 given by

An,ε =

{
x ∈ Rn : (1− ε)n

3
< ||x||22 < (1 + ε)

n

3

}
,

and we get
λ(An,ε ∩ [−1, 1]n)

λ([−1, 1]n)
→ 1.

4

40



5.12 Oct 9, 2019
[Office hours will be on Wednesday 1-2PM in 438 MLT and Friday from 11-1 in 438 MLT.]
We’ll prove variations of the Weak Law of Large Numbers (Theorem 5.11.4) today.

Theorem 5.12.1 (Weak Law of Large Numbers with different means). Let S1, S2, . . . be random variables with
ES2

n <∞. Denote by µn = ESn and σn =
√

Var(Sn). Let (bn) be any sequence such that σnbn → 0. Then

Sn − µn
bn

→ 0 in probability.

(As you may remember,
√

Var(Sn) is called the standard deviation.)

Proof. We compute

E
(
Sn − µn
bn

)2

=
1

b2n
E(Sn − µn)2 =

Var(Sn)

b2n
=

(
σn
bn

)2

→ 0.

Hence Sn−µn
bn

→ 0 in L2, and hence in probability too.

This theorem allows you to treat combinatorial situations where we almost have, but don’t quite have,
independence.

Example 5.12.2. Consider:

1. Suppose we are putting n numbered balls in n numbered boxes, with ball k going in box Bk ∼
Unif{1, . . . , n}, with B1, . . . , Bn independent. Let

Nn = #({1, . . . , n} \ {B1, . . . , Bn}︸ ︷︷ ︸
empty boxes

),

so that Nn is the number of empty boxes; note that 0 ≤ Nn ≤ n− 1.
Let’s find ENn and Var(Nn). Let

Ai = {Bk 6= i for all k},
i.e., Ai is the event that box i is empty. Then Nn = 1A1

+ · · ·+ 1An , and

ENn =

n∑
i=1

E1Ai =

n∑
i=1

P(Ai) = n

(
1− 1

n

)n
,

where P(Ai) = (1− 1
n )n follows from independence of Bk. In particular, we see that

ENn
n
→ 1

e
. (4)

Our goal is to show that the sequence of random variables Nn
n →

1
e in probability. Note that Equa-

tion (4) is a statement about a sequence of real numbers, while our claim is a statement about limiting
distributions. In particular, a limiting picture like below would be consistent with ENn

n → 1
e , but not

with Nn
n →

1
e .

1
e
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To rule out limiting picture that look like the above, one needs to control the variance. The idea is to
use the fact that 1Ai are nearly uncorrelated. In particular, we have

P(Ak ∩A`) =

(
1− 2

n

)n
→ 1

e2
and P(Ak)P(A`) =

(
1− 1

n

)2n

→ 1

e2
,

so even though they’re not the same, they have the same limit. Thus,

E(N2
n) = E

n∑
k,`=1

1Ak1A` =
∑
k,`

P(Ak ∩A`),

whereas

(ENn)2 =

(∑
k

P(Ak)

)2

=
∑
k,`

P(Ak)P(A`).

In particular, the variance is equal to

Var(Nn) =
∑
k 6=`

((
1− 2

n

)n
−
(

1− 1

n

)2n)
+
∑
k

((
1− 1

n

)2

−
(

1− 1

n

)2n)
.

Note that both sums above have at most n2 terms and are independent of k and `. With notation as in
Theorem 5.12.1 we set bn = n, and observe that

Var(Nn)

n2
→ 0,

since (1− 2
n )n and (1− 1

n )2n both converge to 1
e2 .

2. Suppose we are trying to collect coupons (or toys from cereal boxes). Formally, for n ≥ 1 define
independent uniform distributions X1, X2, · · · ∼ {1, . . . , n}. Let

Tn = min{m : {X1, . . . , Xm} = {1, . . . , n}}

denote the time required to collect all n coupons. For example, with n = 4 we might have

m 1 2 3 4 5 6 7 8 9 . . .
Xm 1 2 2 1 4 1 3 3 4 . . .

and in this example T4 = 7. Observe that

Tn =

n∑
k=1

Gk,

where Gk is additional time to collect the kth coupon, i.e.

Gk = Tk − Tk−1, where Tk = min{m : #{X1, . . . Xm} = k},

with T0 = 0 and T1 = 1.

Lemma 5.12.3. We have (XTk+1, XTk+2, . . . )
d
= (X1, X2, . . . ) and is independent of (X1, . . . , XTk−1

).

(Here, the notation d
= means “equal in distribution”.)
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We have

P(Gk > j) = P(XTk−1+1, . . . , XTk−1+j ∈ {X1, . . . , XTk−1
})

=

j∏
i=1

P(XTk−1+i ∈ {X1, . . . , XTk−1
})

=

j∏
i=1

(
k − 1

n

)

=

(
k − 1

n

)j
.

Thus, Gk obeys the geometric distribution Geom(1 − k−1
n ), which is defined in the following way: if

G ∼ Geom(p), then P(G = j) = p(1− p)j−1. Thus

P(G > j) = p(1− p)j−1
∑
i≥1

(1− p)i = p(1− p)j−1 · 1− p
p

= (1− p)j .

The story to think about is that G is the random variable corresponding to the first heads for a se-
quence of flips of a coin that comes up heads with probability p. The mean and variance of geometric
distributions is not hard to compute:

EG =
∑
j≥1

P(G ≥ j) =
∑
j≥1

(1− p)j−1 =
1

p
,

and
Var(G) =

1− p
p2
≤ 1

p2
..

Going back to our problem, observe that that Lemma 5.12.3 implies that G1, . . . , Gn are independent.
Since Gk ∼ Geom(n−k+1

n ). Thus,

ETn =

n∑
k=1

EGk =
n

n
+

n

n− 1
+ · · ·+ n

1
= n

( n∑
j=1

1

j

)
∼ n log n.

We also have

Var(Tn) =

n∑
k=1

Var(Gk) ≤
n∑
k=1

(
n

n− k + 1

)2

= n2
n∑
j=1

1

j2
≤ n2π

2

6
.

In the notation of Theorem 5.12.1, let bn = n log n and observe that

σn
bn

=
nπ/
√

6

n log n
→ 0

so Theorem 5.12.1 applies. In particular,

Tn − ETn
n log n

→ 0 in probability.

In other words,
Tn

n log n
→ 1 in probability.

This kind of phenomenon is called “concentration”.

4
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Definition 5.12.4. A sequence of random variables Xn is concentrated if

Xn

EXn
→ 1 in probability. 4

After the break we will talk about Borel Cantelli lemmas. Here is the setup. Let (Ω,F ,P) be a probability
space and let A1, A2, · · · ∈ F . We denote by

{An i.o.} def
= {ω ∈ Ω: ω ∈ An for infinitely many n};

here “i.o.” stands for infinitely often, and denote by

{An eventually} def
= {ω ∈ Ω: ω ∈ An for all but finitely many n}.

The Borel-Cantelli lemma says:

Lemma 5.12.5 (Borel-Cantelli Lemma 1). If
∑
n≥1 P(An) <∞, then P({An i.o.}) = 0.
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5.13 Oct 16, 2019
We’ll be talking about Borel-Cantelli lemmas today.
As always, let (Ω,F ,P) be a probability space, and letA1, A2, · · · ∈ F be events. We defined the notation

{An i.o.} def
= {ω ∈ Ω: ω ∈ An for infinitely many n} =

⋂
N≥1

⋃
n≥N

An;

here “i.o.” stands for infinitely often, and also

{An eventually} def
= {ω ∈ Ω: ω ∈ An for all but finitely many n} =

⋃
N≥1

⋂
n≥N

An.

Observe that
1{An i.o.} = lim sup1An and 1{An eventually} = lim inf 1An .

Note that
P(An i.o.) ≥ lim supP(An) and P(An eventually) ≤ lim inf P(An);

cf. HW 5, Problem 2. Note also that

Xn → X a.s. if and only if for all ε > 0, P(|Xn −X| > ε i.o.) = 0;

cf. HW 5, Problem 3.

Lemma 5.13.1 (Borel-Cantelli Lemma 1; cf. Lemma 5.12.5). If
∑
n≥1 P(An) <∞, then P({An i.o.}) = 0.

Proof. Let
N =

∑
n≥1

1An ,

which counts the number of events that occur. Note that

EN =
∑
n≥1

E1An =
∑
n≥1

P(An) <∞,

where the first equality is monotone convergence (Theorem 3.8.1). It follows that P(N =∞) = 0, as desired.

The converse of Lemma 5.13.1 fails. Consider the probability space ([0, 1],B,P) with Lebesgue measure,
and let An = (0, 1

n ). Then ∑
P(An) =

∑
n≥1

1

n
=∞

but
P(An i.o.) = P

(⋂
An

)
= 0.

However, there is a partial converse to lemma 5.13.1:

Lemma 5.13.2 (Borel-Cantelli Lemma 2). IfA1, A2, . . . are independent, and
∑

P(An) =∞, then P(An i.o.) = 1.

To warm up for this proof, let us recall

Observation 5.13.3. If pn ∈ [0, 1] then∑
n≥1

pn =∞ implies
∏
n≥1

(1− pn) = 0. 4

Proof. The proof boils down to the observation that 1− x ≤ e−x. Then∏
n≥1

(1− pn) ≤
∏
n≥1

e−pn = e−
∑
pn = 0.
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With this observation we can now prove the Borel-Cantelli Lemma 2:

Proof of Lemma 5.13.2. We have

P
( ⋂
n≥N

Acn

)
=
∏
n≥N

P(Acn) =
∏
n≥N

(1− P(An)) = 0,

where the first equality is independence of Ai and the last equality is Observation 5.13.3. Taking comple-
ments, we have

P
( ⋃
n≥N

An

)
= 1− P

( ⋂
n≥N

Acn

)
= 1

for all N . Then ⋃
n≥N

An ↓ {An i.o.}, so 1 = P
( ⋃
n≥N

An

)
↓ P(An i.o.).

Lemma 5.13.4. If Xn → X a.s., then Xn → X in probability.

Proof. Fix ε > 0. Let
An = {ω ∈ Ω: |Xn(ω)−X(ω)| > ε}.

Thus (by HW 5 problem 3, mentioned earlier) P(An i.o.) = 0. Note that

{An i.o.} ⊆ {Xn > X + ε i.o.} ∪ {Xn < X − ε i.o.} ⊆ {Xn → X}c.

Then
0 = P(An i.o.) ≥ lim supP(An),

with the inequality from HW 5, Problem 2. We’ve thus shown P(An)→ 0 as n→∞, which is what it means
for Xn → X in probability.

Theorem 5.13.5. The random variables Xn → X in probability if and only if for every (deterministic) subsequence
nk there is a further (deterministic) subsequence nkj such that

Xnkj
→ X a.s.

Consider for example independent random variables Xn = 1An with P(An) = 1
n . We have Xn → 0 in

probability but not almost surely.

Proof of Theorem 5.13.5. The forward direction is more interesting. Fix ε > 0. For each j ≥ 1 choose kj so
that

P(|Xnkj
−X| > ε) < 2−j .

By Borel-Cantelli 1 (Lemma 5.13.1), P(|Xnkj
−X| > ε i.o.) = 0, since

∑
2−j <∞. Hence Xnkj

→ X almost
surely. (To be fully rigorous, one might have to take nesting subsequences nkj ; ` for each ε = 1

` , and then
show that Xnk` ;`

→ X a.s. as `→∞.)

Remark 5.13.6. In the setting of Theorem 5.13.5, there can exist a random subsequence that does not converge
to X almost surely. For example, if An are independent events with P(An) = 1

n , then by Borel-Cantelli 2
(Lemma 5.13.2) we have P(An i.o.) = 1. Thus with probability 1 there exists a (random!) subsequence
N1, N2, . . . so that XNk = 1 for all k ≥ 1. In particular, this sequence is not converging to 0.

By “with probability 1 there exists”, we mean

P
( ⋃

(n1,n2,... )

{Xnk(ω) = 1 for all k ≥ 1}
)

= 1.

(For example, when flipping infinitely many coins it’s possible that they all come up tails, and there is no nk
with Xnk(ω) = 1, but that’s a probability zero event.) 4
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Let’s talk about convergence in the topological space (Y,U), where U denotes the open sets of Y . Let us
consider yn, y ∈ Y .

Definition 5.13.7. We say yn → y if for all open U 3 y, all but finitely many yn ∈ U . 4

In the special case that (Y, d) is a metric space, the subset U ∈ U if and only if for all y ∈ U there exists
ε > 0 so that B(y, ε) ⊆ U . Important examples for us include R, Rn, and Lp(Ω,F ,P).

Lemma 5.13.8. We have yn → y if and only if for all sequences nk, there exists a subsequence nkj such that ynkj → y.

Corollary 5.13.9. There does not exist a topology on the set of random variables such that convergence in the sense of
Definition 5.13.7 is a.s. convergence of random variables.

Remark 5.13.10. On the other hand, there is a metric so that convergence in the topological space corre-
sponds to convergence in probability. This metric is given by

d(X,Y ) = E
(
|X − Y |

1 + |X − Y |

)
.

[If you were in 6110 with me – this remark is essentially problem 4 on our final (!)] 4

Corollary 5.13.11. If Xn → X in probability and f : R→ R is continuous, then

(i) f(Xn)→ f(X) in probability, and

(ii) if f is also bounded, then Ef(Xn)→ Ef(x).

Proof. For part (i), we apply (the forward direction of) Theorem 5.13.5: for all subsequences nk there exist
subsubsequences nkj so that Xnkj

→ X almost surely. Then f(Xnkj
) → f(X) almost surely, and by (the

backward direction of) Theorem 5.13.5 we have f(Xn)→ f(X) in probability.
For part (ii), bounded convergence (Lemma 3.7.6) says Ef(Xnkj

) = Ef(X). Then Ef(Xn) → Ef(X) by
Lemma 5.13.8.

Let’s talk about the strong law of large numbers.

Definition 5.13.12. We write X d
= Y if µX = µY . 4

Definition 5.13.13. For p > 0, the pth moment of X is E|X|p. 4

In HW 3, we showed that E|X|p <∞ then E|X|q <∞ for all q < p.

Theorem 5.13.14 (Strong Law of Large Numbers). Let X1, . . . , Xn be i.i.d. (“independent and identically dis-
tributed”, so X1

d
= X2

d
= X3

d
= . . . ), with EX1 = µ and EX4

1 <∞. Let S = X1 + · · ·+Xn. Then

Sn
n
→ µ a.s.

