Math 6710. Probability Theory I

Taught by Lionel Levine

Notes by Linus Setiabrata

This course is an introduction to probability theory. Please let me know if you spot any mistakes! There
are probably lots of typos. Things in [blue font square brackets] are personal comments. Things in [red font
square brackets] are (important) announcements.

Theorem numbering unchanged since Dec 9, 2019. Last compiled August 31, 2020.

Contents

1

Measure theory preliminaries

11 Sep4,2019 . . . . . e
12 Sep9,2019 . . . ..
1.3 Sep 11,2019 . . . . . . .

Probability preliminaries
23 Sep 11,2019 . . . . .
24 Sep16,2019 . . ...

Integration

34 Sepl16,2019 . . . . ...
35 Sep18,2019 . . . ..
3.6 Sep23,2019 . . ..
3.7 Sep23,2019 . . ... e
3.8 Sep25,2019 . . ... e

Independence
49 Sep 30,2019 . . ...
410 Oct2,2019 . . . . .

Laws of large numbers

511 Oct7,2019 . . . . e
512 Oct9,2019 . . . . o
513 Oct16,2019 . . . . . .
514 Oct21,2019 © o v v
515 Oct23,2019 . . . . o e

Central Limit Theorems

6.15 Oct 23,2019 . . . . e
6.16 Oct 28,2019 . . . . . e e
6.17 Oct 30,2019 . . . . e e e e
6.18 Nov 4,2019 . . . . . o e
6.19 Nov 6,2019 . . . . . . . e e
6.20 Nov 11,2019 . . . . . . e
6.21 Nov 18,2019 . . . . . . e e



6.22 Nov 20,2019 . . . . . . 74

6.23 Nov 22,2019 . . . . . . e 77
Additional Topics 80
7.24 Nov 25,2019 (Large Deviations) . . . . . . ... ... ... ... .. ... . . 80
725 Dec4,2019 (Random Series) . . . . . . . . . o e 82
7.26 Dec9, 2019 (Moments and convergence in distribution) . . . . .. ... ... ... ... .. .. 85



1 Measure theory preliminaries

1.1 Sep 4, 2019

Our main book, Durrett’s Probability theory and examples (5th ed) is online on his webpage. We'll cover
chapters 2, 3, and a little of 4 and 5. Another useful book is Williams” Probability with martingales. [This week
Prof Levine’s office hours will be on Thursday at 1-2 in 438 MLT, and our TA Jason’s office hours will be on
Wednesday at 2-4 in 218 MLT.]

Definition 1.1.1. A probability space (€2, F,P) is a triple, where:

e () is a set of “outcomes”,

e Fisasetof “events”, so F C 2 = {all subsets of 2},

e P: F — [0,1], where P(A) is interpreted as the probability that A occurs. A
Example 1.1.2. Consider:

1. Perhaps 2 = {1,2,3,4, 5,6}, and we are rolling a die. If it is fair, then P({1,2,3,4}) = %.

2. Perhaps ? = N = {0, 1, ... }. Perhaps the experiment consists of flipping a coin until we get heads, and

the outcome is the number of tails before the first heads. If the coin is fair, it is clear that P({n}) = 51~

Since any subset A C N is a countable union of singleton sets A = {nj,ns,...}, we have P(4) =
> i>1 P({ni}). The moral is that for €2 countable, we can do probability theory while avoiding measure
theory.

3. Suppose 2 = [0, 1]?, and we are dropping a pin on a square table. Since 2 is (necessarily!) uncountable
here, there are a variety of “paradoxes” which require measure theory to resolve.

4. Suppose 2 = {0, 1} (cf. HW 0); perhaps we are flipping an infinite sequence of coins.

If the coin flips are independent and fair, for A = {w € Q: wy = w3 = 1}, we have P(A) = 1. For
B={weQ:w,=1foralln > 100} we have P(B) = 0. Let C' = {w € Q: w,, = 1 eventually}. Then

C = {w: thereis N so thatw, = 1foralln > N}

= U {w: w, =1foralln > N}
NeN

= U ﬂ{wnzl},

NeNn>N
where {w,, = 1} is shorthand for {w € Q: w,, = 1}. We will later show the union bound, which implies
P(C)< > 1@( ) {wn = 1}),

NeN ‘>N

which is a countable sum of zeros. Suppose

D{wGQ: lim Ml}

n— o0 n 2

Then P(D) = 1; this is the strong law of large numbers. A

Let’s review measure theory. It can be thought of as an abstraction of the idea of length/area/volume,
and along with this comes an abstraction of the idea of integration. Let us begin with

Definition 1.1.3. Let F C 2. We say F is a o-field (also known as a o-algebra) if:

(i) Ae F = A°c F,



(i) A1, Az~ € F = U,>, 4n € F,
(iii) 0 € F.

