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1 Various preliminaries

We assume that the reader knows the definition of a one-dimensional Brownian motion. We also
assume some familiarity with complex analysis although we will develop most of the facts that we
need. Those very familiar with complex analysis can go quickly through some sections although it
is recommended to read them to see how the results tie in with Brownian motion.

1.1 Notation

We write

• D = {z ∈ C : |z| < 1} is the open unit disk and H = {x + iy ∈ C : y > 0} is the upper half
plane.

• More generally, Dr = e−r D is the disk of radius e−r about the origin and Dr(z) = z + Dr is
the disk of radius e−r about z.

• Cr = ∂Dr, Cr(z) = ∂Dr(z).

• Ar = D \ Dr = {e−r < |z| < 1} is the annulus with boundary C0 ∪ Cr.

• We write Ĉ = C ∪ {∞} for the Riemann sphere.

The potential theory of complex Brownian motion makes heavy use of the logarithm function.
This affects our choice of notation. There are many times that we will want to write the
logarithm of a radius, and by parametrizing our radii exponentially it will make our formulas
nicer.

Definition A (standard) complex Brownian motion is a process of the form Bt = B1
t + i B2

t

where B1
t , B

2
t are independent one-dimensional Brownian motions. Equivalently, Bt is a standard

Brownian motion in R2 viewed as taking values in C.

When we say complex Brownian motion, we will always mean standard complex Brownian
motion. If the context is clear we will say just Brownian motion. If D ⊂ C is an open set, then we
define

τD = inf{t ≥ 0 : Bt 6∈ D},

τD = inf{t > 0 : Bt 6∈ D}.

Note that τD = τD > 0 if B0 ∈ D and τD = 0 if B0 ∈ C \D. If B0 ∈ ∂D.

Definition We call a boundary point z ∈ D regular if Pz{τD = 0} = 1, that is, if Brownian motion
starting at z immediately hits the boundary.

Here Pw means the probability assuming that B0 = w. Note that isolated points of ∂D are not
regular points. The next lemma shows that Brownian motion starting near a regular point exits
the domain quickly with high probability.
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Lemma 1.1. Suppose D is an open subset of C.

• Suppose z is a regular boundary point of ∂D. Then for every ε > 0, there exists δ > 0 such
that if |w − z| < δ, then

Pw{diam(B[0, τD]) ≥ ε} ≤ ε.

• If z is an irregular boundary point of ∂D, then Pz{τD > 0} = 1.

Proof. Without loss of generality, assume that z = 0 and let ξs = inf{t ≥ 0 : |Bt| = e−s}.
Suppose 0 is a regular point. Since P{τD = 0} = 1, we know that P{B(0, ξs] ⊂ D} = 0.

Therefore, there exists u such that

P{B[ξu, ξs] ⊂ D} ≤ e−s.

We can find δ > 0 such that the distribution of B(ξu) given that |B0| = δ agrees with that assuming
B0 = 0 up to an error of e−s (see comment below). Therefore, for |w| < δ,

Pw{B[ξu, ξs] ⊂ D} ≤ 2e−s,

and hence
Pw{diam[0, τD] ≥ 2e−s} ≤ 2e−s.

Suppose 0 is an irregular point. Then there exists r with

P{B(0, ξr] ⊂ D} = ρ > 0.

For ease we will assume that r = 0 (other r can be handled by scaling, see Exercise 1). For every
ε > 0 we can find s ≥ 0 such that

P{B[ξs, ξ0] ⊂ D} ≤ ρ+ ε.

As before, we can find u such that if |z| ≤ e−u,

Pz{B[ξs, ξ0] ⊂ D} ≤ ρ+ 2ε.

Therefore,

ρ = P{B(0, ξ0] ⊂ D}
= P{B(0, ξu] ⊂ D}P{B(0, ξ0] ⊂ D | B(0, ξu] ⊂ D}
≤ P{B(0, ξu] ⊂ D} (ρ+ 2ε),

which implies that

P{B(0, ξu] ⊂ D} ≥ ρ

ρ+ 2ε
.

Hence,
P{τD > 0} = lim

u→∞
P{B(0, ξu] ⊂ D} = 1.
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The astute reader will note that we “cheated” a little by not justifying why the hitting probability
of Cu starting at w is almost the same as that starting at 0. We could give a proof of this here,
but it follows easily from the exact form of the Poisson kernel in the disk which we do below,
so we chose not to.

We will call an open set D regular if Pz{τD <∞} = 1 for every z ∈ D.

Exercise 1. Suppose Bt is a complex Brownian motion starting at the origin. Let θ ∈ R, a > 0
and

Yt = eiθ Bt, Zt = a−1Ba2t.

Then Yt, Zt are (standard) complex Brownian motions.

Definition

• A domain is a connected open subset of C.

• A domain is simply connected if Ĉ \D is connected.

• If D is an unbounded domain with ∂D compact, we will also consider D ∪ {∞} as a domain
in Ĉ.

• Let D denote the set of all domains D ( C such that every z ∈ ∂D is regular.

• Let D∗ denote the set of all domains D ( C such that there exists z ∈ ∂D that is regular.

Clearly D ⊂ D∗. Giving the exact criterion to be in D is difficult. However, we will now derive
a sufficient condition that will suffice for our purposes. We will use the following lemma that makes
strong use of the planarity of C.

Lemma 1.2. There exists β > 0, c < ∞ such that if Bt is a complex Brownian motion starting
at z ∈ D and τ = τD = inf{t : |Bt| = 1}, then the probability that the origin lies in the unbounded
component of C \B[0, τ ] is no more than c |z|β.

It follows that if D is a domain, 0 6∈ D, and the connected component of C \ D containing 0
also contains at least one point on ∂D, then

Pz {B[0, τD] 6⊂ D} ≤ c |z|β.

Proof. Let p(z) be the probability that 0 lies in the unbounded component given B0 = z, and
note that p(z) = p(|z|). Let q be the probability that a Brownian motion starting on C1, the
circle of radius e−1 about the origin, disconnects C1 from C0 before time τ . By constructing a
particular event, it is easy to see that q > 0 and is independent of the angle of the starting point.
Using the strong Markov property and the scaling property of Brownian motion we can see that for
r ≥ 1, p(e−r) ≤ (1− q) p(e−r−1). Hence for integer n ≥ 0, p(e−n) ≤ en log(1−q), and more generally
p(e−u) ≤ p(e−buc) ≤ e− log(1−q) eu log(1−q).
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The optimal value of β is called the disconnection exponent and is known to be 1/4. This is
significantly harder to show and we will not need it.

Corollary 1.3. Suppose D ( C is a domain such that all the connected components of C \D are
larger than one point. Then D ∈ D. In particular, all simply connected D ( C are in D.

The proof of Lemma 1.2 establishes the following stronger fact.

Definition If z ∈ C,K ⊂ C, we define

radK(z) = sup{|w − z| : w ∈ K}, radK = radK(0),

diam(K) = sup{|w − z| : w, z ∈ K}.

Note that if z ∈ K, then radK(z) ≤ diam(K) ≤ 2 radK(z).

Proposition 1.4. Suppose D is a domain and w,w′ are in the same component of C \D. Then,
for all z,

Pz
{

diam (B[0, τD]) ≥ 2 |w′ − w|
}
≤ c

(
|z − w|
|w′ − w|

)β
,

where c, β are as in Lemma 1.2.

Proposition 1.5. Suppose D is a domain and z is an irregular boundary point of ∂D. Let h be a
strictly positive harmonic function on D. Then there exists a sequence zn ∈ D with zn → z with
lim infn→∞ h(zn) > 0.

Proof. Since z is irregular, we can find a compact V ⊂ D and δ > 0. such that Pz{τC\V <
τD} ≥ δ > 0. This implies that there exists zn → z with Pzn{τC\V < τD} ≥ δ} and hence
h(zn) ≥ δ min{h(w) : w ∈ V }.

Proposition 1.6. If D is a domain and z ∈ D, then with probability one, B(τD) is a regular point
of ∂D.

Proof. Let V be a subset of ∂D and let E be the event {B(τD) ∈ V }. Let Mt be the martingale
Mt = P[E | Ft∧τ ]. For t < τD, Mt = h(Bt) where h is the positive harmonic function h(w) =
Pw{BτD ∈ V }. Assume that V is such that 0 < h < 1 on D. Note that Mτ = 1E and the
martingale convergence theorem implies that Mτ− = Mτ with probability one. In particular, with
probability one, if ζ := B(τD) 6∈ V , then there exists γ : [0, 1)→ D with γ(1−) = ζ such that

lim
t↑1

h(γ(t)) = 0.

Since h is a bounded function, one can see using Lemma 1.2 that this last condition implies: if
zn → ζ, then h(zn)→ 0. This is impossible if ζ is an irregular point by the previous proposition.
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2 Brownian motion and harmonic functions

2.1 Harmonic functions

We will consider only functions on R2, or equivalently, C although much of we state here applies
(with appropriate modifications) to functions on Rd. Recall that the Laplacian of a C2 function is
defined by

∆f(z) = ∂xxf(z) + ∂yyf(z).

Definition If D is a domain, then a measurable function φ : D → R, is harmonic (in D) if it is
locally bounded and satisfies the mean-value property. In other words, if z ∈ D and dist(z, ∂D) > ε,
then

φ(z) = MV (φ, z, ε) :=
1

2π

∫ 2π

0
φ(z + εeiθ) dθ. (1)

The next lemma shows that harmonic functions are smooth.

Lemma 2.1. If φ is a harmonic function on a domain, then φ is a C∞ function.

Proof. It suffices to show that φ is C∞ in a neighborhood of every point and without loss of
generality we will assume that 0 ∈ D and we will differentiate in a neighborhood of 0. By shrinking
D if necessary, we may assume that ∫

D
|φ(z)| dA(z) <∞.

Let ε < dist(0, ∂D)/2, and let ψ denote a radially symmetric, nonnegative, C∞ function on C that
vanishes on {|w| ≥ ε} and satisfies ∫

C
ψ(w) dA(w) = 1.

Since φ satisfies the mean value property, we can use polar coordinates to see that that for |z| < ε.

φ(z) =

∫
C
φ(w)ψ(w − z) dA(w).

Since φ is L1 and ψ is C∞ with compact support, the right-hand side is infinitely differentiable.

Proposition 2.2. A function φ is harmonic on D if and only if it is C2 and satisfies ∆φ(z) = 0
for every z ∈ D. Moreover, if D′ ⊂ D is a subdomain bounded by a finite disjoint union of C1

curves in D, then ∫
∂D′

∂nφ(z) |dz| = 0, (2)

where n denotes the unit inward normal.

Proof. We first claim that if φ is C2 then at each z,

1

4
∆φ(z) = lim

ε↓0

MV (φ, z, ε)− φ(z)

ε2
. (3)
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Without loss of generality we may assume that z = 0 and φ(z) = 0 in which case we can write

φ(z) = bx x+ byy +
1

2
[bxx x

2 + byy y
2 + 2 bxy xy] + o(ε2).

Here bx, by, bxx, byy, bxy are the first and second partial derivatives evaluated at 0. Here we use
complex notation z = x+ iy. Since

MV (x2, 0, ε) +MV (y2, 0, ε) = MV (x2 + y2, 0, ε) = ε2,

we see that MV (x2, 0, ε) = MV (y2; 0, ε) = ε2/2, and

MV (φ, 0, ε) =
∆φ(0)

4
.

This gives (3) and it follows immediately that ∆φ ≡ 0 for harmonic functions.
If φ is C2 and satisfies ∆φ ≡ 0, then the divergence theorem shows that∫

∂D′
∂nφ(z) |dz| = −

∫
D′

∆φ(w) dA(w) = 0.

Applying this to the circles centered at z shows that

dMV (φ, z, ε)

dε
=

1

2πε

∫
|z|=ε

∂nφ(z) |dz| = c

ε
,

for some c ∈ R. Since MV (φ, z, 0+) = φ(z), we get that c = 0 and φ(z, ε) = φ(z) for all ε.

2.2 Optional sampling theorem

There is a close relationship between harmonic function and martingales. Before proceeding we
will prove a lemma that is one version of the “optional sampling” or “optional stopping” theorem
for martingales. The assumptions we make are significantly stronger than is needed for the result,
but it will suffice for our purposes.

Proposition 2.3. Suppose Mt, 0 ≤ t ≤ T is a uniformly bounded continuous martingale, and τ is
a stopping time, each with respect to the filtration {Ft}. Then Mt∧τ , 0 ≤ t ≤ T is a continuous
martingale with respect to the filtration {Fτ∧t}.

We recall that if τ is a stopping time, then Fτ is the σ-algebra of all events E such that for all
t, E ∩ {τ ≤ t} ∈ Ft. One thinks of this as all the events that depend on the process only up to the
stopping time τ .

Proof. Let Yt = Mt∧τ . It is immediate that Y is a continuous process. Let us first assume that τ
takes on only a discrete number of values 0 = s0 < s1 < · · · < sk <∞. If s < t, then Mt∧τ can be
written as

Mt∧τ =
∑
sj<t

Msj 1{τ = sj}+Mt 1{τ > sj}.
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Using the definition, it is not hard to show that this is a martingale. To illustrate this, we consider
the case sj = s < t, in which case

E [Mt∧τ | Fs] =
∑
k≤j

Msk 1{τ = sk}+ E
[
Mt 1{τ > sj} | Fsj

]
.

Since the event {τ > sj} is the complement of the event 1{τ ≤ sj} which is Fsj -measurable,

E
[
Mt 1{τ > sj} | Fsj

]
= 1{τ > sj}E

[
Mt | Fsj

]
= 1{τ > sj}Msj ,

and hence

E
[
Mt∧τ | Fsj

]
=

∑
k≤j

Msj 1{τ = sj}+Msj 1{τ > sj}

=
∑
k<j−1

Msk 1{τ = sk}+Msj 1{τ ≥ sj+1} = Ysj .

For more general τ , we approximate τ by discrete stopping times,

τ j = τ(j+1)/n,
j

n
≤ τ < j + 1

n
.

The random variablesMt∧τ j →Mt with probability one. Since they are bounded, they also converge
in L1.

• Let Bt be a standard one-dimensional Brownian motion starting at the origin and suppose
that a, b > 0. Let τ = inf{t : Bt = b or Bt = −a}. Then Bt∧τ is a martingale. Therefore, for
each t,

0 = E[B0] = E [Bt∧τ ] .

With probability one Bt∧τ → Bτ . Since Bt∧τ is uniformly bounded, we can use the dominated
convergence theorem to see that

E[Bτ ] = lim
t→∞

E [Bt∧τ ] = 0.

But,
E[Bτ ] = bP{Bτ = b} − a [1− P{Bτ = b}] .

Solving, we get

P{Bτ = b} =
a

a+ b
.

This relation is often referred to as the gambler’s ruin estimate for one-dimensional Brownian
motion. From this we can easily see that one-dimensional Brownian motion is recurrent, that
is, it keeps returning to the origin.
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• One must be careful in using this proposition. If P{τ <∞} = 1, then with probability one

lim
t→∞

Mt∧τ = Mτ .

However, it is not always the case that this limit is in L1. Indeed, it is possible for

E[Mτ ] 6= lim
t→∞

E[Mt∧τ ].

As an example, let Mt = Bt be a standard one-dimensional Brownian motion starting at the
origin and let τ = inf{t : Bt = 1}. Recurrence of one-dimensional Brownian motion implies
that P{τ <∞} = 1. However, E[Bτ ] 6= E[B0].

2.3 Itô’s formula calculation

Suppose D is a domain, h : D → R is a harmonic function and Bt = B1
t + iB2

t is a complex
Brownian motion starting at z ∈ D. Let τ = τD = inf{t : Bt 6∈ D}. Then, for t < τ , Itô’s formula
implies that

dh(Bt) = hx(Bt) dB
1
t + hy(Bt) dB

2
t .

Suppose K ⊂ D is a compact set with z ∈ int(K), and let τ ′ = inf{t : Bt ∈ ∂K}. Then h(Bt∧τ ′) is
a bounded martingale. It follows that

Ez [h(Bt∧τ ′)] = Ez[h(B0)] = h(z).

The left-hand side is the same as MV (z; f, ∂K).

Proposition 2.4 (Dirichlet problem). Suppose D ∈ D, and h is a bounded continuous function
on ∂D. Then there exists a unique bounded continuous function h : D → R that extends h and is
harmonic in D. In fact, for every z ∈ D,

h(z) = Ez [h(τD)] . (4)

Proof. If h is defined by (4), then h is locally integrable and satisfies the mean value property.
Hence, h is harmonic. Conversely if h is harmonic in D and continuous on ∂D, then Mt = ht∧τD is
a continuous martingale, and (4) satisfies the mean value property. We need to show that h defined
as in (4) is continuous on ∂D, and this uses the fact that every point in ∂D is a regular point.

The assumption that h is bounded is necessary for uniqueness. For example if D = (0,∞) and
h(0) = 0, there are an infinite number of harmonic extensions to D given by h(x) = cx.

As we will see below, if a Brownian motion starts at z ∈ D, then,

Pz{BτD ∈ V } =
1

2π

∫
|ζ|=1

1− |z|2

|ζ − z|2
1V (ζ) d|ζ|,

and hence

Ez [F (BτD)] =
1

2π

∫
|ζ|=1

1− |z|2

|ζ − z|2
F (ζ) d|ζ|. (5)

One can verify the last equality using the previous proposition and checking that the right-hand side
is harmonic in D and obtains the correct boundary value. Using this we can derive the fundamental
facts about harmonic functions.



2 Brownian motion and harmonic functions 9

Proposition 2.5 (Derivative estimates). For every positive integer k, there exists ck < ∞ such
that if D is a domain, h : D → R is harmonic, and z ∈ D with dist(z,D) ≥ ε, then for 0 ≤ j ≤ k,

|∂jx∂k−jy h(z)| ≤ ck ε−k sup{|h(w)| : |w − z| < ε}.

Proof. By considering h̃(w) = h(z + εw), we can see that it suffices to prove the result for D =
D, z = 0. In this case we can differentiate under the integral in (5).

Proposition 2.6 (Harnack principle). If D is a domain, then for every compact K ⊂ D there
exists c = c(K,D) <∞ such that if h : D → (0,∞) is harmonic, then

h(z) ≤ c h(w), z, w ∈ K.

Proof. Since D is connected, by choosing K larger if necessary, we may assume that K is connected.
If D ⊃ D and K = {|w| ≤ 1/2}, then the result follows from the explicit form of h in (5).
More generally, we can cover K by a finite collection of open balls Dr(ζj), j = 1, . . . , N with
Dr−log 2(ζ) ⊂ D. We write w ∼ z, if one of these balls contains both w, z. We say that w and z
are connected if there exists a sequence z = z0, z1, . . . , zk = w with zj−1 ∼ zj for each j. We claim
that all points in K are connected. Indeed, let U1 be the union of all the disks Dr(ζj), j = 1, . . . , N
for which z is connected to ζj and let U2 be the union of the other disks. If U2 6= ∅, then U1, U2

disconnect K. Hence, for z, w ∈ K we can find a sequence z = z0, z1, . . . , zk = w with zj−1 ∼ zj for
all j. By “erasing loops” if necessary, we can guarantee that k ≤ N , and hence, and f(z) ≤ cN0 f(w).

It will be useful to have the following convention.

Convention. Suppose D is a domain and h : D → R is a harmonic function. We say h : D → R
is an extension of the harmonic function to the boundary, if h is continuous at all regular points of
∂D.

While we have stated the derivative estimates and Harnack principle for harmonic functions in

R2, the analogous results hold for harmonic functions in Rd.

Proposition 2.7 (Schwarz reflection, harmonic functions). Suppose h is a harmonic function
defined on H∩D with boundary value 0 on (−1, 1). If h is extended to D by h(x− iy) = −h(x+ iy)
then h is harmonic on D.

Proof. We show that h has the mean-value property. In other words, we need to show that if z ∈ D,
r < dist(z, ∂D), B = {w : |z − w| < r}, and τ = inf{t : Bt ∈ ∂B}, then

h(z) = Ez[h(Bτ )].

If z ∈ R this is immediate by symmetry and the case Im(z) < 0 is identical to Im(z) > 0 so we will
assume Im(z) > 0. We also assume that r > Im(z), for otherwise this follows immediately from
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the harmonicity of h on H∩D. Let V− = ∂B ∩ {Im(ζ) < 0}, V+ = {w : w ∈ V−} and V = V− ∪ V+.
Note that V+ ⊂ B. Let ∂∗ = ∂[B ∩H]. We define a sequence of stopping times. Let ρ0 = 0 and

σj = τ ∧ inf{t ≥ ρj−1 : Bt ∈ ∂∗},

ρj = τ ∧ inf{t ≥ σj : Bt ∈ V },

Harmonicity in H ∩ D shows that for each j, Ez[h(Bσj+1)] = Ez[h(Bρj )] and symmetry shows that
Ez[h(Bρj )] = Ez[h(Bσj )]. Therefore,

E[h(Bτ )] = lim
j→∞

Ez[h(Bσj )] = h(z).

2.4 Harmonic functions and holomorphic functions

We assume the following facts from an undergraduate course in complex variables.

Definition A function f : u+ iv on a domain D ⊂ C is called holomorphic or analytic on D if any
of the following equivalent facts hold.

• The derivative

f ′(z) = lim
w→z

f(w)− f(z)

w − z
exists.

• (u, v) is a C2 function satisfying the Cauchy-Riemann equations

∂xu = ∂yv, ∂yu = −∂xv.

• For each z ∈ D, we can expand f in a power series

f(w) =

∞∑
j=0

aj (w − z)j ,

where the radius of convergence is at least dist(z, ∂D).

From the Cauchy-Riemann equations, one can see that u, v are harmonic functions. The next
proposition, which is a standard result from a first course in complex variables, gives a partial
converse to this fact.

Proposition 2.8. Suppose D is a simply connected domain and u is harmonic function on D.
Then there is a harmonic function v on D, which is unique up to an additive constant, such that
f(z) := u(z) + iv(z) is holomorphic.



2 Brownian motion and harmonic functions 11

Sketch of proof. We use the Cauchy-Riemann equations to find v. Let us fix z0 ∈ D and arbitrarily
choose v(z0) = 0. If γ : [0, 1]→ D is a smooth curve with γ(0) = z0, γ(1) = z, then we define

v(z) =

∫
γ
∂nu · dγ :=

∫ 1

0
[∂yu(γ(t)) ∂xγ(t)− ∂xu(γ(t)) ∂yγ(t)] dt.

In order to show this is well defined, we need to show that we get the same value for v(z) regardless
of the curve γ. Equivalently, we need to show that if γ(1) = z0, then∫

γ
∂nu · dγ = 0.

If D is simply connected, then the region(s) bounded by γ are entirely in D, and this identity
follows from Green’s theorem and the fact that u is harmonic. By construction, u, v satisfy the
Cauchy-Riemann equation and hence f = u+ iv is holomorphic. To show uniqueness, suppose that
f̃ = u + iṽ is also holomorphic. Then f − f̃ is holomorphic and only takes on imaginary values.
Hence f − f̃ is constant.

The function v is often called the complex conjugate. We have used simple connectedness
to conclude that there exists an complex conjugate v defined on all of D. Such an extension
does not necessarily exist if the domain is not simply connected. For example, if u(z) = log |z|
on D = {z : 0 < |z| < 1}, then u is harmonic, but there is no holomorphic extension to all of D.
However, regardless of the topology of D, we can always find conjugates v defined in a neighborhood
of z0. When trying to determine if two complex domains are conformally equivalent, it is often the
case that one can determine the real or imaginary part (or, perhaps, the radial part which is the
real part of the exponential, or something similar). This determines the function (up to a constant)
locally and then the question becomes whether or not one can extend it to the entire domain D.

Proposition 2.9 (Schwarz reflection, holomorphic functions). Suppose f = u+iv is a holomorphic
function on D+ with limy↓0 v(x + iy) = 0 for all −1 < x < 1. Then f can be extended to a
holomorphic function on D satisfying f(z̄) = ¯f(z).

Proof. By Proposition 2.7, if we extend v to D by v(x) = 0 and v(z̄) = −v(z), then v is harmonic
in D. By Proposition 2.8, there exists u∗ (unique up to an additive constant) such that u∗ + iv
is holomorphic. By uniqueness, we can choose the constant so that u∗ ≡ u on D+. Since f̂(z) =
u(z̄)− iv(z̄) is holomorhphic in −D+, we see that u∗ ≡ u+ c0 in −D+ for some c0 ∈ R. Continuity
at the real axis shows that c0 = 0.

We have stated Schwarz reflection for functions in D+, but there is an immediate corollary for
functions in εD+.

The term conjugate is overused in complex variables! I have given lectures where I have used
conjugate three different ways in the same lecture — as the conjugate of a number, as the complex
conjugate function above, and also in the algebraic sense of a conjugate function f̃ = g−1 ◦f ◦g.
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2.5 Conformal invariance

If f is a holomorphic function with f(0) = 0, f ′(0) 6= 0, then locally near zero f looks like a dilation
by |f ′(0)| and a rotation by arg f ′(0). Brownian motion is invariant under rotation and is also
invariant under scaling if one changes the parametrization appropriately. This is the basic reason
why the following theorem holds.

Theorem 1. Suppose D ⊂ C is a domain and Bt is a complex Brownian motion starting at z ∈ D.
Suppose f : D → C is a nonconstant holomorphic function. Let

ξ =

∫ τD

0
|f ′(Bs)|2 ds ∈ (0,∞],

and for t < ξ, define σ(t) < τD by ∫ σ(t)

0
|f ′(Bs)|2 ds = t.

Then Yt = f(Bσ(t)), 0 ≤ t < ξ is a complex Brownian motion.

We will need a lemma that states in some sense that all stochastic integrals are time changes of
standard Brownian motions. Indeed, a stronger fact is true that we will not prove — all continuous
martingales are time changes of standard Brownian motions.