Proof. Without loss of generality, we may assume µ = 0 (we may let X ′i = Xi − µ). Then

ES4
n = E(X1 + · · ·+Xn)4 =

∑
i,j,k,`

E(XiXjXkX`).

Many of the terms appearing in the sum are zero: since the Xi are independent, expectations multiply
(Theorem 4.10.8). If XiXjXkX` contains a variable in degree 1, then the expectation of that term is zero, so
not many terms remain:

ES4
n = nEX4

1 + n(n− 1)E(X2
1X2)2 ≤ Cn2

for some absolute constant C. Markov’s inequality (Lemma 3.8.4) says that

P(|Sn| > nε) · (nε)4 ≤ ES4
n ≤ Cn2,
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so
P
(∣∣∣∣Snn

∣∣∣∣ > ε

)
≤ Cn2

(nε)4
=

C

n2ε4
.

Summing the above inequality over n, we see that we may apply the Borel-Cantelli Lemma (Lemma 5.13.1);
hence

P
(∣∣∣∣Snn

∣∣∣∣ > ε i.o.
)

= 0,

that is to say, Snn → 0 a.s..
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5.14 Oct 21, 2019
We begin with a souped-up Borel-Cantelli.

Theorem 5.14.1. Let A1, A2, . . . be pairwise independent events, and assume
∑
n≥1 P(An) =∞. Let Sn = 1A1

+
· · ·+ 1An be the number of events that occur by “time” n. Then

Sn
ESn

→ 1 a.s..

(cf. Borel-Cantelli 2 (Lemma 5.13.2), which only says P(An i.o.) = 1.)
When one sees almost sure convergence, especially in the presence of assumptions on independence,

one might want to reach for the strong law of large numbers (Theorem 5.13.14).
Let us define Xn

def
= 1An ; note that EX4

n = EXn ≤ 1 because Xn is just an indicator. However, to make
the proof work, we needed 4-wise independence of the Xi, so Theorem 5.14.1 doesn’t quite follow.

Proof of Theorem 5.14.1. We have

Var(Sn) =

n∑
k=1

Var(1Ak) =

n∑
k=1

P(Ak)(1− P(Ak)) ≤
n∑
k=1

P(Ak) = ESn.

Recall Chebyshev’s inequality (which follows from the ϕ = x2 case of Markov’s inequality, see Lemma 3.8.4
and the discussion immediately following the proof); for us, the inequality says

P
(∣∣∣∣ SnESn

− 1

∣∣∣∣ > δ

)
= P(|Sn − ESn| > δESn) ≤ Var(Sn)

(δESn)2
≤ ESn
δ2(ESn)2

=
1

δ2ESn
→ 0, (5)

so we get Sn/ESn → 1 in probability. We want to upgrade this convergence to almost sure convergence; the
tool we will use to do this is Theorem 5.13.5. Let us define nk = min{n : ESn ≥ k2} and Tk = Snk . Then
ETk ≥ k2. Equation (5) says

P
(∣∣∣∣ TkETk

− 1

∣∣∣∣ > δ

)
≤ 1

δ2ETk
≤ 1

δ2k2
.

By Borel-Cantelli 1 (Lemma 5.12.5),

P
(∣∣∣∣ TkETk

− 1

∣∣∣∣ > δ i.o.
)

= 0.

Hence,
Tk
ETk

→ 1 a.s..

Note that P(Ak) ≤ 1 for all k implies ETk ≤ k2 + 1 (since the numbers {ESi} jump up by P(Ai+1) ≤ 1 when
we increment i to i+ 1). If nk ≤ n < nk+1, then

Sn
ESn

≤
Snk+1

ESnk
=

Tk+1

ETk+1
· ETk+1

ETk
.

The bounds on ETk allow us to control the ratio ETk+1/ETk, and Tk+1/ETk+1 → 1 almost surely implies

Tk+1

ETk+1
· ETk+1

ETk
→ 1 a.s..

Thus Sn/ESn is bounded from above by a sequence converging to 1 almost surely. Likewise,

Tk
ETk

· ETk
ETk+1

=
Snk
Snk+1

≤ Sn
ESn

,

and Tk
ETk ·

ETk
ETk+1

→ 1 almost surely too. Hence Sn/ESn → 1 almost surely.

49



Theorem 5.14.2 (Sharp Strong Law of Large Numbers; cf. Theorem 5.13.14). Let X1, X2, . . . be pairwise inde-
pendent with the same distribution X1

d
= X2

d
= . . . with E|Xn| <∞. Let Sn = X1 + · · ·+Xn. Then

Sn
n
→ EX1 a.s..

This version is stronger than last week’s version in two ways: require only pairwise independence instead
of i.i.d., and only E|Xn| <∞ instead of E|Xn|4 <∞.

Example 5.14.3. There are lots of random variables with E|X| <∞ and E|X|4 =∞. One such example for
Ω = (0, 1) is given by X(ω) = ω−1/4.

Another example is given by taking a random variable so that P(X = n) = C/n3, for n ≥ 1; we see
EX =

∑
n≥1 nC/n

3 < ∞, and EX4 =
∑
n4C/n3 = ∞. This kind of random variable, with polynomial

decay at infinity, is called “heavy-tailed”. 4

Remark 5.14.4. It’s not so much of an exaggeration to say that most tools of probability are suited to light-tail
distributions; for example, one likes to take expectations, and when they’re infinite, they’re not very useful.
This poses a problem for practitioners, since many distributions in the real world are in fact heavy-tailed.
There are examples of people fitting heavy tailed random variables to Gaussians, causing their models to be
inaccurate. 4

Example 5.14.5 (Record values). SupposeX1, X2, . . . are i.i.d. with continuous distribution function F . This
implies P(Xi = Xj) = 0 for i 6= j, by HW 4, Ex. 4. Let us define

• Ak = {Xk = max{X1, . . . , Xk}} to be the event that the kth trial sets a record,

• Rn =
∑n
k=1 1Ak be the number of new records in n trials, and

• πn ∈ Sn a permutation with πn(i) = #{j ≤ n : Xj ≥ Xi}. (Here, Sn is the set of all permutations of
[n].)

Our claim is that πn ∼ Unif(Sn), that is to say, P(πn = σ) = 1
n! for all σ ∈ Sn.

To prove this, note that

P(X1 ≤ x1, . . . , Xn ≤ xn) =

n∏
i=1

P(Xi ≤ xi) =

n∏
i=1

F (xi) =

n∏
i=1

F (xσ(i)) = P(Xσ(1) ≤ x1, . . . , Xσ(n) ≤ xn)

implies
P(π = σ) = P(π = id) for all σ ∈ Sn.

Aside 5.14.6. As an aside, here’s how to sample from Unif(Sn) (to sample is to generate a random variable
with the uniform distribution on Sn). One might be able to prove various things about distributions, but
sampling from that distribution (efficiently) is a hard or sometimes even an open problem.

One method is to generate independent random variables X1, . . . , Xn ∼ Unif(0, 1) and then take πn as
defined in Example 5.14.5.

Another method is to use insertion: begin with the string “1”, and in the kth step insert k into the string
in one of the k possible places, all equally likely, and independent of the past. At the end we’ll have a string
π = π1 . . . πn consisting of each element of [n] = {1, . . . , n} exactly once, giving an element π ∈ Sn (by
π : i 7→ πi). One advantage of this method is that it’s now clear that if π ∼ Unif(Sn), then f(π) ∼ Unif(Sn−1),
where f(π) is the permutation of [n− 1] obtained by “crossing out” n.

Not all sets are easy to sample from! An example is the set of proper k-colorings of a fixed graph with n
vertices. 4

Continuing with the example, let us suppose that A1, . . . , An are pairwise independent and P(Ak) = 1
k .

(Actually, they’re independent, but that’s not necessary for us.) To see this, observe that

Ak = {πk(k) = k} = {πn(k) > πn(i) for all i ≤ k},
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so
P(Ak) =

#{σ ∈ Sk : σ(k) = k}
#Sk

=
1

k
.

Note that if j < k, then

P(Aj ∩Ak) = P(πk(k) = k, πk(j) > πk(i) for all i < j)

=
1

k!
#{σ ∈ Sk : σ(k) = k, σ(j) > σ(i) for all i < j}

=
1

k!
#{σ ∈ Sk−1 : σ(j) < σ(i) for all i < j}

=
1

k

(
1

(k − 1)!
#{σ ∈ Sk−1 : σ(j) < σ(i) for all i < j}

)
=

1

k
P(Aj)

=
1

kj
.

Because the Ai are pairwise independent, we have

ERn =

n∑
i=1

E1Ai =

n∑
i=1

P(Ai) = 1 +
1

2
+ · · ·+ 1

n
≈ log n.

As a corollary of Theorem 5.14.1, we obtain

Rn
log n

→ 1 a.s.. 4
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5.15 Oct 23, 2019
Today, we’ll focus on applications of the (sharp) strong law of large numbers (Theorem 5.14.2).
Let’s talk about empirical distribution functions. Suppose we had random variables X1, X2, . . . which

are i.i.d. with unknown distribution function F (x) = P(X1 ≤ x). Let

Fn(x) =
1

n

n∑
i=1

1{Xi≤x} =
1

n
#{i ∈ [n] : Xi ≤ x}.

Theorem 5.15.1 (Glivenko-Cantelli Theorem). With notation as above, we have Fn → F uniformly as n → ∞;
specifically,

sup
x
|Fn(x)− F (x)| → 0 a.s..

(Note that for a fixed x, |Fn(x)− F (x)| is a random variable, so it makes sense to talk about almost sure
convergence.)

Proof for the case F is continuous. There are various technical details in the general case, but the result is still
true.

Let us fix x ∈ R. Let Yn = 1{Xn≤x}. Then

EYn = P(Xn ≤ x) = P(X1 ≤ x) = F (x).

The strong law of large numbers (Theorem 5.14.2), we obtain

Fn(x) =
1

n
(Y1 + · · ·+ Yn)→ EY1 a.s..

In other words,
P( lim
n→∞

Fn(x) = F (x)) = 1.

We’d like to conclude that
P( lim
n→∞

Fn(x) = F (x) for all x ∈ R) = 1,

but unfortunately this is (naively) an uncountable intersection over x ∈ R. In situations like these, one
might hope to get away with regularity/continuity and the observation that the intersection over x ∈ Q has
probability 1.

Indeed, let us fix ε > 0. Then continuity of F implies there exist x0 < x1 < · · · < xm = +∞ with
F (xj+1)− F (xj) < ε. Note that if x ∈ [xj−1, xj ] then

Fn(x)− F (x) ≤ Fn(xj)− F (xj−1) ≤ Fn(xj)− F (xj) + ε ≤Mn + ε,

where Mn = maxj∈[m] |Fn(xj)− F (xj)|. Likewise,

Fn(x)− F (x) ≥ Fn(xj−1)− F (xj) ≥ Fn(xj−1 − F (xj−1)− ε ≥ −Mn − ε.

In other words, we’ve obtained a uniform bound

|Fn(x)− F (x)| ≤Mn + ε.

Let Aj = {limn→∞ Fn(xj) = F (xj)}. Then P(Aj) = 1 for all j. This implies

P(A1 ∩ · · · ∩Am) = 1;

because A1 ∩ · · · ∩Am ⊆ {Mn < ε eventually},

P(Mn ≤ ε eventually) = 1.

Since |Fn(x)− F (x)| ≤Mn = ε, we obtain

P(sup
x
|Fn(x)− F (x)| < 2ε eventually) = 1.

Equivalently, this says
sup
x
|Fn(x)− F (x)| → 0 a.s..
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Durrett has a proof for the general case, where basically the same proof works but to deal with atoms
some xj are set equal to each other.

Let’s talk about renewal theory. Let Xn ≥ 0 be i.i.d., and let

Tn = X1 + · · ·+Xn and Nt = sup{n : Tn ≤ t};

think of Tn as the time needed to eat n jars of maple syrup, so that Nt is the number of jars eaten by time t.
Suppose EX1 = µ <∞, and further P(0 < X1 <∞) = 1.

Theorem 5.15.2 (The Renewal Theorem). With notation and assumptions as above,

Nt
t
→ 1

µ
a.s..

In HW 6, we’ll show that if Xn → X a.s. and Nn →∞ a.s., then XNn → X a.s..

Remark 5.15.3. This HW problem is slightly nuanced: note that it can fail for convergence in probability!
Consider independent events An with P(An) = 1

n , and let Xn = 1An . Then Xn → 0 in probability, and

Nn = min{k > Nn−1 : Xk = 1}.

Then XNn = 1 for all n, so XNn → 1 in probability. In other words, passing to a subsequence does not
preserve limits. 4

Proof of Theorem 5.15.2. By the strong law of large numbers (Theorem 5.14.2), we have

Tn
n
→ µ a.s.. (6)

Also, Nt → ∞ a.s. because P(0 < X1 < ∞) = 1, hence there exists ε > 0 with P(X1 ≥ ε) ≥ 1
2 . Chasing

definitions of T· and N·, we also see
TNt ≤ t < TNt+1.

Dividing both sides by Nt, we have
TNt
Nt
≤ t

Nt
<
TNt+1

Nt
.

Equation (6), along with the HW 6 problem, says that the left side converges to µ almost surely, so it suffices
to show that the right side goes to µ almost surely. But, also by Equation (6) and the HW 6 problem, we
obtain

TNt+1

Nt + 1
→ µ a.s.,

and since
TNt+1

Nt
=

TNt+1

Nt + 1
· Nt + 1

Nt︸ ︷︷ ︸
→1 a.s..

,

we’re done.

In the case µ = EX1 is infinite, the renewal theorem (Theorem 5.15.2) also holds, but one needs a different
proof, and 1

µ should be interpreted as 0.
(Naively speaking, it seems that we’d need a continuous analogue of HW 6 to make the proof work, that

is, one might ask whether Nn can be replaced with Nt, t ∈ R in the HW problem above.)