From these axioms it follows that {2 € F, and that F is stable under countable intersections. A tuple (€2, F)
is called a measurable space, and the elements of F are called measurable sets. A

Definition 1.1.4. A measure is a function
p: F— RU{oo}
satisfying, for A, Ay, As,--- € F,
(i) pu(A) > p(®) =0, and
(i) if Ay, Ao, ... are disjoint (meaning A; N A; = () for i # j), then

u( U An> =3 ul(Ay). A

n>1 n>1

To have the second condition above, one needs to be careful (e.g. with well-definedness). In particular,
one cannot always just pick F to be 2.

Definition 1.1.5. A probability measure also satisfies ;(€2) = 1. A

We'll use the notation . for a general measure and P’ for a probability measure.
Lemma 1.1.6. Let p be a measure on (2, F). We have
(i) If A, B € F satisfy A C B, then u(A) < u(B).
(ii) If Ay, Ag, - -- € F, not necessarily disjoint, then

u( U An> < u(An).

n>1 n>1

(iii) If A; 1 A, then u(A;) T 1(A).
(iv) (cf. HW 1) If A; | A, and p(A;) < oo for some i, then pu(A;) | u(A).

(For sets A;, A, the notation A; 1 A means A; C A> C ... and UA; = A, and for z;, z € R, the notation
z; Tz means 1 < xo < ... and lim; . x; = x.)

Proof. Part (i) follows from writing B = AU (B \ A) and applying axiom (ii) required of a measure. Note
that B\ A= BN A° € F.
Part (ii) follows from defining B; = A; \ (41 U--- U A;_1); note that the B, C A; are disjoint and satisfy

U A; = U B;.
i>1 i>1

Hence we have

u( U An> = w(B) <Y p(An),

n>1 n>1 i>1

where the inequality is part (i) of the lemma.
Part (iii) follows from writing, as before, A = Li;>1 B;. Moreover, we have A,, = U}, B;. Hence

p(A) = lim ;AL(BZ-) = lim p(A,),

n—0o0

as desired.
Part (iv) will be in HW 1. O



In HW 1 we will also prove the following. For any A C 29, we let o(.A) be the intersection of all o-fields
containing A. Then o(A) is in fact a o-field.

Definition 1.1.7. Let T" be a topological space. The Borel o-field is 5(.A), where A consists of all open subsets
of T. A

The most important examples for probability arise from 7' = R¢ or T' = {0, 1}". The latter is topologized
by taking the open sets to be cylinder sets, which are sets of the form

{weT:w =ay,...,w, =ay}

for fixed (a1, ...,a,) € {0,1}™.
Let’s see why we can’t always take every subset to be measurable.

Example 1.1.8. Let T' = R/Z be the unit circle. Let us show that there does not exist a rotationally invariant
probability measure on (7', 27). (Here, rotational invariance means P(4) = P(A + ¢) forall ¢ € R.)

Define an equivalence relation = on T' by « = y if + — y € Q. By the axiom of choice, we may consider
the set A consisting of one representative from each equivalence class. Note that for each ¢ € Q/Z, we may
consider A, = A + g; it follows that

R/Z= |) Ay = 1=P[R/Z)= > P(A4,).
q€Q/Z q€Q/Z

By rotational invariance, P(A,) are all equal to each other. We obtain a contradiction by considering sepa-
rately the cases P(A) = 0 and P(A4) > 0. A



1.2 Sep9, 2019

We’ll continue with our quick review of measure theory today. Problem set 1 will be posted later today,
due a week from now. [We'll have weekly problem sets. If the class size remains the same, we will have a
takehome final, but if it drops we may replace the final with presentations.]

Definition 1.2.1. A collection of sets A C 2% is called a (boolean) algebra if:

(i) Ac A = A°e€ A and
(i) Ar,..., A4, €A = AjU---UA, €A A
Boolean algebras are often easier to handle than o-algebras, because we only require finite unions.
Example 1.2.2. Some examples of boolean algebras:
(i) The open and closed sets of a topological space form a boolean algebra.

(ii) For 2 = Z, the set A = {finite subsets} U {cofinite subsets} forms a boolean algebra. (A cofinite set is
one in which the complement is finite.) A

Definition 1.2.3. We call u: A — R U {co} a measure if
(i) pu(A) = p(0) =0, and
(i) p(Use,A;) =32, u(A;), whenever both 4; € Aand L2, A; € A.

We say p is o-finite if there exist Ay, As, ... so that

JA4i=9 and p(4;) < oo foralli. A

i>1
The following theorem says that we don’t really have to worry about o-algebras:

Theorem 1.2.4 (Caratheodory Extension Theorem). If A is a boolean algebra and p: A — R U {oo} is a o-finite
measure on A, then there exists a unique extension of u to a measure on the o-algebra o (.A) generated by A.

The following theorem can be deduced from the Caratheodory Extension theorem.