Lemma 2.10. Suppose Bt is a standard one-dimensional Brownian motion with filtration {Ft}
and suppose that At is a continuous, adapted process such that there exist 0 < c1 < c2 < ∞ with
c1 ≤ |At| ≤ c2. Let

Xt =

∫ t

0
As dBs,

and let
σ(r) = inf{t : 〈X〉t = r},

that is ∫ σ(r)

0
A2
s ds = r.

Suppose that for all t, P{σ(t) < ∞} = 1. Then Wr := Xσ(r) is a standard Brownian motion with

respect to F̃r = Fσ(r).

Sketch of Proof. To prove this, one shows that conditioned on F̃s the distribution of Wr+s −Ws is
that of a Brownian motion with variance r2. We will do this in the case s = 0; the general case is
similar. If λ ∈ R, let

Kt = exp{iλXt}.

(If one does not want to use Itô’s formula with with complex valued processes one can write this
as cos(λXt) + i sin(λXt).) Itô’s formula shows that

dKt = Kt

[
i λAt dBt −

λ2

2
A2
t dt

]
= Kt

[
i λAt dBt −

λ2

2
d〈X〉t

]
.
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If Mt = exp{λ2 〈X〉t/2}Kt, then Mt is a local martingale satisfying,

dMt = i λMt dBt.

Note that Mt∧σ(r) is a bounded martingale, and hence the optional sampling theorem implies that

E
[
Mσ(r)

]
= E[M0] = 1.

But, Mσ(r) = eλ
2r/2 exp{iλXσ(r)}, and hence

E
[
eiλWr

]
= e−λ

2r/2.

Since the characteristic function determines the distribution, we see that Wr ∼ N(0, r).

Proof of Theorem 1. We will give a sketch of the proof relying on some facts from stochastic cal-
culus.

Let U ⊂ D be a subdomain with U compact containing none of the zeros of f ′, and let τ =
τU < τD. Let us write Bt = B1

t + iB2
t and let Xt = u(B1

t , B
2
t ), Yt = v(B1

t , B
2
t ). Using the fact that

u, v are harmonic functions, Itô’s formula and the Cauchy-Riemann equations give

dXt = ux(Bt) dB
1
t + uy(Bt) dB

2
t ,

dYt = vx(Bt) dB
1
t + vy(Bt) dB

2
t

= −uy(Bt) dB1
t + ux(Bt) dB

2
t .

Note that ∂tσ(t) = |f ′(Bt)|−2 = |∇u(Bt)|−2. If we let X̂t = Xσ(t), Ŷt = Yσ(t), then

dX̂t =
ux(B̂t)

|∇u(B̂t)|
dW 1

t +
uy(B̂t)

|∇u(B̂t)|
dW 2

t ,

dŶt =
−uy(B̂t)
∇u(B̂t)

dW 1
t +

ux(B̂t)

|∇u(B̂t)|
dW 2

t ,

where W 1
t ,W

2
t are independent, standard Brownian motions. This means that (X̂t, Ŷt) are inde-

pendent standard Brownian motions, that is,

B̂t = X̂t + i Ŷt,

is a standard complex Brownian motion at least for t ≤ τ . Since this holds for every U , and with
probability one the Brownian motion avoids the singular points of U , we can conclude that it holds
for t < τD.

The statement of Theorem 1 is a little nicer if f is a conformal transformation. We say that
f : D → D′ is a conformal transformation if f is holomorphic, one-to-one, and onto.
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Theorem 2. Suppose D is a domain in C and f : D → f(D) is a conformal transformation.
Suppose Bt is a complex Brownian motion starting at z ∈ D. Let

ξ =

∫ τD

0
|f ′(Bs)|2 ds ∈ (0,∞],

and for s < ξ, define σ(s) < τD by ∫ σ(s)

0
|f ′(Bu)|2 du = s.

Then Ys := f(Bσ(s)), 0 ≤ s < ξ is a complex Brownian motion, and ξ = τf(D) = inf{t : Yt 6∈ f(D)}.

Proof. Note that if ξ < ∞, we can extend Ys, 0 ≤ s ≤ ξ by continuity. If ξ < ∞, we claim that
Yξ ∈ ∂f(D). Indeed, if Yξ = w ∈ f(D), then BτD− = f−1(w) ∈ D.

2.5.1 Example: Recurrence

Here we show that two-dimensional Brownian motion is neighborhood recurrent. To be more precise,
with probability one, for all z ∈ C, ε > 0, T < ∞, there exists t > T with |Bt − z| < ε. It suffices
to prove this for z with rational coordinates, and the proof is essentially the same for all of them,
so let us consider z = 0. Let Bt be a complex Brownian motion and let f(z) = ez, Yt = f(Bt) =
eBt = eB

1
t eiB

2
t . Then Yt is a time change of a Brownian motion. Since |Yt| = eB

1
t , we see from the

recurrence of the one-dimensional Brownian motion B1 that

lim inf
t→∞

|Yt| = 0.

We can also see from this that the Brownian motion is not pointwise recurrent. Indeed with
probability one, a Brownian motion never visits the origin after time zero. This is obvious for Yt
since 0 is not in the range of the exponential function.

An important corollary of the neighborhood recurrence of Brownian motion is the following: if
D is a domain with at least one regular boundary point, then for all z ∈ D,

Pz{τD <∞} = 1.

Indeed, if w is a regular point, then there exists a δ such that if the Brownian motion is within
distance δ of w, then with probability 1/2 it leaves the domain before it goes distance one from
z. Since we keep returning to the δ neighborhood of z we get infinitely many chances to escape D
near w and we will eventually succeed. This fact is used implicitly in the following definition.

Definition If D ∈ D∗ and z ∈ D, then the harmonic measure hmD(z, ·) is defined to be the
distribution of B(τD) assuming B0 = z. In other words, the probability that a Brownian motion
starting at z exits D at V is hmD(z, V ). More generally, if f is a function defined on ∂D, we let

hmD(z, f) = Ez [f(Bτ )] =

∫
∂D

f(w) dhmD(z, w).
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If f : D → f(D) is a conformal transformation, that extends to a homemomorphism of D, then

hmf(D)(f(z), f(V )) = hmD(z, V ). (6)

There is a similar formula that holds if f does not extend to a homemorphism, but to explain
it requires a discussion of prime ends which we will do later. We For example, if D = D ∩ H,
then f(z) = z2 is a conformal transformation of D onto f(D) = D \ [0, 1). The boundary point
1/4 ∈ ∂f(D) corresponds to two equivalences classes, one for curves approaching 1/4 from above
and the other for curves approaching 1/4 from below. These correspond to curves in D that leave
D at 1/2 and −1/2 respectively. Examples like this where there are “two-sided” points are easy
to handle, even if we have to be careful about our notation. Once we have defined prime ends, the
generalization will be straightforward.

The definition of harmonic measure does not require any smoothness of the boundary. However,
if the boundary is nice, then one can write harmonic measure as an integral of a kernel called
the Poisson kernel. Rotational invariance of Brownian motion shows that harmonic measure on D
centered at zero is the uniform distribution. We define HD(z, w) to be the Poisson kernel normalized
so that

HD(0, eiθ) =
1

2
.

In other words, if V is sufficiently smooth,

hmD(z, V ) =
1

π

∫
V
HD(z, w) |dw|. (7)

Here |dw| represents integration with respect to arc length, that is, a traditional line integral from
vector calculus rather than a complex integral along a curve. The term “sufficiently smooth” is a
little vague. We will only use the Poisson kernel at places where ∂D is locally an analytic curve.
If f : D → f(D) is a conformal transformation, D is locally analytic at w,. and f(D) is locally
analytic at f(w), then the Poisson kernel satisfies the “conformal covariance” relation

HD(z, w) = |f ′(w)|Hf(D)(f(z), f(w)).

Suppose f : D→ D is a conformal transformation. Then boundary ∂D can be very rough. For
example, there can be points w ∈ ∂D such that there is no continuous path η : [0, 1)→ D with
η(1−) = w. However, the harmonic measure of such points has to be zero. This is immediate
from the definition of harmonic measure in terms of Brownian motion.

The Poisson kernel is naturally defined up to a constant. We made a nonstandard choice in (7)
which is convenient for later work with Schramm-Loewner evolution. Under this normalization,
if x > 0,

HH(0, x) = x−2.
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2.5.2 Example: the annulus

Recall that Ar is the annulus Ar = D \ Dr = {z : e−r < |z| < 1}.

Proposition 2.11. If z ∈ Ar and τ = τAr , then

Pz{|Bτ | = e−r} =
− log |z|

r
. (8)

Proof. Let us give two similar proofs. First, note that φ(z) := − log |z| is a bounded harmonic
function in Ar that is continuous on Ar. This can be checked by differentiation or by noting that
it is the real part of the (locally) analytic function − log z. Therefore, by Proposition 2.4,

φ(z) = φ(B0) = Ez [φ(Bτ )] = r Pz
{
|φ(Bτ )| = e−r

}
.

Alternatively we can let Yt = exp{Bt}. Then the probability is the same as the probability that
the one-dimensional Brownian motion B1

t starting at log |z| reaches level −r before reaching level
0 which by the gambler’s ruin estimate is − log |z|/r.

Proposition 2.12. Suppose φ is a harmonic function on the annulus Ar = {e−r < |z| < 1}. Let

Ms = MV (φ, 0, e−s) =
1

2π

∫ 2π

0
φ(e−s+iθ) dθ,

be the average value of φ on the circle of radius e−s. Then there exist a, b such that

Ms = as+ b, 0 < s < r.

Moreover, for each s, ∫
Cs

∂nφ(w) |dw| = 2πa,

where n is the inward unit normal.

Proof. Suppose that 0 < p < s < q < r. Let Bt be a Brownian motion starting uniformly on Cs,
the circle of radius e−s, and let T be the first time t that Bt ∈ Cp ∪ Cq. Then

P{BT ∈ Cp} =
q − s
q − p

.

By rotational symmetry, given that BT ∈ Cp (or given BT ∈ Cq), the distribution of the angular
part is uniform. Therefore,

Ms =
q − s
q − p

Mp +
s− p
q − p

Mq =
Mq −Mp

q − p
s+

qMp − pMq

q − p
.

This establishes the result for p < s < q and by letting p→ 0, q → r, we get the first assertion. For
the final assertion note that

2πa = 2π∂sMs = ∂s

∫ 2π

0
φ(e−s+iθ) dθ = ∂s

∫
Cs

φ(w) es |dw| =
∫
Cs

∂nφ(w) |dw|.
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3 Green’s function

The Green’s function GD(z, w) is the normalized probability that a Brownian motion starting at
z visits w before leaving D. As stated this does not make sense since the probability that the
Brownian motion visits w is zero. However, we can make sense of it as a limit,

GD(z, w) = lim
ε↓0

log[1/ε]Pz{dist(w,B[0, τD]) ≤ ε}.

We will show this limit exists in this section and derive some properties. We will first consider the
case w = 0 and write just GD(z) for GD(z, 0). Throughout this section, we let

σs = inf{t : |Bt| = e−s}.

We will make no topological assumptions about the domain D. We only require that the boundary
contain a regular point, that is, that Pz{τD <∞} = 1.

Definition Let Ur (resp., U s
r) denote the set of domains (resp., simply connected domains) con-

taining the origin with at least one regular boundary point and dist(0, ∂D) ≥ r. If r = 1 we write
just U ,U s. There are natural bijections U ↔ Ur and U s ↔ U s

r given by D ↔ rD.

Proposition 3.1. Suppose D ∈ Ur and z ∈ D \ {0}. Then the limit

GD(z) = lim
s→∞

sPz{σs < τD},

exists and lies in (0,∞). Moreover, GrD(rz) = GD(z).

We note that (8) establishes the result for D = D for which

GD(z) = − log |z|.

Proof. We write τ = τD. It suffices to prove the result for D ∈ U , after which we can use conformal
invariance of Brownian motion to see that

GeuD(euz) = lim
s→∞

sPe
uz{σs < τeuD} = lim

s→∞
sPz{σs−u < τ} = lim

s→∞
(s− u)Pz{σs−u < τ} = GD(z).

Since D ⊂ D and ∂D contains a regular point, the Harnack principle (Proposition 2.6) implies
that

inf
|ζ|=1

Pζ{τ < σ1} =: ρ = ρD > 0. (9)

For s > 1, let
qs = sup

|ζ|=1
Pζ{σs < τ}.

By the strong Markov property, this is the same as the supremum over |ζ| ≥ 1. We claim that

qs ≤
1

sρ
, (10)

To see this, note that if |ζ| = 1 and s > 1, then

Pζ{σs < τ} ≤ Pζ{σ1 < τ} sup
|ζ′|=1/e

Pζ
′{σs < τ} ≤ (1− ρ) sup

|ζ′|=1/e
Pζ
′{σs < τ}.
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If |ζ ′| = 1/e, then using (8), we get

Pζ
′{σs < τ} = Pζ

′{σs < σ0}+ Pζ
′{σs > σ0}Pζ

′{σs < τ | σs > σ0}

≤ 1

s
+
s− 1

s
qs.

By taking the supremum over |ζ| = 1, we see that

qs ≤ (1− ρ)

[
1

s
+
s− 1

s
qs

]
≤ 1

s
+ (1− ρ) qs.

which gives (10).
We now fix z and let f(s) = Pz{σs < τ}. Then, if |z| > e−s,

f(s+ 1) = Pz{σs+1 < τ} = Pz{σs < τ}Pz{σs+1 < τ | σs < τ}
= f(s)Pz{σs+1 < τ | σs < τ}.

If |ζ| = e−s, then (8) and (10) imply that

Pζ{σs+1 < τ} = Pζ{σs+1 < σ0}+ Pζ{σ0 < σs+1}Pζ{σs+1 < τ | σ0 < σs+1}

≤ s

s+ 1
+

1

s+ 1

1

ρ (s+ 1)
=

s

s+ 1
+O(s−2),

where here and throughout the remainder of the proof, the O(·) terms can depend on D. Therefore,

f(s+ 1) = f(s)

[
1− 1

s+ 1
+O(s−2)

]
,

log f(s+ 1) = log f(s)− 1

s+ 1
+O(s−2).

This equation implies the existence of a constant which we call GD(z) such that for integer s,

Pz{σs < τ} = f(s) =
GD(z)

s

[
1 +O(s−1)

]
. (11)

If 0 ≤ u ≤ 1, the same argument shows that

f(s+ u) = f(s)
s

s+ u

[
1 +O(s−1)

]
=
GD(z)

s+ u

[
1 +O(s−1)

]
,

and hence (11) holds for all s.

We extend GD(z) to be a function on C\{0} by setting GD(z) = 0, z 6∈ D. If D is open but not
connected and D̃ is the connected component of D containing the origin, we define GD(z) = GD̃(z).
If C \D is compact, then we can extend GD to infinity,

GD(∞) = lim
z→∞

GD(z).

We state the next proposition for D ∈ U but it extends immediately to a result about D ∈ Ur
by scaling.
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Proposition 3.2. There exists c <∞ such that if D ∈ U , the following holds.

1. GD is a positive harmonic function on D \ {0} that vanishes on ∂D.

2. There exists cD <∞ such that for all z,

GD(z) ≤ log+(1/|z|) + cD.

3. GD is continuous at every regular point of ∂D.

4. If hD is defined by
hD(z) = GD(z) + log |z|, z ∈ D \ {0},

hD(0) =
1

2π

∫ 2π

0
GD(er+iθ) dθ,

then hD is a harmonic function on D.

5. If |z| < e−1,
|hD(z)− hD(0)| ≤ c hD(0) |z|. (12)

6. If z ∈ D,
hD(z) = Ez [log |Bτ |]− lim

r→∞
rEz[hD(Bσ−r);σ−r < τ ],

where τ = τD = inf{t > 0 : Bt 6∈ D}. In particular, if D is bounded, then

hD(z) = Ez [log |Bτ |] .

7. If D′ ⊂ D, then GD′(z) ≤ GD(z).

8. If D1 ⊂ D2 ⊂ · · · and D =
⋃∞
n=1Dn, then for z ∈ D,

GD(z) = lim
n→∞

GDn(z). (13)

9. If f : D → f(D) is a conformal transformation with f(0) = 0, then Gf(D)(f(z)) = GD(z).

Proof.

1. We have shown that GD(z) > 0 if z ∈ D and it is defined to be zero on ∂D. Suppose U ⊂ D
is a disk with U ⊂ D \ {0}. Then by the definition of GD we can see that

GD(z) = Ez [GD(BτU )] = MV(z,GD, U)

from which we see that GD is harmonic on D \ {0}.

2. Note that (10) implies that GD(z) ≤ 1/ρ for |z| = 1. If |z| = e−r with r < s, then

Pz{σs < τD} ≤ Pz{σs < σ0}+ Pz{σ0 < σs < τD} ≤
r

s
+
s− r
s2ρ

.

Letting s→∞, we see that GD(z) ≤ r + (1/ρ).
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3. Let z be a regular boundary point and let ξ = inf{t : |Bt−z| = |z|/2}. Then for |w−z| < |z|/2,

GD(w) ≤ αPw{ξ < τD}

where α = sup{GD(ζ) : |z − ζ| = |z|/2} < ∞. For every ε > 0, we can find δ > 0 such that
|w − z| < δ implies that Pw{ξ < τD} < ε and hence GD(w) ≤ ε α.

4. For z ∈ D \ {0}, let
hD(z) = GD(z) + log |z|.

Suppose |z| < 1. Then,

Pz{σs < τ} = Pz{σs < σ0}+ Pz{σ0 < σs < τ}

=
− log |z|

s
+

∫
C0

Pw{σs < τ}hmAs(z, dw).

If we multiply both sides by s and take the limit as s→∞, we get

GD(z) = − log |z|+
∫
C0

GD(w) hmD(z, dw) = − log |z|+ 1

π

∫ 2π

0
GD(eiθ)HD(z, eiθ) dθ.

In other words,

hD(z) =
1

π

∫ 2π

0
GD(eiθ)HD(z, eiθ) dθ, 0 < |z| < 1,

which can be extended to 0 by setting z = 0 on the right-hand side.

5. Using the exact form of the Poisson kernel, we can see that

HD(z, eiθ) =
1

2
+O(|z|),

and hence
|GD(z) + log |z| − hD(0)| ≤ c |z|hD(0).

6. Let
θ = θz = lim inf

r→∞
r Pz {τD > σ−r} .

We claim that
θ = lim

r→∞
r Pz {τD > σ−r} .

To see this we first note that since ∂D is regular, if

q(r) = sup
|ζ|=1

Pζ{σ−r < τD},

then q(r)→ 0 as r →∞. Hence, if

p(r, s) = sup
|ζ|=er

{σ−s < τD},
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then for |ζ| = er, and s > r,

Pζ{σ−s < τD} ≤ Pζ{σ−s < σ0}+ Pζ{σ0 < σ−s}Pζ{σs < τD | σ0 < σ−s}

≤ r

s
+ q(r) p(r, s),

which implies that

p(r, s) ≤ r

s (1− q(r))
.

Hence,

Pz{σ−s < τD} = Pz{σ−r < τD}Pz{σ−s < τD | σ−r < τD}

≤ Pz{σ−r < τD}
r

s (1− q(r))
.

Therefore,

lim sup
s→∞

sPz{σ−s < τD} ≤ lim inf
r→∞

r

1− q(r)
Pz{σ−r < τD} = θ.

(If this argument seems familiar, we are really just proving the existence of the “Green’s
function at infinity” which can be obtained from the Green’s function at zero by the map
z 7→ 1/z.)

Since hD is bounded on {|z| ≤ er}, we have

hD(z) = Ez[hD(Bτ ); τ < σ−r] + Ez[hD(Bσ−r);σ−r < τ ].

Taking limits as r →∞ and using the monotone convergence theorem, we see that

hD(z) = Ez[hD(Bτ )] + θ +GD(∞).

7. Monotonicity in D follows immediately from the definition.

8. Assume D ∈ U . If D1 ⊂ D2 ⊂ · · · and D = ∪Dn, then monotonicity implies that the limit

G∗(z) := lim
n→∞

GDn(z)

exists and G∗(z) ≤ GD(z). Assume that Ds ⊂ Dn. Then for |w| < e−s,

GDn(w) ≥ GDs(w) = GD(esw) = − log |w| − s.

Therefore, for m ≥ n, u ≥ s, and all z ∈ Dm,

GDm(z) ≥ (u− s)Pz{σu < τDm}.

Letting m→∞, we see that

G∗(z) ≥ (u− s) lim
m→∞

Pz{σu < τDm} = (u− s)Pz{σu < τD}.

Letting u→∞, we get G∗(z) ≥ GD(z).
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9. Note that it follows from the definition, that for any u > 0,

lim
s→∞

sPz{σs+u < τ} = G(z). (14)

Let Cs = {ζ : |ζ| = e−s} and σ̂s = inf{t : Bt ∈ f(Cs)}. Conformal invariance of Brownian
motion implies that for z ∈ D, |z| > e−s,

Pz{σs < τD} = Pf(z){σ̂s < τf(D)}.

Let θ = − log |f ′(0)|. If ε > 0, then for all s sufficiently large,

σs+θ+ε ≤ σ̂s ≤ σs+θ−ε.

Hence, using (14),

Gf(D)(f(z)) = lim
s→∞

sPf(z){σs < τf(D)} = GD(z).

Definition If D ∈ D∗, then the Green’s function GD(z, w) is defined for distinct z, w ∈ D by

GD(z, w) = GD−z(w − z).

In other words, if
σs(w) = inf{t : |Bt − w| ≤ e−s},

then
GD(z, w) = lim

s→∞
sPz{σs(w) < τD}.

Lemma 3.3. If τ = τD, and z ∈ D,

Ez[τD] =
1

2
[1− |z|2].

Proof. Itô’s formula shows that
Mt = |Bt|2 − 2t

is a martingale. Since Ez[Mτ ] = E[M0] = |z|2,

2Ez[τ ] = Ez[B2
τD

]− |z|2 = 1− |z|2.

Proposition 3.4. If D ∈ D∗, and z, w ∈ D are distinct,

GD(z, w) = lim
s→∞

e2s Ez
[∫ τD

0
1{|Bt − w| ≤ e−s} dt

]
= lim

s→∞
e2s

∫ ∞
0

Pz{|Bt − w| ≤ e−s, B[0, t] ⊂ D} dt.



3 Green’s function 23

Proof. Let us first consider D = D−s, w = 0, and |z| = 1. Let τs = τD−s = inf{t : |Bt| = es} and

Ys =

∫ τs

0
1{|Bt − w| ≤ es} dt, F (s) = Ez[Ys].

Suppose 0 < r < s and note that if |ζ| = er,

Eζ [Ys] = Pζ{τ0 < τs}Eζ [Ys | τ0 < τs] =
s− r
s

F (s),

F (s) = Ez [Ys] = Ez [Yr] + Ez [Ys − Yr] = F (r) +
s− r
s

F (s).

Therefore, there exists c0 such that F (s) = c0s. Using scaling, we see that if z ∈ D \ Ds, then

e2s

∫ ∞
0

Pz{|Bt| ≤ e−s;B[0, t] ⊂ D} dt = c0 [− log |z|] = c0GD(z, 0). (15)

To find c0, note that

P0{|Bt − z| ≤ e−s;B[0, t] ⊂ (1− e−s)D} = Pz{|Bt| ≤ e−s;B[0, t] ⊂ D}
≤ P0{|Bt − z| ≤ e−s;B[0, t] ⊂ (1 + e−s)D}

From this we see (we omit the details) that

lim
s→∞

∫
e−s≤|z|≤1

e2s

∫ ∞
0

Pz{|Bt| ≤ e−s;B[0, t] ⊂ D} dt dA(z) = π E0[τD] = π/2.

Also, ∫
D
G(0, w) dA(w) =

∫
D

log |w| dA(w) =

∫ 2π

0

∫ 1

0
(r log r)dr dθ = π

∫ 1

0
r dr =

π

2
.

Therefore c0 = 1.
We now choose D ∈ U and allow constants to depend on D. Let

q = sup
|ζ|=1

Pζ{σs < τD},

and recall that q ≤ c/s. Then if |ζ| = 1, the strong Markov property and (15) imply that

Ez
[∫ τD

0
1{|Bt − w| ≤ e−s} dt

]
≤
∞∑
j=1

qj s e−2s ≤ c e−2s.

Hence if |z| > e−s,

Ez
[∫ τD

0
1{|Bt − w| ≤ e−s} dt

]
= Pz{σ−s < τD} s e−2s [1 +O(s−1)]

= e−2sGD(z, 0) [1 +O(s−1)].

This gives the result for w = 0, U ∈ U , and the more general case follows from scaling and
translation.
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Proposition 3.5. If D ∈ D∗ and z, w ∈ D,

GD(z, w) = GD(w, z)

Proof. Let Dε = {ζ ∈ D : dist(ζ, ∂D) > ε}. For a fixed t, let Wr = w − Bt + Bt−r, and note that
Wr, 0 ≤ r ≤ t is a Brownian motion starting at w. If e−s < ε, then

Pz{|Bt − w| ≤ e−s;B[0, t] ⊂ τD} ≥ Pw{|Wt − z| ≤ e−s;W [0, t] ⊂ τDε}.

By Proposition 3.4, we have GD(z, w) ≥ GDε(w, z) and using (13) we get GD(z, w) ≥ GD(w, z).
Similarly, GD(w, z) ≥ GD(z, w).

4 Riemann mapping theorem

We will prove one of the most important theorems in conformal mapping, the Riemann mapping
theorem. We start with a lemma after which the proof will be rather short.

Lemma 4.1. Suppose D is a domain containing the origin and g : D → D is a holomorphic
function satisfying g(0) = 0 with the following properties.

1. There exists s > 0 such for all z ∈ Ds there exists unique w ∈ D with g(w) = z.

2. For each s > 0, there is a compact set Ks ⊂ D such that g−1(Ds) ⊂ Ks.

Then g is one-to-one and onto.

Proof. We recall a basic fact about holomorphic functions. If g is holomorphic at the origin, then

• If g′(0) 6= 0, then there is a neighborhood N of 0 for which g is one-to-one and onto the open
set g(N ).

• If g′(0) = 0 and g is not a constant, then g is open and locally many-to-one, that is, there
is neighborhood N of 0 such that g(N ) is open and each point in g(N ) \ {g(0)} has at least
two pre-images in N .