53



6 Central Limit Theorems
6.15 Oct 23, 2019

To make statements in this section precise, we begin with a crucial definition:

Definition 6.15.1. Distribution functions Fn are said to converge to F weakly, written

Fn → F weakly,

when
Fn(y)→ F (y) as n→∞, for all y such that F is continuous at y. (7)

The random variables Xn are said to converge to X weakly when FXn → FX . 4

Some people say Xn → X in distribution to mean the same thing, and some people denote this conver-
gence by Xn

d−→ X or Xn =⇒ X .
We make this definition so that X + 1

n

d−→ X . The caveat “for all y such that F is continuous at y” in
Equation (7) is needed since

FX+ 1
n

(y) = P
(
X +

1

n
≤ y
)

= P
(
X ≤ y − 1

n

)
= FX

(
y − 1

n

)
↑ P(X < y),

whereas
FX(y) = P(X ≤ y).

The two are equal if and only if FX is continuous at y.

Example 6.15.2. Let Xp ∼ Geom(p), with 0 < p < 1. We have

P(Xp = n) = (1− p)n−1p and P(Xp ≥ n) = (1− p)n−1,

for n ∈ N. To ask whetherXp has a limit in the sense of Definition 6.15.1, one needs to normalize. Note that
EXp =

∑
n≥1(1− p)n−1 = 1

p , so we ask: Does Xp/EXp = pXp have a limit as p→ 0?
Observe that

P(pXp ≥ y) = P
(
Xp ≥

y

p

)
= (1− p)y/p = (1− 1

µ
)yµ → e−y.

In other words,
pXp

d→ X, where X ∼ Exp(1),

with Exp(1) defined by P(X ≥ y) = e−y . 4

54



6.16 Oct 28, 2019
Today we’ll talk about densities.

Definition 6.16.1 (cf. Definition 5.11.8). A random variable X has density f : R → [0,∞) if P(X ∈ B) =∫
B
f dλ for all Borel sets B ⊆ R. Here λ denotes the Lebesgue measure on R. 4

In particular, we have

P(a < X < b) = P(a ≤ x ≤ b) =

∫ b

a

f(x) dx.

Thus not every random variable X has a density. For example, if P(X = a) > 0 for some a ∈ R, then X
does not have a density. Similarly, the uniform random variable on the Cantor set (see Example 2.3.8, item
4) does not have a density.

Example 6.16.2. Consider:

1. The uniform random variable Unif(a, b) has density given by

f(x) =

{
1
b−a if x ∈ [a, b]

0 if x 6∈ [a, b]

Note that, as with any function defined by the values of its integrals, f is only defined “up to measure
zero”, that is if f̃ = f a.e. then f̃ is also a density for X .

2. The exponential random variable Exp(α) has density given by

f(x) =

{
αe−αx if x ≥ 0

0 if x < 0

We’ve seen this random variable before: if Xp ∼ Geom(p), then

Xp

EXp
= pXp

d−→ Y

as p→ 0; here Y ∼ Exp(1). Note that any density must satisfy∫ ∞
−∞

f(x) dx = 1.

3. The star player of the chapter we are starting, the normal distribution N(µ, σ2) with mean µ and vari-
ance σ2 has density given by

f(x) =
1√

2πσ2
e−(x−µ)2/2σ2

.

4

We can generalize this setup from (R,B, λ) to (Rn,Bn, λn): a random vector X = (X1, . . . , Xn) has
density f : Rn → [0,∞) if

P(X ∈ B) =

∫
B

f dλn;

here λn = λ × · · · × λ is the n-dimensional Lebesgue measure. As a special case of this setup, let A ⊂ Rn
with 0 < λn(A) <∞. Then we can talk about

Definition 6.16.3. The uniform measure on A is the measure µ given by

µ(B)
def
=

λn(B ∩A)

λn(A)
. 4
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Then X ∼ Unif(A) intuitively means “pick a point at random in A”. Its density (with respect to λn) is
1A/λ

n(A).
Let’s now return to our discussion of weak convergence. We would like to prove the following theorem.

Theorem 6.16.4. The random variables Xn
d−→ X if and only if Eg(Xn) → Eg(X) for all bounded continuous

functions g : R→ R.

Note that convergence in distribution is a different beast from convergence in probability or convergence
almost surely. Let’s see some examples illustrating this.

Example 6.16.5. Let U1, U2, . . . be i.i.d., uniformly distributed on (0, 1). Then Un
d−→ U ∼ Unif(0, 1) trivially,

since Fn = F = 1(0,1), so Fn(x)→ F (x) for all x.
But Un 6→ U in probability, since if P(|Un − U | > ε) ↓ 0 as n → ∞, this would imply, for example, that

P(|Un−Um| > 2ε) ↓ 0 [specifically, the setEm,n = {ω ∈ Ω: |Un(ω)−Um(ω)| > 2ε}will have arbitrarily small
measure as long as we pick m,n sufficiently large]. On the other hand, since Un and Um are independent
random variables, (Un(ω), Um(ω)) is uniform on (0, 1)2, so it is not too hard to obtain P(Em,n) = (1 − 2ε)2

from the following geometric picture:

2ε

2ε

imEm,n

(0, 0)

(0, 1) (1, 1)

(1, 0)

4

Here’s a more nontrivial example.

Example 6.16.6. Let’s consider a simple random walk on Z, so we have a sequence of random variables Sn,
defined by Sn = X1 + · · ·+Xn with Xi i.i.d. with P(Xi = 1) = P(Xi = −1) = 1

2 . Thus

ESn =

n∑
i=1

EXi = 0 and VarSn =

n∑
i=1

VarXi = n.

Thus the Strong Law of Large Numbers (Theorem 5.14.2) asserts

Sn
n
→ 0 a.s..

Usually when we have a limit going to 0, we’re not getting as much information as we could (the Sn is getting
drowned out by the n). Indeed, note that for a > 1

2 , we have

Sn
na
→ 0 in probability

by Theorem 5.12.1. It turns out that the limit Sn/n1/2 will be more interesting. It’s possible to compute this
limit using our bare hands. We have

P(S2n = 2k) = P((X1, . . . , X2n) has exactly n+ k many 1’s) =

(
2n
n+k

)
22n

=
(2n)!

(n+ k)!(n− k)!22n
.
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Thus Stirling’s formula, which says n! ∼ (ne )n
√

2πn (here f(n) ∼ g(n) means limn→∞ f(n)/g(n) = 1), gives
(for k small with respect to n)

P(S2n = 2k) ∼ (2n)2n

(n+ k)n+k(n− k)n−k

√
2π(2n)

2π(n+ k) · 2π(n− k)

∼
(

1 +
k

n

)−(n+k)(
1− k

n

)−(n−k)
√

1

πn

=

(
1− k2

n2

)−n(
1 +

k

n

)−k(
1− k

n

)k
1√
πn

.

We know how to compute the limits of each factor above; recall that if an → 0, bn →∞, and anbn → λ, then
(1 + an)bn → eλ. Let x be so that k = x

√
n
2 ; in other words, so that k2/n = x2/2. We obtain, when n → ∞

and k is growing so that x = k/
√

n
2 is fixed, the limit(

1− k2

n2

)−n(
1 +

k

n

)−k(
1− k

n

)k
→ e

x2

2 · e− x
2

2 e−
x2

2
1√
πn

. (8)

Then

P
(
a ≤ S2n√

2n
≤ b
)

=
∑

`∈[a
√

2n,b
√

2n],
`∈2Z

P(S2n = `)

∼ 1√
πn

∑
x∈[a,b],
x∈ 2√

2π
Z

e−x
2/2

→
∫ b

a

1√
2π
e−x

2/2 dx,

which is the integral of the density ofN(0, 1). (Note that we can apply Equation (8) in the above comptutation
since we’ve scaled S2n by

√
2n.

This shows S2n√
2n

d−→ N(0, 1); in the homework we’ll prove S2n+1√
2n+1

d−→ N(0, 1), and also that Sn/
√
n does

not converge in probability. 4

Lemma 6.16.7. IfFn → F weakly, then there exist random variablesYn converging toY almost surely, withFYn = Fn
and FY = F .

Proof. Let Ω = (0, 1), B be the Borel sets, and P be the Lebesgue measure. Let

Y (ω) = F−1(ω)
def
= sup{y : F (y) ≤ ω}.

Likewise, we let Yn(ω) = F−1
n (ω).

For ω ∈ (0, 1), let aω = sup{y : F (y) < ω} and bω = inf{y : F (y) > ω}; note that aω 6= bω when the
graph of F is horizontal; we have F (y) = ω on (aω, bω). Since the intervals (aω, bω) are disjoint there are
only countable many ω such that aω 6= bω . Let

Ω0 = {ω ∈ (0, 1) : aω = bω}.

We will show Yn(ω)→ Y (ω) for all ω ∈ Ω0. Specifically, we’ll first show

lim inf
n→∞

F−1
n (ω) ≥ F−1(ω) and lim sup

n→∞
F−1
n (ω) ≤ F−1(ω)

for all ω ∈ Ω0. Let us choose y < F−1(ω) such that F is continuous at y. Then F (y) < ω and Fn(y)→ F (y),
so Fn(y) < ω for sufficiently large n. Then y ≤ F−1

n (ω) and taking lim inf we obtain

y ≤ lim inf F−1
n (ω) for any y < F−1(ω), F continuous at y.

We can take y ↑ F−1(ω), avoiding the (at most countably many) discontinuous points along the way.
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6.17 Oct 30, 2019
[OH this week: Jason’s OH is in 218 MLT at Wednesday 11:15–1, and Prof Levine’s OH is in 438 MLT at

Friday 11–12]
Last time we said our goal was to prove Theorem 6.16.4:

Theorem 6.17.1 (cf. Theorem 6.16.4). The random variables Xn
d−→ X if and only if Eg(Xn) → Eg(X) for all

bounded continuous functions g : R→ R.

Let’s prove this now.

Proof. The forward direction follows from Lemma 6.16.7, which guarantees the existence of Yn
d
= Xn and

Y
d
= X (note that this implies g(Yn)

d
= g(Xn) and g(Y )

d
= g(X)), with Yn → Y almost surely and Yn(ω) →

Y (ω) for almost all ω. (Here, almost all means P({ω : Yn(ω)→ Y (ω)}) = 1.)
The continuity of g implies Yn(ω) → g(Y (ω)) for almost all ω. Hence Eg(Yn) → Eg(Y ) by Bounded

Convergence Theorem (Lemma 3.7.6). Since Eg(Xn) = Eg(Yn), and Eg(X) = Eg(Y ), we obtain the desired
Eg(Xn)→ Eg(X) for all bounded continuous functions g : R→ R.

For the backward direction, we assume Eg(Xn)→ Eg(X) for all bounded and continuous g; we want to
show that P(Xn ≤ x)→ P(X ≤ x) for all continuity points x of F (x)

def
= P(X ≤ x).

Observe that P(Xn ≤ x) = Egx(Xn) and P(X ≤ x) = Egx(X), where

gx(y) =

{
1 if y ≤ x
0 else

which is unfortunately not continuous. So the name of the game is to approximate: we define

gx,ε
def
=


1 if y ≤ x
1− y−x

ε if y ∈ (x, x+ ε)

0 if y ≥ x+ ε

This is indeed bounded and continuous, and is sandwiched in between gx and gx+ε:

gx

x x+ ε

gx,ε
gx+ε

It follows that

P(Xn ≤ x) = Egx(Xn) ≤ Egx,ε(Xn)→ Egx,ε(X) ≤ Egx+ε(X) = F (x+ ε).

Analogously,
P(Xn ≤ x) ≥ Egx−ε,ε(Xn)→ Egx−ε,ε(X) ≥ Egx−ε(X) ≥ F (x− ε).

If F is continuous at x, then
lim
ε→0

F (x− ε) = F (x) = lim
ε→0

F (x+ ε).

Hence, P(Xn ≥ x)→ F (x), so Xn
d→ X .
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Two remarks:
The theorem can fail for unbounded g, even for g(x) = x. In other words, it is possible that Xn

d→ X but
EXn 6→ EX . In the homework, we proved that for Xn = U1 · · · · · Un, with Ui ∼ Unif(0, 2.5) i.i.d., we have
Xn → 0 almost surely (hence Xn

d→ 0, but EXn →∞).
Also, the theorem provides a definition ofXn

d→ X in the more general setup Ω
Xn,X→ S

g→ R for S-valued
random variables, where S is any topological space. This will be very important next semester, when we
talk about Brownian motion, for example.

Theorem 6.17.2 (Helly Selection). Let Fn be any sequence of distribution functions. There exists a subsequence
n1, n2, . . . and an increasing right-continuous F such that Fn → F weakly.

(See Definition 6.15.1 for the definition of weak convergence.)
(In HW 2, we showed that the functions which arise as distribution functions of some random variable

are precisely the right-continuous increasing functions with F (−∞) = 0 and F (∞) = 1.)
Note that F may not be a distribution function:

Example 6.17.3. Let Xn ∼ Exp(n). The density of Xn is given by

fn(x) =

{
1
ne
−nx if x ≥ 0

0 if x < 0

Then the distribution function is given by

Fn(x) = P(Xn ≤ x) =

∫ x

−∞
fn(x) dx =

{
1− e−nx if x ≥ 0

0 if x < 0

In this case, we don’t need to pass to a subsequence, then as n→∞we have Fn(x) is approaching

Fn(x)→

{
1− limn→∞ e−nx = 1 for all x ≥ 0

0 if x < 0

so that Fn(x)→ 1{x>0} as n→∞.
On the other hand, as n→ 0 we obtain

Fn(x)→

{
1− limn→0 e

−nx = 0 for all x ≥ 0

0 if x < 0

so that Fn(x) → 0 as n → 0. Thus, for the random variables Yn ∼ Exp( 1
n ), the increasing right-continuous

F we approach does not have the correct limits. 4

Example 6.17.4. Let Fn = a1[n,∞) +b[−n,∞) +cG, whereG is any distribution function, and a, b, c ≥ 0 satisfy
a+b+c = 1. Since Fn is right increasing, continuous, and has the correct limits, it is the distribution function
of some random variable, call it Xn. If G is the distribution of the random variable X , we have

Xn =


n with probability a
−n with probability b
X with probability c

Thus as n→∞we have Fn(x)→ b+ cG(x), and in particular Fn(∞) = b+ c < 1 if a > 0. 4

Proof of Theorem 6.17.2. Let us take an ordering Q = {q1, q2, . . . } of the rationals, and let us consider, for
each m, the number Fm(q1) ∈ [0, 1]. Since [0, 1] is compact, there is a convergent subsequence m(i), say
Fm(i)(q1)→ G(q1). There is a convergent subsubsequencem2(i) so thatFm2(i)(q2)→ G(q2); we keep passing
to convegent subsequences mk(i) to obtain values of G(qk) = limi→∞ Fmk(i)(qk).
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Now let nk = mk(k). Then for all q ∈ Q we have Fnk(q)→ G(q). Now set, for every x ∈ R,

F (x) = inf{G(q) : q ∈ Q, q > x}.