Theorem 1.2.5. Suppose F': R — R is a nondecreasing and right-continuous function. Then there exists a unique
measure y on the Borel sets (R, B) such that i(a,b] = F(b) — F(a).

(Here, right-continuous means lim,,. F'(y) = F(z), and the Borel sets are the o-algebra generated b
g vl g g y

open sets in R.) The most important case of the above theorem is F'(x) = z. The resulting measure is called
Lebesgue measure.

Proof idea of Theorem 1.2.5. Let us consider the boolean algebra

A={(a1,b1]U---U(an,by]: —oc0o<a; <by <---<b, < oo},

where by convention (a, a o {a}. (One should check that this actually is an algebbra.)
To get the conclusion of Theorem 1.2.5 it is clear that we should define

ﬂ((al,bl] U---u (an,bn]> =F(b1) — F(a1) + -+ F(bp) — F(ap);

the real issue is well-definedness. For example, with a < b < ¢, we have (a,c] = (a,b] U (b, ¢], and so we
potentially have two formulas for 1(a, ¢|. Fortunately, the formulas agree.

So if you believe that . is well defined on A, the Caratheodory extension theorem guarantees the exis-
tence (and uniqueness!) of a measure on o(A) = 5. O



Definition 1.2.6. A family Z C 2¢ js called a m-systemif I, I, € T = I; NI € Z. (Intuitively, think about
intervals in R.) A

The following theorem is an observation of Dynkin.

Theorem 1.2.7 (“Thm 1”). Let Z be a w-system and let F = o(I). If i1, pro: F — RU {oc} are measures such that
11(2) = p2(Q) < 0o, and py = po on I, then py = po on F.

Example 1.2.8. Suppose Q2 = [0,1]and Z = {[0, z]: 0 < = < 1}. One can check that the Borel subsets 5([0, 1])
is equal to 0(Z), so by Theorem 1.2.7 defining a measure on Z is enough to define a measure on 5([0,1]). A

Definition 1.2.9. A family £ C 2 is called a A-system if
i) QeL,
(ii)) A,Be LwithAC B,then B\ A € £, and
(iii) If A, € Land A, T A, then A € L. A

Lemma 1.2.10 (“Lemma 2”). A family of sets F C 2% is a o-algebra if and only if F is both a m-system and a
A-system.

We’ll be using this a lot.

Proof. The forward direction is trivial.
The other direction follows from the following observations:

(i) A € Fimplies A € F, by A-system’s axioms (i) and (ii).

(if) For a countable family of sets A,, € F, define B,, = A; U --- U A,,. By definition of m-system, and
A-system axiom (ii), B,, € F. The B,, T Uy, Ay, s0 by A-system axiom (iii) we get U, A, € F. O

Theorem 1.2.11 (Dynkin 7-A theorem). Let Z be a w-system and L be a A-system. If T C L, then o(I) C L.

Proof. Let A\(Z) be the smallest A-system containing Z. (Formally, this means we consider all A-systems
containing 7 and intersect them. [It is immediate to check that an arbitrary intersection of A-systems is
again a A-system.])

We must show that A\(Z) = 0(Z), and by Lemma 1.2.10 it is enough to show that A\(Z) is a w-system. Let

L1 ={BeXI): BNC € NI)VC € I}.

Since 7 is a m-system, Z C £;. The claim is that £; is a A-system, because we then get £; = A(Z). We check
the three axioms required of a A-system as follows:

(i) Note thatQ € L;.

(ii) Letusnow take By, By € £ with B; C Bs. Recall that (By\ B1)NC = (B2NC)\ (B;NC); furthermore,
ByNC € AMZ)and B, NC € A(Z) by assumption. Hence their difference is also in A(Z).

(iii) Finally, consider a countable family of sets B,, € £, with B,, T B,andlet C € Z. Since (B,,NC) 1 (BNC),
it follows that BN C € A(Z). This proves that B € L.

Since £1 = A(Z), we need to prove that £, is a m-system. We’ve shown that it is stable under intersections
with Z. To show it is stable under intersections in A(Z), we iterate this process, defining £, and arguing
analogously to above. (This detail will be omitted.) O

Proof of Theorem 1.2.7. Let L = {A € F: p1(A) = pu2(A)}. We claim that £ is a A\-system. We check the
axioms required of a A-system as follows:

(i) By hypothesis, £ contains €.



(ii) If A C B € L, then

pi(B\ A) = p1(B) — pa(A) = p2(B) = p2(A) = p2(B\ A)

and B\ A € L. Note that the above computation only holds when p;(B) < oo, which is true by
hypothesis.