Clearly g is not a constant function. We start by showing g is onto. Let r be the infimum of
s such that there exists z ∈ Cs \ g(D). The first condition shows that r < ∞. Suppose r > 0.
Let z ∈ Cr. Then we can find a sequence zn ∈ Dr with zn → z. There exist wn with g(wn) = zn.
Since {wn} lies in a compact set Kr, we can find a subsequence, which we also denote by wn, that
converges to w ∈ Kr. Continuity of g shows that g(w) = z. Hence Cr ⊂ g(D). Around each z ∈ Cr
we can find open Uz contained in g(D) and hence using compactness arguments, there exists s < r
with Ds ⊂ g(D) which is a contradiction. Hence g is onto.

To show one-to-one, let r be the infimum of s such that there exists z ∈ Cs with at least two
preimages in D. The first condition shows that r < ∞. Suppose r > 0. Suppose first that there
exists z ∈ Cr and distinct w1, w2 ∈ D with g(w1) = g(w2) = z. Let N1,N2 be nonintersecting
neighborhoods of w1, w2 and let Uj = g(Nj). Then U1 ∩ U2 is an open neighborhood of z such
that all points have at least two preimages. This contradicts the value of r. Now suppose zn is a
sequence of points in D with |zn| → e−r and such that each zn has two distinct preimages wn and ζn.
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By taking subsequences if necessary we can assume that wn → w, ζn → ζ, zn → z with w, ζ ∈ Kr−1

and z ∈ Cr. Since z has only one preimage, we must have w = ζ. In a small neighborhood about
w, f must be locally one-to-one or locally many-to-one. Since points in Dr have only one preimage,
it must be locally one-to-one. But this contradicts the definition of the sequences wn, ζn.

Theorem 3 (Riemann mapping theorem). Suppose D is a simply connected strict subdomain of
C containing the origin. Then there exists a unique conformal transformation f : D → D with
f(0) = 0, f ′(0) > 0.

Proof. Uniqueness in the case D = D follows as a consequence of the Schwarz lemma. More
generally, if f : D → D, g : D → D are two such transformation then h := f ◦ g−1 is a conformal
transformation of D onto itself with h(0) = 0, h′(0) > 0, and hence h is the identity. The work is
to show existence.

We will construct f using the Green’s function GD(z) = GD(z, 0). Recall that we can write

GD(z) = − log |z|+ u(z),

where u(z) = uD(z) is a harmonic function in D, Since D is simply connected, there is a unique
holomorphic function h : D → D such that Reh = −u and Imh(0) = 0. Let

f(z) = z eh(z).

Then f is holomorphic on D with f(0) = 0, f ′(0) = eh(0) = e−u(0) > 0. Also |f(z)| = e−GD(z). This
will be the map f .

Since the Green’s function goes to zero at the boundary we see that for all r > 0,

Ks := {z ∈ D : GD(z, 0) ≥ s}

is a compact set and f−1(Ds) ⊂ Ks. Also, since f ′(0) > 0, there exist a neighborhood N of 0 such
that f restricted to N is one-to-one and onto. If we choose s sufficiently large so that GD(z, 0) ≤ s
on D \N , we see that each z ∈ Ds has a unique preimage in D. Hence f satisfies the conditions of
Lemma 4.1 and is one-to-one and onto.

The basic idea of this proof will be used for proving conformal equivalence of other domains.
The idea is to assume that a transformation exists and try to construct the function. After a
candidate is found, we then try to see if the candidate works.

The lemma can be considered a special case of what is known as the “argument principle”

which is related to Rouché’s theorem. Note that the lemma did not assume that D was simply

connected; this comes as a consequence.
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5 Analytic boundary points and arcs

While boundaries of domains can be very rough, there are times that we would like to restrict
to nice “smooth” boundaries. It will suffice for our purposes to consider very smooth boundaries
given by analytic arcs. For these we can do calculations in the upper half plane near zero with (an
interval of) the real line as the boundary and make use of Schwarz reflection (see Proposition 2.7).
If a conformal transformation is analytic near zero, then these calculations apply to the image as
well.

Definition Let K0 denote the set of domains D ⊂ H such that dist(0,H \D) > 0. Let K denote
the set of domains D ∈ K0 with dist(0,H \D) > 1.

Definition Suppose D is a domain.

• A point z ∈ ∂D is called an analytic (boundary) point of D (or of ∂D) if there exists D′ ∈ K
and a conformal transformation f : D′ → D with f(0) = z that has an extension as an
analytic function on D′ ∪ D.

• A simple curve η : (a, b)→ ∂D is called an analytic arc of D (or of ∂D) if η(t) is an analytic
point for each a < t < b.

In the definition of K0 and K it is not assumed that D is simply connected. The extension of
f in the definition of analytic point must be an analytic function but it is not required to be
one-to-one on D′ ∪ D.

In the upper half plane we have (see Section 11.3)

HH(z, 0) = −Im

[
1

z

]
=

Im(z)

|z|2
, GH(z, w) = log |z − w| − log |z − w|.

We can use the right-hand side to extend w 7→ G(z, w) to the disk of radius |z| about the origin
(or we could use Proposition 2.7), and direct calculation shows that

HH(z, 0) =
1

2
∂y GH(z, 0).

If x 6= 0 is real, we also have the boundary Poisson kernel

HH(0, x) = ∂yHH(0, x),

where the derivative on the right can be taken with respect to either component. More generally,
if D ∈ K,

HD(z, 0) = HH(z, 0)− Ez[HH(Bτ , 0)], GD(z, w) = GH(z, w)− Ez[GH(Bτ , w)],

where τ = τD. By integrating under the expectation we see that

HD(z, 0) =
1

2
∂yGD(z, 0). (16)
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Also if dist(x,H \D) > 0, HD(x, 0) = ∂yHD(x, 0).
We really want to generalize this to consider “analytic prime ends”. As an example, suppose

that D = C \ [−1, 1]. Then D is a simply connected domain of the Riemann sphere Ĉ, and we can
find a conformal transformation f : H → D that sends 0 to what we will call 0+, the “positive-y”
side of 0 in D. (This is including ∞ in D; if we do not want to include ∞ we can consider f
restricted to H \ f−1(∞). By scaling if necessary, we can assume that |f−1(∞)| > 1 and hence
H \ f−1(∞) ∈ K.) This map can be extended to an analytic map in a neighborhood of 0 (this
extension is not one-to-one on D). Hence 0+ is an analytic boundary point (prime end). Note that
0− is also an analytic boundary point, but it is considered as a different point. One can check that
a point z ∈ ∂D can correspond to at most two analytic prime ends and for convenience we will just
use the term analytic point.

If z is an analytic boundary point, then there is a well-defined inward unit normal derivative
n = n(z,D) pointing into D. (If z is a “two-sided” point, then each prime end has a normal
derivative. Hence we consider n(z,D) as a function of the prime end z.) If f : D′ → D is a map as
above, then we write

f(iy) = z + y |f ′(0)|n +O(|y|2), y ↓ 0.

If φ is a harmonic function on D with boundary value 0 in a neighborhood of z, then we define
φ̃ on D′ = f−1(D) by φ̃(w) = φ(f−1(w)). Note that φ̃ is harmonic with boundary value 0 in an
interval [−δ, δ] and hence

∂yφ̃(0) = lim
y↓0

y−1 φ̃(iy),

is well defined. We define

∂nφ(z) = lim
y↓0

y−1 φ(z + yn) = lim
y↓0

y−1 φ̃(|f ′(0)|−1 yi+O(y2)) = |f ′(0)|−1 ∂yφ̃(z).

An immediate consequence of this and (16) is the following.

Proposition 5.1. If w is an analytic boundary point of D and z ∈ D, then the Poisson kernel
HD(z, w) exists and

HD(z, w) =
1

2
∂nwGD(z, w),

where nw denotes the inward unit normal. If w′ is another analytic boundary point, then the
boundary Poisson kernel HD(w,w′) exists and

HD(w,w′) = ∂nwHD(w,w′) = ∂nw′HD(w,w′).

Suppose f : D → D′ is a conformal transformation, z ∈ D and w,w′ are distinct analytic boundary
points of D such that f(w) and f(w′) are analytic boundary points of D′. Then

HD(z, w) = |f ′(w)|Hf(D)(f(z), f(w)), HD(w,w′) = |f ′(w)| |f ′(w′)|Hf(D)(f(w), f(w′)).

As another check to see that the constant is correct, recall that we have normalized our quantities
so that

HD(0, 1) =
1

2
, GD(0, x) = − log x,

and hence ∂nGD(0, 1) = 1.
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Proposition 5.2. Suppose D ∈ K. If z, w ∈ D with |z|, |w| ≤ 1/2,

HD(z, 0) = HH(z, 0) [1 +O(|z|)] .

GD(z, w) = GH(z, w) [1 +O(|z|)] .

Proof. Note that

HD+(z, 0) ≤ HD(z, 0) ≤ HH(z, 0), GD+(z, w) ≤ GD(z, w) ≤ GH(z, w).

Using conformal transformation (see Section 11.4), we can show the estimates for D =
Disk+.

HD+(z, 0) = HH(z, 0) [1 +O(|z|)] , GD+(z, w) = GH(z, w) [1 +O(|z|)] .

Proposition 5.3. Suppose D ∈ K and h : D → R is harmonic with h ≡ 0 on [−x, x] for some
x > 1. Then

∂yh(0) =
2

π

∫ π

0
h(eiθ) sin θ dθ.

Proof. By Schwarz reflection, we can extend h to a harmonic function on D ∪ {z : |z| < x} and
from this we see that h is bounded and continuous on {z : |z| ≤ 1}. The optional sampling theorem
implies that if z ∈ D+, then

h(z) = Ez
[
h(BτD+ )

]
=

∫
∂D+

h(w) hmD+(z, dw) =
1

π

∫ π

0
h(eiθ)H∂D+(z, eiθ) dθ.

Using conformal invariance (see Section 11.4) we can see that

H∂D+(iy, eiθ) = 2y sin θ [1 +O(y)] , y ↓ 0.

Proposition 5.4. Suppose D ∈ K. If 0 < ε ≤ 1/2, let Dε = D ∩ {|z| > ε} and τε = τDε. Then for
z ∈ D with |z| ≥ 1,

HDε(z, εe
iθ) =

π

2
Pz{|Bτε | = ε} ε−1 sin θ [1 +O(ε)] .

In other words, if ψ(θ; z, ε,D) is the density of arg(Bτε) given |Bτε | = ε. Then,

ψ(θ; z, ε,D) =
sin θ

2
[1 +O(ε)].

In particular, if φ is a nonnegative function defined on ∂Dε that vanishes on ∂D, and |z| ≥ 1,

Ez [φ(Bτε)] = [1 +O(ε)] Pz{|Bτε | = ε}
∫ π

0
φ(εeiθ)

sin θ

2
dθ.
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Proof. We fix 0 < θ1 < θ2 < π, let Vε = {εeiθ : θ1 ≤ θ ≤ θ2}, and let p = (cos θ1 − cos θ2)/2. Let
Uε = {w ∈ H : ε < |w| < 1} and let ηε = τUε . Using conformal invariance (see Section 11.2), we
can see that if ζ ∈ Uε with |ζ| = 3/4, then

Pζ {Bηε ∈ Vε | |Bηε | = ε} = p [1 +O(ε)].

But P{Bτε ∈ Vε | |Bτε | obviously lies between the infimum and the supremum of this quantity over
|ζ| = 3/4.

Proposition 5.5. If D ∈ K and |z| > 1, then

HD(z, 0) =
1

π

∫ π

0
GD(eiθ, z) sin θ dθ.

Proof. By the strong Markov property, we can see that

GD(z, iy) =
1

π

∫ π

0
GD(eiθ, z)HD+(iy, eiθ) dθ.

Letting y ↓ 0, we get (see Section 11.4)

HD(z, 0) =
1

2π

∫ π

0
GD(eiθ, z)HD+(0, eiθ) dθ =

1

π

∫ π

0
GD(eiθ, z) sin θ dθ.

5.1 Excursion measure

If D is a domain and z is an analytic boundary point, we define the (point-to-set) excursion measure
ED(z, ·) to be the derivative of the harmonic measure,

ED(z, V ) = ∂nhmD(z, V ).

If D is an open set, not necessarily connected, we define ED(z, V ) to be ED′(z, V ) where D′ is the
connected component containing z on the boundary. The measure ED(z, ·) is an infinite measure
on ∂D, but if dist(z, V ) > 0, then ED(z, V ) <∞. If V is an analytic arc, we can write

∂nhmD(z, V ) =
1

π

∫
V
∂nHD(z, w) |dw| = 1

π

∫
V
H∂D(z, w) |dw|.

Note that if f : D → f(D) is a conformal transformation that is analytic in a neighborhood of z,

ED(z, V ) = |f ′(z)| Ef(D)(f(z), f(V )).

If V1, V2 are two analytic arcs, we define the (set-to-set) excursion measure

ED(V1, V2) =

∫
V1

ED(z, V1) |dz| =
∫
V1

∫
V2

H∂D(z, w) |dw| |dz|.

An important fact is that the set-to-set excursion measure is a conformal invariant.
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Proposition 5.6. If f : D → f(D) is a conformal transformation that is analytic on the arcs
V1, V2 ⊂ ∂D, then

ED(V1, V2) = Ef(D)(f(V1), f(V2)).

The term (point-to-set) excursion measure is used both for a measure on the boundary ED(z, ·)
and also for the measure on paths starting at z, ending at ∂D, otherwise in D, corresponding to
“Brownian motion conditioned to begin and end at the boundary”. In this case ED(z, V ) is the
total mass of curves that end at V . We can define a (set-to-set) excursion measure similarly.

We can also define point-to-point excursion measure which has total mass H∂D(z, w)/π.

The excursion measure viewed as a measure on paths is also conformally invariant provided that
we change time as in the conformal invariance of Brownian motion.

Since the set-to-set excursion measure is a conformal invariant it is well defined even if the
boundary is not analytic. For example, if V1, V2 are on the same connected component of the
boundary, we can first map D to H mapping this component to the real line. If they are in different
components K1,K2, then we can first map Ĉ \ (K1 ∪K2) to an annulus.

Proposition 5.7. Suppose D is a domain and z is a locally analytic point. Suppose D′ ⊂ D and
D,D′ agree in a neighborhood of z. Let w ∈ D \D′. Then

HD(w, z) =
1

2

∫
∂D′

GD(ζ, w) ED′(z, dζ).

If ∂D′ ∩D is analytic, we can write

HD(w, z) =
1

2π

∫
∂D′

GD(ζ, w)H∂D′(z, ζ) |dζ|.

As an example (and a check on the constants), suppose that D = D, D′ = Ar = {e−r < |z| < 1},
z = 1, w = 0. Then HD(0, 1) = 1/2, and

EAr(1, Cr) =
1

r
, GD(e−r+iθ, 0) = r, HAr(1, e

−r+iθ) =
er

2r
[1 + o(1)].

Proof. We first consider the case with z = 0, D,D′ ∈ K. The function h(ζ) := G(ζ, w) is a bounded
harmonic function on D′. Therefore, for y < 1,

h(iy) = Eiy
[
h(BτD′ )

]
=

∫
∂D′

GD(ζ, w) hmD′(iy, dζ).

Letting y → 0, we get

2HD(0, w) = ∂nG(0, w) = ∂nEiy
[
h(BτD′ )

]
=

∫
∂D′

GD(ζ, w) ED′(0, dζ).



5 Analytic boundary points and arcs 31

For the more general case, since z is an analytic point we can find D̃ ∈ K and conformal
transformation f : D̃ → D with f(0) = z. By scaling earlier, we can find such D̃, F such that
D̃′ := f−1(D′) ∈ K. We then use

HD(w, z) = |f ′(0)|HD̃(f−1(w), 0), ED(z, V ) = |f ′(0)| ED̃(0, f−1(V )),

GD(ζ, w) = GD̃(f−1(ζ), f−1(w)).

Examples

• If Ar = {e−r < |z| < 1} is the annulus with boundaries C,Cr, then EAr(eiθ, Cr) = 1
r , and

hence

EAr(C,Cr) =

∫ 2π

0
EAr(eiθ, Cr) dθ =

2π

r
.

In particular, we see that if r 6= s, then EAr(C,Cr) 6= EAs(C,Cs). From this we can see that
Ar and As are not conformally equivalent.

• Let RL = {x+ iy : 0 < x < L, 0 < y < π} and let ∂1 = [0, iπ], ∂2 = ∂2,L = [L,L+ iπ] be the
vertical boundaries. Let h be the harmonic function on RL with boundary value 1 on ∂2 and
0 on ∂RL \ ∂2. This can be found by separation of variables,

h(x+ iy) =
4

π

∞∑
n=1

sinh(nx) sin(ny)

n sinh(nL)
,

∂xh(iy) =
4

π

∞∑
n=1

sin(ny)

sinh(nL)
=

8 sin y

π
e−L

[
1 +O(e−L)

]
, L→∞.

ERL(∂1, ∂2) =

∫ π

0
∂xh(iy) dy =

16

π
e−L

[
1 +O(e−L)

]
, L→∞.

Although it is not immediately obvious from the last expression, one can use the definition
to see that the function L 7→ ERL(∂1, ∂2) is strictly decreasing.

• Let D = D(a, b) = {a < Im(z) < b} with boundaries Ia = {Im(z) = a}, Ib = {Im(z) = b}.
Then, the gambler’s ruin estimate implies that if x+ ia ∈ Ia, then ED(x+ ia, Ib) = 1/(b− a),
and hence if V ⊂ Ia,

ED(V, Ib) = ED(Ib, V ) =
1

b− a
`(V ),

where ` denotes Lebesgue measure. More generally, suppose that D = H \ K is a domain
with K ⊂ {Im(z) < a}. The strong Markov property, implies that if b > a, then

ED(Ib, V ) =
1

b− a

∫ ∞
−∞

hmD∩{Im(z)<b}(x+ ia, V ) dx,

and hence,

lim
b→∞

b ED(Ib, V ) =

∫ ∞
−∞

hmD(x+ ia, V ) dx (17)
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Definition

• We say two domains D1, D2 are conformally equivalent if there exists a conformal transfor-
mation f : D1 → D2.

• A domain D is a conformal annulus if Ĉ\D consists of two connected components each larger
than a single point.

The Riemann mapping theorem states that any two simply connected domains other than the
entire complex plane are conformally equivalent. We have used excursion measure to see that if
r 6= s, then the annuli Ar and As are not conformally equivalent. The next proposition will show
that every conformal annulus is conformally equivalent to As for some (necessarily unique) s.

Proposition 5.8. If D is a conformal annulus with boundary components ∂1, ∂2, then D is con-
formally equivalent to Ar where r = 2π/ED(∂1, ∂2).

Proof. Let V1, V2 denote the connected components of Ĉ \D. Let D′ = Ĉ \ V1. By the Riemann
mapping theorem, we can conformally transform D′ onto the unit disk. For this reason, without
loss of generality, we will assume that D ⊂ D and ∂1 = C. Let

q(z) = qD(z) = Pz{BτD ∈ ∂2}.

We let n denote inward normals in this proof.
Let r > 0, and suppose that f : D → Ar is a conformal transformation with f(C) = C. By

conformal invariance,

ED(C, ∂2) = EAr(C,Cr) =
2π

r
.

Hence, r = 2π/ED(C, ∂2).
Note that u(z) := rqD(z) is a harmonic function on D with∫

C
∂nu(z) |dz| = r ED(C, ∂2) = 2π. (18)

Suppose γ is a simple curve in D separating ∂2 from C. Using the fact that u is harmonic, we see
that (18) implies that ∫

γ
∂nu(z) |dz| = 2π. (19)

We can find a harmonic function h(z) = u(z) + iv(z) locally around each z, and let f(z) =
exp{−h(z)}. Using (19), we can see that f is well defined globally. This gives a map f : D → Ar.
We need to show that f is one-to-one and onto.

As in the simply connected case, we can see that for each 0 < q < 1, the sets Vq = {z : u(z) =
q}, {z : u(z) > q}, {z : u(z) < q} are connected, and using this we get that f ′(z) 6= 0 for every z.
To show global injectivity, consider the point smallest q for which f is not one-to-one on Vq.

We say two domains D1, D2 are conformally equivalent if there exists a conformal transformation
f : D1 → D2. Let us call D a conformal annulus if D is connected and ∂D consists of two connected
components each larger than a single point. Suppose D is a domain and V is a connected component
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of Ĉ \C containing more than one point. Then, Ĉ \V is a simply connected subset of the Riemann
sphere Ĉ and hence can be mapped conformally onto the disk or conformally onto H. For this
reason, when we consider multiply connected domains it will suffice to consider subdomains of D
(or H) for which C (or R) are contained in the boundary. Similarly, if V1, V2 are two connected
components of Ĉ \C containing more than one point, we can start by mapping Ĉ \ (V1 ∪ V2) to an
annulus.

5.2 Poisson kernel

If D is a regular domain and z is an analytic boundary point, then the Poisson kernel is defined,
up to a multiplicative constant, as a positive harmonic function f whose boundary value is zero
everywhere except for z (here we are interpreting z in terms of a prime end. Suppose D′ ∈ K and
f : D′ → D is a conformal transformation. If we define

h(w) = H∂D′(f
−1(w))

then h satisfies these conditions on D. Hence, we do not need a nice boundary point to have such
a function.

If z, w are both analytic boundary points, then we define the boundary Poisson kernel H∂D(z, w)
by

H∂D(z, w) = ∂nzHD(z, w) = 2 ∂nz ∂zw GD(z, w),

where we write nz, zw for the derivative at the inward normal at z, w, respectively. The second
expression shows that H∂D(z, w) = H∂D(w, z)

6 Extremal length and reflecting Brownian motion

Suppose D is a domain and ∂1, ∂2 are disjoints subsets of ∂D. One conformally invariant way to
measure the “distance” between ∂1 and ∂2 is in terms of Brownian excursion measure ED(∂1, ∂2).
Roughly speaking, this gives the measure of the set of Brownian motions starting at ∂1 that exit D
at ∂2. (Strictly speaking, this measure is zero, so the actual definition is in terms of the boundary
Poisson kernel.)

There is a different conformally quantity, which we will denote by E∗D(∂1, ∂2), that is more
commonly used in the complex variable literature. Its reciprocal is called extremal length or extremal
distance. It is defined in the same way as ED(∂1, ∂2) except that the Brownian motions are not
killed when they hit ∂D \ (∂1 ∪ ∂2) rather, they are reflected orthogonally.

Defining reflected Brownian motion can be tricky for rough domains, but because it is a con-
formally invariant quantity we can restrict ourselves to a rather simple set of domains that will
suffice for our purposes. Let Dref denote the set of domains (D, ∂1, ∂2) such that: D ⊂ H; ∂1, ∂2

are disjoint closed subsets of ∂D with a finite number of connected components each larger than a
single point; and ID := ∂D \ (∂1 ∪ ∂2) consists of a finite or countable number of disjoint subsets
of R. If (D, ∂1, ∂2) ∈ Dref , we let D∗ be the reflected domain

D∗ = D ∪ ID ∪ {z : z ∈ D}.

and ∂∗1 , ∂
∗
2 be the corresponding closed subsets of ∂D∗. We let D̃ref be the set of conformal images

of (D, ∂1, ∂2) ∈ Dref .
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Under these assumptions, we construct Wt, Brownian motion started at z ∈ D ∪ ID, reflected
orthogonally on ID, stopped when it reaches ∂1 ∪ ∂2 by:

• Let Bt = Xt + iYt be a standard Brownian motion stopped at time τ , the first time it leaves
D∗.

• Let Wt = Xt + i|Yt|, 0 ≤ t ≤ τ .

• The reflected excursion measure is given by

E∗D(∂1, ∂2) = ED∗(∂1, ∂
∗
2) =

1

2
ED∗(∂∗1 , ∂∗2).

We extend E∗D(∂1, ∂2) to D ∈ D̃ref by conformal invariance. Let f(z) denote the probability that
the reflected Brownian motion starting at z in D reaches ∂2 before reaching ∂1. This is the same
as the probability that the usual Brownian motion starting at z in D∗ reaches ∂∗2 before reaching
∂∗1 . Then f is harmonic in D, f ≡ 1∂2 on ∂1 ∪ ∂2, and it satisfies the reflecting boundary condition

∂nf(x) = 0, x ∈ ID.

Here ∂n denotes partial with respect to the interior normal derivative which for x ∈ ID is just the
partial with respect to y. If ∂1 is sufficiently smooth, we have

E∗D(∂1, ∂2) =

∫
∂1

∂nf(z) |dz|.

Examples.

• Let D = RL = (0, L)× i(0, π) be the L× π rectangle and let ∂1 = i[0, π], ∂2 = L+ i[0, π] be
the vertical edges. Then (D, ∂1, ∂2) ∈ D̃ref . In this case

f(x+ iy) = x/L, ∂nf(iy) = 1/L, E∗D(∂1, ∂2) =
π

L
.

This is easy because the reflection only affects the imaginary part, and so the calculation boils
down to the gambler’s ruin estimate. Note that ED(∂1, ∂2) � e−L and hence decays much
faster.

• Let D be the annulus As = {e−s < |z| < 1} and let ∂1 = C0, ∂2 = Cs be the two boundary
circles. Then (D, ∂1, ∂2) ∈ D̃ref (use a map that sends {|z| > e−s} on the Riemann sphere to
H). In this case there is no reflection, and hence

E∗D(∂1, ∂2) = ED(∂1, ∂2) =
2π

s
.

Note that f(z) = −s−1 log |z|.

• Let D be the half-annulus A+
s = {z ∈ H : e−s < |z| < 1} and let ∂1, ∂2 be as in the

last example. Then (D, ∂1, ∂2) ∈ Dref with ID = (−1,−e−s) ∪ (e−s, 1). Since D ⊂ H
with reflection on the real axis, this is a domain of the type in the definition. Note that
D∗ = As, ∂∗1 = C0, ∂

∗
2 = Cs. This domain is also conformally equivalent to Rs with the circles

being sent to the vertical edges of Rs. Therefore,

E∗D(∂1, ∂2) =
π

s
, ED(∂1, ∂2) � e−s.
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Another common name for various analogs and generalizations of excursion measure and its
reciprocal are conductance and resistance.