This function F is right-continuous and increasing.
We want to prove that Fn → F weakly. Let x be a continuity point of F ; for all ε > 0 there exist

r1, r2, s ∈ Q with r1 < r2 < x < s such that F (r1) ≤ F (x) ≤ F (s). [to be completed...]

Definition 6.17.5. A sequence Xn of random variables is tight if for all ε > 0 there exists Mε such that
P(|Xn| > Mε) < ε for all n. 4

Example 6.17.6. The random variables in Example 6.17.4 given by

Xn =


n with probability a
−n with probability b
X with probability c

is not tight if a > 0 or b > 0. The random variables Zn ∼ N(0, n) are not tight, either. 4

Definition 6.17.7. A sequence of distribution functions Fn is tight if for all ε > 0 there exists Mε such that
1− Fn(Mε) + Fn(−Mε) < ε for all n. 4

Note that if Xn has distribution function Fn, then

P(Xn > M) = 1− Fn(M)

P(Xn < −M) = Fn(−M)

imply P(|Xn| > M) = 1− Fn(M) + Fn(−M).

Corollary 6.17.8. Let Fn be any tight sequence of distribution functions. There exists a subsequence n1, n2, . . . and
an increasing right-continuous F with F (∞) = 1 and F (−∞) = 0 such that Fn → F weakly.

Proof. Fix ε. There exist Mε so that P(|Xn| > Mε) < ε for all n, since Fnk → F weakly by Helly Selection
(Theorem 6.17.2). Let x < −Mε and y > +M − ε be contintuity points of F . Then

1− Fnk(y) + Fnk(x)→ 1− F (y) + F (x)

as k →∞. The quantity 1− Fnk(y) + Fnk(x) is at most

1− Fnk(Mε) + Fnk(−Mε) < ε,

so 1− F (y)→ 0 as y →∞ and F (x)→ 0 as x→ −∞.

The abstract stuff is out of the way now. Next week we’ll study characteristic functions g(x) = eitx. This
will be useful for proving central limit theorems.
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6.18 Nov 4, 2019
Let’s talk about characteristic functions today.

Definition 6.18.1. The characteristic function of a real-valued (not taking values in ±∞!) random variable
X is the map ϕX : R→ C defined by

ϕX(t) = E[eitX ] = E[cos(tX) + i sin(tX)]
def
= E cos(tX)︸ ︷︷ ︸

∈R

+iE sin(tX)︸ ︷︷ ︸
∈R

.

In general, for complex-valued random variables Z : Ω→ C we may define EZ def
= E(ReZ) + iE(ImZ). 4

As an exercise (see the next HW), show that the following basic properties hold:

Proposition 6.18.2. We have

1. E|Z| ≥ |EZ|

2. E(wZ) = w(EZ) for all w ∈ C, and

3. The formula ∫ b

a

ewx dx =
ewb

w
− ewa

w

holds for all w ∈ C \ {0}.

Intuitively, the map x 7→ eitx wraps the real line around a circle, with t controlling the wrapping rate.
Thus the random variable is also wrapped around the circle, and then we take an average:

X

X but wrapped

Proposition 6.18.3. We have, for ϕ = ϕX ,

1. ϕ(0) = 1

2. ϕ(−t) = E[cos(tX)− i sin(tX)] = ϕ(t)

3. |ϕ(t)| ≤ 1 for all t ∈ R.

4. ϕ is uniformly continuous on R.

5. ϕaX+b(t) = eibtϕX(at)

6. When X and Y are independent, ϕX+Y (t) = ϕX(t)ϕY (t)

7. (Mixtures.) Suppose

X =

{
Y with probability p
Z with probability 1− p

Then ϕX = pϕY + (1− p)ϕZ .
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Proof. For part (3), we may apply Jensen’s inequality (Proposition 3.7.2) to estimate

|ϕ(t)|2 = (E cos(tX))2 + (E sin(tX))2 ≤ E(cos(tX))2 + E(sin(tX))2 = E(1) = 1.

For part (4), we estimate

|ϕ(t+ h)− ϕ(t)| = |E[ei(t+h)X − eitX ]|
≤ E|eitX(eihX − 1)|
= E(|eitX | · |eihX − 1|)
BCT−−−→ 0 as h→ 0;

here we are crucially using the fact that we’re working overC to use Bounded Convergence Theorem (Lemma 3.7.6).
For part (5), we compute

ϕaX+b(t) = Eeit(aX+b) = E(ei(at)Xeibt) = eibtϕX(at),

where we are applying Proposition 6.18.2 part (2) to eibt ∈ C.
For part (6), we compute

ϕX+Y (t) = Eeit(X+Y ) = E(eitXeitY ) = EeitX · EeitY = ϕX(t)ϕY (t)

Example 6.18.4. Let us consider X ∼ Exp(α), where α > 0 measures the rate; the density of X is given by
dµX = αe−αx1X≥0 dx, where dx denotes the Lebesgue measure. Then

ϕX(t) = E(eitX)

=

∫
R
eitx · αe−αx1x≥0 dx

= α

∫ ∞
0

ex(it−α) dx

= α

[
e(it−α)x

it− α

]x=∞

x=0

= α lim
b→∞

(
e(it−α)b

it− α
− 1

it− α

)
= − α

it− α
.

4

We’ll see how to extract information about a distribution function from a characteristic function. For
example, one might ask whether the characteristic function allows you to recover the distribution function:

Theorem 6.18.5 (Inversion Formula). Let µ be a probability distribution on R. Let

ϕ(t) =

∫
R
eitx dµ(x).

Then:

1. For all a < b, we have ∫ ∞
−∞

e−ita − e−itb

it
ϕ(t) dt = 2πµ((a, b)) + πµ({a}) + πµ({b}).
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2. Furthermore,

lim
T→∞

1

2T

∫ T

−T
e−itaϕ(t) dt = µ({a}).

A full proof of this can be found in Durrett.

Corollary 6.18.6. The characteristic function ϕX(t) determines the distribution µX .

Note that if U ∼ Unif(a, b), then its density is given by 1
b−a1(a,b). Then

ϕU (t) =

∫ b

a

eitx

b− a
dx =

[
eitx

it(b− a)

]x−b
x=a

=
eibx − eiax

it(b− a)
.

Suppose µ has a density f . In this case, we may apply Parseval’s Theorem from Fourier theory, which says:

Theorem 6.18.7 (Parseval). If X has density fX and Y has density fY , with both fX , fY ∈ L2, we have∫
ϕX(t)ϕY (t) dt =

∫
fX(t)fY (t) dt.

So we take Y = U ∼ Unif(a, b), and part (1) of the Inversion Theorem (Theorem 6.18.5) boils down to
Parseval (Theorem 6.18.7) in the case that the latter applies (in which case, µ has no atoms).

Suppose also that X has a density fX , and fX is bounded and continuous. Then

ϕX(t) =

∫ ∞
−∞

eitxfX(x) dx

is the Fourier transform of fX ; the Fourier inversion formula says

fX(x) =
1

2π

∫ ∞
−∞

e−itxϕX(t) dt.

Here’s a crucial theorem.

Theorem 6.18.8. Let Xn be a sequence of real-valued random variables, and let ϕn denote the characteristic function
ϕXn .

1. If Xn
d→ X , then ϕn(t)→ ϕ(t) for all t ∈ R, where ϕ = ϕX ;

2. If ϕn(t) → ϕ(t) for all t ∈ R, and ϕ is continuous at t = 0, then there exists a real valued random variable X
with ϕX = ϕ, and Xn

d→ X .

Often, characteristic functions are easier to work with, e.g. there are no caveats about continuity points
since characteristic functions are automatically continuous (Proposition 6.18.3 part 4), and Theorem 6.18.8
provides the translation between characteristic functions and distribution functions.

Proof of Theorem 6.18.8. For part (1), observe first that gt(x) = eitx is bounded and continuous. So ifXn
d→ X

then Egt(Xn)→ Egt(X) for all t ∈ R by Theorem 6.17.1; it suffices now to observe that ϕn(t) = Egt(Xn) and
ϕ(t) = Egt(X).

For part (2), it will be helpful to understand what can go wrong at t = 0, so let us consider the following
example.

Example 6.18.9. Let Xn ∼ N(0, n). We have Xn
d
=
√
nX1, and ϕXn(t) = ϕX1

(
√
nt) by part 5 of Proposi-

tion 6.18.3. In particular, we have

ϕXn(t) = e−(
√
nt)2/2 →

{
0 if t 6= 0

1 if t = 0

Hence the limit of the ϕXn(t) is not continuous at 0.
Roughly, the fact that ϕ is not continuous at 0 is telling us that the mass is escaping to infinity. Formally:

4
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Let us continue the proof of Theorem 6.18.8. Our claim is that if ϕ is continuous at t = 0, then {Xn} is
tight in the sense of Definition 6.17.5. If this were the case, Corollary 6.17.8 says that there exists nk so that
Xnk

d→ X . But the subsequential limit X is unique since if Xnk → X and Xmk → Y , then ϕnk → ϕ and
ϕmk → ϕ, so ϕX = ϕ = ϕY , hence X d

= Y .
It is left to show the following lemma:

Lemma 6.18.10. Suppose for all subsequences nk, there exists a subsubsequence nkj satisfying Xnkj
→ X . Then

Xn
d→ X .

One way to prove this lemma is to show that convergence in distribution comes from a metric; conver-
gence in metric spaces all satisfy Lemma 6.18.10. Another way of proving it is as follows:

Proof of Lemma 6.18.10. We have Eg(Xnkj
) → Eg(X) for all bounded continuous g. Thus Eg(Xn) → Eg(X)

for all bounded continuous g, because convergence in real numbers indeed comes from a metric [i.e., we
may apply the fact that for real numbers {an}, if for every subsequence ank there exists a subsubsequence
ankj → a, then an → a, since convergence in R comes from a metric]. Then Theorem 6.17.1 implies Xn

d→
X .

Proof 2 of Lemma 6.18.10. Use the fact that Xn
d→ X if and only if W (Xn, X) → 0, where where W denotes

the Wasserstein metric.

This completes the proof of Theorem 6.18.8.
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6.19 Nov 6, 2019
We will prove our first central limit theorem today.
Our first task is to understand the moments E|X|n in terms of ϕX(t) = EeitX .
Suppose E|X| <∞, and ϕ′(0) exists, and furthermore that ϕ′ is continuous at zero. Recall that

ϕX(t) =

∫
R
eitx dµ(x) where µ = µX ,

hence
d

dt
=

∫
R

d

dt
[eitx] dµ(x) =

∫
(ix)eitx dµ(x).

Hence
ϕ′X(0) =

∫
R
(ix) dµ(x) = iEX.

Likewise if EX2 <∞, and ϕ is nice enough, we have

ϕ′′X(t) =

∫
R

d2

dt2
[eitx] dµ(x) =

∫
R

(ix)2eitx dµ(x),

hence as above
ϕ′′X(0) = −EX2.

In general, if E|X|n <∞ then ϕ(n)
X is continuous at t = 0 and ϕ(n)

X (0) = E(iX)n.

Dictionary 6.19.1. Strengthening the analogy with Fourier theory,

Decay:
∫
|x|n dµ(x) <∞ =⇒ Smoothness: ϕ(n)(0) exists and is continuous

Smoothness: there is f so that µ((a, b)) =

∫ b

a

f(x) dx ⇐= Decay:
∫
|ϕ(t)| <∞

Decay: {µn} tight ⇐= Smoothness: ϕn → ϕ,ϕ continuous at 0

Decay:
∫
x2 dµ(x) <∞ ⇐= Smoothness: ϕ′′(0) > −∞. (9)

Equation (9) will be particularly useful for us, so we prove it here.

Proof of Equation (9). We supposed that

ϕ′′X(0) = lim
h→0

ϕ(h)− 2ϕ(0) + ϕ(−h)

h2
> −∞.

Note that
eihx − 2 + e−ihx

h2
=
−2(1− coshx)

h2
→ −2(hx)2/2

h2
= −x2

as h→∞. (Here we used a Taylor series for cos.)
Now Fatou’s Lemma (Lemma 3.7.5) says [Edit, Dec 7: this seems to say that the second moment is some-

times bounded by a negative number.]∫
x2 dµ(x) ≤ lim inf

h→0

∫ (
2(1− coshx)

h2

)
dµ(x) = − lim sup

h→0

ϕ(h)− 2ϕ(0) + ϕ(−h)

h2
<∞.

Sort of a converse to above is
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Lemma 6.19.2. If E|X|2 <∞, then

ϕX(t) = 1 + it(EX)− t2EX
2

2
+ o(t2),

where o(t2)/t2 → 0 as t→ 0.

Proof. We Taylor expand around t = 0:∣∣∣∣eiθ − (1 + iθ +
(iθ)2

2

)∣∣∣∣ ≤ min

(
|θ|
6
, |θ|2

)
,

note that we should take care not to assume that X has a third moment. Setting θ = tX , we see

E
∣∣∣∣eitX − (1− itX +

(itX)2

2

)∣∣∣∣ ≤ Emin

(
|tX|3

6
, |tX|2

)
Let us denote by Mt the minimum min( |tX|

3

6 , |tX|2). We obtain

|ϕX(t)− 1 + itEX − t2(EX2)|
t2

≤ E
(
Mt

t2

)
;

we’d like to show that E(Mt/t
2)→ 0 as t→ 0, as the lemma asks for. We have

Mt

t2
= min

(
|tX3|

6
, X2

)
≤ |tX

3|
6
→ 0 (pointwise, as RVs), as t→ 0.

Since Mt/t
2 is dominated by X2, and EX2 < ∞, we may apply the Dominated Convergence Theorem

(Theorem 3.8.2) to obtain

E
(
Mt

t2

)
→ 0.

Theorem 6.19.3 (Central Limit Theorem). LetX1, X2, . . . be i.i.d. random variables withEX1 = µ, and Var(X1) =
σ2. Let Sn = X1 + · · ·+Xn. Then

Sn − µn
σ
√
n

d→ Z ∼ N(0, 1).