(iii) If A,, € Lis such that A,, T A, then

pi(A) = lim p1(Ap) = lim piz(A;,) = p2(A)

n—oo n—oo

and Ae L.
By the m-A Theorem (Theorem 1.2.11), and the assumption that Z C £, we get F = o(Z) C L. O

In Durrett’s book, Appendix A1.5 in the 4th edition contains a o-finite version of Theorem 1.2.7. To wrap
up our measure theoretic excursion, let’s talk about why Caratheodory Extension works.

Proof idea for Theorem 1.2.4. There are four steps to this proof:

1. For any E C (), define the outer measure

*(E) inf
SCEIE I T
ECU i

2. Let us define E to be measurable if for all F' C (3,
W (F) = 1 (B F) 4+ (BN F),
3. Now we can check that if A € A, then p*(A) = p(A). Moreover, A is measurable as in the definition
above.

4. Finally, let
A" ={E C Q: E is measurable}

and check that A* is a o-field and that the restriction of p* to .A* is a measure.
The key properties of 1* that allow us to do steps 3 and 4 above are:
(i) (@) =0,
(i) ECF = p*(F) <p*(F),and
(i) F C UpsiFr = p*(F) € Xy n*(Fa). O



1.3 Sep 11,2019

We have just a little bit of abstract measure theory nonsense to cover, before getting into the concrete
probability theory.

We'd like to understand which sets are measurable. We have, for A an algebra and .A* the measurable
sets, the inclusions

o(A) C A* C 29,

and for most interesting applications these inclusions are strict. [For example, Q@ = R, A = {Borel sets C
2%} A* = {Lebesgue measurable sets C 2%}.]

Definition 1.3.1. A set N C Qis a null set if y*(N) = 0. Note that any null set is measurable, since for all
F €29 wehave F C (FNN°) UN and

p(F) < p"(FON®) 4+ p*(N) < p*(F),
H:?)—/

so these inequalities are equalities and V is measurable. A
The philosophy is that we don’t need to worry about null sets. In particular:

Definition 1.3.2. A measure space (€2, F, u1) is called complete if whenever A C Band B € F with u(B) =0,
then A € F. A

Theorem 1.3.3. Let (2, F, uu) be a measure space. There exists a complete measure space (Q, F, i) that extends the
original space, that is,

1. E€F < E=AUN for Ac Fand N C B € F with u(B) =0,
2. = ponF.
(The triple (2, F, i) is called the completion of (2, F, u).)

Example 1.3.4. Let B be the Borel sets, and A denote the Lebesgue measure on R. The completion is (R, B, ),
where B are Lebesgue sets in the usual sense and A is Lebesgue measure in the usual sense. (There exist
null sets N ¢ B.) AN

There is this notion of a Borel Hierarchy. Let us take @ = R and Ay, = {openintervals C R}. Let
A, = A}, _,, where

A* = {AC, U A A, A € A}.

k>1

Note that B O A, for every n. One might guess

but no!
We’d need a transfinite hierarchy to exhaust B.

Theorem 1.3.5 (Durrett, 4th ed, Appendix A2.2). For all Lebesgue measurable E C R, we can write
E=A\N,
for A € Ay an element of the second level of the Borel Hierarchy, and N a null set.

Let’s start interpreting things in probabilistic language.



2 Probability preliminaries

2.3 Sep 11,2019
Let (2, F,P) be a probability space (that is, a measure space with P(Q2) = 1).
Definition 2.3.1. We say X : Q — R is a random variable (R.V.) if X !(B) € F forall B € B. A

Definition 2.3.2. The distribution of X is the measure on (R, B) defined by
px(B) =P(X Y(B)) =P({w € Q: X(w) € BY}).

We write
P(X € B) ¥ P({w € Q: X(w) € B})

to suppress the w from the notation. A
Example 2.3.3. Consider the indicator random variable of F is defined as follows: for A € F, we set

Taw) 1 forweA
w) =
4 0 forw¢ A.

The map 14: Q@ — R is a random variable, because

Q for0,1€B
A for0¢ B,1€B
A¢ for0e€ B,1¢ B
)  for0,1¢ B.

(More to come later.) A

Definition 2.3.4. In general, given measurable spaces (€2, F) and (S,S), a function X: Q@ — S is called
measurable if X 1(B) € Fforall B € S. JAN

Hence, a (real-valued) random variable is the case when 2 has a probability measure and (S,S) =
(R, B). But one might be interested in, e.g., random graphs, random trees, random complex numbers,
or random extended reals (so S is a set of graphs, a set of trees, C, or R = R U {oc}). In general, an
S-valued random variable is a measurable function (Q2,P) — (S,S).

Definition 2.3.5. If X: (Q, F,P) — (5, S) is a measurable function, the pushforward p of P is defined as

forall B € S. A
Hence, the case S = R, 1 = p1x is a special case of pushforwards of measures.

Lemma 2.3.6. With notation as in Definition 2.3.5, j1 is a measure.