We now describe the more classical way of defining E∗D(∂1, ∂2). Let K = KD(∂1, ∂2) denote the
set of piecewise C1 curves γ from ∂1 to ∂2 otherwise lying in D. We say that a positive function
ρ : D → [0,∞) is admissible (with respect to K), if for every γ ∈ K,∫

γ
ρ(z) |dz| ≥ 1. (20)

If K is a set of piecewise C1 curves in a domain D (with endpoints perhaps on ∂D), we define
the modulus of K by

Λ(K) = inf

∫
D
ρ(z)2 dA(z),

where the infimum is over all admissible functions ρ. The reciprocal of the modulus is called the
extremal length or extremal distance. As an example, suppose that K = K(D, ∂1, ∂2) where D = RL
and ∂1, ∂2 are the vertical edges. Then for any admissible ρ and 0 < y < π,

1

L

∫ L

0
ρ(x+ iy)2 dx ≥

[
1

L

∫ L

0
ρ(x+ iy) dx

]2

=
1

L2
,

and hence, ∫
ρ(z)2 dA(z) =

∫ π

0

∫ L

0
ρ(x+ iy)2 dx dy ≥ π

L
.

Since the function ρ(x + iy) = 1/L is acceptable we can see that Λ(K) = π/L and the constant
function ρ(z) = 1/L is the minimizer.

Proposition 6.1. The modulus is a conformal invariant. That is, if K is a collection of curves in D
and g : D → f(D) is a conformal transformation, then Λ(K) = Λ(g◦K) where g◦K = {g◦γ : γ ∈ K}.

Proof. Suppose that ρ is admissible for D. Define ρg on g(D) by ρg(g(z)) = |g′(z)|−1 ρ(z). If
γ ∈ KD(∂1, ∂2), let g ◦ γ ∈ Kf(D)(f(∂1), f(∂2))) be the corresponding curve. (The parametrization
of the curve is not important.) Then∫

g◦γ
ρg(z) |dz| =

∫
γ
ρg(g(w)) |g′(w)| |dw| =

∫
γ
ρ(w) |dw| ≥ 1.

Also, ∫
g(D)

ρg(z)
2 dA(z) =

∫
D

[ρ(w) |g′(w)|−1]2 |g′(w)|2 dA(w) =

∫
D
ρ(w)2 dA(w).

Taking infimums, we see that Λ(g ◦K) ≤ Λ(K). Applying the same argument to g−1 gives the other
direction.
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Proposition 6.2. If D is simply connected with (D, ∂1, ∂2) ∈ D̃ref and ∂1 is connected, then the
minimizing ρ for KD(∂1, ∂2) is given by |∇f(z)| where f is the unique harmonic function on D
with boundary conditions f ≡ 1∂2 on ∂1 ∪ ∂2 and ∂nf ≡ 0 on ID. In particular,

Λ[KD(∂1, ∂2)] =

∫
D
|∇f(z)|2 dA(z).

Proof. We will assume that D = RL, ∂1 = i[0, π] and

∂2 = A1 ∪A2 ∪ · · · ∪Ak+1,

where Aj are disjoint nontrivial closed subintervals of the right vertical boundary L+ i[0, π], with
the intervals ordered counterclockwise (imaginary parts increasing), and L ∈ A1, L + iπ ∈ Ak+1.
We let l1, . . . , lk be the open intervals in between, so that

ID = l1 ∪ · · · ∪ lk ∪ (0, L) ∪ [(0, L) + iπ].

Every (D, ∂1, ∂2) ∈ D̃ref is conformally equivalent to such a domain, and the representation is
unique. We let f(z) be the probability that Brownian motion reflected off of ID hits ∂2 before ∂1.

We will call D̂ a “comb” domain if it is of the form

D̂ = RL′ \ (l′1 ∪ · · · ∪ l′k)

where l′1, . . . , l
′
k are disjoint intervals of the form

l′j = {x+ iyj : xj ≤ x ≤ 1},

where 0 < xj < 1, 0 < yj < L′. We set ∂̂1, ∂̂2 to be the vertical boundaries. If f̂ is the corresponding

function, then f̂(x + iy) = x/L, the same as for RL′ , since the reflection is always in the y-
direction and is independent of the real part. Using the same argument as for RL′ , we see that
Λ[K(D̂, ∂1, ∂2)] = L′. Similarly, E∗

D̂
(∂1, ∂2) = L′.

We claim that we can find a comb domain D̂ and a conformal transformation g : D → D̂ so
that g ◦ lj = l′j . To see this, we will first determine what the parameters L, x1, . . . , xk, y1, . . . , yk

would need to be. Since we need E∗D(∂1, ∂2) = E∗
D̂

(∂̂1, ∂̂2), we choose L′ satisfying

π/L′ = E∗RL′ (∂1, ∂2) =

∫ π

0
∂xf(iy) dy.

We then choose 0 = y0 < y1 < · · · < yk < yk+1 = π uniquely so that

E∗RL′ (∂1, L
′ + i[yk−1, yk]) = E∗D(∂1, Ak).

Finally, for z = L+ iy ∈ ID ∩ ∂2, we must have f(z) = f̂(g(z)). This leads to the choice

xj = min{f(z) : z ∈ lj}.

This defines D̂ in terms of D, and given this we define g to be the unique holomorphic function on
RL with g(0) = 0 and Re[g(z)] = L′ f(z).

Once we have this transformation, we know that ρ = |∇f̂ | is the minimizer in D̂ and be
conformal transformation, |∇f | is the minimizer in D.
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The next proposition is almost immediate using the definition of modulus but would be much
harder use the definition coming from reflected Brownian motion.

Proposition 6.3 (Monotonicity). If D′ ⊂ D, ∂′1 ⊂ ∂1, ∂
′
2 ⊂ ∂2, then K(D′, ∂′1, ∂

′
2) ⊂ K(D, ∂1, ∂2),

and hence
Λ[K(D′, ∂′1, ∂

′
2)] ≤ Λ[K(D, ∂1, ∂2)].

Proof. This follows immediately from the definition of modulus because if K′ ⊂ K, then any ρ that
is admissible for K is also admissible for K′.

7 Toolbox for conformal maps

Here we develop some of the classical tools for dealing with conformal transformations. One can
get very far having three results in one’s pocket: the Koebe-1/4 theorem, the distortion theorem,
and the Beurling estimate. We will do these here. We call a function f on a domain D univalent
if it is holomorphic and one-to-one.

7.1 Beurling estimate

The Beurling estimate is a uniform upper bound on the probability that a Brownian motion avoids
a connected set. As an example suppose K = [0, 1] and Bt is a Brownian motion starting at −ε
and D = D ∩H. Then by considering the square root map that takes D \K to D,

P−ε{B[0, τD] ∩K = ∅} = P−i
√
ε{BτD 6∈ R}

=
1

π

∫ π

0
HD(i

√
ε, eiθ) dθ ∼ 4

√
ε

π
, ε ↓ 0

If we replace [0, 1] with a different curve from 0 to the unit disk, we would expect that the probability
for a Brownian motion to avoid the set would decrease. This statement is made precise in the
Beurling projection theorem. From a practical perspective, what is used is the fact that the
probability is bounded by c

√
ε. This latter statement is often referred to as the Beurling estimate.

We will state and prove the Beurling projection theorem in this section. If K ⊂ H is a closed
subset, we write

K+ = K ∩ {Im(w) ≥ 0}, K− = K ∩ {Im(w) ≤ 0},

K∗ = {w : w ∈ K}, K ′ = K+ ∪K∗−.

In other words, K ′ is obtained from K by reflecting the elements of K below the real line to the
upper half plane. Note that K ∩ R = K ′ ∩ R = (K ∩K∗) ∩ R, and, more generally, dist(x,K) =
dist(x,K ′) = dist(x,K ∪K∗) for all x ∈ R.

Lemma 7.1. Suppose K ⊂ D is closed and let K ′ be as above. Let τ = τ∂D and ρ, ρ′ the first times
to visit K,K ′ respectively. If −1 < x < 1, then

Px{ρ < τ} ≥ Px{ρ′ < τ}.
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Proof. We assume x 6∈ K and write P for Px throughout this proof. We will give an increasing
sequence of stopping times. Let δ0 = dist(x,K ∪ ∂D) = dist(x,K ′ ∪ ∂D) = dist(x,K∗ ∪ ∂D), and

S0 = inf{t : |Bt − x| = δ0},

T0 = inf{t ≥ S0 : Bt ∈ R}.

More generally, if j ≥ 1, we set
δj = dist

(
BTj−1 ,K ∪ ∂D

)
,

Sj = inf{t ≥ Tj−1 : |Bt −BTj−1 | = δj},

Tj = inf{t ≥ Sj : Bt ∈ R}.

It is possible that B(Tj) ∈ K for some j in which case Sk = Tk = Tj for k ≥ j. However, if
B(Tj) 6∈ K, then with probability one Tj < Sj+1 < Tj+1. Note that on the event {B[0, τ ]∩(K∩R) =
∅, B(τ) 6∈ R}, there exists j with {Tj < τ < Tj+1}. Hence it suffices to show that for every j ≥ 0,

P{Tj < τ < Tj+1;B[0, τ ] ∩K = ∅} ≤ P{Tj < τ < Tj+1;B[0, τ ] ∩K ′ = ∅}. (21)

It will be useful to add some randomness to the process. Let J0, J1, . . . be independent random
variables, independent of the Brownian motion Bt = B1

t +i B2
t with P{Jj = 1} = P{Jj = −1} = 1/2.

Define Wt by
Wt = B1

t + i Jj B
2
t Tj−1 ≤ t < Tj .

(Here T−1 = 0.) If BTj ∈ R ∩K so that Tj+1 = Tj , we stop the process Wt at time Tj . Note that

P{Tj < τ < Tj+1;B[0, τ ] ∩K = ∅} = P{Tj < τ < Tj+1;W [0, τ ] ∩K = ∅},

and similarly with K ′ replacing K. Let F denote the σ-algebra generated by the Brownian motion
B only, so that F is independent of the Jj . We claim that for each j,

P{Tj < τ < Tj+1;W [0, τ ] ∩K = ∅ | F} ≤ P{Tj < τ < Tj+1;W [0, τ ] ∩K ′ = ∅ | F}.

Let us fix a j. The event {Tj < τ < Tj+1} is F-measurable. On this event, we can write

P{Tj < τ < Tj+1;W [0, τ ] ∩K = ∅ | F} = I0 E
[
I1 · · · Ij Îj+1 | F

]
,

where
Ik = 1{Jk = 1} 1{B[Sk, Tk] ∩K = ∅}+ 1{Jk = −1} 1{B[Sj , Tk] ∩K∗ = ∅},

Îk = 1{B[Sk, τ ] ∩K = ∅}+ 1{Jk = −1} 1{B[Sk, τ ] ∩K∗ = ∅},

We get a similar expression for K ′ in terms of I ′k, Î
′
k, obtained by replacing K,K∗ with K ′, (K ′)∗.

The random variables I0, I1, . . . are conditionally independent given F , and hence it suffices to show
for every k,

P{Ik = 1 | F} ≤ P{I ′k = 1 | F},

P{Îk = 1 | F} ≤ P{Î ′k = 1 | F},

We will show the first; the second is done in the same way. If B(Tk) ∈ K, then Ik = 0, so let us
assume that B(Tk) 6∈ K. Consider the events

E1 = {B(Sk, Tk) ∩K+ = ∅}, E2 = {B(Sk, Tk) ∩K− = ∅},
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E3 = {B(Sk, Tk) ∩ (K+)∗ = ∅}, E4 = {B(Sk, Tk) ∩ (K−)∗ = ∅}.

We can write

P{Ik = 1 | F} =
1

2
1E1∩E2 +

1

2
1E3∩E4 ,

P{I ′k = 1 | F} =
1

2
1E1∩E4 +

1

2
1E3∩E2 .

We therefore get

2
[
P{I ′k = 1 | F} − P{Ik = 1 | F}

]
= 1E1∩(E4\E2) + 1E3∩(E2\E4) − 1E1∩(E2\E4) − 1E3∩(E4\E2).

Note that on the event E4 \E2, B(Sj , Tj) lies in the lower half-plane and hence 1E1 = 1. Similarly,
on the event E2 \ E4, we have 1E3 = 1. Hence,

2
[
P{I ′k = 1 | F} − P{Ik = 1 | F}

]
= 1E4\E2

+ 1E2\E4
− 1E1∩(E2\E4) − 1E3∩(E4\E2) ≥ 0.

Proposition 7.2. Under the assumptions above, if D,D′ are the connected components of C \
K,C \K ′ containing the origin, and x ∈ R \ {0},

GD(x) ≤ GD′(x).

Proof. Since R ∩ D = R ∩ D′, the result is trivial for x ∈ R \ D, so we assume x ∈ D. Let s be
sufficiently small so that Ds ⊂ D and |x| > e−s. Then we can follow the proof as above, to show
that

Px{σs < τD} ≤ Px{σs < τD′}.

Letting s→∞ gives the result.

Theorem 4 (Beurling projection theorem). Suppose K is a connected, closed subset of D such that
for each ε ≤ r ≤ 1

K ∩ {|Bt| = r} 6= ∅.

Then,
P{B[0, τD] ∩K = ∅} ≤ P{B[0, τD] ∩ [ε, 1] = ∅}.

In particular,
P{B[0, τD] ∩K = ∅} ≤ 2 ε1/2.

By conformal invariance, we can see that as ε ↓ 0,

P{B[0, τD] ∩ [ε, 1] = ∅} =
4

π
ε1/2 +O(ε).

Although it is not optimal, we can write

P{B[0, τD] ∩ [ε, 1] = ∅} ≤ 2 ε1/2, 0 < ε ≤ 1.
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Proof. Fix ε > 0. For any K, let K ′ denote the set K+ ∪ (K−)∗ as above. Then,

P{B[0, τD] ∩K = ∅} ≤ P{B[0, τD] ∩K ′ = ∅}.

Similarly, we can reflect the negative real part of K ′ onto the positive real axis and increase the
probabiilty. By doing this trick repeatedly and rotating, we see that for any δ > 0 and any K we
can find Kδ ⊂ {0 ≤ arg(z) ≤ δ} with

P{B[0, τD] ∩K = ∅} ≤ P{B[0, τD] ∩Kδ = ∅}.

For fixed ε, we can use connectivity of Kδ to see that

lim
δ↓0

P{B[0, τD] ∩Kδ = ∅ | B[0, τD] ∩ [ε, 1] 6= ∅} = 0.

Therefore,
lim sup
δ↓0

P{B[0, τD] ∩Kδ = ∅} ≤ P{B[0, τD] ∩ [ε, 1] = ∅}.

In applications one generally uses a corollary of the Beurling projection theorem often called
the Beurling estimate.

Corollary 7.3 (Beurling estimate). There exists c <∞ such that if D is domain with 0 6∈ D and
such that the connected component of C \ D containing the origin intersects the unit circle, then
for all |z| ≥ 2,

hmD(z, ∂D ∩ {|ζ| ≤ ε}) ≤ c
√
ε.

Proof. By making D larger if necesssary, we can assume that D = C \ K where K is a compact
connected subset of D intersecting the unit circle. Let Bt be a Brownian motion starting at z and
let ρ = inf{t : |Bt| ≤ ε}. Then, hmD(z, ∂D ∩ {|ζ| ≤ ε}) ≤ Pz{ρ ≤ τ}. Now consider f(w) = ε/w
and use

Pz{ρ ≤ τ} = Pf(z){τD ≤ τf(D)}.

7.2 Koebe distortion theorems

The Riemann mapping theorem implies that there is a one-to-one correspondence between simply
connected domains D ( C containing the origin and univalent functions f on the unit disk with
f(0) = 0, f ′(0) > 0. We let S∗ denote the set of all such function and S the set of f ∈ S∗ with
f ′(0) = 1. Any function f ∈ S can be written as a power series

f(z) = z + a2z
2 + a3z

3 + · · · .

One example of such a function is the Koebe function fKoebe,

fKoebe(z) =
z

(1− z)2
=

1

4

(
1 + z

1− z

)2

− 1

4
= z + 2z2 + 3z3 + · · · .

Using the second expressions, we can see that fKoebe is a composition of conformal transformations,
and hence is a conformal transformation, with fKoebe(D) = C \ (−∞,−1/4]. The Koebe function is
an extremal function in S, and a big problem in the twentieth century was to prove the Bieberbach
conjecture:
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• If f ∈ S, then |an| ≤ n for all n.

This was proved by de Branges. Fortunately, for most applications one does not need this result
(and for this reason we do not need to go through the proof).

Lemma 7.4. Suppose f : D → D is a conformal transformation with f(0) = 0, f ′(0) > 0 and
dist(0, ∂D) ≥ 1. Then

log f ′(0) =
1

2π

∫ 2π

0
GD(eiθ) dθ. (22)

Proof. Fix f,D and we allow constants and O(·) error terms to depend on f,D. Let k equal the
right-hand side of (22). We know from (12) that

GD(z) = − log |z|+ k +O(|z|), z → 0.

However, as z → 0,

− log |z| = GD(z) = GD(f(z)) = GD(f ′(0) z +O(|z|2))

= − log
[
f ′(0) z +O(|z|2)

]
+ k +O(|z|)

= − log |z| − log f ′(0) + k +O(|z|).

Lemma 7.5. Suppose D is a regular domain containing the origin. Let T = inf{t ≥ 0 : Bt ∈ R}.
Then for every z ∈ D,

GD(z, 0) = Ez [GD(BT );T < τD] .

Proof. We write G(z) = GD(z, 0). If z ∈ R the result is immediate. Assume that Im(z) > 0 (the
case Im(z) < 0 is done similarly). We allow constants to depend on z,D. Let s be sufficiently large
so that dist(0, ∂D) > e−s and let ξs = τD ∧ T ∧ σs. Since Mt = G(Bt∧ξs) is a continuous, bounded
martingale,

G(z) = Ez [G(Bξs)]

= Ez [G(BT );T < τD ∧ ξs] + Ez [G(Bσs);σs < τD ∧ T ] .

We know that for |ζ| = e−s that GD(ζ) ≤ c s. Also, using the Poisson kernel in H, we see as
s→∞,

Pz{σs < τD ∧ T} ≤ Pz{σs < T} ≤ c e−s.

Therefore,
lim
s→∞

Ez [G(Bσs);σs < τD ∧ T ] = 0,

and, hence, by the monotone convergence theorem,

G(z) = lim
s→∞

Ez [G(BT );T < τD ∧ ξs] = Ez [G(BT );T < τD] .
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Proposition 7.6. Suppose f : D→ D is a conformal transformation with f(0) = 0, f ′(0) > 0 and
dist(0, ∂D) = 1. Then

1 ≤ f ′(0) ≤ 4. (23)

Proof. The first inequality follows from (22) (or from the Schwarz lemma applied to f−1, considered
as a map from D into D). To get the second inequality, we show that the right hand side of (22)
is maximized if D = C \ [1,∞). This is done similarly as in the Beurling inequality. Suppose that
D = C \K, and as before we write

K+ = {z ∈ K : Im(z) ≥ 0}, K− = {z ∈ K : Im(z) ≤ 0},

(K−)∗ = {z : z ∈ K−}, K ′ = K+ ∪ (K−)∗.

Let D′ = C \K ′ and note that D is simply connected. We claim that

1

2π

∫ 2π

0
GD(eiθ) dθ ≤ 1

2π

∫ 2π

0
GD′(e

iθ) dθ. (24)

To see this let σ = inf{t : |Bt| = 1} and T = inf{t ≥ σ : Bt ∈ R}. Then, using Lemma 7.5, we see
that

1

2π

∫ 2π

0
GD(eiθ) dθ = E [GD(BT ) 1{B[0, T ] ∩K = ∅}] ,

and similarly for D′,K ′.
As in the proof of Lemma 7.1, we let Wt = B1

t +i J B2
t where J is a random variable independent

of B with P{J = ±1} = 1/2. Clearly W is a Brownian motion with WT = BT , and hence

1

2π

∫ 2π

0
GD(eiθ) dθ = E [GD(WT ) 1{B[0, T ] ∩K = ∅}] ,

Let
E1 = {B[0, T ] ∩K+ = ∅}, E2 = {B[0, T ] ∩K− = ∅},

E3 = {B[0, T ] ∩ (K+)∗ = ∅}, E4 = {B[0, T ] ∩ (K−)∗ = ∅}.

Arguing as in that proof, conditioned on B[0, T ],

P{W [0, T ] ∩K = ∅ | B[0, T ]} ≤ P{W [0, T ] ∩K ′ = ∅ | B[0, T ]}.

Proposition 7.2 tells us that GD(x) ≤ GD′(x) for x ∈ R. This gives (24).
Given (24), we can do the argument in Theorem 4 to see that we can choose a maximizing D

so that K lies in a wedge {0 ≤ arg(w) ≤ δ} of arbitrarily small width, and then we argue as in the
Beurling estiamate to see that the supremum is taken on by a slit domain D = C \ (−∞,−1] for
which f(z) = 4 fKoebe(z).

Corollary 7.7 (Koebe (1/4)-theorem). Let f ∈ S∗ and let d = dist(0, ∂f(D)). Then

d ≤ f ′(0) ≤ 4d.

In particular, if f ∈ S, then f(D) contains the open disk of radius 1/4 about the origin.
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The next proposition is a slightly weaker version of the “growth theorem”.

Proposition 7.8. There exists c <∞ such that if f ∈ S, then

|f(z)| ≤ c [1− |z|]−2.

Proof. All constants c in this proof are independent of f , that is, the estimates hold for all f ∈ S.
Let D = f(D) and recall that GD(z) = − log |z| ≥ 1− |z|. By the Schwarz lemma applied to f−1,
we can see that there exists z ∈ ∂D \ f(D). We claim that there exists c < ∞ such that for all
f ∈ S and all z ∈ ∂D, GD(z) ≤ c3. Indeed, if one goes to the proof of Proposition 3.1, especially
(9), (10) we see that GD(z) ≤ 1/ρ where ρ = ρD is the infimum over z ∈ ∂D of the probability
that a Brownian motion leaves D before reaching C1 := {|w| = e−1}. If D = f(D) for f ∈ S,
this probability is greater than the probability that the Brownian motion makes a closed loop in
{1 < |z| < e} before reaching C1.

Using Theorem 4, we can see that there exists c′ such that if |ζ| > 1, Pζ{σ0 < τD} ≤ c′ |ζ|−1/2.
Hence,

GD(ζ) ≤ Pζ{σ0 < τD} sup
|w|=1

GD(w) ≤ c′′ |ζ|−1/2,

and |ζ| ≤ cGD(ζ)−2 for some c. Hence, for all z ∈ D with |f(z)| ≥ 1,

|f(z)| ≤ cGD(f(z))−2 = c [GD(z)]−2 ≤ c [1− |z|]−2.

We will now prove a form of the “distortion theorem”. This is not as strong as the standard
version, but this is easy to prove now and is that is needed for most arguments. The key fact is
that the constants c = C(D,V ) can be chosen uniformly over S.

Proposition 7.9 (Distortion Principle). Suppose D is a domain and V ⊂ D is compact. Then
there exists c = c(D,V ) <∞ such that if f : D → f(D) is a conformal transformation, then

|f ′(z)| ≤ c |f ′(w)|, z, w ∈ V.

Proof. We first assume that D = D. Since f is uniformly bounded on {|z| ≤ 1/2}, the Cauchy
integral formula gives a uniform bound on |f ′′| for |z| ≤ 1/4, and this implies that there exists
c <∞ such that

|f ′(z)− 1| ≤ c |z|, |z| ≤ 1/4.

In particular, we can find δ such that 1/2 ≤ |f ′(z)| ≤ 2 for |z| ≤ δ and hence

|f ′(w)| ≤ 4 |f ′(z)|, |z|, |w| ≤ δ. (25)

Let us define a metric ρD(z, w) on D to be the minimum integer k such that we can write down
a sequence

z = ζ0, ζ1, . . . , ζk = w,

such that for j = 1, . . . , k,

|ζj − ζj−1| < δ max {dist(ζj−1, ∂D),dist(ζj , ∂D)} ,

where δ is as in the last proof. Then, we have |f ′(z)| ≤ 4ρD(z,w) |f ′(w)|. Arguing as in the proof of
Proposition 2.6, we can see that for all compact V , max{ρD(z, w) : z, w ∈ V } <∞.
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These arguments measure the “closeness” of z and w in D tp be the number of balls {ζ :
|ζ − zj | ≤ dist(zj , ∂D)} are needed to “connect” z to w. This measure of distance is closely
related to hyperbolic distance. This definition in the last proof is valid for all domains.

We end by stating the more precise distortion estimate. Usually we do not need the precision
in this statement, but since the optimal constants are known, it is generally nicer to use them.

Theorem 5 (Distortion Theorem). If f ∈ S and |z| < 1, then

1− |z|
(1 + |z|)3

≤ |f ′(z)| ≤ 1 + |z|
(1− |z|)3

.

|z|
(1 + |z|)2

≤ |f(z)| ≤ |z|
(1− |z|)2

.

Corollary 7.10. There exists c0 > 0 such that if f : H→ f(H) is a conformal transformation and
x ∈ R, r > 0,

|f ′(ri)|
c0 (x4 + 1)

≤ |f ′(rx+ ri)| ≤ c0 (x4 + 1) |f ′(ri)|, (26)

|f(rx+ ri)− f(ri)| ≤ c0 r (|x|4 + 1) |f ′(ri)|. (27)

Proof. For (26), without loss of generality assume that r = 1, f(i) = 0, f ′(i) = −2i. Let us also
assume |x| ≥ 1; otherwise we use the distortion principle immediately. Let F (z) = (z − i)/(z + i)
which maps H onto D with F (i) = 0, F ′(i) = −2i, and let g = f ◦F−1 ∈ S. Note that |F (x+ i)| ≤
1− c x−2, and hence the distortion theorem implies that

c

x2
≤ |g′(F−1(F (x+ i)))| = |f ′(x+ i)|

|F ′(x+ i))|
.