Proof. We may assume µ = 0 since we can apply the µ = 0 case to X ′n
def
= Xn − µ. Recall that part 6

of Proposition 6.18.3 says that characteristics multiply, and that convergence of characteristic functions are
related to convergence in distribution (Theorem 6.18.8); hence characteristic functions are built to useful for
us in this kind of situation.

Specifically, observe that

ϕX1
(t) = 1 + it(EX1)︸ ︷︷ ︸

=0

−t2EX
2
1

2
+ o(t2) = 1− σ2

2
t2 + o(t2),

hence by i.i.d.-ness
ϕSn(t) = ϕX1

(t) . . . ϕXn(t) = ϕX1
(t)n.

In part 5 of Proposition 6.18.3 we showed that ϕaX(t) = ϕX(at), so

ϕSn/(σ
√
n)(t) = ϕSn

(
t

σ
√
n

)
=

(
1− σ2

2

(
t

σ
√
n

)2

+ o

(
t

σ
√
n

)2)n
=

(
1 +

t2

2n
+ o

(
t2

n

))n
= (1− cn)n, where ncn → t2/2 as n→∞
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where in the last equality we used the fact that for fixed t and n→∞, the quantity t/(σ
√
n)→ 0, hence the

error goes to zero as well. As n→∞, we obtain

ϕSn/(σ
√
n)(t)→ e−it

2/2 = ϕZ(t)

as n→∞.

Suppose we had a triangular array of random variables {Xij}1≤j≤i≤n, perhaps arranged as follows:

X11

X21 X22

X31 X32 X33

...
...

...
. . .

Xn1 . . . . . . . . . Xnn

Let Sn = Xn1 + · · · + Xnn. Assume {Xnm}nm=1 are independent (but not necessarily i.i.d.!), and that
E(Xnm) = 0. We have

Theorem 6.19.4 (Lindeberg-Feller Central Limit Theorem). Suppose

n∑
m=1

EX2
n,m → σ2 as n→∞, (10)

and
n∑

m=1

E(X2
nm1{|Xnm|>ε})→ 0 as n→∞ for all ε > 0. (11)

Then Sn
d→ σZ ∼ N(0, σ2) as n→∞.

If Y1, Y2, . . . are i.i.d. with EY1 = 0 and EY 2
1 = σ2, then we can take Xn,m = Ym/

√
n; this will satisfy the

conditions of the theorem. (Check that this satisfies condition (11)!)

Proof of Theorem 6.19.4. Let ϕn,m(t) = EeitXn,m . It is enough to show that

ϕSn(t) =

n∏
m=1

ϕn,m(t)→ e−t
2σ2/2 = ϕσZ(t)

for all t. To show this, we compute∣∣∣∣ϕnm(t)−
(

1−
t2σ2

n,m

2

)∣∣∣∣ ≤ Emin(|tXnm|3, |tXnm|2)

≤ Emin(|tXnm|31{|Xnm|≤ε}, |tXnm|21{|Xnm|>ε})
≤ E(|tXnm|31{|Xnm|≤ε} + |tXnm|21{|Xnm|>ε})
≤ εtE(tXnm)2 + t2E(X2

nm1{|Xnm|>ε}).

We can sum
n∑

m=1

∣∣∣∣ϕnm(t)−
(

1− t2σ2
nm

2

)∣∣∣∣ ≤ εt3σ2︸ ︷︷ ︸
by (10)

+t2 · (something going to zero)︸ ︷︷ ︸
by (11)

.

(Proof to be continued.)
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6.20 Nov 11, 2019
[Prof Levine will be gone later this week. There is no class on Wednesday and no OH on Thursday. There

will be an extra class on Friday, Nov 22, at 8:40. Room details coming soon. Logistical homework details
also coming up soon.]

We were in the middle of the proof of the Lindeberg-Feller CLT (Theorem 6.19.4), rephrased below for
convenience:

Theorem 6.20.1 (Lindeberg-Feller Central Limit Theorem; cf. Theorem 6.19.4). Let (Xnm)1≤m≤n be a (trian-
gular) array of random variables. Suppose EXnm = 0, and that the rows of this array, {Xnm}nm=1 are independent.
Suppose further that

n∑
m=1

EX2
nm → σ2 as n→∞, (12)

and
n∑

m=1

E(X2
nm1{|Xnm|>ε})→ 0 as n→∞ for all ε > 0. (13)

Let Sn = Xn1 + · · ·+Xnn. Then Sn
d→ N(0, σ2).

Proof. We were considering the characteristic functions ϕnm(t) = E(eiXnmt) of Xnm. Taking Taylor expan-
sions, we saw that

ϕnm(t) = 1− t2σ2
nm

2
+ o(t2) as t→ 0,

where σ2
nm = E(X2

nm). We saw that the hypotheses (12) and (13) implied that
n∑

m=1

∣∣∣∣ϕnm(t)−
(

1− t2σ2
nm

2

)∣∣∣∣→ 0 as n→∞.

Aside 6.20.2. If zi, wi ∈ C with |zi|, |wi| ≤ 1, then∣∣∣∣ n∏
i=1

zi −
n∏
i=1

wi

∣∣∣∣ ≤ n∑
i=1

|zi − wi|.

One can prove this by induction on n and using triangle inequality, since∣∣∣∣ n∏
i=1

zi −
n∏
i=1

wi

∣∣∣∣ =

∣∣∣∣ n∏
i=1

zi − z1w2 . . . wn + z1w2 . . . wn −
n∏
i=1

wi

∣∣∣∣ ≤ |z1|︸︷︷︸
≤1

·
∣∣∣∣ n∏
i=2

zi −
n∏
i=2

wi

∣∣∣∣+ |z1 − w1| ·
∣∣∣∣ n∏
i=2

wi

∣∣∣∣︸ ︷︷ ︸
≤1

so induction gives the desired conclusion. 4

Let us take zm = ϕnm(t) and wm = 1 − t2σ2
nm

2 and apply Aside 6.20.2. Note that |zm| ≤ 1. To see that
|wm| ≤ 1, note that

σ2
nm = E(X2

nm) = E(X2
nm1{|Xnm|>ε})︸ ︷︷ ︸

→0

+E(X2
nm1{|Xnm|≤ε})︸ ︷︷ ︸
≤ε2

,

hence
max

1≤m≤n
(σ2
nm)→ 0 as n→∞.

So for sufficiently large n, we have |wm| ≤ 1. By Aside 6.20.2, we obtain∣∣∣∣ n∏
m=1

ϕmn(t)−
n∏

m=1

(
1− σ2

nmt
2

2

)∣∣∣∣ ≤ n∑
m=1

∣∣∣∣ϕnm(t)−
(

1− σ2
nmt

2

2

)∣∣∣∣→ 0.

We now apply
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Lemma 6.20.3. If cnm ∈ R, with max1≤m≤n(cnm)→ 0 and
∑n
m=1 cnm → λ as n→∞, then

n∏
m=1

(1− cnm)→ e−λ.

(We’ve seen variations of this lemma before, cf. the computation in Example 6.16.6.) We apply Lemma 6.20.3
with cnm =

σ2
nmt

2

2 ; observe that the conditions required to apply Lemma 6.20.3 hold. We obtain
n∏

m=1

(
1− t2σ2

nm

2

)
→ e−t

2σ2/2 = ϕZ(t),

for Z ∼ N(0, σ2).

One can think of Central Limit Theorems as second-order corrections to laws of large numbers. (This is
made precise in the example below.)

Example 6.20.4 (Records in i.i.d. sequences; cf. Example 5.14.5). Consider i.i.d. random variables {Un}n≥1,
with Ui ∼ Unif(0, 1). Let

Yn = 1{Un>max{U1,...,Un−1}} =

{
1 with probability 1/n

0 with probability 1− 1/n
.

Let Sn = Y1 + · · ·+ Yn count the number of records up to time n. We saw in Example 5.14.5 that the strong
law of large numbers says

Sn
log n

→ 1 a.s.,

or in other words that Sn = log n+Rn withRn/ log n→ 0 almost surely. Central limit theorems are second-
order corrections to laws of large numbers in the sense that they tell us about the Rn term.

We have

var(Sn) =

n∑
i=1

var(Yi) =

n∑
m=1

(EY 2
m − (EYm)2) =

n∑
m=1

(
1

m
−
(

1

m

)2)
∼ log n.

Let us define, for 1 ≤ m ≤ n, the random variables

Xnm =
Ym − 1

m√
log n

.

By construction we have EXnm = 0 and
n∑

m=1

E(X2
nm) =

n∑
m=1

var(Ym)

log n
→ 1;

furthermore, for n sufficiently large, the set {|Xnm| > ε}will have measure zero, and
n∑

m=1

E(X2
nm1{|Xnm|>ε}) = 0

for all sufficiently large n. We have verified the conditions to apply Theorem 6.20.1, which says that
n∑

m=1

Xnm
d→ N(0, 1).

On the other hand, we see that
n∑

m=1

Xnm =

∑n
m=1 Ym −

∑n
m=1

1
m√

log n

d→ N(0, 1).
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We see that the number of records is

Sn =

(
1 +

1

2
+ · · ·+ 1

n

)
︸ ︷︷ ︸

≈logn

+Rn,

where Rn is asymptotically normal with standard deviation
√

log n.
This is a pretty typical situation: there is a main term which is deterministic, and there is an error term

which is a random variable on the order of the square root of the main term. 4

Example 6.20.5 (cf. (HW 6, Ex 2)). Let Un ∼ Unif(0, 1) be i.i.d. random variables. Let Xn = U1 . . . Un be the
product of the Ui, and let

Sn = logXn =

n∑
m=1

logUm.

Set Lm
def
= logUm. We see that

EL1 =

∫ b

0

1

b
log x dx =

1

b
[x(log x− 1)]b0 = log b− 1.

The strong law of large numbers says that

Sn
n
→ log b− 1 a.s..

In particular if b < e = 2.712... then log b− 1 < 0, so

Sn → −∞ a.s..

In particular, Xn = eSn → 0 almost surely, even though

E(Xn) = (EU1) . . . (EUn) =

(
b

2

)n
→∞ whenever b > 2.

The simultaneous almost sure convergence Xn → 0 and convergence of numbers E(Xn) → ∞ when 2 <
b < e is explained by the fact that Xn very rarely takes astronomically large values.

With the central limit theorem, we can get more refined information. Note that

EL2
1 =

∫ b

0

1

b
(log x)2 dx = (log b− 1)2 + 1,

hence var(L1) = 1. The central limit theorem then says

logXn − n(log b− 1)√
n

d→ N(0, 1).

In the case b = 2.5 and n = 1000, we are in the setting of Exercise 2(c). We see that log b− 1 ≈ −0.084, hence
that n(log b− 1) ≈ −84.

E(X1000) =

(
b

2

)1000

= (1.25)1000,

which is huge. But

P (X1000 > 1000) = P (logX1000 > log 1000) ≈ P
(

logX1000 − (−84)√
1000︸ ︷︷ ︸

≈N(0,1)

>
7− (−84)√

1000︸ ︷︷ ︸
≈2.88

)
≈ P (Z > 2.88),

where Z ∼ N(0, 1). This is extremely unlikely!
We will hopefully get to talk about the Berry-Esseen theorem, which makes precise how quickly the CLT

random variables converge to the normal distribution. 4

In the near future we’ll talk about multivariate normal distributions and CLT for random vectors.
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6.21 Nov 18, 2019
We’ll talk about the multivariate normal distribution today.

Definition 6.21.1. The random variables X = (X1, . . . , Xm) are multivariate normal (sometimes called
MVN, jointly normal, Gaussian) if for every t = (t1, . . . , tm) ∈ Rm, the distribution

t ·X = t1X1 + · · ·+ tmXm

has a normal distribution N(µt, σ
2
t ). 4

Note that µt = t · EX. We also allow σ2
t = 0.

Example 6.21.2. Let Y, Z be independentN(0, 1) random variables. ThenX = (2Y +Z, 5Z−3Y ) is Gaussian.
4

Example 6.21.3. Let X2 = X1ξ with X1 ∼ N(0, 1) and

ξ =

{
+1 with probability 1/2

−1 with probability 1/2

Then X2 ∼ N(0, 1) as well, and yet (X1, X2) is not Gaussian, since

P(X1 = X2) = P(ξ = 1) =
1

2
,

hence P(X1 −X2 = 0) = 1
2 . In particular, X1 −X2 does not have a normal distribution. 4

Example 6.21.4. Consider (X1, X1), where X1 ∼ N(0, 1). We want to call this Gaussian, but σ2
(1,−1) = 0.

(This is why we allow σ2
t = 0.) 4

If (X1, . . . , Xm) is Gaussian, then so is (X1 − EX1, . . . , Xm − EXm). Thus we may assume EXi = 0 for
all i. Now we may write

E((t ·X)(u ·X)) = E
( m∑
i=1

(tiXi)

m∑
j=1

(ujXj)

)
=

m∑
i,j=1

tiujE(XiXj). (14)

This quantity should feel like a quadratic form. Indeed, we can write

m∑
i,j=1

tiujE(XiXj) =
[
t1 . . . tm

]
Γ

u1

...
um

 , where
{

Γ = (Γij)i,j∈[m]

Γij = E(XiXj)

here Γ is called the covariance matrix of X .

Definition 6.21.5. Consider a random vector X = (X1, . . . , Xm) : Ω → Rm. Its characteristic function is
defined to be

ϕX(t1, . . . , tm) = Eei(t·X). 4

Fact 6.21.6 (Cramér-Wold Theorem). There is an inversion formula, which implies that if ϕX(t) = ϕY(t) for all
t ∈ Rm, then X

d
= Y. In particular, if t ·X d

= t ·Y for all t ∈ Rm, then X
d
= Y.

(Note that the hypothesis consists of infinitely many equalities of random variables, whereas the conclu-
sion is an equality of joint random variables!)

Lemma 6.21.7. If X and Y are Gaussian, with EXi = EYi and E(XiXj) = E(YiYj) for all i, j then X
d
= Y.

Proof. We saw in Equation (14) that t ·X ∼ N(0, tTΓt), where Γ is the covariance matrix. Similarly, t ·Y ∼
N(0, tTΓt). It follows that X d

= Y, by Fact 6.21.6.
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Which matrices Γ can arise as covariance matrices? Well, observe that

0 ≤ E((t ·X)2) = tTΓt,

so Γ is positive-semidefinite. In particular it is symmetric and has nonnegative eigenvalues; we may diago-
nalize and write

Γ = UTV U,

with U an orthogonalm×mmatrix and V is a diagonal matrix with nonnegative entries. The nonnegativity
of the entries of

V =

λ1 . . . 0
...