Proof. We check p(0) = P(X~1(0)) = P(0) = 0, and

u( | ] Bn) = P(X—l( | ] Bn>) = IP( | ] X‘l(Bn)) =Y P(X7'(Bn) =Y _ u(Bn).

n>1 n>1 n>1 n>1 n>1

O

Definition 2.3.7. The distribution function (sometimes denoted C.D.F.) of a random variable X: Q — R is
the function F' = F'x: R — R defined by

F(z) =P(X <2) ¥ P({w e Q: X(w) < z}). A

10



We note that since {w € Q: X(w) <z} = X 1((—o0, z]), we really have
Fx () = px (=00, 2]).

Although F'x only contains the information of 1x on sets of the form (—oo, |, observe that Fx actually
determines px. This is because:

1. B=0o({(—o00,z]: x € R}), where {(—o0,z]: = € R} is a m-system.

2. By the 7-A theorem (Theorem 1.2.11), the values px ((—o0, z]) for z € R determine the values of y1x (B)
for all B € B.

Note also that F'x has the following properties:

1. Itis nondecreasing, thatis, z < y means F(x) < F(y),

2. limg 0o F(x) =1 and lim,_, o, F(z) =0, and

3. Itis right continuous, so lim,, F(y) = F(z).
Example 2.3.8 (More random variables). Consider:

1. Let X = 14. Then P(X < z) = Fx(x) is given piecewise by

0 ifx <0
Fx(z)=(P(4°) if0<z<1
1 ifx > 1.

2. For a A > 0 we have the exponential random variable Exp()\), whose distribution function is

def |0 ifz <0
F =
(z) {1 —e M ifx > 0.

3. We have the normal distribution N (0, 1) with

dof [© 1 _p
F(x) = ——e /24t
( ) /_oo V2T

The graph of F looks like

0.5

11



4. Consider the (usual) Cantor set

C=()Cn
n>1
for Co = [0,1], Cy = [0,4] U [2,1], C2 = [0, 3] U [2, 2] U[E, I] U [8,1], and so on, as in the following

picture.

1/3

1/9

uzz
—

11
-

Note that a choice of an element in the Cantor set corresponds exactly to a choice of countable sequence
of L’s and R’s. Now let X = “a uniform random element of C”. Let F' = F'x; we have

% Vxe[%,g]
i vrel}, 2]
4 9’9
F(z) =
(@) =93 wvze[L g

(An approximation of) the graph of F is:

Note that F' is continuous (since if F' had a jump, say at € [0,1], then X would assign a positive
probability of choosing x.) A

12



24 Sep 16,2019

Last time we saw some random variables, which were measurable maps X : (Q, F,P) — (R, B).

We had a notion of distribution, denoted px(B) = P({w € Q: X(w) € B}) = P({X € B}), and a notion
of the distribution function Fx (z) = P(X < z). The 7- theorem implies that F'x determines x.

We talked about the uniform distribution on the Cantor set, namely example #4 in 2.3.8. Even though
the distribution function is continuous, this is not always the case. However, it is always right-continuous.

Definition 2.4.1. Let us denote by
F(z-) ¥ lim F(y) = imP(X < y) = P(X < z).
ytz ylz

(Note that the inequality is strict.) The last equality follows from

U{x <y} ={x <a}. A

y<x

Thus F(z) — F(z-) =P(X < z) —P(X < z) = P(X = z), and discontinuities occur at points which are

assigned a positive probability by P.

Definition 2.4.2. We say x is an atom of px if P(X = z) > 0. (See the picture below for an example of a
distribution function which has an atom.)

A
Definition 2.4.3. We say X is discrete if px (S) = 1 for some countable set .S. A

Example 2.4.4. The standard example is that of an indicator function, see Example 2.3.3. (We denote this
distribution by Bernoulli(p).) A

Example 2.4.5. Let ¢1, g2, ... be an enumeratorion of Q. Note that

F(z) = Z 27", 00)

n>1

is the distribution of a random variable X with P(X = ¢,) = 27". Note that F' is discontinuous at every
rational. (!) A

In HW 2, we'll see that F' is the distribution of some R U {+o00}-valued random variable if and only if F is
nondecreasing and right-continuous. (If we wanted R-valued random variables, we’d need some condition
on the limit.)

Recall our abstract framework about S-valued random variables. That is, a function X : (2, F) — (S,S)
is called measurable if X ~*(B) € F forall B € S.

Definition 2.4.6. The o-field generated by X is denoted (X)) and is defined as

o(X) Y o({X eB}: BeS).

13



We should think of this o-field as all the information we know if we are given the value of X. Put another
way, it should be thought of as all the yes-no questions we can answer (namely, “is X in B?”), if we know
the value of X.

In HW 2, we'll see thatif C C S generates S (i.e., 0(C) = S), then the sets {X € C: C € C} generate o(X).