We check directly that |F ′(x+i)| � x−2. Therefore |f ′(x+i)| ≥ c x−4. This gives the first inequality
in (26) and the second follows from the first applied to f̃(z) = f(z − x). The estimate (27) follows
from |g′(F (z))| ≤ c (1− |F (z)|)−2.

|f(rx+ ri)− f(ri)| ≤
∫ rx

0
|f ′(s+ ri)| ds.

It is clear that by doing this proof slightly more carefully we could find an explicit c0, but we will
not need it.

8 Loewner differential equation

We will give a number of versions of what are called Loewner differential equations. These equations
describe the dynamics of conformal maps as a domain is perturbed. As a start we will describe
one version of the half-plane equation. Suppose γ : (0,∞) → H is a simple curve with γ(0+) = 0.
(For us curve means a continuous image of the real line and simple means that the function is
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one-to-one. For each t, let Ht = H \ γ[0, t]. The Riemann mapping theorem tells us that there
exist conformal maps gt : Ht → H. There are many such maps, but as we will see we can specify a
unique one by requiring that

gt(z) = z + o(1), z →∞.
For fixed z ∈ H, we can consider the flow t 7→ gt(z). If z 6∈ γ(0,∞), then this flow exists for all
times. If z = γ(t) then the flow stops at time t at which gt(z) ∈ R.

The main result is that if we reparametrize γ appropriately then gt(z) is a a C1 function of t
that satisfies

∂tgt(z) =
2

gt(z)− Ut
, g0(z) = z,

where Ut = gt(γ(t)).
We will first derive the equation in the case γ is a simple curve and show that t 7→ Ut is a

continuous real-valued function. We then will consider the equation as an initial value problem for
a given continuous Ut and discuss the solutions of the differential equation.

8.1 A class of transformations

We will consider simply connected subdomains of H of the form H \ K where K is a bounded
set. We will be making estimates that are valid over all such domains so it useful to set up some
notation. Recall that we write rad(K) = rad(0,K) = sup{|z| : z ∈ K}.

Definition Let Jq denote the set of subdomains D ⊂ H with rad(H \D) ≤ q, and let J ′q be the
set of real translations D = D + x,D ∈ Jq, x ∈ R. Let J = J1,J ′ = J ′1.

We allow multiply connected domains in J . Note that D ∈ J if and only if f(D) ∈ K where
f(z) = −1/z. Suppose D ∈ Jq, D′ ∈ Jq′ and g : D → D′ is a conformal transformation such that
g(∞) =∞ (that is, if z →∞, then g(z)→∞) and such that for x ∈ R \ [x1, x2],

lim
y↓0

g(x+ iy) ∈ R.

Then we can use Schwartz reflection to extend g to a conformal transformation of

D∗ := D ∪ {z : z ∈ D} ∪ (−∞, x1) ∪ (x2,∞).

The map

f(z) =
1

g(1/z)

is a univalent function in a neighborhood N of the origin with f(0) = 0, and hence has a power
series expansion

f(z) = a1 z + a2 z
2 + · · · .

Since f(N ∩ R) ⊂ R, we can see that aj ∈ R, and since f(N ∩ H) ⊂ H, we can see that a1 > 0.
Using this we see that g has an expansion at infinity

g(z) = b−1 z + b0 + b1 z
−1 + b2 z

−2 + · · · , b−1 > 0, bj ∈ R.

We will write g′(∞) = 1 if b−1 = 1. If g has an expansion as above, and g̃(z) = (g(z)− b0)/b−1,
then g̃(z) = z + o(1) as z →∞.
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One might expect that we should define g′(∞) = b−1. However, for reasons that we will discuss

later, there are good reasons to define g′(∞) = 1/b−1. We will avoid this issue for the moment

by only defining “g′(∞) = 1” which is the same under both definitions.

Definition Let Qq denote the set of conformal transformations g : D −→ g(D) where D ∈
Jq, g(D) ∈ J ′ and such that

g(z)− z → 0, z →∞.

Let Q = Q1. Transformations in Q are sometimes said to satisfy the hydrodynamic normalization.

Lemma 8.1. Suppose D ∈ Jq. Then there is a unique positive harmonic function vD on D such
that vD ≡ 0 on ∂D and vD(z) = Im(z) +O(1) as z →∞. It is given by

vD(z) = Im(z)− Ez [Im(BτD)] = lim
n→∞

nPz{Tn < τD},

where Tn = inf{t : Im(Bt) = n}. Moreover, there exist c = cD <∞ such that for |z| ≥ 2q,

|Im(z)− vD(z)| ≤ c Im(z)

|z|2
.

To be more precise, we mean that if we extend vD to ∂D by setting vD(z) = 0 for z ∈ ∂D, then
vD is continuous at the regular points of ∂D.

Proof. If vD is such a function, then Im(z) − vD(z) is a bounded harmonic function on D, and
hence,

Im(z)− vD(z) = Ez [h(BτD)] = Ez [Im(BτD)] .

This gives existence and uniqueness of vD. Since Im(w) is a bounded harmonic function on {0 <
Im(w) < n}, if 0 < Im(z) < n,

Im(z) = Ez [Im(BτD∧Tn)] = Ez [Im(BτD); τD < Tn] + nPz{Tn < τD}.

Using the monotone convergence theorem, we therefore see that

lim
n→∞

nPz{Tn < τD} = Im(z)− lim
n→∞

Ez [Im(BτD); τD < Tn]

= Im(z)− Ez [Im(BτD)] .

To get the final assertion, note that

|Im(z)− vD(z)| ≤ Pz{BτD 6∈ R} sup{Im(w) : w ∈ H \D} ≤ cD Pz{B[0, τH] ∩ (qD) 6= ∅}.

The probability on the right can be computed by conformal invariance. We omit the details.

• One can consider Q as a half-plane analogue of the schlicht functions S.

• If g ∈ Qq with domain D, let D̃ = q−1D and g̃(z) = q−1 g(qz). Then g̃ ∈ Q with g̃′(z/q) =
g′(z). We will focus on estimates for g ∈ Q, but these immediately imply estimates for g ∈ Qq.
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• Every g ∈ Q has an expansion at infinity

g(z) = z +
b1
z

+
b2
z2

+ · · · , bj ∈ R.

• If we write g(z) = u(z) + iv(z), then h(z) := Im(z)− v(z) is a bounded harmonic function on
D such that h(z)→ 0 as z →∞. Note that h is a harmonic function on D∗.

• If g : D → g(D) is in Q then so is g−1 : g(D)→ D with expansion

g−1(z) = z − b1 z−1 +O(|z|−2).

• If D ∈ Jq is simply connected, there exists unique g ∈ Qq such that g(D) = H. The existence
of conformal transformations f : D → H follows from the Riemann mapping theorem, and if
f̃ is another such a transformation, then f̃ = T ◦ f where T is a Möbius transfromation of
H. There is exactly one such T such that T ◦ f ∈ Q. In this case Img = vD where vD is the
function from Lemma 8.1.

• If g = u+ iv ∈ Q and z = x+ iy with |z| > 1, we can use the Cauchy-Riemann equations to
write

u(x, iy) = lim
y1→∞

[u(x, iy1) + u(x, iy)− u(x, iy1)]

= lim
y1→∞

[
u(x, iy1)−

∫ y1

y
∂xv(x+ it) dt

]
= x−

∫ ∞
y

∂xv(x+ it) dt

= x+

∫ ∞
y

∂xh(x+ it) dt.

To see that the integral is well defined, note that for |z| ≥ 2, h (extended to D∗) is a bounded
harmonic function in the disk of radius |z|/2 about z and is bounded by c |z|−1. Therefore
by Proposition 2.5, |∇h(z)| ≤ c |z|−2.

Proposition 8.2. Suppose D ∈ J and h is a positive harmonic function on D that is bounded on
{|z| ≥ 1} and equals zero on {x ∈ R : |x| ≥ 1}. Then for |z| ≥ 2,

h(z) = HH(z, 0)h∞ [1 +O(|z|−1)] = −Im(1/z)h∞ [1 +O(|z|−1)],

where

h∞ = lim
y→∞

y h(iy) =
2

π

∫ π

0
h(eiθ) sin θ dθ. (28)

Moreover, if y > 1,

h∞ =
1

π

∫ ∞
−∞

h(x+ iy) dx. (29)
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The condition |z| ≥ 2 is put into the proposition to make the estimates uniform over z. We
could replace it with |z| ≥ r for any r > 1, but then the implicit constant could depend on r.

As |x| → ∞, h(x+ iy) ≤ O(x−2) which shows that the integral in (29) is finite.

Proof. Let O+ = O ∩ H = {z ∈ H : |z| > 1}. Since h is a bounded harmonic function on O+, the
optional sampling theorem implies that

h(z) = Ez [h(B+)] =
1

π

∫
∂O+

H(z, w)h(w) |dw|.

Using conformal invariance (see (58)), we can see that

HO+(z, eiθ) = 2 Im[−1/z] sin θ [1 +O(|z|−1)] = 2HH(z, 0) sin θ [1 +O(|z|−1)].

Since h(x) = 0 for x ∈ R ∩ ∂O+,

h(z) =
2HH(z, 0)

π

[
1 +O(|z|−1)

] ∫ π

0
h(eiθ) sin θ dθ

This gives (28). Let Uy = {x+ is : s > y}. Then, if y′ > y,

y′ h(iy′) =
y′

π

∫
∂Uy

HUy(iy
′, x+ iy)h(x+ iy) dx =

y′

π(y′ − y)

∫ ∞
−∞

(y′ − y)2

x2 + (y′ − y)2
h(x+ iy) dx

Letting y′ →∞, we get (29).

We note that the Harnack principle implies that there exists c1, c2 such that for all such h,

c1 h∞ ≤ h(2i) ≤ c2 h∞.

We can write

h∞ =
4

π
lim
z→∞

Ez [h(Bτ ) | |Bτ | = 1] .

We can then view the results as two separate estimates:

Ez [h(Bτ ) | |Bτ | = 1] =
π

4
h∞ [1 +O(|z|−1)],

Pz{|Bτ | = 1} =
4Im(z)

π|z|2
[
1 +O(|z|−1)

]
.

Definition Suppose K ⊂ H is bounded such that D = H \ K is a domain. Then the half-plane
capacity hcap(K) is defined by

hcap(K) = lim
y→∞

y Eiy [Im[B(τD)]] .
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Suppose D = H \ K, τ = τD, and let h(z) = Ez [Im(Bτ )] be the bounded harmonic function
on D with boundary value Im(z). If D ∈ J , that is, if K ⊂ {|z| ≤ 1}, then in the notation of
Proposition 8.2,

hcap(K) = h∞ =
2

π

∫ π

0
Ee

iθ
[Im(Bτ )] sin θ dθ.

Also, for |z| ≥ 2,
h(z) = −hcap(K) Im(1/z) [1 +O(|z|−1)].

In particular, hcap(K) � E2i [Im(Bτ )].

Proposition 8.3. Suppose K ⊂ H is bounded such that D = H \K is a domain.

1. If r > 0, then hcap(rK) = r2 hcap(K).

2. If x ∈ R, then hcap(x+K) = hcap(K).

Proof.

1. Let Dr = H \ rK. Then, by conformal invariance

Eiry
[
Im(BτDr )

]
= rEiy [Im(BτD)] .

Therefore,

hcap(rK) = lim
y→∞

ry Eiry
[
Im(BτDr )

]
= r2 lim

y→∞
y Eiy [Im(BτD)] = r2 hcap(K).

2. Let Dx = H \ (K + x) = D + x. Then,

Eiy
[
Im(BτDx )

]
= E−x+iy

[
Im(BτDx )

]
.

Using, for example, Proposition 8.2 (or just derivative estimates for harmonic functions), we
can see that for fixed x, as y →∞,

E−x+iy
[
Im(BτDx )

]
∼ Eiy

[
Im(BτDx )

]
.

There is another notion of capacity that we will consider that scales differently from hcap.

Definition Suppose V is a compact subset of H. For a Brownian motion Bt and let D = H \ V .
Then

capH(V ) = lim
y→∞

Piy{Bτ ∈ V } = lim
y→∞

y hmH\V (iy, V ).

Note that we allow V to be a subset of reals. The quantity capH(V ) is a normalized form of
the point-to-set excursion measure as we now show. Let

f(z) =
z − i
z + i
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which is a conformal transformation of H onto D. Then conformal invariance implies that

hmH\V (iy, V ) = hmD\f(V )(f(iy), f(V )) = hmD\f(V )

(
y − 1

y + 1
, f(V )

)
.

Therefore,

capH(V ) = 2 lim
y→∞

y

2
hmD\f(V )

(
1− 2

y + 1
, f(V )

)
= 2 ED\f(V )(1, f(V )).

• If T = inf{t : Bt ∈ R}, we can use the Poisson kernel in H to see that

capH([0, x]) = lim
y→∞

yPiy{0 ≤ BT ≤ x} = lim
y→∞

y

∫ x

0

y dy

π(t2 + y2)
dt =

x

π
.

• If V ⊂ {|z| ≤ 1} and y ≥ 2,

capH(V ) � y Piy{B[0, T ] ∩ V 6= ∅} = y hmH\V (2i, V ).

• Using conformal invariance, we get the following relations:

capH(V + x) = capH(V ), capH(rV ) = r capH(V ).

• Suppose V is the disk of radius ry about z = x+ iy where 0 < r < 1. We claim that

capH(V ) = 2y [log(1/r) +O(r)]−1 r → 0. (30)

It suffices to prove this for y = 1, x = 0 for which it follows from

GH(iy, i) = log
y + 1

y − 1
= 2y−1 +O(y−2), y →∞.

Since capH scales linearly, one might expect that capH of a connected set to be comparable to
the diameter of a set. Indeed this is true if the set touches the boundary, but is not correct for
“interior” sets.

Lemma 8.4. There exists c1, c2 such that if V ⊂ H is compact and connected and d = diam(V ),
y = sup{Im(z); z ∈ V }, then

c1 (d+ y) [1 + log+(y/d)]−1 ≤ capH(V ) ≤ c2 (d+ y) [1 + log+(y/d)]−1.

In particular, if both V and V ∪ R are connected, then capH(V ) � diam(V ).

Proof. By scaling and translation we may assume that y = 1 and that min{Re(z) : z ∈ V } = 0.
Let D denote the unbounded connected component of H \ V . As noted above,

capH(V ) � (d+ 1) hmD(2(d+ 1)i, V ). (31)

If d ≥ 4, let s = d−1 ≥ 3. The upper bound follows immediately from (31). For the lower bound,
note that there exists z ∈ V with Re(z) = s. Consider the square {x+ iy : 0 ≤ x ≤ s, 0 ≤ y ≤ 1}.
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We know that V is connected and contains points on both vertical sides, [0, i] and [s, s + i], If a
Brownian motion Bt starting at 2(d + 1)i exits H at (0, 1) without hitting either of the vertical
sides [0, i] or [s, s + i], then either the curve hits V or the curve disconnects V . Since we know
that V is connected, the former must then hold. Let σ = inf{t : Im(Bt) = 1}, x = Re(Bσ). If
x ∈ [1, s−1], then there is a probability of 1/4 that the continuation of the path will exit the square
[x− 1, x+ 1]× [x− 1 + 2i, x+ 1− 2i] at [x− 1, x+ 1]. Therefore,

hmD(2(d+ 1)i, V ) ≥ 1

4
P2(d+1)i{Re(Bσ) ∈ [1, d− 2]}.

Using the exact form of the Poisson kernel in the upper half plane, we can see that

inf
d≥4

P2(d+1)i{Re(Bσ) ∈ [1, d− 2]} > 0.

If d ≤ 1/2, let z = x+i be a point in V with maximal imaginary part and note that 0 ≤ x ≤ 1/2.
Let Br denote the closed disk of radius r centered at z with boundary ∂r. Since capH(V ) ≤ capH(Bd),
the upper bound follows from (30). The connected set V intersects ∂d/2. Let q > 0 be the probability
that a Brownian motion starting at |z| = 1/2 makes a closed loop about the origin before reaching
the unit circle. Suppose that a Brownian motion starting at 2(d+1)i reaches ∂d/4 before leaving H.
Then there is a probability q, that it will make a loop about z before reaching the circle of radius
d/2. If that happens, the curve must hit V . From this we get the inequality

capH(V ) ≥ q hmD\Bd/4(2(d+ 1)i,Bd/4) � q capH(Bd/4).

This and (30) give the lower bound.
If 1/2 ≤ d ≤ 4 we can use the d = 1/2 estimate for a lower bound and the d = 4 estimate for

an upper bound.

The estimate above is useful in studying the boundary behavior of conformal maps. For future
reference we state a disk version of the proposition that can be proved in the same way. We will
only give the boundary version.

Proposition 8.5. There exist 0 < c1 < c2 <∞ such that if V ⊂ D is a connected compact set with
V ∩ ∂D 6= 0, then

c1 diam(V ) ≤ P{B[0, τD] ∩ V 6= ∅} ≤ c2 diam(V ).

Roughly speaking, the quantity capH(V ) is the normalized probability that a Brownian motion
“starting at infinity” exits H\V at V . It is a version of excursion measure. The quantity hcap(K)
is a normalized probability that a Brownian motion ”starting at infinity and conditioned to leave
H at infinity” hits K. This is only nonzero if K ⊂ H, and if K is very close to the real line it is
near zero. It is analogous to what we will call boundary bubbles.
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8.2 Compact hulls

Definition We call a compact K ⊂ H a compact H-hull if

• K ∩ R 6= ∅.

• K ∪ R is connected.

We have chosen to make connectedness of K ∪R one of the conditions for being a hull. This is
not always done. We choose this definition for convenience.

For any such K, let DK denote the unbounded component of H\K and note that DK is simply
connected. Let x−(K) = min{x : x ∈ K ∩ R}, x+(K) = max{x : x ∈ K ∩ R}. We define the
fill of K by fill(K) = (H \DK) ∪ [x−(K), x+(K)]. Note that fill(K) is a compact H-hull. Let
RK = sup{|z| : z ∈ K} = sup{|z| : z ∈ fill(K)} and

D∗ = C \ [fill(K) ∪ {z : z ∈ fill(K)}] .

Note that
hcap(K) = hcap(fill(K)).

Sometimes, in an abuse of notation, we will refer to a bounded, but not closed, K ⊂ H as a compact
H-hull. In this case the implicit hull is the union of K and the smallest closed line segment in R
needed to make the union connected.

Proposition 8.6. There exists c0 <∞ such that the following holds. Suppose that K is a compact
H-hull, D = DK , R = RK , a = hcap(K).

1. There exists a unique conformal transformation g = gK : D −→ H such that

lim
z→∞

[g(z)− z] = 0.

It extends by Schwarz reflection to a conformal transformation g : D∗ −→ C \ [x1, x2] for
some −∞ < x1 < x− ≤ x+ < x2 <∞. For z ∈ D, Img(z) is the same as vD(z) from Lemma
53.

2. The expansion of g at infinity is

g(z) = z +
a

z
+

∞∑
j=2

bj z
−j , bj ∈ R.

3.

x1 = lim
y→∞

π y

[
1

2
− Piy{BτD ∈ (−∞, x−)}

]
,

x2 = lim
y→∞

π y

[
1

2
− Piy{BτD ∈ (x+,∞)}

]
.

In particular, x1 ≤ x− ≤ x+ ≤ x2.
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4. If r > 0, x ∈ R, then
grK(z) = r g(z/r), g′rK(z) = g′(z/r),

gK+x(z) = x+ gK(z − x).

5. If K ⊂ K ′, gK′ = gg(K′) ◦ g. In particular,

hcap(K ′) = hcap(K) + hcap[g(K ′)]. (32)

Here by g(K ′) we mean the hull g(K ′ \K).

6. If |z| ≥ 2R, then

|g′(z)− 1| ≤ c0
a

|z|2
.

7. If |z| ≥ 2R, then ∣∣∣gK(z)− z − a

z

∣∣∣ ≤ c0
aR

|z|
. (33)

Proof.

1. The existence of the map was shown in the previous section.

2. Note that as y →∞,

g(iy) = i

[
y − b1

y

]
+O(y−2) = iv(iy) +O(y−2).

Therefore, using Lemma 8.1 and the definition of hcap, we see that

b1 = lim
y→∞

y [y − v(iy)] = lim
y→∞

y Eiy [Im(Bτ )] = hcap(K).

3. Using the Poisson kernel in H, we see that

lim
y→∞

π y

[
1

2
− Piy{BτH ∈ [x+,∞)}

]
= x+.

Conformal invariance implies that

Piy{BτD ∈ [x+,∞)} = Pg(iy){BτH ∈ [x2,∞)}.

We know that g(iy) = iy − iay−1 + O(y−2) and derivative estimates for harmonic function
show that

Pg(iy){BτH ∈ [x2,∞)} = Pi(y−ay
−1){BτH ∈ [x2,∞)}+O(y−2).

Therefore,

lim
y→∞

π y

[
1

2
− Piy{BτD ∈ [x+,∞)}

]
= lim

y→∞
π y

[
1

2
− Pi(y−ay

−1){BτH ∈ [x2,∞)}+O(y−2)

]
= lim

y→∞
π (y − ay−1)

[
1

2
− Pi(y−ay

−1){BτH ∈ [x2,∞)}
]

= x2.

Since Piy{BτD ∈ [x+,∞)} ≤ Piy{BτH ∈ [x+,∞)}, we see that x2 ≥ x+. The argument for x1

is the same.
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4. Note that g̃(z) := rgD(z/r) is a conformal transformation of H \ (rK) onto H satisfying
g̃(z) = z+o(1), z →∞. By uniqueness g̃ = grK . We argue similarly for ĝ(z) = x+gK(z−x).

5. It is easy to see that g̃ := gg(K2) ◦ gK1 is a conformal transformation of DK2 onto H satisfying
g̃(z) = z + o(1).

6. We first assume that R = 1. Let h(z) = Im[z − gD(z)] = Im(z) − vD(z) which we consider
as a harmonic function on D∗ ⊃ {|z| > 1}. Using Lemma 8.2, we see there exists universal c
such that

|h(z)| ≤ c a |z|−1.

If |z| ≥ 2, then h(z) is a harmonic function defined on the disk of radius |z|/2 bounded by
caO(|z|−1). Hence using Proposition 2.5, we see that

|∇h(z)| ≤ c a |z|−2,

and hence

|1− g′D(z)| =
√

[∂xv(z)]2 + [1− ∂yv(z)]2 ≤ c a |z|−2.

For more general R, g′RD(z) = g′D(z/R), and hence for |z| ≥ 2R,

|1− g′RD(z)| = |1− g′D(z/R)| ≤ cR2 a |z|−2 = chcap(RK) |z|−2.

7. Assume R = 1, let

f(z) = g(z)− z − a

z
.

and let
vf (z) = Imf(z) = v(z)− Im(z)− a Im(1/z).

Using Proposition 8.2 with h(z) = z − v(z), we see that

|vf (z)| ≤ c a Im(z)

|z|3
.

Using the fact that vf (extended to D∗) is a harmonic function on {|w| ≤ |z|/2} bounded by
c a |z|−2, we see that

|f ′(z)| = |∇vf (z)| ≤ c a |z|−3.

Using f(∞) = 0, we see that for |z| ≥ 2, |f(z)| ≤ c a |z|−2.

For more general R, recall that gRK(z) = RgK(z/R) and hence

|gRK(z)− z − hcap(RK)z−1| = |RgK(z/R)− z −R2az−1|
= R|gK(z/R)− (z/R)− a(z/R)−1|
≤ cR a |z/R|−2

= cR hcap(RK) |z|−2.

Examples.
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• Let K = D+. Then

gK(z) = z +
1

z
.

In particular, hcap(D+) = 1.

• Let K be the vertical line segment [0, i]. Then

gK(z) =
√
z2 + 1 = z +

1

2z
+ · · · .

To be more precise, note that if z ∈ H \ [0, i], then z2 + 1 is not on the positive real line.
Hence. we can take the branch of the square root with values in the positive half plane. This
shows that hcap([0, i]) = 1/2.

If K is a compact H-hull, then hcap(K) is the coefficient of z−1 in the expansion of gK from
infinity. Indeed, that is how some people define the quantity. However, this definition does not
work for compact K for which K ∪ R is not connected.

As a slight abuse of notation, we write

gD(x−) = s gD(x+) = t.

If K is disconnected it is possible that gD can be extended to a slightly larger domain, but we will
not need to consider this extension.

Lemma 8.7.
−2R ≤ gD(x−) ≤ gD(x+) ≤ 2R.

Proof. We do the case R = 1; the other cases can be handled by scaling. Recall from Proposition
8.6 that

gD(x+) = lim
y→∞

π y

[
1

2
− Piy{BτD ∈ [x+,∞)}

]
.

The right-hand side is maximized (under the constraint R = 1) when D = H \ D+ in which case

gD(z) = z +
1

z
, gD(1) = 2.

It follows that gD(x+)− x+ ≤ 3R. However, we can get arbitrarily close to 3R. If we let D be
the maximizing domain for R = 1, then we can take

Dε = D \ {x+ iy : −1 < x ≤ 1 : 0 < y < ε(x+ 1)}

for which x+ = −1 and g(x+)→ 3 as ε→ 0.
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8.3 Boundary behavior

The behavior of conformal transformations near the boundary is a delicate topic. We will consider
here the case where K is a compact H-hull contained in the closed unit disk, D = H \K ∈ J , and
g = gK is the unique conformal transformation g : D → H with g(z) − z → 0 as z → ∞. We will
write f for the inverse map f = g−1 : H→ D. The question is whether or not f extends to a map
on the H. If we only assume that D is the form above, then the situation can be difficult. As a
bad example to consider as we go along, let

K̂ =

[
−1

2
,
1

2

]
∪
[

1

2
,
1

2
+
i

2

]
∪
[
−1

2
,
1

2
+
i

2

]
∪
∞⋃
n=1

([
−1

2
+

i

22n−1
,
1

4
+

i

22n−1

]
∪
[
−1

4
+

i

22n
,
1

2
+

i

22n

])
,

and D̂ = H \ K̂. Fortunately, such bad behavior will not arise if we assume K is the image of a
curve.