. . . 0
0 0 λm


allows us to decompose further V = WTW , where W = WT is a diagonal matrix with

√
λi on the ith row

and column. Thus can write
Γ = UTWTWU = ATA.

[Everything here is equivalent, i.e. for any matrix A, the matrix ATA is positive-semidefinite.] This proves
the first half of the following result:

Proposition 6.21.8. The covariance matrix Γ = ATA is positive-semidefinite. Conversely, if Γ = ATA for some A,
there exist (Y1, . . . , Ym) ∼ N(0,Γ).

Proof. Let X = (X1, . . . , Xm) be a vector of independent N(0, 1) random variables. Let Y = XA. We can
check that

t ·Y = (t ·XA) =
∑
i

ti
∑
j

XjAji =
∑
j

Xj

m∑
i=1

(tiAji) ∼ N(0, σ2),

where σ2 =
∑
j

(∑m
i=1(tiAji)

)2

= tTATAt = tTΓt.

We define weak convergence of random vectors as follows. Let Xn = (X1
n, . . . , X

m
n ) : Ω→ Rm. Define

FX(x) = P(X1 ≤ x1, . . . , Xm ≤ xm).

We have

Theorem 6.21.9. The following are equivalent:

1. FXn
(x)→ FX(x) at all continuity points of FX.

2. Eg(Xn)→ Eg(X) for all bounded continuous g : Rm → R, and

3. ϕXn
(t)→ ϕX(t) for all t ∈ Rm.

From this theorem we can obtain a central limit theorem for i.i.d. random vectors.

Theorem 6.21.10 (CLT for i.i.d. random vectors). Let X1,X2, . . . : Ω → Rm, and let EX1 = µ ∈ Rm. Assume
E(Xi

1)2 <∞ for all i = 1, . . . ,m. Define Γij = E((Xi
1 − µi)(X

j
1 − µj)) and Sn = X1 + · · ·+ Xn. Then

Sn − nµ√
n

d→ N(0,Γ).

Proof. By replacing Xn with Xn − µ if necessary, we may assume µ = 0. For χ ∼ N(0,Γ), we write ϕχ(t) =

exp(− tTΓt
2 ). It suffices to prove t · Xn

d→ t · χ for all t ∈ Rm, by Fact 6.21.6. Indeed, let us consider
Yn = t · Xn. Then Y1, Y2, . . . are i.i.d. mean 0 and variance tTΓt. The usual 1-dimensional Central Limit
Theorem (Theorem 6.19.3) says that

Y1 + · · ·+ Yn√
n

d→ N(0, tTΓt) ∼ t · χ.
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Example 6.21.11. Let us consider a simple random walk on Z2 given by

Sn = (Xn, Yn) =

n∑
i=1

ξi,

where ξi are independent random variables taking the values (1, 0), (−1, 0), (0, 1), (0,−1) each with proba-
bility 1/4. We obtain

Eξi =
1

4
(1, 00) +

1

4
(−1, 0) +

1

4
(0, 1) +

1

4
(0,−1) = (0, 0),

and
Γ22 = Γ11 = E(ξ1

i )2 =
1

4
12 +

1

4
(−1)2 +

1

2
(0)2 =

1

2
,

and furthermore
Γ12 = E(ξ1

i ξ
2
i ) = 0.

Hence
Γ =

1

2
I =

[
1
2 0
0 1

2

]
.

The central limit theorem (Theorem 6.21.10) says that Sn/
√
n

d→ N(0, 1
2I). Note that the limit is rotationally

invariant, even though our grid is not rotationally invariant. [(!)] Indeed, the density of N(0, 1
2I) is equal to

e−x
2 · e−y2

(
√

2πσ2)2
=
e−(x2+y2)

2πσ2
,

where for us σ = 1
2 . This density depends only on the distance to the origin, so it is rotationally invariant. 4

The normal distribution is an extremely pervasive limiting distribution. Roughly, the CLT says that if
you add together a large number of small contributions and normalize accordingly, the limiting distribution
is normal.

An important non-normal limit distribution is the Poisson distribution. Roughly, the Poisson distribution
is obtained by adding together a small number of large contributions. We sayZ ∼ Pois(λ) ifP(Z = k) = λk

eλk!
.

Theorem 6.21.12. Given a triangular array {Xnm}1≤m≤n with each row {Xnm}nm=1 independent, write

Xnm =

{
1 with probability pnm
0 with probability 1− pnm

and define Sn = Xn1 + · · ·+Xnn. Suppose that

1. ESn = pn1 + · · ·+ pnn → λ ∈ (0,∞) as n→∞,

2. max{pn1, . . . , pnn} → 0.

Then Sn
d→ Z ∼ Pois(λ).

Example 6.21.13 (Balls in boxes). Let us consider dropping n balls in b boxes, with b = n/λ. Let

Xnm = 1{ballm lands in box 1}.

Define

Sn =

n∑
m=1

Xnm = #{balls in box 1}.

Then observe that

P(Sn = k)

(
n

k

)(
λ

n

)k(
1− λ

n

)n−k
∼ Bin

(
n,
λ

n

)
.

Since Bin(n, λn )
d→ Pois(λ) as n→∞. 4
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6.22 Nov 20, 2019
Last time we were talking about the Poisson distribution. By definition, a random variable Z ∼ Pois(λ)

satisfies P(Z = k) = λk

k!eλ
for k ∈ N = {0, 1, 2, . . . }.

Its characteristic function is

ϕZ(t) = EeitZ =
∑
k≥0

P(Z = k)eitk =
∑
k≥0

λk

k!eλ
= e−λ

∑
k≥0

(λeit)k

k!
= e−λeλit = eλ(eit−1).

We had stated Theorem 6.21.12, restated here for convenience:

Theorem 6.22.1 (cf. Theorem 6.21.12). Given a triangular array {Xnm}1≤m≤n with each row {Xnm}nm=1 inde-
pendent, write

Xnm =

{
1 with probability pnm
0 with probability 1− pnm

and define Sn = Xn1 + · · ·+Xnn. Suppose that

ESn = pn1 + · · ·+ pnn → λ ∈ (0,∞) as n→∞, (15)

and that
max{pn1, . . . , pnn} → 0. (16)

Then Sn
d→ Z ∼ Pois(λ).

This theorem formalizes the fact that the Poisson distribution is obtained by adding together a small
number of large contributions. (We’re adding a bunch of random variables, most of which are zero)

Proof of Theorem 6.22.1. Let us compute

ϕSn(t) =

n∏
m=1

((1− pnm)e0 + pnme
it) =

n∏
m=1

(1 + pnm(eit − 1)).

Note that if |w| ≤ 1 then
|ew − (1 + w)| < |w|2, (17)

since ∣∣∣∣w2

2
+
w3

6
+
w4

24
+ . . .

∣∣∣∣ ≤ ∣∣∣∣w2

2

∣∣∣∣+

∣∣∣∣w3

6

∣∣∣∣+ · · · ≤
(

1

2
+

1

6
+ . . .

)
|w|2.

We can use Equation (17) to estimate the difference

|ϕSn(t)− e(ESn)(eit−1)| =
∣∣∣∣ n∏
m=1

(1 + pnm(eit − 1))−
n∏

m=1

epnm(eit−1)

∣∣∣∣ ≤ n∑
m=1

|1 + pnm(eit − 1)− epnm(eit−1)|,

where the inequality is Aside 6.20.2 from the proof of the central limit theorem. Setting w = pnm(eit − 1) in
Equation (17) we obtain

n∑
m=1

|1 + pnm(eit − 1)− epnm(eit−1)| ≤
n∑

m=1

|pnm(eit − 1)|2 ≤ 4

n∑
m=1

p2
nm ≤ 4(max

m
(pnm))

n∑
m=1

pnm → 0

as n→∞ by condition (16). (To apply Equation (17) we need |pnm(eit− 1)| ≤ 1, but if we take n sufficiently
large that maxm pnm ≤ 1

2 then we’re good.)
With the estimation

|ϕSn(t)− e(ESn)(eit−1)| → 0,

we can write
|ϕSn(t)− eλ(eit−1)| ≤ |ϕSn(t)− e(ESn)(eit−1)|+ |e(ESn)(eit−1) − eλ(eit−1)|︸ ︷︷ ︸

→0 by condition (15)

.
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Example 6.22.2. Let U1, . . . , Un ∼ Unif(−n, n) be independent random variables. Let Xnm = 1Um∈(a,b) for
fixed a, b. Observe that pnm = b−a

2n → 0. Let Sn = Xn1+· · ·+Xnn = #({U1, . . . , Un}∩(a, b)). Theorem 6.22.1
says that Sn

d→ Pois(pn1 + · · · + pnn) = Pois( b−a2 ). Let’s give a conceptual explanation for this. We begin
with

Lemma 6.22.3. Let N1 ∼ Pois(λ1) and N2 ∼ Pois(λ2) be independent random variables. Then N1 + N2 ∼
Pois(λ1 + λ2).

Proof. Note that
ϕN1+N2

= ϕN1
(t)ϕN2

(t) = eλ1(eit−1)eλ2(eit−1) = e(λ1+λ2)(eit−1),

hence that N1 +N2 ∼ Pois(λ1 + λ2). 4

This should not be surprising: if you want to count the number #({U1, . . . , Un} ∩ (a, b)) and you had a
partition [n] = S1 t S2, then you can count #({Ui}i∈S1

∩ (a, b)) and #({Ui}i∈S2
∩ (a, b)) and add them.

We’ll show in the next homework more generally that if N1, N2, . . . are independent and Ni ∼ Pois(λi)
with

∑
i≥1 λi <∞, then N1 +N2 + · · · ∼ Pois(

∑
i≥1 λi).

Thus to conceptualize this example, one can try to make a statement that the Poisson distribution is the
unique distribution supported on the integers having this additivity property. 4

Theorem-Definition 6.22.4. A Poisson point process on a σ-finite measure space (S,F , µ) is a collection of random
variables (N(A))A∈F such that N(A) ∼ Pois(µ(A)) and if A1, . . . , Ak are disjoint then N(A1), . . . , N(Ak) are
independent.

It’s not clear at all that these exist (that’s the “theorem” part of this).
Here’s how to construct a Poisson point process (P.P.P.) of intensity µ (Lebesgue measure) on R>0 =

(0,∞). Let X1, X2, . . . be independent Exp(1) random variables and let Tn = X1 + · · ·+Xn. Think of Ti as
living on R>0 where their differences are independent Exp(1) random variables, as below:

T1 T2 T3 T4 T5

Exp(1)Exp(1)

Let N(A) = #(A ∩ {T1, T2, . . . }). The claim is that these N(A)’s are a P.P.P. This is not so easy to prove, but
the key to proving this is the memoryless property of the Exp(1) distribution, that says P(Xi > s + t|Xi >
s) = P(Xi > t) for all s, t > 0.

There is a related notion of a Poisson process defined by

N(t)
def
= N((0, t]) = #{n : Tn ≤ t}. (18)

Thus the graph of N(t) may look like

T1 T2 T3 T4 T5

N(t)

This process has the Markov property, which says that (N(s+ t)−N(s))t≥0
d
= (N(t))t≥0 and is independent

of (N(u))u<s. This also uses the fact that Exp(1) is memoryless.
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The density of T1 ∼ Exp(1) is f1(t) = e−t for t ≥ 0. The density of T2 = X1 + X2, with Xi ∼ Exp(1)
independent, is

f2(t) =

∫ ∞
−∞

fX1
(s)fX2

(t− s) ds =

∫ t

0

e−se−(t−s) ds = te−t.

Similarly, the density of Tn = X1 + · · ·+Xn, with each Xi ∼ Exp(1) independent, is fn(t) = tn−1

(n−1)!e
−t; this

is called a Gamma(n, 1) density. With the observation that Tn+1 = Tn +Xn+1, we can compute

P(N(t) = n) = P(Tn ≤ t < Tn+1) =

∫ t

0

fTn(s)P(Xn+1 > t− s) ds

=

∫ t

0

sn−1

(n− 1)!
e−se−(t−s) ds =

e−t

(n− 1)!

∫ t

0

sn−1 ds =
tn

n!et
,

hence N(t) ∼ Pois(t).
Note also that if X1, X2, · · · ∼ Exp(λ), then Xn = Yn

λ with Yn ∼ Exp(1). Hence N(t) ∼ Pois(λt).
Let us briefly sketch how to construct a Poisson point process on a generalσ-finite measure space (S,F , µ).

Take S = R2 with the Lebesgue measure, for example. Roughly, we’re going to throw points randomly into
S = R2 and for A ⊆ S the random variable N(A) will count the number of points there. More precisely, let

S =
⊔
n≥0

Sn, µ(Sn) <∞.

Pick Nn ∼ Pois(µ(Sn)) independent, and pick Nn points Xn,1, . . . , Xn,Nn uniformly at random from Sn.
Then we set

N(A) = #

(
A ∩

⋃
n

{Xn,1, . . . , Xn,Nn}
)
.

The claim is that this works. We’d need to prove that N(A) ∼ Pois(µ(A)) and that if A1, . . . Ak are disjoint
thenN(Ai) are independent. Ultimately, though, the proof of this result follows from Lemma 6.22.3 and the
following lemma:

Lemma 6.22.5 (Thinning lemma). Take a Poisson point process of intensityµ, and cross out each point independently
with probability p. The result is again a Poisson point process, but with intensity (1− p)µ.

There are some miracles happening, e.g. that this construction doesn’t depend on the decomposition
S = tSn.
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6.23 Nov 22, 2019
[We’ll have one more homework, due Monday, Dec 9. We’ll get takehome finals that Monday Dec 9, and

we’ll have 48 hours to do it (i.e. it will be due Wednesday, Dec 11).]
We’ve seen normal distributions as sums of i.i.d.s (Theorem 6.19.3), and Poisson distributions as sums

of Bernoullis (Theorem 6.22.1).
Specifically, the Central Limit Theorem (Theorem 6.19.3) says that if Xi are i.i.d. random variables with

finite variance and Sn = X1 + · · ·+Xn, then

Xn − nµ
σ
√
n

d→ N(0, 1).