Example 2.4.7. We've seen an example of this, namely with (S, S) = (R, B) and C = {(—o0, z]: € R}. This
is why Fx determines px. JAN

Lemma 2.4.8. Let X, f be maps
(2.7) % (5,8) L (1, 7)
such that X and f are measurable. Then f o X is also measurable.

This is trivial to check from the definitions, but it gives rise to very rich functions:

Example 2.4.9. Let S, T = R. Lemma 2.4.8 in this case implies that if X is a random variable, then so is X 2
|X|, e¥, sin(X), and so on. A

Lemma 2.4.10. If f: (R",B") — (R, B) is measurable, and X1,. .., X,, are random variables, then so is Y =
f(X1,..., X,).

(Here B™ denotes the Borel sets of R"™.)

Proof. We saw in HW 1 that

B" = o(half-open rectangles)
o(A; x -+ x Ayt A; € B).

The Lemma now follows from the observation that

{Y e Ay x - x Ay} = [{Xi € Ai}. O

i=1
Lemma 2.4.10 also gives you many new examples from old ones, namely

Example 2.4.11. For random variables Xi,...,X,, Lemma 2.4.10 implies that X; + --- + X,,, X1...X,,
max(Xy,...,X,), and min(X3, ..., X,,) are random variables, too. YA

Lemma 2.4.12. If X1, Xo, ... are R-valued random variables, then inf X,,, sup X,,, liminf X,,, and lim sup X,, are
(R U {£oo})-valued random variables.

Proof. We write
{inf X, <a} = | J{Xn <a} € F, foralla € R.
n>1
Checking that sup X, is also a (R U {£o0})-valued random variable is completely analogous. We also have

liminf X,, = sup inf X,,, and limsup X, = inf sup X,. O
n—00 N>1n2N n—00 N21p>N

Recall HW 0, where we were wondering whether

A={weQ: lim X, exists} = J{wea: lim X, = ¢}
LeR

was measurable. Unfortunately the union is uncountable, so the problem is not immediate from the mea-
surability of all {w € Q: lim,,_,oc X,, = ¢}. Here’s a quick solution to this problem, now that we have some
theory:

Observe that A = f~1({0}), where f: Q — Ris given by f(w) = limsup,,_, ., X (w) —liminf, e Xy (w).
(Note that f is measurable.)

This set A is important.

14



Definition 2.4.13. We say the random variables X,, converge almost surely if P(A) = 1, where

A={weQ: lim X, exists}.
n—oo
The notation
X, — X as.
means P(w € Q: lim, o X, (w) = X(w)) = 1. A

Example 2.4.14. The strong law of large numbers says that for @ = {0,1}", and X,, = “+=+s and
P = []Bernoulli(}), then X,, — 1 as.. A

(As a fun exercise, think of an example of X,, — X a.s. where X is nonconstant.)
We take a break from probability to develop some more measure theory (in particular, the theory of
integration, which will be needed to take expected values.)

15



3 Integration

3.4 Sep 16,2019

We let (Q, F, i) be a o-finite measure space. Our goal is to define the integral

/fdu

for as many functions f: {2 — R as possible. The integral has alternate notations

[ rau= [ 1@ = [ e ).

Let us build up our integral:
Definition 3.4.1 (Integral).

0. If we are reasonable, we should have

/ 1adp < p(A).

1. We want the integral to be linear. Thus, let ¢(w) denote a simple function, which, by definition, is a

finite sum .
o= aila,
i=1

for a; € Rand A; € F. We can assume A, are disjoint (so A; N A; = @ for i # j), and in this case we

define n
def
/(pdu = Z%M(Ai)-
i=1

Intuitively, we can think of ¢ as a density and y as a volume, and then the integral of ¢ with respect
to p can be thought of as mass. Alternatively, we can think of the integral as the “area under the
graph”. A

Definition 3.4.2. We say f < g almost everywhere if y({w: g(w < f(w)}) =0. A

(The philosophy of integration is that measure zero sets shouldn’t matter, so the integral shouldn’t know
whether f < g everywhere or just almost everywhere.)
Here are some properties of the integral that we would like:

(i) If f > 0 almost everywhere, then we should have

/fduZO.

/(af)du=a/fdu-
/(f+g)du=/fdu+/gdu~

Let’s prove these properties about integrals of simple functions:

(i) We should have

(iii) We should also have

16



Proof. If f is a simple function with f > 0 almost everywhere, then a; > 0 for all ¢ such that p(A;) > 0. Then

/fdu=zam(14)>0

The second property is obvious.
The third property is a bit more nuanced. First observe that if f, g are simple, then f + g is simple. For

f:ZGiILAi and g:ij]lBj,

then N
FH9=>Y_ (ai+b)lans,
i=1 j=1
and o
/(f +9)du =YY (ai+b;)u(A; N By).
i=1 =1

To write [(f + g)duas [ fdu+ [ gdp, first observe that we can assume that UA; = UB; = Q (otherwise,
we could add the complement and give it a coefficient of 0.) Then

n m

Z aip(A;) = Z a; Z p(A; N Bj).