Definition

• If D is a domain, then a (simple) crosscut is a simple curve η : (0, t0) → D with such that
the limits η(0) = η(0+), η(1) = η(1−) exist and are on ∂D. (We allow η(0) = η(1).)

• We say that a simple curve η : [0, t0] → C is an accessing curve for D if η(0, t0) ⊂ D and
η(0) ∈ ∂D. We say that η accesses z if η(0) = z. The point z ∈ ∂D is accessible if there
exists at least one curve accessing η.

Note that under our definition, crosscuts (or their reversal) are accessing curves for both end-
points. In our pathological example D̂, the origin is not an accessible point for D̂. The Beurling
estimate implies that following.

Proposition 8.8. There exists c < ∞ such that if D = H \ K ∈ J , and η is a curve accessing
z ∈ ∂D, then if diam(ηt) ≤ 1,

diam[g ◦ ηt] ≤ c
√

diam(ηt). (34)

Here ηt = η[0, t]. In particular, the limit

lim
t↓0

g(η(t))

exists.

Proof. The proof is the same as that of Lemma 8.15.

What makes the last proposition true is that if a curve in the upper half plane has a large
diameter then there is a good chance that it will be hit by a Brownian motion. “Hit by Brownian
motion”, that is, harmonic measure, is a conformal invariant. However, we do not get a lower
bound on diam[g ◦ ηt] in terms of diam(ηt). If ∂D is very rough, or even it just has some protected
“fjords”, it is possible for diam(η) to be large but the harmonic measure of cη to be small.

Proposition 8.9. Suppose that η is a crosscut of D = H \K ∈ J whose endpoints are distinct.
Then g ◦ η is a crosscut of H with distinct endpoints.
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Proof. The fact that g ◦ η is a crosscut follows from the previous proposition. To see that the
endpoints are distinct, note that if w ∈ D \ η, then there is a positive probability that a Brownian
motion starting at w hits R before hitting η and hence leaves D before hitting η. By conformal
invariance this must hold for the image g ◦ η. But if the endpoints of g ◦ η were the same, this
would not be true for w in the bounded component of H \ (g ◦ η).

For each z ∈ ∂D, let Ds(z) denote the open ball of radius e−s about z with boundary Cs(z).
The set Cs(z) ∩D is the disjoint union of a finite or countably infinite number of crosscuts of D.
The image of each crosscut under g is a crosscut of H and Proposition 8.8 implies that g ◦ l is a
crosscut of H with diam[g ◦ l] ≤ c r1/2 for some universal constant c. (One needs to be careful here;
although the image of each crosscut is small, the images of different crosscuts may not be close to
each other so the diameter of the union of the crosscuts can be large.) The last proposition implies
that the endpoints of g ◦ l are distinct.

Let us fix z and assume that z is accessible. Let Bs = Ds(z) and let U s1 , U
s
2 , . . . denote the

connected components of D \Cs that contain z on its boundary. Accessibility implies that there is
at least one such component. (In the example D̂ above, there are no such components for z = 0;
however, this point is not accessible.) Typically there will not be many such components, but it is
possible for there to be a countable number. For each of these components U sj , there is a unique
crosscut lsj of D such that lsj ⊂ ∂U sj and the component of D \ lsj containing U sj is a bounded
component. (It is useful to draw pictures. The bounded component of D \ lsj need not be contained
in Bs.) Let us call this bounded component V s

j . It can be characterized as follows. Suppose η is a
curve as in Proposition 8.8. Then for all t sufficiently small either η(0, t) ⊂ V s

j or η(0, t) ∩ V s
j = ∅.

For each s we have an equivalence relations on η with η1 ≡s η2 if they end up in the same component
V s
j . Note that this is monotonic: if η1 ≡s η2 then η1 ≡r η2 for all r < s. Hence we can write

η1 ≡ η2 if η1 ≡s ηs for some s.

Definition The equivalence classes of accessing curves for D are called the prime ends. The prime
ends at z ∈ ∂D are the equivalence classes of curves that access z.

We summarize our discussion in a proposition.

Proposition 8.10. A boundary point z ∈ D is accessible if and only if there is a prime end at z.
If η1, η2 are two curves accessing z in D, then

lim
t↓0

g(η1(t)) = lim
t↓0

g(η2(t)),

if and only if η1, η2 are equivalent as prime ends.

Proposition 8.11. Suppose γ : (0, 1] → H is a simple curve with γ(0+) = x ∈ H, and let
η(t) = f(γ(t)). Suppose that

lim
ε↓0

diam[η(0, ε)] = 0.

Then
lim
t↓0

f(γ(t)) = z

exists and is in ∂D. The curve η accesses z in D. If γ̃ : (0, 1] → H is another simple curve with
γ(0+) = x ∈ H, then

lim
t↓0

f(γ̃(t)) = z.
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If l is a crosscut on Br,z, then D \ l has two components, one bounded and one unbounded. If
U is the bounded component, then we can see that

diam[g(U)] ≤ c r1/2.

However, even if r is very small, it is possible for diam[U ] to be of order 1. As an example, consider
the example D̂ above. Let ηn be the crosscut formed by the vertical line segment from 2−ni to
2−(n1)i. Then diam(ηn) = 2−(n+1). However, the diameter of the bounded component of D̂ \ ηn is
greater than 1 for each n. In order to prevent this from happening, we can require that C \D be
locally connected.

Definition The set V is (uniformly) locally connected if there exists a function ε(δ) with ε(0+) = 0
such that if z, w ∈ V with |z − w| ≤ δ, then there exists a closed connected set V ′ ⊂ V containing
z, w of diameter at most ε(δ).

Indeed, suppose we knew that H\D were locally connected with function ε(·). Let η be a crosscut
of D connecting boundary points z, w with δ = diam(η), and let U be the bounded component of
D \ η. Since |z −w| ≤ δ, there exists closed V ⊂ H \D containing z, w with diam(V ) ≤ ε(δ). Note
that U is contained in a bounded component of C \ (η ∪ V ), and hence

diam(U) ≤ diam(V ∪ η) ≤ δ + ε(δ).

The next topological lemma shows that the domains that we will be studying have locally connected
complements.

Lemma 8.12. If γ = γ[0, 1] is the image of a curve with γ(0) = 0, then γ and R∪fill[γ] are locally
connected.

Proof. Let z ∈ γ and ε > 0. let T = γ−1(z) which is a nonempty compact subset of [0, 1]. For
each t ∈ T , there exists an open interval It containing t such that |γ(s) − z| < ε/4 for s ∈ It. By
compactness, we can find It1 , . . . , Itn such that I := It1∪· · ·∪Itn , covers T . Let 2δ = min{|γ(s)−z| :
s ∈ [0, 1] \ I} > 0. If w ∈ γ with |w − z| < 2δ, then w = γ(s) for some s ∈ Itj . Then γ(Itj ) is
a connected subset of γ containing w, z that has diameter at most ε/2. Hence, for every z ∈ γ,
there exists δz > 0 such that if |w − z| < δz, then for every w′ with |w′ − w| < δz, we can find
a connected subset of γ (in fact, the union of two subpaths each going through z) of diameter at
most ε. Using compactness of γ, we can find z1, . . . , zm such that the open disks of radius δzj cover
γ. Let δ = min δzj . Then if w,w′ ∈ γ with |w − w′| < δ, we find zj with |w − zj | < δj . Since
|w − w′| < δ ≤ δj , we can find a connected subset of γ including w,w′ of diameter at most ε.
Note that we made no assumptions about double points for the curve. Suppose diamγ ≤ R. Then
[−2R, 2R] ∪ γ is the image of a curve (start at −2R go to 2R come back to 0 and then proceed
along γ) and so γ ∪ [−2R, 2R] is locally connected. With this, showing that amγ ∪ R is locally
connected is easy.

Finally, suppose w,w′ ∈ R∪fill[γ] with |w−w′| < δ. If dist(w, γ∩H) ≥ δ or dist(w′, γ∩H) ≥ δ,
then we can connect w,w′ by the straight line segment of length |w − w′|. Otherwise, we connect
w,w′ to z, z′ in R∪ fill[γ] with line segments length less than δ. Therefore |z− z′| < 3δ and we can
find a connected subset of R ∪ fill[γ] of diameter at most ε(3δ) containing z, z′. The union of this
subset and the two line segments is a connected subset of diameter at most 2δ + ε(3δ) connecting
w and w′.
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Theorem 6. Suppose D = H \ K ∈ J and g : D → H is a conformal transformation with
g(∞) = ∞. Suppose that C \ D is locally connected. Then g−1 can be extended to a continuous
function from H to D.

Proof. Let ε(δ) be the function as in the definition for V = C \D. Note that if η is a crosscut of
D, then the bounded component of D \ η must have diameter at most ε(diam(η)). Let f = g−1.

Let lr,x denote the crosscut in H given by the half-circle lr,x(t) = x + reit, 0 ≤ t ≤ π. We
claim there exists c < ∞ such that for every x ∈ R and every ρ < 1 there exists r = r(x, ρ) with
ρ ≤ r ≤ √ρ such that

diam(f ◦ lr,x) ≤ c√
log(1/ρ)

. (35)

To see this, we first note that there exists c0 < ∞ such that for all x, area[f({z ∈ H : |z − x| ≤
1)] ≤ c0. Let Γ = Γρ,x = {z ∈ H : ρ ≤ |z − x| ≤ √ρ}. With aid of the Cauchy-Schwarz inequality,
we see that

c0 ≥ area[f(Γ)] =

∫
Γ
|f ′(z)|2 dA(z)

=

∫ √ρ
ρ

[∫ π

0
|f ′(reiθ)|2 dθ

]
r dr

≥
∫ √ρ
ρ

[
1

π

(∫ π

0
|f ′(reiθ)| dθ

)2
]
r dr

≥
∫ √ρ
ρ

[
1

π

(∫ π

0
r |f ′(reiθ)| dθ

)2
]
r−1 dr

≥ log(1/ρ)

2π
inf

ρ≤r≤√ρ

[∫ π

0
r |f ′(reiθ)| dθ

]2

≥ log(1/ρ)

2π
inf

ρ≤r≤√ρ
[diam(f ◦ lr,x)]2 .

This establishes the claim. This estimate was valid for all f (even if C\D is not locally connected).
If |z − x| < r, then f(z) is in the bounded component of f ◦ lr,x. However, in our case we can
conclude that diameter of this component is bounded above by

ε

(
c√

log(1/ρ)

)
.

Therefore, for z, w in the bounded component of H \ lρ,x,

|f(z)− f(w)| ≤ c√
log(1/ρ)

+ ε

(
c√

log(1/ρ)

)
,

which goes to zero as ρ goes to zero.
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An important technical result was used in the last proof. From (35), we see that we can find
half-circles lr about the origin of radius r so that diam(f ◦ lr) ≤ c

√
log(1/r). However, one

must be careful with this. Although diam(f ◦ lr) is small, it is not always true that the image
of the disk of radius r has small diameter.

We have restricted our consideration to domains in J , but the argument for the last theorem
is all local. Using the same argument we can get this more traditional statement of the theorem.

Theorem 7. Suppose f : D→ D is a conformal transformation where D is a bounded domain with
C \D locally connected. Then f extends to a continuous function on D.

Corollary 8.13. Suppose that γ : [0,∞)→ H and Ht is the unbounded component of H \ γt. Then
the inverse map g−1

t : H→ D can be extended continuously to ∂H. Moreover, all points of ∂Ht are
accessible.

Definition

• A curve γ : [0, t0] → C is called a Jordan curve, if γ(0) = γ(t0) and γ(s) 6= γ(t) for 0 ≤ s <
t < t0.

• A Jordan domain is a bounded domain D whose boundary is a Jordan curve.

The Jordan curve theorem which we will not prove here states that if γ is a Jordan curve, then
C \ γ consists of two connected components. The bounded component is a Jordan domain.

If f in Theorem 7 is one-to-one on D, then t 7→ f(eit) gives a parameterization of ∂D as a
Jordan curve. In this case f is a homeomophism of D onto D. (Continuity of f−1 = g follows from
the Beurling estimate as in Proposition 8.8.) Conversely, if we know that D is a Jordan domain,
we can use Proposition 8.8 to see that f must be one-to-one on D. We end with a topological fact
about domains generated by curves.

Proposition 8.14. Suppose γ : [0,∞)→ H is a curve with γ(0) = 0. Let Ht denote the unbounded
component of H \ γt, and

Ht− =
⋂
s<t

Hs.

If γ(t) ∈ Ht−, then there is a single prime end of Ht associated to γ(t).

Proof. Suppose γ(t) ∈ Ht− and that there are at least two prime ends. We know that γ(t) is an
accessible point and hence there exists simple η : (0, 1) → Ht with with η(0+) = η(1−) = γ(t).
Since γ(t) ∈ Ht−, we see that η ⊂ Hs for all s < t. Let V be the bounded component of C \ η.
Since Hs is simply connected for s < t, we see that γs∩V = ∅ for s < t and hence γt∩V = ∅. Since
V is connected we see that either V ⊂ Ht or V ∩ Ht = ∅. If V ∩ Ht = ∅, then since Ht is open,
V ∩Ht = ∅. In particular η ∩Ht = ∅ which is a contradiction. Therefore, we know that V ⊂ Ht.

Since V ⊂ Ht, if ζ ∈ V , a Brownian motion starting at ζ cannot reach ∂Ht without hitting η.
This must also be true for gt(ζ) and gt ◦ η which implies that gt(η(0+)) = gt(η(1−)). Hence both
endpoints give the same prime end.
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8.4 Curves

In this section, we let γ : (0,∞)→ C be a simple curve with γ(0+) = 0. For each t, let γt = γ[0, t]
which is a compact H-hull with Dt = H \ γt simply connected. Let gt = gγt be the corresponding
map which has an expansion at infinity

gt(z) = z +
at
z

+O(|z|−2).

This expression defines at; in fact, as we have seen at = hcap[γt]. By (32), we see that at is strictly
increasing in t. We will make the further assumption that

lim
t→∞

at =∞.

This requires lim supt→∞ |γ(t)| = ∞, although this last condition is not quite sufficient. Let τt =
τDt . The next proposition will show that at is a continuous function of t. It uses the Beurling
estimate.

Lemma 8.15. There exists c <∞ such that for every γ, if s < t,

diam (gs[γt \ γs]) ≤ c
√

diam(γt)
√

diam(γ[s, t]).

Proof. Let V = Vs,t = gs[γt \ γs], u = diam[γt], r = diam(γ[s, t]) ≤ u. By Lemma 8.4, capH(V ) �
diam(V ). By definition,

capH(V ) = lim
y→∞

y Piy{BτH\V ∈ V }.

Using the expansion of gs at infinity and conformal invariance and the expansion gs(iy) = i[y −
hcap(γs)y

−1] +O(y−2), we see that

lim
y→∞

y Piy{Bτt ∈ γ[s, t]} = lim
y→∞

y Pgs(iy){BτH\V ∈ V } = lim
y→∞

y Piy{BτH\V ∈ V } = capH(V ).

We will now estimate Piy{Bτt ∈ γ[s, t]} for large y. In order for Bτt ∈ γ[s, t], it is necessary for
the Brownian motion starting at iy to reach the disk of radius 2u about the origin without leaving
H. The probability of this is O(u/y). Given this, the Brownian motion must reach the disk of
radius r about γ(s) without leaving Dt. By the Beurling estimate, this probability is bounded by
a constant times

√
r/u. Therefore

lim
y→∞

y Piy{τt < τs} ≤ c
√
ru.

It follows that we have an estimate

at − as ≤ cdiam(γt) diam(γ[s, t]).

In particular, at is a continuous function of t and we can reparametrize the curve so that hcap[γt] =
2t.

Definition The curve γ has the (standard) capacity parametrization if hcap[γt] = 2t for all t.
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The choice of the constant 2 is somewhat arbitrary although we will see reasons later why this
is a natural choice. More generally, we will say that γ is parametrized by capacity with rate a if
hcap[γt] = at. For now assume that we have the standard capacity parametrization so that

gt(z) = z +
2t

z
+O(|z|−2), z →∞,

Proposition 8.14 tells us that there is only one prime end associated to the tip γ(t), that is, if
zn ∈ Dt with zn → γ(t), then the limit

g(γt(t)) = lim
n→∞

gt(zn)

exists and the limit is independent of the sequence. We will denote the limit by Ut.

Theorem 8 (Half plane Loewner differential equation). Suppose γ is a simple curve as above
parameterized so that hcap[γt] = 2t. Then every z ∈ H the flow t 7→ gt(z) satisfies

∂tgt(z) =
2

gt(z)− Ut
, 0 ≤ t < Tz,

where Ut = gt(γ(t)), Tz = inf{s : γ(s) = z}. Moreover, the function t 7→ Ut is continuous.

Proposition 8.14 shows that there is one prime end of H \ γt at γ(t) and hence gt(γ(t)) is well
defined. Our estimate will focus on the right time derivative. In order to convert the result to a
usual derivative we will use this easy lemma.

Lemma 8.16. Suppose u : [0,∞)→ Rn is a continuous function whose right derivative

u′+(t) = lim
s↓0

u(s+ t)− u(t)

s
,

exists for all t. Suppose also that t 7→ u′+(t) is continuous. Then f is differentiable with u′(t) =
u′+(t).

Proof. It suffices to prove the result when u(0) = 0, u′+ ≡ 0 for then (using continuity of u′+) we
can consider

f(t) = u(t)− u(0)−
∫ t

0
u+(s) ds.

Let ε > 0 and let σ = σε = inf{t : |u(t)| > ε t}. Since u′+(0) = 0, we can see that σ > 0. Suppose
σ < ∞. By continuity of u, we can see that |u(σ)| = ε σ. However, since u′+(σ) = 0, there exists
δ > 0 such that |u(σ + s) − u(σ)| < εs for 0 ≤ s < δ. This implies that |u(σ + s)| ≤ ε(σ + s) for
0 < s < δ which contradicts the definition of σ. Therefore σ = ∞. Since this is true for every ε,
u ≡ 0.

Proof of Theorem 8. Using Lemma 8.7, we can see that diam[gt(γt)] ≤ 4 diam[γt] and hence |Ut −
U0| ≤ 4 diam(γt). More generally, if s < t,

|Ut − Us| ≤ 4 diam[gs(γt \ γs)]).

Combining this with Lemma 8.15, we see that t 7→ Ut is continuous. Similarly, we see that for fixed
z, gt(z) is continuous in t. Therefore, by Lemma 8.16, it suffices to establish the result for the right
derivative. But this follows from (33).
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8.5 Loewner differential equation

In the last section we started with a curve γ in the upper half plane which corresponded to a
parametrized family of conformal maps. We then showed that the conformal maps satisfy a partic-
ular differential equation, In the next proposition, we start with a continuous function t 7→ Ut and
find the appropriate maps. It will be useful to adopt the notation that dots refer to t-derivatives
and primes refer to z-derivatives.

Theorem 9. Suppose that t 7→ Ut is a continuous real valued function. For each z ∈ C \ {0}, let
gt(z) denote the solution to the initial value problem

ġt(z) =
2

gt(z)− Ut
, g0(z) = z. (36)

• For each z, the solution exists up to time Tz ∈ (0,∞] defined to be the smallest t such that

inf{s < t : |gs(z)− Us|} = 0.

• If z ∈ H, then Im[gt(z)] decreases with t and if t < Tz, Im[gt(z)] > 0.

• For all z, Tz = Tz and if t < Tz, gt(z) = gt(z).

• Let Ht = {z ∈ H : Tz > t}. Then gt is the unique conformal transformation of Ht onto H
satisfying gt(z)− z → 0 as z →∞. Moreover gt has the expansion

gt(z) = z +
2t

z
+O(|z|−2), z →∞. (37)

Proof. We write gt(z) = ut(z) + ivt(z) and note that (36) can be written as

u̇t(z) =
2[ut(z)− Ut]
|gt(z)− Ut|2

, v̇t(z) = − 2 vt(z)

|gt(z)− Ut|2
.

In particular, |vt(z)| decreases with t. Since |gt(z) − Ut|2 ≥ vt(z)
2, these equations have solutions

up to time Tz and we can write

gt(z) =

∫ t

0

2 ds

gs(z)− Us
,

Differentiating with respect to z gives

ġ′t(z) = − 2 g′t(z)

(gt(z)− Ut)2
, g′t(z) = exp

{
−
∫ t

0

2 ds

(gs(z)− Us)2

}
.

This shows that gt is holomorphic on {Tz > t} and since

∂t [gt(z)− gt(w)] =
2[gt(w)− gt(z)]

[gt(z)− Ut] [gt(w)− Ut]
,

we get

gt(z)− gt(w) = (w − z) exp

{∫ t

0

2 ds

[gs(z)− Us] [gs(w)− Us]

}
,
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from which we can deduce that gt is one-to-one on {Tz > t}. If z ∈ Ht and we define g̃t(z) = gt(z),
it is immediate that g̃t satisfies Loewner and hence g̃t(z) = gt(z).

To show that gt(Ht) = H we “reverse the flow”. For fixed t0 and z ∈ H, consider the differential
equation

ḣt(z) = − 2

ht(z)− Vt
, h0(0) = z.

where Vt = Ut0−t, 0 ≤ t ≤ t0. Note that Im[ht(z)] increases with t so this solution exists for all
times t with

ht(z) = z −
∫ t

0

2

hs(z)− Vs
ds.

Also φt(z) := ht0−t(z) satisfies

φ̇t(z) =
2

ht0−t(z)− Vt0−t
=

2

φt(z)− Ut
,

with φ0(z) = ht0(z), φt0(z). In other words, gt0(ht0(z)) = z.
To get the expansion at infinity note that

ġt(z) =
2

gt(z)

[
1 +O(|z|−1)

]
,

where the O(·) term depends on Us, 0 ≤ s ≤ t. If we fix t and let z →∞ we get (37).

In the proof there was another construction which turns out to be useful, the reverse Loewner
equation

ḣt(z) = − 2

ht(z)− Vt
, h0(0) = z. (38)

Theorem 10 (Reverse Loewner flow). Suppose t 7→ Vt is a continuous real-valued function and ht
is the solution to (38). Then if z ∈ H, the solution exists for all times t. Moreover, for each t, ht
is a conformal transformation ht : H→ ht(H) where ht(H) ⊂ H with H\ht(H) bounded. It satisfies

ht(z) = z − 2t

z
+O(|z|−2), z →∞.

Moreover, if t0 <∞, Ut = Vt0 − t, 0 ≤ t ≤ t0, and gt is the solution to (36), then ht0 = g−1
t0

.

The proof of this is essentially in the last proof. We remark that if x ∈ R, the solution of (38)
exists up to some time Tx but it is possible (and usually true) that Tx < ∞. Note that we have
found a way to get g−1

t0
using the reverse flow. However, t0 was used in the definition of Vt, and ht

for other values of t does not equal g−1
t .

There is another way to get the inverse function of gt which we now demonstrate. If we let
ft = g−1

t and use the chain rule to differentiate the equation

ft(gt(z)) = z

with respect to t, we get
ḟt(gt(z)) + f ′t(gt(z)) ġt(z) = 0.
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Here we are writing dots for t-derivatives and primes for z-derivatives. If gt satisfies (36) and we
write w = gt(z), then we get

ḟt(w) = −f ′t(w) ġt(z) = −f ′t(w)
2

w − Ut
, f0(w) = w. (39)

We call this the inverse Loewner equation. At each time t, ft is a conformal transformation of H
onto a domain f(H).

For future use, we prove the following proposition.

Lemma 8.17. There exists c < ∞ such that if f is the solution to the inverse Loewner equation,
then for all t, and all w = x+ iy ∈ H,

e−10s/y2 |f ′t(w)| ≤ |f ′t+s(w)| ≤ e10s/y2 |f ′t(w)|.

|fs+t(w)− ft(w)| ≤ Im(w) [e10s/y2 − 1]

5

[
|f ′s+t(w)| ∧ |f ′t(w)|

]
.

Proof. By differentiating both sides of (39), we see that

ḟ ′t(w) = f ′t(w)
2

(w − Ut)2
− f ′′t (w)

2

w − Ut
.

The Bieberbach estimate on the second coefficient of schlicht functions, shows that if h is a univalent
function on D, then |h′′(0)| ≤ 4 |h′(0)|. Applied to the disk of radius y about w, we see that
|f ′′(w)| ≤ 4 y−1|f ′(w)|, and hence

|∂t log |f ′t(w)|| ≤ 10 y−2, e−10s/y2 |f ′t(w)| ≤ |f ′t+s(w)| ≤ e10s/y2 |f ′t(w)|.

|ḟt+s(w)| ≤
2 |f ′t+s(w)|
|Ut+s − w|

≤ 2 e10s/y2 y−1 |f ′t(w)|

|ft+s(w)− ft(w)| ≤
∫ s

0
|ḟt+r(w)| dr

≤ 2
(
|f ′t(w)| ∧ |f ′t+s(w)|

)
y−1

∫ s

0
e10r/y2 dr

=
(
|f ′t(w)| ∧ |f ′t+s(w)|

) y [e10s/y2 − 1]

5
.

8.6 Loewner chains generated by a curve

Definition Suppose Ut, 0 ≤ t ≤ T is a continuous real valued function.

• The collection of conformal maps gt obtained from (36) is called a Loewner chain.

• The function Ut is called the driving function for the chain.
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• We will say that t is an accessible time for the driving function U if the limit

γ(t) = lim
y↓0

g−1
t (Ut + iy). (40)

exists. We say that a driving function is (everywhere) accessible if all times are accessible.

• We say that z is a pioneer point for the chain at time t > 0 if z ∈ Hs for all s < t and z ∈ ∂Ht.
The pioneer set γt at time t is the set of pioneer points for all 0 ≤ s ≤ t.

• We say that gt is generated by a curve or Ut generates a curve if Ut is everywhere accessible
and γ(t), 0 ≤ t ≤ T is a continuous function of t. Equivalently, γt = γ[0, t].

• We will call a curve γ a pioneer curve if all times are pioneer points. This is equivalent to
saying that γ is simple and γ(0, T ] ⊂ H.