We will be able to say something about the case EX2
1 = ∞. Thus our goal is to find hypotheses on Xi and

sequences an, bn so that
Sn − bn
an

d→ Y,

for some nontrivial limit Y (i.e., not∞, and not an a.s. constant).

Definition 6.23.1. The random variable Y is called stable if there exists a sequence an, bn such that for all n,

Y
d
=
Y1 + · · ·+ Yn − bn

an

for all n, where Y1, Y2, . . . are independent and identically distributed to Y . 4

Lemma 6.23.2. The random variable Y arises as a limit of X1+···+Xn−an
bn

for i.i.d. Xi if and only if Y is stable.

If Y is stable we can pickXi to be i.i.d. to Y . The backward direction follows from groupingX1 + · · ·+Xn

into
X1 + · · ·+Xn = (X1 + · · ·+Xk) + (Xk+1 + · · ·+X2k) + . . .

and the sending n and k to infinity, but tactfully.
The simplest case of this is the symmetric α-stable case:

Definition 6.23.3. The stable random variable Y is called symmetric α-stable if bn = 0 and an = n1/α. In
other words,

Y1 + · · ·+ Yn
n1/α

d
= Y1. 4

For α = 2, the normal distribution N(0, σ2) is a familiar example.
For α = 1, we have

Y1 + · · ·+ Yn
n

d
= Y1.

On the characteristic function side, we see that any such random variable satisfies

ϕ(t/n)n = ϕ(t). (19)

Thus, characteristic function ϕ(t) = e−c|t| satisfies Equation (19); if it comes from a random variable Y then
Y is symmetric 1-stable. Luckily, we have the inverse Fourier transform (cf. Theorem 6.18.5 – but not exactly):
if ϕ is the characteristic function of a random variable with density f , then

f(y) =
1

2π

∫ ∞
−∞

ϕ(t)e−ity dt =
1

2π

(∫ ∞
0

e−ct−ity dt+

∫ 0

−∞
e+ct−ity dt

)
. (20)

We can take c = 1 now, since the general case will follow from scaling considerations. Thus we simplify
Equation (20) to

1

2π

∫ ∞
0

e−t(1+iy) dt+
1

2π

∫ ∞
0

e−t(1−iy) dt =
1

2π

(
1

1 + iy
+

1

1− iy

)
=

1

π

1

1 + y2
.
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Thus we’ve obtained the standard symmetric Cauchy density. Note that this is heavy-tailed (e.g., the random
variable corresponding to this density doesn’t have a well defined mean). Regardless, there is still a random
variable having the Cauchy density as its distribution, and if Y is such a random variable then it satisfies
ϕY = e−|t|, hence ϕcY = e−c|t|.

A symmetric α-stable random variable Y having characteristic function

ϕY (t) = e−c|t|
α

exists for any 0 < α ≤ 2. Specifically, for a fixed 0 < α < 2, we have:

Theorem 6.23.4. LetX1, X2, . . . be i.i.d. withP(X1 > x) = P(X1 < −x) = 1
2xα forx ≥ 1. LetSn = X1+· · ·+Xn.

Then
Sn
n1/α

d→ Y,

where Y is symmetric α-stable. Furthermore, ϕY (t) = e−C|t|
α where C is the constant so that

ϕX1(t) = 1− C|t|α + o(|t|α)

as t→ 0.

Proof idea. Only a few big Xi values matter (the Xi are heavy tailed, so there will be a few large values); we
can drop the small Xi values without much loss. Here, “big” means x so that 1

2xα = 1
n , i.e. x ∼ n1/α. We

compute
P(X1 > an1/α) =

1

2
a−α · 1

n

and hence
P
(
a <

X1

n1/α
< b

)
=

1

2
(b−α − a−α) · 1

n
.

We are in the situation of the balls in boxes example (Example 6.21.13). Specifically, the random variables
Nn(a, b) defined by

Nn(a, b)
def
= #

{
1 ≤ m ≤ n : a <

Xm

n1/α
< b

}
have a limit

Nn(a, b)
d→ Pois

(
1

2
(b−α − a−α)

)
.

Fix an ε and throw away all Xi such that |Xi| < ε ≤ εn1/α. The rest are distributed like a Poisson Point
Process with mean measure

µ(a, b) =
1

2
(b−α − a−α).

So there are two things to check. Writing Sn = S̃n+Sn, where S̃n is the sum of the bigXi and Sn is the sum
of the small Xi, we need to check that

Sn
n1/α

d→ 0 and that S̃n
n1/α

d→ Y.

Definition 6.23.5. A function L : R+ → R+ is slowly varying if for all t > 0 we have

L(tx)

L(x)
→ 1 as x→∞. 4

The classic example is L(x) = log x. The following result, which we’ll state without proof, holds:
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Theorem 6.23.6. If X1, X2, . . . are i.i.d., satisfying

lim
x→∞

P(X1 > x)

P(|X1| > x)
= θ

and
P(|Xi| > x) =

L(x)

xα
,

for a slowly varying L and some 0 < α < 2. Then

Sn − bn
an

d→ Y

where Y is a nontrivial stable random variable. Here,

an = inf

{
x : P(|Xi| > x) ≤ 1

n

}
and bn = nE(X11{|X1|≤an}).

(Above, θ measures how asymmetric the Xi is.)

Definition 6.23.7. A random variable Z is called infinitely divisible if for all n, there exist i.i.d. Y1, . . . , Yn so

that Z d
= Y1 + · · ·+ Yn. 4

Example 6.23.8. We have:

1. Any stable random variable is infinitely divisible.

2. If Z ∼ Pois(λ), then Z = Y1 + · · ·+ Yn, where Yi ∼ Pois(λ/n) are independent.

3. Let ξ1, ξ2, . . . be any i.i.d. sequence of random variables, and letZ(t) = ξ1 +· · ·+ξN(t), where (N(t))t≥0

is a Poisson process (see Equation (18) for a definition) with rate 1 that is independent of (ξn)∞n=1. After
writing

Z(t) = (ξ1 + · · ·+ ξN(t/n)) + (ξN(t/n)+1 + · · ·+ ξN(2t/n)) + . . . ,

we see that Z(t) is infinitely divisible. Furthermore,

ϕZ(λ)(t) = E exp(itZ(λ)) =

∞∑
n=0

P(N(λ) = n)E exp(it(ξ1 + · · ·+ ξn))

=

∞∑
n=0

λn

eλn!
ϕξ1(t)n = e−λ

∞∑
n=0

(λϕ(t))n

n!
= e−λeλϕ(t) = e−λ(1−ϕ(t)).4

Example 6.23.9 (Cauchy densities). Cauchy densities show up:

1. Let’s consider a random ray R2 starting at the origin with angle θ from the x-axis; pick θ ∼ Unif(0, π).
To such a ray consider the value of x so that (x, 1) is on the ray. Then x has the standard symmetric
Cauchy distribution.

2. If Y and Z are independent N(0, 1), then Y/Z has the standard symmetric Cauchy density. 4
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7 Additional Topics
7.24 Nov 25, 2019 (Large Deviations)

[It’s Thanksigiving soon! Prof Levine’s office hours will be moved to Tuesday, 1-2pm at 438. HW 10 will
probably be due two Mondays from now. We’ll receive a poll soon for 48 hour slots during which we’ll have
the takehome final.]

Let’s talk about large deviations. This is covered in Durrett chapter 2.7, because the topic doesn’t require
lots of prerequisites. But the results are contexualized by central limit theorems, so we’ll talk about them
now.

Let X1, X2, . . . be i.i.d. with mean µ. Let Sn = X1 + · · · + Xn. The weak law of large numbers (Theo-
rem 5.11.4) says that for a fixed a ∈ R,

πn
def
= P(Sn ≥ na)→

{
0 if a < µ

1 if a > µ

as n→∞. How fast is this convergence? Well,

πn+m = P(Sn+m ≥ (n+m)a) ≥ P(Sn ≥ na, Sn+m − Sn ≥ ma) = πnπm. (21)

Let us define `n
def
= log πn ∈ [−∞, 0]. Equation (21) precisely says that `n is subadditive, i.e., `m+`n ≤ `n+m.

As with any subadditive sequence, we have

`n
n
→ `

def
= sup

m

`m
m
.

Definition 7.24.1. The rate function is

γ(a)
def
= lim

n→∞

1

n
logP(Sn ≥ na). 4

Note that if a > µ and γ(a) < 0 then

1

n
logP(Sn ≥ na)→ γ(a) < 0

is saying P(Sn ≥ a) ≈ enγ(a). Thus we get exponentially fast convergence. (!)
Let’s contrast this with the central limit theorem.

Example 7.24.2. Consider a simple random walk in Z: define random variables Xi which are equal to 1

or −1 with probability 1
2 . The central limit theorem says that Sn/

√
n

d→ N(0, 1), so in particular P(Sn ≥
b
√
n)→ P(Z > b) for Z ∼ N(0, 1). Contrast this to the study of large deviations, which studies how quickly

we get P(Sn ≥ na)→ 0 or P(Sn ≥ na)→ 1. 4

When can we expect exponential decay of P(Sn > na)? We’d at least need a > µ. We also need to impose
tail bounds on Sn: if the Sn is heavy-tailed then some summands in Sn mess the estimates.

An elegant way of expressing the tail bounds is in terms of the Laplace transform.

Definition 7.24.3. The Laplace transform of a random variable X is the function

ψX(θ) = E(eθX). 4

This is the characteristic function without the i in the exponent. We’ve been studying characteristic
functions because the random variables eiθX were automatically bounded; without the i this is no longer
true. Thus, the assumption ψX(θ) <∞ for all θ is effectively a tail bound onX . (At the very least,X should
decay exponentially.)

Example 7.24.4.
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• Let X ∼ N(0, 1). The normal distribution has thin-enough tail bounds to make ψX(θ) < ∞: we have
ψX(θ) = eθ

2/2 <∞ for each θ.

• Let X ∼ Exp(λ). Then ψX(θ) is finite in an interval around 0, but not for all θ. 4
Markov’s inequality (Lemma 3.8.4) says

eθnaP(Sn ≥ na) ≤ E(eθSn) = Eeθ(X1+···+Xn) = E(eθX1 . . . eθXn) = E(eθX1) . . .E(eθXn) = ψX1
(θ)n.

In other words, we obtain

P(Sn ≥ na) ≤ eθna

ψX1
(θ)n

= exp(−(logψ(θ)− aθ)n). (22)

Theorem 7.24.5 (Cramer’s Theorem). For all a > EX1, we have

lim
n→∞

1

n
logP(Sn ≥ na) = −I(a),

where I(a) = supθ∈R(aθ − logψ(θ)).
Note that the limit is necessarily negative, and that I(a) is positive (for convenience’s sake).

Example 7.24.6. Let X1 ∼ N(0, 1) and

I(a) = sup
θ∈R

(
aθ − θ2

2

)
=
a2

2
,

which is telling us something we already knew, namely, that the sum of i.i.d. Gaussians is again Gaussian.
[... right?] 4
Example 7.24.7. Let X1 be equal to 1 or −1 with probability 1

2 . We have

ψX1
(θ) =

eθ

2
+
e−θ

2
,

so we need to find
sup
θ∈R

(
aθ − log

(
eθ

2
+
e−θ

2︸ ︷︷ ︸
def
= f(θ)

))
.

This is a calculus exercise:
f ′(θ) = a− eθ − e−θ

eθ + e−θ
.

So we’d need to set θ = tanh−1 a, and

I(a) = sup
θ∈R

f(θ) = a tanh−1 a− log(cosh tanh−1 a). 4

We proved the upper bound part of Cramer’s Theorem (Theorem 7.24.5) when we wrote down a bunch
of Markov inequalities Equation (22). The idea of the proof of the lower bound is as follows. On the un-
likely event that Sn ≥ na, the summands X1, X2, . . . , Xn behave like i.i.d. random variables with a “tilted”
distribution, namely:
Definition 7.24.8. If X1 has distribution F , then define a distribution Fλ by

Fλ(x)
def
=

1

ψ(λ)

∫ x

−∞
eλy dF (y). 4

Returning to our discussion, the summandsX1, . . . , Xn behave like i.i.d. random variables with the tilted
distribution Fθ∗ , where θ∗ is the maximiser of the function logψ(θ)− aθ. [It turns out that θ∗ actually exists,
because logψ is convex.]

In the next (last!) HW, we’ll show that if ψX(θ) < ∞ in an interval around 0, then E|X|n < ∞ for all n
and furthermore that

ψX(θ) =
∑
n≥0

θn

n!
EXn.

81



7.25 Dec 4, 2019 (Random Series)
Let’s begin with an example. Let’s consider the harmonic series with random signs, i.e., let us define the

partial sums

Sn
def
=

n∑
k=1

Xk, with Xk =

{
1
k with probability 1

2

− 1
k with probability 1

2

and ask for the quantity P(limn→∞ Sn exists). We have Var(Xn) = EX2
n = 1

n2 . Hence

Var(Sn) = Var(X1) + · · ·+ Var(Xn) =
1

12
+ · · ·+ 1

n2
→ π2

6
as n→∞.

Hence, the following theorem tells us P(limn→∞ Sn exists):

Theorem 7.25.1. IfX1, X2, . . . are independent, withEXn = 0 and
∑
n≥1 Var(Xn) <∞, then Sn = X1+· · ·+Xn

converges a.s..

Note that unlike the strong law of large numbers, the limit is random: the variance of the limiting random
variable S∞ has variance Var(S∞) =

∑
n≥1 Var(Xn).

Let’s talk about the Kolmogorov 0-1 law. To do this we begin with a definition:

Definition 7.25.2. The tail σ-field of a sequence of random variables X1, X2, . . . : Ω→ R is

T =
⋂
n≥1

σ(Xn+1, Xn+2, . . . ).

Intuitively, A ∈ T if changing finitely many Xn values doesn’t change whether A occurs. 4

Example 7.25.3. We have {Xn > 0 i.o.} ∈ T and {Xn > 5 eventually} ∈ T . More relevantly, if Sn = X1 +
· · ·+Xn, then {limSn exists in R} ∈ T .

Note, though, that {limSn = π} 6∈ T (since changing the value of X1, for example, changes the value of
limSn). On the other hand, {lim Sn

n = π} ∈ T , since now changing the value ofX1 doesn’t change the value
of the limit. 4

Theorem 7.25.4 (Kolmogorov 0-1 law). If X1, X2, . . . are independent, then for all A ∈ T either P(A) = 0 or
P(A) = 1.