Then

n n

[rans [gdn=> 0> uiains,) S A B) =3 a4 by (AN B) = [+

j=1 i=1 i=1 j=1

17



3.5 Sep 18,2019

[Office Hours: Jason will have his on Wednesdays from 11-1 in 218, and Prof Levine’s will be on Thurs-
days from 1-2 in 438.]

Let’s recall the properties of integration (which we will prove in general):
(i) If f > 0 almost everywhere, then [ fdp > 0.
(ii)) Wehave [(af)du=a [ fduforaeR,
(ili) We have [(f +g)du= [ fdu+ [ gdn,
(iv) If f < g almost everywhere, then [ fdu < [ gdp,
(v) If f = g almost everywhere, then [ fdu = [ gdu, and
(vi) We have | [ fdu| < [ |/]dp.

Lasttime we defined [ f du for simple functions f = >, a;14,,for Ay,..., A, € Fand ay,...,a, €R,
and checked (i)-(iii).

Lemma 3.5.1. For any theory of integration, properties (iv)-(vi) follow from (i)-(iii).

Proof. For property (iv), write g = f + (g — f) and observe that by property (iii) we have

/gdu=/fdu+/(g—f)du7

and since g — f > 0 almost everywhere, the last term in the above equation is nonnegative by (i).
For property (v), we just apply property (iv) twice: if f = ¢ almost everywhere then f > ¢ almost
everywhere and f < g almost everywhere. Hence, by property (iv) we have

/fduﬁ/gdu and /fduz/gdm
so they're equal.

For property (vi), note that

[tan< [iflan and [-paus [fidn

since f < |f| and —f < |f|. By property (ii) we get

so combining the resulting inequalities gives
’/fdu‘ < /Ifldu-

We want to extend our theory of integration to more than just the simple functions. Recall that through-
out we are working with a o-finite measure space ({2, 7, u1): this means that there exist subsets A,, 1 Q with
1(A,) < co. Let’s continue to build up our integral:

O

Definition 3.5.2 (Integral; cf. Definition 3.4.1).

18



2. Let us consider (horizontally and vertically) bounded functions: fix an E € F with p(E) < oo, and fix
M € R, and let us consider f: (2, F) — (R, B) satisfying | f| < M and f(w) =0forallw € Q\ E.

We approximate f from below by simple functions ¢.

We define
/fd,u = sup {/(pdu}. A

@ 51mple
supp(¢)CE

Lemma 3.5.3. With the assumptions on f as above, we have

fra- s {fa)

P Slmple
supp(y)CE

[edn< [va
sup{ [oan} <int{ il

To prove the other inequality, we fix n and let

Proof. By property (iv), we have

for all ¢ < f <. Hence we have

Ek:{xEEilﬂ/[Zf(x)>M}

n
so that we're partitioning the y-axis into equal intervals, and taking the preimage, as below:
A

v

Ly
Fork € {—n,...,n}, welet

n

n
kM (k — l)M
n — —1 d n — ———1g,.
w k:§_n n Ey an ¥ kZE_n n Ey

By construction we have ¢, < f < 1,,. Note that we have ¢, — ¢, = %]l g, and hence

/wndu—/cpndu=/(wn on)dp = /—]lEdu—— (E) | 0asn — oo. O
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Note that the Riemann integral insists on breaking up the z-axis and then approximating the area under
the curve with “vertical” rectangles. The Lebesgue integral breaks up the z-axis into the Ej, and this base
is adapted to the function f. This is one reason why the Lebesgue integral is more flexible.

In the proof of Lemma 3.5.3, we used that f is measurable when we asserted ¢,, and v, were simple: we

need By, = f~1 (LD EMY) ¢ F,

n ' n

Let us check properties (i) to (vi) for bounded functions. For property (i), we suppose f > 0 almost
everywhere, and let N = {w € Q: f(w) < 0}. Since u(N) = 0, letting ¢ = —M1y, we have f > ¢
everywhere. Thus we get

[tan= [ dn=-ruv) =0

Let us check property (ii). The case where a > 0 is boring, so let us consider the case a < 0. We have

/(af) dy = sup /(a<p) dp.
ap simple
ap<af
Note that (since a < 0) we have ap < af if and only if ¢ > f. Thus
sup /(aap) dp = inf /(agp) dyp=a inf /gpd,u
ayp simple  simple ¢ simple

ap<af p>f »>f

where the second equality is property (ii) for integrals of simple functions. Lemma 3.5.3 guarantees that

a inf /goduza/fd,u.
o simple

> f
For property (iii), note that if 1); > f and 1o > g then ¢; + 12 > f + g. Hence
[G+gau= it [vaus wr  [fwrv)au= ot [oder [

Pv>f+g 11> f simple 11> f simple
1 simple ¥2>g simple 2>g simple

For the other inequality, do exactly the same proof with ¢; < f and ¢3 < g, and use sup instead of inf.
(Alternatively, we can use property (ii) and plug in — f, —g into the inequality above.)
As we observed earlier (Lemma 3.5.1), properties (iv)-(vi) follow from (i)-(iii).