The term “pioneer curve” is not standard but we do not want to have to say the phase “γ is

simple and γ(0, T ] ⊂ H.”

Recall that (40) holds if and only if there exists some simple curve η : (0, 1]→ H with η(0+) = Ut
such that

γ(t) = lim
s↓0

g−1
t (η(s)).

It is not true that (40) holds for all t for all continuous functions Ut. It is also possible that the limit
is not a continuous function of t. However, we will show that under some regularity assumptions on
Ut it does. What we state will be sufficient conditions but not necessary conditions. A necessary
and sufficient condition for a curve to be a pioneer curve is that for each s, gs(γ(s, T ]) ⊂ H. Indeed,
if r < s and γ(r) = γ(s) and r < t < s, then gt(γ(t, T ]) ∩ R 6= ∅,

Theorem 11. Suppose c0 < 4 and for all s, t,

|Us − Ut| ≤ c0 |t− s|1/2. (41)

Then the limit in (40) exists for all t, and γ is a pioneer curve.

To understand why the condition |Us − Ut| �
√
|t− s| should be critical for the Loewner

equation, consider the case Ut ≡ 0 for which gt(z) =
√
z2 + 4t. This is generated by the vertical

curve γ(t) =
√

4t i. In time t, the curve moves distance O(
√
t) from the origin. Now suppose

that Ut is not constant. If Ut grows slower than
√
t, then the horizontal effect will not be enough

to bring the curve down to the real line. If Ut �
√
t, then there may be problems. This is why

∆(r) as defined in Proposition 8.18 is a natural quantity for driving functions of the Loewner
equation.



8 Loewner differential equation 67

Note that it suffices to assume that (41) holds for all s, t with |t−s| sufficiently small. This theorem
is not true for all values of c0. One can find c0 and driving function Ut satisfying (41) for which
the limit (40) does not exists for all t. We will prove the theorem in a series of propositions. The
first two will show that the chain is generated by a curve and the last will show that the curve is
a pioneer curve. The The first proposition is stronger than we need for this section; however, the
stronger version will be used when we consider the Schramm-Loewner evolution so we prove it now.

Proposition 8.18. There exists c < ∞ such that the following holds. Suppose Us, 0 ≤ s ≤ 1,
satisfies (41) for all 0 ≤ s, t ≤ 1, and let

∆(r) = 1 + max

{
|Ut − Us|√

t− s
: 0 ≤ s < t ≤ 1, t− s ≥ r

}
,

I(y) = sup
0≤t≤1

∫ y

0
|f ′t(Ut + ir)| dr.

If I(y) <∞, then the limit (40) exists for all 0 ≤ t ≤ 1 and

|γ(t)− γ(s)| ≤ c1 I(
√
t− s) ∆(t− s)4, 0 ≤ s < t ≤ 1.

In particular, if
lim
r↓0

I(
√
r) ∆(r)4 = 0,

then γ is a curve.

Note that if Ut satisfies (41), then ∆(r) is uniformly bounded. Another important case for use
will be when Ut is a Brownian motion path for which ∆(r) ≤ O(

√
log(1/r)) as r ↓ 0.

Proof. Let f̂t(z) = ft(Ut + z). The existence of the limit (40) follows immediately from finiteness
of I(y) with

|γ(t)− f̂t(iy)| ≤ I(y).

The distortion theorem implies that |f̂ ′t(iy′)| � |f̂ ′t(iy)| for y/2 ≤ y′ ≤ 2y, and hence

I(y) ≥
∫ y

y/2
|f̂ ′t(ir)| dr ≥ c2 y |f̂ ′t(iy)|.

Suppose 0 ≤ s ≤ t ≤ s+δ2 ≤ 1+δ2. The triangle inequality implies that |γ(s)−γ(t)| is bounded
above by

|γ(s)− f̂s(iδ)|+ |γ(t)− f̂t(iδ)|+ |f̂s(iδ)− f̂t(iδ)| ≤ 2I(δ) + |f̂s(iδ)− f̂t(iδ)|,

|f̂s(iδ)− f̂t(iδ)| ≤ |fs(Us + iδ)− fs(Ut + iδ)|+ |fs(Ut + iδ)− ft(Ut + iδ)|.

Lemma 8.17 shows that |fs(Ut + iδ)− ft(Ut + iδ)| ≤ c δ |f ′t(Ut + iδ)| ≤ c I(δ). Using the distortion
theorem as in (27) and |s− t| ≤ δ2, we see that

|fs(Us + iδ)− fs(Ut + iδ)| ≤ c δ
[
1 +
|Ut − Us|4

δ4

]
|f ′s(Us + iδ)| ≤ c∆(δ2)4 I(δ).
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We will consider the reverse Loewner flow

ḣt(z) = − 2

ht(z)− Ut

where Ut satisfies (41). If z ∈ H, let Zt = Zt(z) = ht(z) − Ut, Xt = Re[Zt], Yt = Im[Zt]. Then we
can write the equation as

∂t [Xt + Ut] = − 2Xt

X2
t + Y 2

t

, ∂tYt =
2Yt

X2
t + Y 2

t

. (42)

Note that

∂t[log h′t(z)] =
2

Z2
t

, ∂t[log |h′t(z)||] =
2 (X2

t − Y 2
t )

|Zt|4
, log |h′t(z)| =

∫ t

0

2 (X2
s − Y 2

s )

(X2
s + Y 2

s )2
ds. (43)

Example. If Ut = 2b
√
t with 0 ≤ b < 2, then the solution of (42) satisfying X0 = 0, Y0 = 0 is

Xt = −b
√
t, Yt =

√
4− b2

√
t.

Hence hε(0) = zε + Uε :=
√
ε [b+ i

√
4− b2]. Let us write ht = ht,ε ◦ hε. and hence if t > ε,

|h′t,ε(zε)| = exp

{∫ t

ε

2 (X2
s − Y 2

s )

(X2
s + Y 2

s )2
ds

}
= exp

{∫ t

ε

2 (2b2 − 4)

16 (s+ ε)
ds

}
=

(
t

ε

) b2−2
4

.

Using the reverse Loewner equation and the distortion principle, we can see that |h′ε(
√
εi)| � 1

and |h′t,ε(hε(
√
εi))| � |h′t,ε(zε)|, and therefore, |h′t(

√
εi)| � |h′t,ε(zε)|. Ig gt is a solution of the

Loewner equation (36) with Ut = 2b
√

1− t, 0 ≤ t ≤ 1, then the distribution of f1 := g−1
1 is the

same as that of h1 above. In particular, using the distortion principle, we can see that

|f ′1(iy)| � y
2−b2

2 , y ↓ 0.

Proposition 8.19. For each c0 < 4, there exists θ < 1 and c < ∞ such that if Ut satisfies (41),
then for all 0 ≤ t ≤ 1 and all y ≤ 1,

|f ′t(iy)| ≤ c y−θ, I(y) ≤ c y1−θ, θ = 1− c2
0

16
.

Proof. We write c0 = 2b. Consider the equation,

∂tXt = −2(b2/4)

Xt
− ∂ + tUt,

under the constraint Ut ≤ 2b
√
t. To maximize |Xt| under these constraints, we choose Ut with

constant sign and maximal absolute value. If we choose Ut = 2b
√
t, and let Rt = Xt + Ut, then

the solution is Xt = −b
√
t. Hence for any Ut satisfying the condition, we have X2

t ≤ b2 t. If we

assume that X0 = 0, Y0 > 0, then by induction, we see that for all t, Y 2
t ≥ 4−b2

b2
X2, and hence

Y 2
t ≥ (4− b2) t. The derivative estimate then follows as in (43)
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Proposition 8.20. Suppose Ut satisfies (41) with c0 < 4 and U0 = 0, and ut satisfies

∂tut =
2

ut − Ut
, 0 ≤ t ≤ r2,

with u0 > 0. Then ut > Ut for 0 ≤ t ≤ r2.

Proof. If Ut, 0 ≤ t ≤ r2 satisfies (41) and ũt = r−1 ur2t(z/r), then

∂tũt =
2

ũt − Ũt
,

where Ũt = r−1 Ur2 t. Since, Ũt satisfies (40), it suffices to prove the result for r2 = 1.
If Ut ≤ 0 for 0 ≤ t ≤ δ, then we can see that ut − Ut is locally strictly increasing; hence we can

wait until it returns to value u0 again. More generally, we can see that we may assume that Ut is
nondecreasing. In order to minimize ut − Ut subject to U1 = βc0, we need to choose Ut minimal
under the constraints of (40) and monotonicity. Therefore, the minimizer is given by a function

Ut =

{
0, t ≤ 1− β2

c0 [β −
√

1− t], 1− β2 ≤ t ≤ t. .

for some 0 < β ≤ 1. Then u1−β2 =
√
u2

0 + 1− β2. If Xt = ut − Ut, then

∂tXt =
2

Xt
− (c0/2)√

1− t
, 1− β2 ≤ t ≤ 1.

So we need to see that solutions to this with X1−β2 > 0 satisfy X1 > 0. Let φ(t) = Xt/
√

1− t
which satisfies

∂tφ(t) =
1

1− t

[
2

φ(t)
− c0

2
+

φ(t)

2(1− t)

]
≥

2− c0
2

1− t
.

Since c0 < 4, φ(1−) =∞ and we can find t with Xt ≥ 2c0

√
1− t. Hence

X1 ≥ Xt − [Ut − Ut] ≥ c0

√
1− t > 0.

8.6.1 Non-crossing curves

In this section, we assume that γ : [0,∞) → H is a continuous curve. We allow self-intersections
and intersections with the boundary. As before, we write γt = γ[0, t] and Ht for the unbounded
component of H \Ht. Let a(t) = hcap(Ht) which is a continuous function of t. Let gt : Ht → H be
the unique conformal transformation with gt(z)− z → 0 as z →∞.

• Assumption 1. The function t 7→ a(t) is strictly increasing with a(t)→∞ as t→∞.

If follows from this assumption that for all t and all δ, γ(t, t + δ] ∩ Ht 6= ∅. This assumption
prevents the path from going into the complement of Ht and reappearing somewhere else. An
example of a curve in the upper half plane that does not satisfy Assumption 1 is a Brownian
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excursion from 0 to ∞. If γ satisfies Assumption 1, then we can reparametrize γ so that it satisfies
a(t) = 2t for all t.

We also do not want the curve to jump from one side of a domain to another. This condition
is expressed most easily in terms of prime ends. Since C \Ht is locally connected, the point γ(t) is
accessible from Ht. (This essentially also follows from the fact that γ(t,∞) accesses γ(t); however,
since γ(t,∞) is not simple and may hit ∂Ht, we need a little more argument to prove accessibility.)
Each prime end of Ht with endpoint γ(t) is associated to a point on the real line by the map gt.

• Assumption 2. For each t there is a prime end of Ht at γ(t) which we associate to Ut ∈ R
such that the following holds. For every ε > 0, there exists δ > 0 such that if 0 < s < δ and
γ(t + s) ∈ Ht, then |Ut − gt(γ(t + s))| < ε. (We write this as gt(γ(t+)) = Ut.) Moreover, Ut
is a continuous function of t.

Definition A function γ : [0,∞) → H is called a non-crossing curve if it satisfies Assumptions 1
and 2.

If in Assumption 2 we had also put the condition that γ(t, t + δ) ∩ Ht 6= ∅ for all δ, then

we would have a(t) is strictly increasing. However, we would need to separately include the

condition a(t)→∞, so we have made Assumption 1 as an assumption.

The following is proved in exactly the same way as Theorem 8. We do emphasize one difference.
For a simple curve, the continuity of Ut was not assumed but rather was proved. For the theorem
below, continuity of Ut is one of the assumptions.

Theorem 12. Suppose γ : [0,∞) → H is a non-crossing curve as above parameterized so that
hcap[γt] = 2t. Then every z ∈ H the flow t 7→ gt(z) satisfies

∂tgt(z) =
2

gt(z)− Ut
, 0 ≤ t < Tz,

where Ut = gt(γ(t+)), Tz = inf{s : γ(s) = z}.

The converse is the following.

Theorem 13. Suppose Ut is a continuous real-valued function of t and gt is the solution to the
Loewner equation (36). Suppose there exists a continuous function γ : [0,∞)→ H such that for all
t, Ht is the unbounded component of H \ γt. Then γ is a non-crossing curve.

8.7 Perturbation of Maps

In this section we will assume that Ut, 0 ≤ t ≤ t0 is a continuous real valued function with U0 = 0
and gt is the solution to the Loewner equation

ġt(z) =
2

gt(z)− Ut
, g0(z) = z.
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Let Ht denote the corresponding domains and let Kt = H \Ht be the hulls. Let N be domain
symmetric about the real axis containing Kt0 and suppose that Φ : N → Φ(N ) conformal trans-
formation with Φ(R ∩N ) ⊂ R,Φ(H ∩N ) ⊂ H.

Let K∗t = Φ(Kt) and H∗t = H \K∗t . (It might be tempting to write H∗t = Φ(Ht) but we are not
assuming that Φ is defined on all of Ht.) Let g∗t : H∗t → H be the unique conformal transformation
with g∗t (z) = z + o(1) as z →∞. Then,

g∗t (z) = z +
a∗(t)

z
+O(|z|−2),

where a∗(t) = hcap[K∗t ]. As we will see below, it is not the case that a∗(t) = 2t. We define

Φt(z) = g∗t ◦ Φ ◦ g−1
t (z).

Using the crosscuts as in (35), we can see that there exists ε > 0 such that for each t ≤ t0, the map
Φt is a conformal transformation of {z ∈ H : |z − Ut| < ε} with limy↓0 Im[Φt(x + iy)] = 0. Hence
Φt extends to a conformal transformation of {z ∈ C : |z − ut| < ε}. Let U∗t = Φt(Ut).

It may be worth stopping and thinking about this. There exists a sequence of half circles ηn of
smaller and smaller radius around Ut such that diam[g−1t (ηn)] goes to zero. Using the Beurling
estimate, say, we can then see that

diam
[
g∗t ◦ Φ ◦ g−1t (ηn)

]
→ 0,

and hence g∗t ◦Φ◦g−1t is well defined near Ut. However, the diameter of g−1t {z ∈ H : |z−Ut| < r}
does not necessary go to zero as r goes to zero.

The Cauchy integral formula implies that for s sufficiently small,

Φ′t+s(Ut) =
1

πεi

∫
C

Φt+s(z)

z − Ut
dz,

where C denotes the circle of radius ε/2 about Ut. Using this, we can see that s 7→ Φ′t+s(Ut) is
continuous (it is, in fact, differentiable), and from this we can see that t 7→ Φ′t(Ut) is continuous.
(This latter function is not necessarily differentiable since the map t 7→ Ut does not have to be
differentiable.)

Proposition 8.21. Under the assumptions above,

∂ta
∗(t) = 2 Φ′t(Ut)

2,

Proof. Since the right-hand side is continuous, it suffices to show that the right-derivative of a∗(t)
equals 2 Φ′t(Ut)

2. The argument is the same for all t, so for ease let us compute the right-derivative
at the origin. By scaling and translation, we may assume that Φ = Φ0 is defined in the unit disk
with Φ(0) = 0, Φ′0(0) = 1. This then reduces to the next lemma.
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Lemma 8.22. There exist c <∞ such that the following holds. Let Φ : D→ Φ(D) be a conformal
transformation with Φ(D ∩ H) = H ∩ Φ(D), Φ(0) = 0,Φ′(0) = 1. Then for every compact hull K
with rad(K) ≤ 1/2,

|hcap[Φ(K)]− hcap(K)| ≤ c
√

rad(K) hcap(K).

Proof. Let h = hcap(K), r = rad(K), K̃ = Φ(K), q =
√
r. Distortion estimates tell us that there

exists c <∞ (uniform over all such Φ) such that for |z| ≤ 1/2,

|Φ(z)− z| ≤ c |z|2, |Im[Φ(z)]− Im(z)| ≤ c |z| Im(z). (44)

In particular, rad(K̃) = r +O(r2).
Let τ (resp., τ̃) be the first time that a Brownian motion Bt hits K ∪ R (resp., K̃ ∪ R). We

know that

hcap(K) =
2r

π

∫ π

0
Eqe

iθ
[Im(Bτ )] sin θ dθ,

hcap(K̃) =
2r

π

∫ π

0
Eqe

iθ
[Im(Bτ̃ )] sin θ dθ.

Let σ = τ∧ inf{s : |Bs| = 1/10} and similarly for σ̃. Note that for |z| = q,

Ez [Im(Bτ )] = Ez [Im(Bτ ); τ = σ] [1 +O(q)].

Ez [Im(Bτ̃ )] = Ez [Im(Bτ̃ ); τ̃ = σ̃] [1 +O(q)].

Here O(q) is an upper bound for the probability that a Brownian motion starting on the circle of
radius 1/10 reaches the circle of radius q without hitting R.

Using (44), we have
Im[Φ(z)] = Im[z] [1 +O(r)] , z ∈ K.

Hence we can write

Ez [Im(Bτ̃ ); τ̃ = σ̃] = Ez
[
Im(Φ−1(Bσ̃)); τ̃ = σ̃

]
[1 +O(q)].

Using (44) again, we see that Φ(z) = z+O(q2) for |z| = q. Hence derivative estimates for harmonic
functions give us for |z| = q,

Ez
[
Im(Φ−1(Bσ̃)); τ̃ = σ̃

]
= EΦ−1(z)

[
Im(Φ−1(Bσ̃)); τ̃ = σ̃

]
[1 +O(q)].

Finally, conformal invariance of Brownian motion shows us that

EΦ−1(z)
[
Im(Φ−1(Bσ̃)); τ̃ = σ̃

]
= Ez) [Im(Bσ); τ = σ] [1 +O(q)].

With this result, we see that g∗t satisfies the Loewner equation

∂tg
∗
t (z) =

2 Φ′t(Ut)
2

g∗t (z)− U∗t
. (45)
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Proposition 8.23. Under the assumptions above, if 0 ≤ t < t0 and |z − Ut| < ε, then

Φ̇t(z) = 2

[
Φ′t(Ut)

2

Φt(z)− Φ(Ut)
− Φ′t(z)

z − Ut

]
,

Φ̇′t(z) = 2

[
Φ′t(Ut)

2 Φ′t(z)

(Φt(z)− Φt(Ut))2
+

Φ′t(z)

(z − Ut)2
− Φ′′t (z)

z − Ut

]
.

In particular,
Φ̇t(Ut) = −3 Φ′′t (Ut), (46)

Φ̇′t(Ut) =
Φ′′t (Ut)

2

2 Φ′t(Ut)
− 4 Φ′′′t (Ut)

3
. (47)

Here we are writing Φ̇t(Ut) for Φ̇t(z) evaluated at z = Ut and similarly for Φ̇′t(Ut).

Proof. We have noted that t 7→ Φ′t(Ut) is continuous so the right hand side is continuous in z, t.
The first equation is an exercise in the chain rule, writing Φt = g∗t ◦ Φ ◦ g−1

t and using (39) and
(45). The second is obtained by differentiating with both sides with respect to z.

The limits are straightforward.

8.8 Radial Loewner equation

The Loewner equation in the upper half-plane is used to describe a curve connecting two boundary
points in a simply connected domain. There is a similar equation called the radial Loewner equation
that describes curves connecting a boundary point to an interior point. For ease, we choose the
domain to be the unit disk and the interior point to be the origin. The proofs are similar to the
upper half plane case, so we will not give all the details.

Suppose that D = D \ K is a simply connected subdomain of D containing the origin. The
Riemann mapping theorem implies that there is a unique conformal transformation gD : D → D
with gD(0) = 0, g′D(0) > 0. The construction of the map (see the proof of Theorem 3) shows that
we can write g(z) = z ef(z) where f(z) = φ(z) + iθ(z) is the holomorphic extension of the harmonic
function

φ(z) = Ez [− log |Bτ |] ,

with θ(0) = 0. Here B is a complex Brownian motion and τ = inf{t : Bt 6∈ D}. For z ∈ D \ {0},
we can write

log g(z) = log z + f(z),

provided that we interpret this correctly. We must either interpret g as a multi-valued function, or
if we restrict to a simply connected neighborhood of z in D \ {0} we can take a particular branch.
Recall that

HD(z, w)

HD(0, w)
=

1− |z|2

|z − w|
, ; |z| < 1, |w| = 1.

Proposition 8.24. There exists c <∞ such that if D = D\K is a domain with K ⊂ {z : |z−w| ≤
r} and z ∈ D with |z − w| ≥ 2r,∣∣∣∣φ(z)− 1− |z|2

|z − w|
φ(0)

∣∣∣∣ ≤ cφ(0)(1− |z|2)

|z − w|
.
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We can write this as

φ(z) =
1− |z|2

|z − w|
φ(0)

[
1 +O

(
r

|z − w|

)]
.

Sketch of proof. Let U = Uw,r = D \ {ζ : |w − ζ| ≤ r}. Let ξ = ξr,w = inf{t : |w − Bt| ≤ r}. Then
for |z − w| > r,

φ(z) = Pz{ξ < τ}Ez [− log |Bτ | | ξ < τ ] =
1

2

∫
∂U
HU (z, ζ)φ(ζ) |dζ|.

Hence, it suffices to show that

HU (z, ζ) = HU (0, ζ)
1− |z|2

|z − w|

[
1 +O

(
r

|z − w|

)]
.

This can be done either explicitly by mapping U to the D or by an argument similar to the chordal
case. We leave the details to the reader.

Proposition 8.25. Suppose |w| = 1 and Dt = D \ Kt is a decreasing sequence of domains with
corresponding maps gt = gDt satisfying g′t(0) = e2at and rad(Kt − w)→ 0 as t ↓ 0. Then,

lim
t↓0

φt(z)

t
= 2a

1− |z|2

|z − w|
.

Theorem 14. Suppose a > 0, γ : (0, t] → D \ {0} is a simple curve with γ(0+) = w ∈ ∂D. Let
Dt = D \ γt and let gt be the corresponding conformal transformation Suppose gt is parametrized so
that g′t(0) = e2at. Then gt satisfies the radial Loewner equation

ġt(z) = 2a gt(z)
wt + gt(z)

wt − gt(z)

where wt = gt(γ(t)) ∈ ∂D. Moreover, the function t 7→ wt is continuous. If we define ht by

gt(e
2iz) = exp {2iht(z)} ,

then
ḣt(z) = a cot(ht(z)−Xt),

where Xt is a continuous process with e2iXt = wt.

Proof. The full proof is similar to that of Theorem 9 so we do not give the details. Without loss of
generality, assume that 2a = 1. Note that this is clearly true at z = 0 and for z 6= 0, we can write

gt(z) = z exp{φt(z) + iθt(z)}.

Proposition 8.24 implies that

∂t[log gt(z)] =
wt + gt(z)

wt − gt(z)
, (48)
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φ̇t(z) = Re

[
wt + gt(z)

wt − gt(z)

]
=

1− |gt(z)2|
|gt(z)− wt|

.

Since θt(0) = 1 by the definition of gt, we have θ̇t(0) = 0. Hence we get (48). The chain rule gives

ḣt(z) =
1

2i

e2iXt + e2iht(z)

e2iXt − e2iht(z)
=
i

2

e2i(ht(z)−Xt) + 1

e2i(ht(z)−Xt) − 1
=

1

2
cot(ht(z)−Xt).

Writing points on the unit circle as e2iθ rather than eiθ makes some formulas nicer. For example
H∂D(1, e2iθ) = (1/4) sin−2 θ and the sine of the argument of 0 with respect to 1 and e2iθ is sin θ.

9 Properties of the Loewner equation

In this section we suppose that Ut is a continuous real-valued function with U0 = 0 and that gt is
the solution to the Loewner equation

ġt(z) =
2

gt(z)− Ut
, g0(z) = z, (49)

which for z ∈ C \ {0} is valid up to time Tz ∈ (0,∞]. It is immediate that the flow is symmetric
about the real axis, that is, gt(z) = gt(z); in particular, Tz = Tz. We let

Ht = {z ∈ H : Tz <∞}, H∗t = {z ∈ C \ {0} : Tz <∞}, Kt = H \Ht.

If z = x ∈ R, then (49) is a real differential equation for which it is easy to check that if x < x′ and
Tx, Tx′ > t, then gt(x) < gt(x

′). From this we can see {x ∈ R : Tx ≤ t} is a closed interval which we
write as [x−t , x

+
t ] with x−t ≤ 0 ≤ x+

t . Here the trivial interval x−t = x+
t = 0 is a possibility. Then

we can write
H∗t = Ht ∪ {z : z ∈ Ht} ∪ (−∞, x−t ) ∪ (x+

t ,∞).

Recall that gt(Ht) = H. We define

D∗t = gt(H
∗
t ), D+

t = gt(Ht ∪ {z : z ∈ Ht} ∪ (x+
t ,∞)),

and we define D−t similarly. We can write

D∗t = C \ [gt(x
−
t ), gt(x

+
t )],

where gt(x
−
t ) = sup{gt(y) : y < x−t }, gt(x

+
t ) = inf{gt(y); y > x+

t }, and similarly for D±t . Note that
gt(x

−
t ) ≤ Ut ≤ gt(x+

t ).
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Lemma 9.1. Suppose gt satisfies (49), r > 0, and t 7→ a(t) is a strictly increasing C1 function.
Define g̃t by

g̃t(z) = r ga(t)/2(z/r).

Then g̃t satisfies

∂tg̃t(z) =
r2ȧ(t)

g̃t(z)− Ũt
, where Ũt = r Ua(t)/2.

In particular, if Ut =
√
κBt where Bt is a standard Brownian motion, then

• If a(t) = t/r2, then Ũt is a Brownian motion with variance parameter κ.

• If r = 1 and a(t) = (2/κ) t, then Ũt is a standard Brownian motion.

Proof. The first assertion follows from chain rule and the second uses standard scaling properties
of Brownian motion.

Proposition 9.2. Suppose gt = ut + ivt satisfies (49).

1. For all z = x+ iy ∈ H and all t < Tz,

vt(z) ≥
√
y2 − 4t.

In particular Tz ≥ y2/4.