Note that the following proof gives us no information about whether probability is 0 or 1. (There are
open problems which ask, for specific A, whether it has probability 0 or 1!)

Proof. The idea is to show that A is independent of itself (!). Then

P(A) = P(A ∩A) = P(A)P(A) = P(A)2,

so P(A) ∈ {0, 1}.
Recall that for all k, j ≥ 1 the σ-fields

σ(X1, . . . , Xk) ⊥ σ(Xk+1, . . . , Xk+j).

(The notation A ⊥ B means that A and B are independent, i.e., P(A ∩ B) = P(A)P(B) for all A ∈ A and
B ∈ B.)

Recall also that if A and B are π-systems, then A ⊥ B implies σ(A) ⊥ σ(B).
So let

A = σ(X1, . . . , Xk)

B =
⋃
j≥1

σ(Xk+1, . . . , Xk+j).

Then A ⊥ B and hence A ⊥ σ(B) = σ(Xk+1, Xk+2, . . . ).
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Now we let

A =
⋃
k≥1

σ(X1, . . . , Xk)

B = T

and note that if A ∈ A then there exists k so that A ∈ σ(X1, . . . , Xk). Since

σ(X1, . . . , Xk) ⊥ σ(Xk+1, . . . , Xk+2, . . . ) ⊇ T

we get A ⊥ T . Then σ(A) ⊥ T , and T ⊆ σ(A) gives T ⊥ T .

Theorem 7.25.5 (Kolmogorov maximal inequality). Let X1, . . . , Xn be independent with mean 0 and finite vari-
ance, and let Sn = X1 + · · ·+Xn. Then

P(
n

max
k=1
|Sk| ≥ y) ≤ Var(Sn)

y2
.

(Compare this to Chebyshev’s inequality (special case of Markov; Lemma 3.8.4), which would sayP(|Sn| ≥
y) ≤ Var(Sn)

y2 .)

Proof. Let

Var(Sn) = ES2
n =

∫
Ω

S2
n dP ≥

∫
A1t···tAn

S2
n dP,

where
Ak = {ω ∈ Ω: |Sk| ≥ y, and |Sj | < y for all j ∈ [k − 1]}.

We obtain

Var(Sn) ≥
n∑
k=1

∫
Ak

S2
n dP

=

n∑
k=1

∫
Ak

(Sk + (Sn − Sk))2 dP

≥
n∑
k=1

(∫
Ak

S2
k dP + 2

∫
Ak

Sk(Sn − Sk) dP
)

=

n∑
k=1

∫
Ak

S2
k dP + 2

∫
Ω

(Sk1Ak)(Sn − Sk) dP.

Now the random variable Sk1Ak is in σ(X1, . . . , Xk) and Sn − Sk is in σ(Xk+1, . . . , Xn), so they are inde-
pendent. Furthermore E(Sn − Sk) = 0, so we have

2

∫
Ω

(Sk1Ak)(Sn − Sk) dP = 0.

In other words,

Var(Sn) ≥
n∑
k=1

∫
Ak

S2
k dP ≥

n∑
k=1

P(Ak)y2.

Then

P(
n

max
k=1
|Sn| ≥ y) = P(A1 t · · · tAn) =

n∑
k=1

P(Ak) ≤ Var(Sn)

y2
.

83



Proof of Theorem 7.25.1. We’ll use the following fact:
Exercise: If Wn is decreasing and Wn → 0 in probability, then Wn → 0 almost surely.
To prove Theorem 7.25.1 we need to show that P(Sn is a Cauchy sequence ) = 1. Let us fix M,N ∈ N.

We have
N

max
k=M+1

|Sk − SM | ↑ sup
k≥M+1

|Sk − Sm| as N →∞.

By Kolmogorov’s maximal inequality (Theorem 7.25.5) we have

P(
N

max
k=M+1

|Sk − SM | > ε) ≤ 1

ε2

N∑
k=M+1

Var(Xk).

Let
WM = sup

k,`>M
|Sk − S`| ≤ sup

k,`>M
(|Sk − SM |+ |S` − SM |) = 2 sup

k≥M
|Sk − SM |.

Note that WM is decreasing. We want to show WM → 0 almost surely, and the exercise says it suffices to
show that it goes to 0 in probability. We estimate

P(WM > 2ε) ≤ P( sup
k≥M

|Sk − SM > ε) = lim
N→∞

P(
N

max
k=M+

|Sk − SM | > ε) ≤
∞∑

k=M+1

Var(Xk) ↓ 0 as M →∞,

since
∑

Var(Xk) <∞. We’re done:

P(Sn Cauchy) = P(WM → 0 as M →∞) = 1.

Let’s go back to our original random series. We were considering the harmonic series with random signs,
with partial sums Sn =

∑n
k=1Xk and Xk = ± 1

k with probability 1
2 , and we observed that the sum of the

variances is
∑
k

1
k2 <∞, so Theorem 7.25.1 says the limit converges almost surely.

In fact, we may consider Sn =
∑n
k=1Xk with Xk = ± 1

ks with probability 1
2 , for any s > 1

2 . In this case,
the sum of the variances is

∑
k

1
k2s <∞, and Theorem 7.25.1 still says that the limit converges almost surely.

What happens when s ≤ 1
2? In this case

∑
Var(Xn) = ∞. One can show, using Lindeberg-Feller CLT

(Theorem 6.20.1) that
Sn√

Var(Sn)

d→ N(0, 1).

Since Var(Sn) is going to infinity, it follows that Sn does not converge almost surely.

Let’s end by stating Kolmogorov’s strengthening of Theorem 7.25.1

Theorem 7.25.6 (Kolmogorov 3 series theorem). Let X1, X2, . . . be independent, and let Sn = X1 + · · · + Xn.
Fix A > 0 and let Yn = Xn1{|Xn|<A}. Then Sn converges if and only if all three of the following converge:

1.
∑
n≥1 P(|Xn| > A)

2.
∑
n≥1 E(Yn)

3.
∑
n≥1 Var(Xn)
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7.26 Dec 9, 2019 (Moments and convergence in distribution)
We’re going to talk about moments and see how they might help us find limit laws. Often these are useful

to prove convergence in distribution when the characteristic function is hard to compute. An example of this
is Wigner’s theorem, which we’ll talk about in a bit.

Let’s talk about the moment problem (in the bounded case): let µ and ν be probability measures on R
with ν supported on an interval [−A,A]. Suppose∫

xk dµ(x) =

∫
xk dν(x)︸ ︷︷ ︸
<∞

for every positive integer k ≥ 1.

Theorem 7.26.1. These assumptions imply µ = ν.

Proof. We want to show ∫
f dµ =

∫
f dν

for all bounded continuous f : R → R; we have this equality for the (nonbounded!) monomials xk. The
idea is to use Weierstrass approximation theorem: for fixed B > A and δ > 0, there exists a polynomial
P (x) = a0 + a1x+ · · ·+ akx

k such that |p− f | ≤ δ on [−B,B]. For brevity of notation we’re going to denote
by

〈f, µ〉 def
=

∫
f dµ.

Because p is a polynomial, 〈p, µ〉 = 〈p, ν〉, and furthermore

|〈f, µ〉 − 〈f, ν〉| ≤ |〈f, µ〉 − 〈p, µ〉|+ |〈p, µ〉 − 〈p, ν〉|︸ ︷︷ ︸
=0

+ |〈p, ν〉 − 〈f, ν〉|︸ ︷︷ ︸
≤2δA

.

Thus we need to estimate |〈f, µ〉 − 〈p, µ〉|. To do this we split

f = f1{|x|<B} + f1{|x|>B};

since |〈f1{|x|<B}, µ〉 − 〈p1{|x|<B}〉| ≤ 2δA, it suffices to estimate |〈f1{|x|>B}, µ〉 − 〈p1{|x|>B}〉|. To do this
we’ll use Chebyshev, who says

Bk
∫
xk1{|x|>B} dµ(x) ≤

∫
x2k dµ(x) =

∫
x2k dν(x) ≤ A2k.

In other words, ∫
xk1{|x|>B} dµ(x) ≤

(
A2

B

)k
.

Thus taking B = max(2A2, 1), the left side is increasing in k and the right side is decreasing (to 0 (!)) in k,
so the inequality can only hold if the left side is 0 for every k. We’ve proven 〈p1{|x|>B}, µ〉 = 0. Finally,

|〈f1{|x|>B}, µ〉 − 〈p1{|x|>B} µ〉| ≤ |〈f1{|x|>B}, µ〉|︸ ︷︷ ︸
→0 asB→∞

+ |〈p1{|x|>B} µ〉|︸ ︷︷ ︸
=0

This completes the proof.

Example 7.26.2. Theorem 7.26.1 may fail when ν does not have bounded support. For example, we may
consider the lognormal distribution X = eZ where Z ∼ N(0, 1) has moments

EXk = E(ekZ =

∫ ∞
−∞

ekx
e−x

2/2

√
2π

dx =

∫ ∞
−∞

e−(x−k)2/2
√

2πek
2/2 dx = ek

2/2.
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There are many random variables which have the same moments as X . For example, the discrete random
variable Y with

P(Y = en) =
e−n

2/2

C
, n ∈ Z

with C =
∑
m∈Z e

−m2/2 the normalizing factor. Now clearly X 6 d= Y and it’s not so bad to check that
EY k = ek

2/2 = EXk for all k ≥ 1 integer. 4

The following can be found in Durrett:

Theorem 7.26.3. If lim supk→∞
(m2k)1/2k

2k <∞ then there is at most one distribution function F with∫ ∞
−∞

xk dF (x) = mk

for all k ≥ 1.

Note that if ν is supported on [−A,A], then

µk =

∫
xk dν(x) ≤ Ak,

andm1/k
k ≤ A. So the theorem says thatm1/k

k doesn’t have to be bounded uniformly (in this case, by A), but
can grow (as long as it’s less than linearly in k).

Corollary 7.26.4. If Z satisfies

EZk =

{
0 k odd
(k − 1)!! k even

then Z d
= N(0, 1).

Note that in the lognormal example (Example 7.26.2), we havemk = ek
2/2 som1/k

k = ek/2 grows too fast,
and Theorem 7.26.3 doesn’t apply.

Proof idea for Theorem 7.26.3. Use the fact that

EeitX =
∑

E
(itx)k

k!
=
∑
k≥0

(it)k

k!
mk

converges in a neighborhood of 0.

Lemma 7.26.5. If X is determined by its moments, and

E(Xn)k → EXk

for all k = 1, 2, . . . , then Xn
d→ X .

Proof sketch. First we show that {Xn} is a tight sequence: B2P(|Xn| > B) ≤ EX2
N → EX2. This implies

there exists a subsequence Xnj converging in distribution [I think this is Corollary 6.17.8]. Then we show
that for any subsequence Xnj

d→ Y , we have EXk
nj → EY k for k = 1, 2, . . . , and hence Y d

= X .

We’ve seen in Theorem 7.26.1 and in Corollary 7.26.4 that whenX is bounded orN(0, 1) thatX is deter-
mined by its moments, so we obtain

Corollary 7.26.6. If X has bounded support or X ∼ N(0, 1), and EXk
n → EXk, then Xn

d→ X .

Let’s now talk about random matrices and Wigner’s semicircle law.
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Definition 7.26.7. An N ×N matrix

M =
1√
N


M11 M12 . . . M1N

M21 M22 . . . M2N

...
...

. . .
...

M1N M2N . . . MNN


is called a Wigner matrix if

1. For i 6= j we have Mij = Mji and {Mij}i>j are i.i.d., and furthermore EMij = 0, EM2
ij = 1,

2. The diagonal entries Mii are also i.i.d. (but possibly different from {Mij}i>j) with EMii = 0 and
EM2

ii <∞.

These are going to be the Wigner matrices for which we can say some sort of limit law. But for simplicity of
proofs for today, we’re going to further assume that EMk

ij <∞ for all k, thatMii = 0, andMij
d
= −Mij . 4

Wigner studied these because he was interested in Hamiltonian systems from quantum mechanics. But
they come up in many contexts; one can think of them as a multiplicative analogue of what we’ve been
thinking about. Random matrices even show up in the study of the distributions of zeros of the Riemann
zeta function.

Since a Wigner matrix M is symmetric, it has N real eigenvalues, say λ1 ≤ · · · ≤ λN . Let us define the
empirical distribution to be

µN =
1

N

n∑
i=1

δλi .

This is a random measure; for A ⊆ R Borel we have

µN (A) =
1

N

N∑
i=1

1{λj∈A}.

Define
µN (A) = EµN (A).

This is just a regular old measure.

Theorem 7.26.8 (Wigner’s semicircle law, 1955). Let σ(x) dx denote the measure corresponding to integration
(with respect to Lebesgue) against σ(x) = 1

2π

√
4− x2. Then

P(µN
d→ σ(x) dx) = 1.

Proof outline. One first computes the moments of σ(x) dx. For k even, they turn out to be the Catalan num-
bers:

mk =

∫ 2

−2

xkσ(x) dx

=

∫ π

0

(2 cos θ)k
(

2 sin θ

2π

)
(2 sin θ dθ)

=
22k+1

π

∫ π

0

cos θk(1− cos2 θ) dθ

=

{
1

k/2+1

(
k
k/2

)
k even

0 k odd

with the change of variables x = 2 cos θ. The Catalan numbers count a lot of combinatorial things, but
importantly for us, they count the number of paths from (0, 0) to (2k, 0) using steps (1, 1) or (1,−1) staying
weakly above the x-axis.
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The idea of the proof is to show that

µN
d→ σ(x) dx as N →∞

using the moments

mk =

∫
xk dµN =

1

N
E
( N∑
i=1

(λi)
k

)
=

1

N
E(Tr(Mk)) =

1

N

=
∑

{i1,...,ik,ik+1=i1}

E[Mi1,i2Mi2,i3 . . .Mik, ik+1].

Since the EMi,j = 0, the nonzero terms in the sum are

EM2
e1EM

2
e2 . . .EM

2
ek/2

,

where the ek = {ij , ij+1} are thought of as “edges”. These are encoded using labelled trees on k/2 + 1

vertices, of which there are (constant multiple of) Catalan many. The scaling by
√
N cancels out the constant

multiplication and everything works out.
It turns out µN is close to µN , and will complete the proof.
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