Definition 3.5.4 (Integration; cf. Definitions 3.4.1 and 3.5.2).

3. Let us consider nonnegative (but possibly unbounded) functions. For f > 0 we define

/fdu ef sup { /hdu: 0<h<fand hbounded},
where h bounded means that there exist M € R, E € F so that u(E) < oo, h(w) = 0 forallw € E°,
and h < M everywhere.
A
Lemma 3.5.5. If E,, T Q with u(E,) < oo, then

/En(fAn)T/fdu-

To describe the notation in Lemma 3.5.5, we need to introduce: for real numbers a,b we write a A b =
min(a, b), and for functions f, g we write (f A g)(w) = f(w) A g(w). Now for A € F we write

[ rau= [(r1an

flw) HfweA
0 otherwise.

Note that
(fLla)(w) = {

20



Proof of Lemma 3.5.5. Let h,, = (f An)lg, < f. Note that

[rnduz [ i

For notational conciseness we let H be the family of functions

o {h:0<h < fand h bounded},

where “bounded” is in the sense of Definition 3.5.4. Since it is bounded, there is M so that h < M. Then

take n > M so that
/(f/\n)duZ/ hdu:/thu—/ hdu,
E E

and
/ hdpy < Mp(ESNF) ] 0asn — oo.
E,

For every h € H, we now have

liminf/ (fAn)du > [ hdpu.
En Q

n—oo

Passing to the supremum,

liminf/ (fAn)du > sup/h,du:/fdu.
E, heH

n—oQ

With this lemma we’ll be able to check properties (i)-(vi), and then check it for general f.
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3.6 Sep 23,2019

We're finishing up the definition of the integral today. We’ve seen how to integrate simple functions,
bounded functions, and nonnegative functions. We note that the integral of a nonnegative function is R U
{Fo00}-valued, since it was defined to be the limit of integrals of bounded functions.

Definition 3.6.1. We say a measurable function f is integrable if

/|f\ du < oo. A
In this case, we can write f = f* — f~, where
FEEFVe (= Vo,

where the notation zVy means max(x, y), and (f Vg)(w) means the function f(w)Vg(w). Then |f| = fT+f.

Definition 3.6.2 (Integration; see Definitions 3.4.1, 3.5.2, and 3.5.4). If f is integrable, we set

[ran™ [1ran- [ an 1)

A

In case [ fTdu = coand [ f~ du < oo, we can still make sense of equation (1) and set [ fdu = oo.
Likewise, if [ f*du < coand [ f~ du = oo, we can still make sense of equation (1) and set [ fdp = —oc.
Butif both [ f*du=ooand [ f~ du = oo, then [ f du will be undefined.

We should check again properties (i)-(iii), but this is routine.

[As SL reminded me, the four step process in Definitions 3.4.1, 3.5.2, 3.5.4, and 3.6.2 is sometimes called
the standard machine.]
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3.7 Sep 23,2019

[This subsection used to be part of Ch 4, but I feel it is better classified as part of Ch 3. Sorry!] Let’s
consider special cases of the theory of integration we’ve developed in Section 3.

/_O; f(z)de /fdA.

2. For Q countable and F = 29, with the counting measure (A4) = # A4, we have

[tan=Y s

weN

1. Let’s take (22, F, u) = (R, B, \): then

So one of the things that is nice about the measure theoretic integration in Section 3 is that it unifies the two
settings above.
Let’s talk about Jensen’s inequality.

Definition 3.7.1. Recall that o: R — R is called convex if
Ap(x) + (1= Ne(y) = Az + (1= A)y)
forall z,y € Rand all A € [0,1]. A
Examples of convex functions include z?, |z|, €**, and so on.

Proposition 3.7.2 (Jensen'’s Inequality). If p is a probability measure and ¢ is convex, with f and (f) both inte-

grable, then
sﬁ(/fdu) S/w(f)du-

(The intuition of the proof is that [ f du is a weighted average of the values of f.)

Proof of Proposition 3.7.2. We claim that for all ¢ € R, there is a supporting line (at ¢), call it {(x) = axz + b, so
that £(z) < ¢(x) with £(c) = ¢(c), as in the picture below:

()
()
c
Rigorously, the supporting line ¢(c) exists because
i 2t el 4, PRt — o)
h10 h h10

both exist, by convexity of ¢. Furthermore,

iy Pt ) = #(e) < lim
h10 h hl0

p(h+c) = p(c)

by the convexity of ¢.
Let us take 