2. If r > 0, z ∈ H and ‖U‖∞ ≤ r, then

|gt(z)|2 ≥ |z|2 − 8t, if 0 ≤ t ≤ |z|
2 − 4r2

8
.

In particular, |gt(z)| ≥ r/
√

2 for |z|2 ≥ 8t+ 4r2, and

Kt ⊂ {z : |z| < 2
√

2t+ r2, Im(z) ≤ 2
√
t}. (50)

Proof.

1. Let Yt = Im[gt(z)] and note that

∂tY
2
t = − 4Y 2

t

|Zt|2
≥ −4.

Therefore, Y 2
t ≥ y2 − 4t.

2. Let Qt = |gt(z)| and σ = inf{t : Qt = 2r}. Then for t ≤ σ, Qt − r ≥ Qt/2, and hence,

∂tQt ≥ −
4

Qt
, ∂t[Q

2
t ] ≥ −8.

and hence
Q2
t ≥ Q2

0 − 8t, t ≤ σ,

and σ ≥ (|z|2 − 4r2)/8.
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With a little more care in the proof, we could improve the constants in (50), but this result
suffices for our purposes.

10 Multiply connected domains

We will classify finitely connected domains up to conformal equivalence. Suppose D ⊂ Ĉ is a
domain whose complement consists of a finite number of connected components ∂0, ∂1, . . . , ∂k, each
consisting of more than a single point. Let Ok denote the set of such domains with ∂0 = Ĉ \ H,
that is, D ⊂ H of the form

D = H \ (∂1 ∪ · · · ∪ ∂k),

where ∂1, . . . , ∂k are disjoint compact sets with dist(∂j ,R) > 0. It suffices to classify domains in Ok
since we can map Ĉ \ ∂0 to the upper half plane. We let O∗ denote the set of such domains such
that each ∂j is a horizontal line segment,

∂j = [xj,− + iyj , xj,+ + iyj ].

Theorem 15. Every domain D ∈ Ok is conformally equivalent to a domain D∗ ∈ O∗k. Moreover,
there exists a unique conformal map f : D → D∗ to a domain D∗ ∈ O that

f(z) = z +O(|z|−1), |z| → ∞.

Remarks.

• If D ∈ Ok and f : D → D∗ ∈ O∗ is a conformal transformation sending the real line to the
real line with f(∞) =∞, then f can be extended to

R ∪D ∪ {z : z ∈ D}.

by Schwarz reflection. By considering the function

g(z) =
1

f(1/z)
,

which is holomorphic in a neighborhood of the origin sending a neighbhorhood of the real
line to the real line, we can see that f has an expansion at infinity,

f(z) = b−1z + b0 + b1z
−1 + · · ·

where b−1 > 0 and bj ∈ R for j ≥ 0. If we set f̂(z) = [f(z)− b0]/b−1, then

f̂(z) = z +O(|z|−1).



10 Multiply connected domains 78

• The “dimension” of the set of conformally equivalent domains is 3k− 2. There are 3k choices
for the {xj,−, xj,+, yj} but the equivalence classes are invariant under the map z 7→ rz + t.

Proof. Let D be given and suppose D∗ ∈ O∗ given by {(xj,−, xj,+, yj)}. Let y(D) = max{Im(z) :
z ∈ ∂D}, y(D∗) = max{Im(z) : z ∈ ∂D∗} = max{yj}, R = R(D) = sup{|z| : z ∈ H \ D}.
Suppose that f : D → D∗ is a conformal transformation with f(∞) =∞, f ′(∞) = 1. Let us write
f(z) = u(z) + iv(z). Note that v is a harmonic function on D with boundary value 0 on R and yj
on ∂j and satisfying

v(z) = Im(z) +O(1), Im(z)→∞.

Since h(z) := v(z)− Im(z) is a bounded harmonic function, the function v is given on D by

v(z) = vD(z) + Ez [v(BτD)] = Im(z) + Ez [h(BτD)]

where vD is the function from Lemma 8.1. Note that

|v(z)− Im(z)| ≤ Pz{BτD 6∈ R} [y(D) + y(D∗)].

Using explicit forms of Poisson kernels, we can see that Pz{BτD 6∈ R} ≤ cR/|z|, and hence

|h(z)| ≤ c

|z|
.

Here, and for the rest of this proof, we allow constants to depend on D. Using derivative estimates
for harmonic function, we see that for |z| ≥ 2R,

|∇h(z)| ≤ c

|z|2
. (51)

We have found the candidate for v without making any restriction on the target domain D∗. If
f = u+ iv is a holomorphic extension, then we know that it is given for y > y(D) by

u(iy) = −
∫ ∞
y

∂xv(it) dt. (52)

The existence of the integral follows from (51) as well as the estimate |u(iy)| ≤ c/y.
We will now give a criterion under which we can find a conjugate harmonic function u such

that f = u+ iv is holomorphic. For each j = 1, . . . , k, let Fj be a confomal map

Fj : {|z| > 1} → C \ ∂j

and let γr(t) = γr,j(t) = F (er+it), 0 ≤ t ≤ 2π. For sufficiently small r, the curve γr,j separates
∂j from the other parts of ∂D. We only consider such r here. Let φj(z) = v(Fj(z)) which is a
harmonic function on {1 < |z| < er}. The condition that we need satisfied is∫

γr,j

∂nv(z) = 0, (53)

which is the same as ∫
C−r

∂nφj(z) |dz| = 0. (54)
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Since φ is harmonic on {1 < |z| < er}, Proposition 2.12 shows that

Mr =
1

2π

∫ 2π

0
φj(e

r+iθ) dθ,

is a linear function of r and (54) holds if and only if Mr is constant. Note that if Or = {1 < |z| < er}
and E#

Or
(C0, dw) denotes the probability measure on Cr,

E#
Or

(C0, ·) =
EOr(C0, ·)
EOr(C0, Cr)

,

then

Mr =

∫
Cr

φj(w) E#
Or

(C0, dw).

Using conformal invariance, we see that this translates to the condition

1

ED(∂j , γr,j)

∫
γr,j

v(w) dED(∂j , dw) = v(∂j) = yj .

Using Proposition 2.12, we can see that if γ is any simple curve γ that wraps around ∂j but no
other part of the boundary,

1

ED(∂j , γ)

∫
γ
v(w) dED(∂j , dw) = yj . (55)

In fact, if this holds for one such γ, then it holds for all such γ. This is the necesssary and sufficient
condition so that u as defined in (52) gives a holomorphic function.

This condition can be expressed in terms of a process that is called excursion reflected Brownian
motion. This is a process Xt whose state space is D ∪ {∂0, ∂1, . . . , ∂k}. In other words, we identify
the “holes” ∂j into single points. To describe the process we give the properties.

• When the process reaches ∂0 the process stops.

• When the process is in D it acts like usual Brownian motion.

• Suppose j ≥ 1 and γ is a curve as above that separates ∂j from the rest of the boundary.
Let T = inf{t : Bt = ∂j} and S = inf{t ≥ T : Bt ∈ γ}. Then for any z, the conditional

distribution on BS given T <∞ is that of normalized excursion measure E#
C (∂j , ·).

It is not difficult to define Brownian motion “excursion reflected” off of the unit circle. Roughly
speaking, everytime the process hits the boundary it chooses an angle randomly. (Since the number
of visits to the boundary is uncountable, one needs to take a little care here, but it is not a problem.)
For other domains, we can use conformal invariance to define the process near holes, and away from
holes it acts like Brownian motion. The equation (55) can be viewed as a mean value property for
the function v with respect to excursion reflected Brownian motion, that is, the required condition
on v is that v is excursion reflected harmonic.

We now ask: can we find yj so that v is excursion reflected harmonic? Let us view the excursion
reflected Brownian motion at the times it visits the boundary points {∂0, ∂1, . . . , ∂k}. This gives a



10 Multiply connected domains 80

discrete time, discrete space Markov chain Yn with absorbing state ∂0. The transition probabilities
q(j, l) are given by

P{Yn+1 = l | Yn = j} =
ED(∂j , ∂l)

ED(∂j , ∂D \ ∂j)
.

Let N be sufficiently large so that H ∩ {Im(w) ≥ N} ⊂ D. Let Xt be the excursion reflected
Brownian motion starting at ∂j , let Aj = {∂0, . . . , ∂k} \ {∂j}, and let

TN = TN,j = inf {t : Im(Xt) = N or Xt ∈ Aj} .

If v is excursion reflected harmonic, then

yj = E [v(XTN )] = P{Im(XT ) = N}E[v(XT ) | Im(XT ) = N}+
∑
l 6=j

P{XT = ∂l} yl.

Note that
lim
N→∞

∑
l 6=j

P{XT = ∂l} yl =
∑
l 6=j

q(j, l) yl.

Since v(z) = Im(z) +O(1) as z →∞,

lim
N→∞

P{Im(XT ) = N}E[v(XT ) | Im(XT ) = N} = lim
N→∞

NP{Im(XT ) = N}.

Also,

lim
N→∞

N P{Im(XT ) = N} =
ED(∞, ∂j)

ED(∂j , ∂D \ ∂j)
,

where

ED(∞, ∂j) = lim
N→∞

NED(IN , pj) = αj :=

∫ ∞
−∞

hmD(x+ ib, ∂j) dx.

The integral on the right is the same for all b > y(D).
The parameters q(j, l) and αj can be determined from the domain D. What we have seen is

that we need yj to satisfies

yj = αj +
∑
l 6=j

q(j, l)αl,

where y0 = 0. This has a unique solution that can be given in terms of the finite Markov chain,

yj = E∂j
[ ∞∑
n=0

αYn

]
=

k∑
l=1

αl g(j, l).

Here

g(j, l) =

∞∑
n=0

P{Yn = yl | Y0 = yj}

is the Green’s function for the discrete Markov chain with absorbing state ∂0.
At this point we have shown that for every D ∈ O, there is a unique choice of {yj} for which

we can find a function v on H with the following properties:
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• v is positive on D with
v(z) = Im(z) +O(1), z →∞.

• v ≡ 0 on R.

• v is continuous on H with v(z) = yj for z ∈ ∂j , j ≥ 1.

• v is excursion reflected harmonic. Equivalently for every closed curve γ in v,∫
γ
∂nv(w) |dw| = 0. (56)

Let z0 ∈ D. We define u by

u(z) =

∫
γ
∂nv(w) |dw|.

Here γ is any curve from z0 to z. Since v satisfies (56) the value is independent of the curve γ.
This gives a holomorphic function f : D → D∗. We need to show that f is one-to-one and onto.
As in the proof of the Riemann mapping theorem, we consider the level sets of v. Let

Vs = {z : v(z) = s}, V +
s = {z : v(s) > s}, V −s = {z : v(s) < s}.

Let Hb = {z ∈ H : Im(z) < b}. There exists c such that v(z) ≤ Im(z) + c. We claim that V +
s

is connected. Indeed there is one connected component, say U , of V +
s that contains H \ Hs+c for

some c. Since v is bounded on Hs+c, we can see that v is bounded on any other component U1,
and its maximum value on that component must be bounded by the maximum of v on ∂U1 which
is s. For V −s , note that there exists cD <∞ such that for all z,

v(z) ≤ Im(z) + ‖yj‖∞ Pz{Bτ 6∈ R} ≤ cD Im(z).

In particular, Hε ⊂ V −s for all ε sufficiently small, and there is a unique component of V −s that
contains R on its boundary. Suppose there were another component of V −s , say U ′. Then the value
of v on ∂[D ∩ U ′] is either s or in {y1, . . . , yk}. Since v is a bounded harmonic function on D ∩ U ′,

v(z) = Ez [v(Bτ ′)] , τ ′ = τD∩U ′ .

Since v(z) < s, there must be at least one j such that ∂j ⊂ U ′. Let us choose ∂j such that yj is
minimal (if there is a tie, choose any one). Then by the maximal (minimal) principle, v(z) ≥ yj for
all z ∈ U ′. However, if γ is a curve in D surrounding ∂j and close enough to ∂j , we know that the
average value of v on γ (with respect to normalized excursion measure) is yj . This means either v
is constant (which is clearly not true in our case), or v takes on values smaller than vj . This is a
contradiction, and hence U ′ does not exist.

We fix D and allow constants to depend on D. Let z = x+ iy and consider |z| large. Note that

v(z) = y + Ez[h(Bτ )],

where φ(z) = Ez[h(Bτ )] and h is a bounded function that vanishes on the real line. Using the form
of the Poisson kernel, we can see that

|φ(x+ iy)| ≤ c y

|z|2
.
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Using the fact that φ is a harmonic function in the disk of radius |z|/2 about z (if x is large, but y
is not, use Schwarz reflection about the origin to extend the function), we see that

|∇φ(z)| ≤ c y

|z|3
,

and hence
|∂xv(x+ iy)|+ |∂yv(x+ iy)− 1| ≤ c y

|z|3
.

We will define (at least for large y)

u(iy) = −
∫ ∞
y

∂xv(iy′) dy′.

Since |∂xv(y′)| = O(|y|−2), we see that u(iy) is well defined and |u(iy)| = O(|y|−1). We then define

u(x+ iy) = u(iy) +

∫ x

0
∂yv(x′ + iy) dx′,

and, similarly we see that
u(x+ iy) = x+O(|y|−1).

From this we can see that
lim
y→∞

u(x+ iy) = x,

and this allows us to see that we can also write

u(x+ iy) = x−
∫ ∞
y

∂xv(x+ iy′) dy′.

This allows to improve the error to

u(z) = Re(z) +O(|z|−1),

and
f(z) = z +O(|z|−1).

This guarantees injectivity outside a compact subset. Inside we do an argument as in the Riemann
mapping theorem.

The following is proved similarly. We only sketch the proof. Let O′k denote the set of domains
U ⊂ D of the form

U = D \ (∂′1 ∪ · · · ∪ ∂′k)

where the ∂j are disjoint circular arcs of the form

∂j = {e−rj+iθ : θj,− ≤ θ ≤ θj,+},

with rj > 0 and 0 ≤ θj,− < 2π, θj,− < θj,+ < θj,− + 2π.
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Proposition 10.1. Suppose D = Ok and ζ ∈ D. Then there exists a unique U ∈ O′k such that
there exists a (unique) conformal map f : D → U with f(∂0) = ∂D, f(ζ) = 0, f ′(ζ) > 0.

Proof. Without loss of generality we will assume that ζ = 0. Suppose such a domain U and function
f exists with parameters (rj , θj,−, θj,+). Consider the harmonic function on D \ {ζ} given by

h(z) = − log |f(z)|.

If h is known, then θ(z) := arg f(z) can be determined from the Cauchy-Riemann equations.
As in Theorem 15, in order for this to be well defined, we need the condition that h(z) must be a
harmonic function for excursion reflected Brownian motion. Note that as z → 0,

h(z) = − log |z| − log |f ′(0)|+ o(1).

Consider excursion reflected Brownian motion started on ∂j stopped when it reaches the either
∂D \ ∂j or Bs := e−sD. For fixed s, h is a bounded excursion reflected Brownian motion on D \Bs.
Arguing as above and letting s→∞, we see that

rj = GERD (z, 0) +
∑
l 6=j

q(j, l)rl,

where GERD (z, 0) is the Green’s function for excursion reflected Brownian motion defined in the
natural way, and q(j, l) are the probabilities as before. This determines the parameters rj and
hence it determines |f(z)|. The function f(z) is obtained by fixing some z ∈ D \{0} and arbitrarily
choosing θ(z). This will define f up to a rotation and exactly one of those rotations will have
f ′(0) > 0.

11 Poisson kernels and Green’s functions for standard domains

Here we will give the Poisson kernels and Green’s functions for a number of standard domains.
Recall that we have chosen the constants in our definitions so that

HD(0, eiθ) =
1

2
, GD(0, z) = − log |z|.

If nz = nz,D represents the inward normal at z, then if z ∈ D and w, ζ ∈ ∂D,

HD(z, w) =
1

2
∂nwGD(z, w),

H∂D(ζ, w) = ∂nζHD(ζ, w) = ∂nwHD(w, ζ) =
1

2
∂nζ∂nw GD(ζ, w).

We will do straightforward computations using the scaling rules if f : D → f(D) is a conformal
transformation, then

GD(z, z′) = Gf(D)(f(z), f(z′)), HD(z, w) = |f ′(w)|Hf(D)(f(z), f(w)),

Hf(D)(f(z), f(w)) = |f ′(ζ)| |f ′(w)|Hf(D)(f(ζ)), f(w)).
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11.1 Disk

Proposition 11.1. For the unit disk D = {|z| < 1},

HD(w, eiθ) = HD(we−iθ, 1) =
1

2

1− |w|2

|eiθ − w|2

GD(z, w) = − log

∣∣∣∣ z − w1− zw

∣∣∣∣ ,
H∂D(ei2θ, ei2ψ) =

1

4 sin2(θ − ψ)
.

Proof. Using the Möbius transformation

Tw(z) =
z − w
1− zw

, T ′w(z) =
1− |w|2

(1− zw)2

GD(z, w) = GD(Tw(z), 0) = − log

∣∣∣∣ z − w1− zw

∣∣∣∣ ,
HD(w, 1) = |T ′w(1)|HD(Tw(w), Tw(1)) =

1

2

1− |w|2

|1− w|2
=

1

2

1− |w|2

|1− w|2
.

HD(w, eiθ) = HD(we−iθ, 1) =
1

2

1− |w|2

|eiθ − w|2

H∂D(eiθ, 1) = lim
r↓0

r−1HD((1− r)eiθ, 1)

= lim
r↓0

1

r

[
1

2

1− (1− r)2

|1− (1− r)eiθ|2

]
=

1

|1− eiθ|2
=

1

4 sin2(θ/2)
,

and

H∂D(ei2θ, e2iψ) = H∂D(ei2(θ−ψ)) =
1

4 sin2(θ − ψ)
.

We start with the upper half plane,

HH(x+ iy, x′) =
y

(x− x′)2 + y2
, HH(x, x′) = (x− x′)−2.
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11.2 Rectangle

Let RL be the rectangle {x+ iy : 0 < x < L, 0 < y < π} and let ∂L denote the vertical line segment
[L,L+ iπ].

Using separation of variables, we can see that

f(x+ iy) =
2

π

∞∑
n=1

sinh(nx) sin(ny) sin(ny′n)

sinh(nL)
,

is a harmonic function in RL that vanishes on ∂R \ ∂L and equals (in the sense of distributions)
δy′ on ∂L. Therefore,

HRL(x+ iy, L+ iy′) = 2
∞∑
n=1

sinh(nx) sin(ny) sin(ny′)

sinh(nL)
,

HRL(iy, L+ iy′) = 2
∞∑
n=1

n sin(ny) sin(ny′)

sinh(nL)
.

The sums are absolutely convergent for |x| < L. Note that for 0 < x < 1,

HRL(x+ iy, L+ iy′) = 2 sinhx sin y sin y′ [1 +O(e−L)].

HRL(iy, L+ iy′) = 2 sin y sin y′ [1 +O(e−L)].

11.3 Upper half plane

Proposition 11.2. For the upper half plane H = {x+ iy : Y > 0},

GH(z, w) = log |z − w| − log |z − w|

HH(x+ iy, x′) =
y

(x− x′)2 + y2
, HH(x, x′) =

1

(x− x′)2
,

Proof. The map

f(z) =
z − i
z + i

, f ′(z) =
2i

(z + i)2
,

takes the upper half plane H onto D with f(i) = 0. Therefore,

GH(z, i) = GD(f(z), f(i)) = − log

∣∣∣∣z − iz + i

∣∣∣∣ = log
|z + i|
|z − i|

,

GH(z, x+ iy) = GH

(
z − x
y

, i

)
= log

| z−xy + i|
| z−xy − i|

= log
|z − (x+ iy)|
|z − (x+ iy)|

,

HH(i, x) = |f ′(x)|HH(0, f(x)) =
1

2

2

|x+ i|2
=

1

x2 + 1
,

HH(x+ iy, x′) = y−1HH

(
i,
x′ − x
y

)
=

y

(x− x′)2 + y2
.
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HH(x, x′) = lim
y↓0

y−1HH(x, x′ + iy) =
1

(x− x′)2
.

Another way to see that the Green’s function is

GH(z, w) = log |z − w| − log |z − w|.

is to note that for fixed z, the right-hand side is a harmonic function of w that vanishes on the real
line and looks like − log |z − w|+O(1) as w → z.

If z = reiθ, then

GH(reiθ, i) =
1

2
log

∣∣∣∣r2 cos2 θ + (r sin θ + 1)2

r2 cos2 θ + (r sin θ − 1)2

∣∣∣∣ .
As r →∞,

GH(reiθ, i) =
1

2
log

∣∣∣∣1 +
4r sin θ

r2 cos2 θ + (r sin θ − 1)2

∣∣∣∣ = 2r−1 sin θ [1 +O(r−1)]. (57)

11.4 Half Disk

Proposition 11.3. Let D+ = H ∩ D be the upper half disk. Then,

H∂D+(eiθ, eiψ) =
sin θ sinψ

(cos θ − cosψ)2
,

H∂D+ = (x, eiθ)
2(1− x2)

[x2 − 2x cos θ + 1]2
sin θ.

In particular, H∂D+(0, eiθ) = 2 sin θ. More generally, for z near the origin,

HD+(z, eiθ) = 2 Im(z) sin θ [1 +O(|z|)] . (58)

Proof. The function

f(z) =
2z

z2 + 1
, f ′(z) =

2 (1− z2)

(z2 + 1)2
,

is a conformal transformation of D+ onto H with f(0) = 0, f(i) =∞, f(1) = 1, f(−1) = −1 and

f(eiθ) =
2eiθ

e2iθ + 1
=

2

eiθ + e−iθ
=

1

cos θ
.

Note that

|f ′(eiθ)| =
∣∣∣∣2(1− e2iθ)

(e2iθ + 1)2

∣∣∣∣ =
sin θ

cos2 θ
.

Therefore,

H∂D+(eiθ, eiψ) = |f ′(eiθ)| |f ′(eiψ)|HH(f(eiθ), f(eiψ))

=
sin θ sinψ

cos2 θ cos2 ψ

[
1

cos θ
− 1

cosψ

]−2

=
sin θ sinψ

(cos θ − cosψ)2
.
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H∂D+(x, eiθ) =
2(1− x2)

(x2 + 1)2

sin θ

cos2 θ

[
2x

x2 + 1
− 1

cos θ

]−2

=
2(1− x2)

[x2 − 2x cos θ + 1]2
sin θ.

One could derive (58) from the exact formulas. Alternatively, note that the function h(z) =
HD+(z, eiθ) can be extended by Schwarz reflection to a harmonic function on D that vanishes on
the real line. Note that ∂yh(0) = 2 sin θ and ∂xh vanishes on the real line. Also, |h(z)| ≤ c sin θ
for |z| ≤ 1/2, and hence we can see that that for |z| ≤ 1/4 all the second partials are bounded by
a universal constant times sin θ. Hence

∂yh(x) = 2 sin θ [1 +O(|x|)],

and
h(x+ iy) = y ∂yh(x) +O((sin θ) y2) = 2 y sin θ [1 +O(|x|) +O(y)].

11.5 Infinite Strip

Proposition 11.4. Let Sr = {x+ iy ∈ H : y < r} denote the half-infinite strip. Then

H∂Sr(0, x) =
π2

4r2

[
sinh

(πx
2r

)]−2
,

H∂Sr(0, x+ ir) =
π2

4r2

[
cosh

(πx
2r

)]−2
,

Proof. Note that f(z) = ez is a conformal transformation of Sπ onto H and hence

H∂Sπ(0, x) = |f ′(0)| |f ′(x)|H∂H(f(0), f(x+ iπ))

= exHH(1, ex)

=
ex

(ex − 1)2
=

1

(ex/2 − e−x/2)2
=

1

4 sinh2(x/2)
.

H∂Sπ(0, x+ iπ) = |f ′(0)| |f ′(x)|H∂H(f(0), f(x+ iπ))

= exH∂H(1,−ex)

=
ex

(ex + 1)2
=

1

4 cosh2(x/2)
.

By using the conformal transformation z 7→ (π/r)z, we get

H∂Sr(0, x) = (π/r)2H∂Sπ(0, πx/r) =
π2

4r2

[
sinh

(πx
2r

)]−2
,

H∂Sr(0, x+ ir) = (π/r)2H∂Sπ(0, πx/r + iπ) =
π2

4r2

[
cosh

(πx
2r

)]−2
.
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We will compute this another way using Fourier series. This will be useful when comparing to
simple random walk. We will let S = S1, and we first consider the domain Rm = {x+ iy : 0 < x <
2m, 0 < y < 1}. Consider

F (x+ iy) =
∞∑
j=1

bj sin(jπx/2m) sinh(jπy/2m).

For any choice of constants (decaying sufficiently fast), this gives a harmonic function. If we choose

bj =
sin(mjπ/2m)

2m sinh(jπ/2m)
,

we see that the boundary condition on ∂Rm is the delta function at m+ ni. Therefore,

1

π
HRm((m+ u) + iy,m+ i) =

∞∑
j=1

sin(mjπ/2m)

2m sinh(jπ/2m)
sin(jπ(m+ u)/2m) sinh(jπy/2m).

Note that

sin(mjπ/2) sin(jπ(m+ u)/2mm) =

{
cos(jπu/2m), j odd,
0 j even,

Therefore,

1

π
HRm((m+ u) + iy,m+ in) =

∞∑
j=1

cos((2j − 1)πu/2m) sinh((2j − 1)πy/2m)

2m sinh((2j − 1)π/2m)
.

This is a Riemann sum approximation of an integral and hence we get

lim
m→∞

HRm((m+ u) + iy,m+ i) = π

∫ ∞
0

cos(tπu) sinh(tπy)

sinh(πt)
dt =

∫ ∞
0

cos(su) sinh(sy)

sinh s
ds,

H∂S(u, i) = ∂yHS(z, i) |z=u

=

∫ ∞
0

s cos(su)

sinh s
ds

= ∂u

[∫ ∞
0

sin(su)

sinh s
ds

]
= ∂u

[π
2

tanh(uπ/2)
]

=
π2

4 cosh2(uπ/2)
.

The penultimate inequality is identity 711 in the CRC table of integrals.


