SUBSPACES OF COMPUTABLE VECTOR SPACES

RODNEY G. DOWNEY, DENIS R. HIRSCHFELDT, ASHER M. KACH, STEFFEN LEMPP, JOSEPH R. MILETI, AND ANTONIO MONTALBÁN

ABSTRACT. We show that the existence of a nontrivial proper subspace of a vector space of dimension greater than one (over an infinite field) is equivalent to WKL_0 over RCA_0 , and that the existence of a finite-dimensional nontrivial proper subspace of such a vector space is equivalent to ACA_0 over RCA_0 .

1. INTRODUCTION

This paper is a continuation of [3], which is a paper by three of the authors of the present paper. In [3], the effective content of the theory of ideals in commutative rings was studied; in particular, the following computability-theoretic results were established:

- **Theorem 1.1.** (1) There exists a computable integral domain Rthat is not a field such that $\deg(I) \gg \mathbf{0}$ for all nontrivial proper ideals I of R.
 - (2) There exists a computable integral domain R that is not a field such that $\deg(I) = \mathbf{0}'$ for all finitely generated nontrivial proper ideals I of R.

These results immediately gave the following proof-theoretic corollaries:

Corollary 1.2. (1) Over RCA_0 , WKL_0 is equivalent to the statement "Every (infinite) commutative ring with identity that is not a field has a nontrivial proper ideal."

¹⁹⁹¹ Mathematics Subject Classification. 03B30, 03C57, 03D45, 03F35.

Key words and phrases. computable vector space, reverse mathematics, sub-space.

The first author's research was partially supported by The Marsden Fund of New Zealand. The second author's research was partially supported by NSF grant DMS-0500590. The third author's research was partially supported by a VIGRE grant fellowship. The fourth author's research was partially supported by NSF grant DMS-0140120. The fifth author's research was partially supported by NSF grant DMS-0502215. The sixth author's research was partially supported by NSF grant DMS-0600824.

- 2 DOWNEY, HIRSCHFELDT, KACH, LEMPP, MILETI, AND MONTALBÁN
 - (2) Over RCA₀, ACA₀ is equivalent to the statement "Every (infinite) commutative ring with identity that is not a field has a finitely generated nontrivial proper ideal."

In the present paper, we complement these results with related results from linear algebra. (We refer to [3] for background, motivation, and definitions.)

We start with the following

- **Definition 1.3.** (1) A computable field is a computable subset $F \subseteq \mathbb{N}$ equipped with two computable binary operations + and \cdot on F, together with two elements $0, 1 \in F$ such that $(F, 0, 1, +, \cdot)$ is a field.
 - (2) A computable vector space (over a computable field F) is a computable subset $V \subseteq \mathbb{N}$ equipped with two computable operations $+: V^2 \to V$ and $\cdot: F \times V \to V$, together with an element $0 \in V$ such that $(V, 0, +, \cdot)$ is a vector space over F.

This notion was first studied by Dekker [2], then more systematically by Metakides and Nerode [5] and many others.

As in [3] for nontrivial proper ideals in rings, one motivation in the results below is to understand the complexity of nontrivial proper subspaces of a vector space of dimension greater than one, and the proof-theoretic axioms needed to establish their existence. For example, consider the following elementary characterization of when a vector space has dimension greater than one.

Proposition 1.4. A vector space V has dimension greater than one if and only if it has a nontrivial proper subspace.

As in the case of ideals in [3], we will be able to show that this equivalence is not effective, and to pin down the exact proof-theoretic strength of the statement in two versions, for the existence of a nontrivial proper subspace and of a finite-dimensional nontrivial proper subspace:

- **Theorem 1.5.** (1) There exists a computable vector space V of dimension greater than one (over an infinite computable field) such that $\deg(W) \gg \mathbf{0}$ for all nontrivial proper subspaces W of V.
 - (2) There exists a computable vector space V of dimension greater than one (over an infinite computable field) such that $\deg(W) \ge$ **0'** for all finite-dimensional nontrivial proper subspaces W of V.

Again, after a brief analysis of the induction needed to establish Theorem 1.5, we obtain the following proof-theoretic corollaries:

- **Corollary 1.6.** (1) Over RCA_0 , WKL_0 is equivalent to the statement "Every vector space of dimension greater than one (over an infinite field) has a nontrivial proper subspace."
 - (2) Over RCA₀, ACA₀ is equivalent to the statement "Every vector space of dimension greater than one (over an infinite field) has a finite-dimensional nontrivial proper subspace."

2. The proof of Theorem 1.5

For the proof of part (1) of Theorem 1.5, we begin with a few easy lemmas:

Lemma 2.1. Suppose that V is a vector space, that $\{v, w\}$ is a linearly independent set of vectors in V, and that $u \neq 0$ is a vector in V. Then there exists at most one scalar λ such that $u \in \langle v - \lambda w \rangle$.

Proof. Suppose that $u \in \langle v - \lambda_1 w \rangle$ and that $u \in \langle v - \lambda_2 w \rangle$. Fix μ_1, μ_2 such that $u = \mu_1(v - \lambda_1 w)$ and $u = \mu_2(v - \lambda_2 w)$. Notice that $\mu_1, \mu_2 \neq 0$ because $u \neq 0$. We now have

$$\mu_1 v - \mu_1 \lambda_1 w = u = \mu_2 v - \mu_2 \lambda_2 w,$$

and hence

$$(\mu_1 - \mu_2)v + (\mu_2\lambda_2 - \mu_1\lambda_1)w = 0.$$

Since $\{v, w\}$ is linearly independent, it follows that $\mu_1 - \mu_2 = 0$ and $\mu_2 \lambda_2 - \mu_1 \lambda_1 = 0$, hence $\mu_1 = \mu_2$ and $\mu_1 \lambda_1 = \mu_2 \lambda_2$. Since $\mu_1 = \mu_2 \neq 0$, it follows from the second equation that $\lambda_1 = \lambda_2$.

Lemma 2.2. Suppose that V is a vector space with basis B, which is linearly ordered by \prec . Suppose that

- $(1) v \in V.$ $(2) e \in B.$
- (3) λ is a scalar.
- (4) $e \succ \max(\operatorname{supp}(v))$ (where $\operatorname{supp}(v) = \operatorname{supp}_B(v)$, the support of v, is the finite set of basis vectors in B needed to write v as a linear combination in this basis).

Then $B \setminus \{e\}$ is a basis for V over $\langle e - \lambda v \rangle$, and, for all $w \in V$, $\max(\operatorname{supp}_{B \setminus \{e\}}(w + \langle e - \lambda v \rangle)) \preceq \max(\operatorname{supp}_{B}(w)).$

Proof. Notice that $e \in \langle (B \setminus \{e\}) \cup \{e - \lambda v\} \rangle$ because $e \notin \operatorname{supp}(v)$, so $(B \setminus \{e\}) \cup \{e - \lambda v\}$ spans V. Suppose that $e_1, e_2, \ldots, e_n \in B \setminus \{e\}$ are distinct and $\mu_1, \mu_2, \ldots, \mu_n$ are scalars such that

$$\mu_1 e_1 + \mu_2 e_2 + \dots + \mu_n e_n \in \langle e - \lambda v \rangle.$$

Fix μ such that

$$\mu_1 e_1 + \mu_2 e_2 + \dots + \mu_n e_n = \mu(e - \lambda v)$$

and notice that we must have $\mu = 0$ (by looking at the coefficient of e), hence each $\mu_i = 0$ because B is a basis. Therefore, $B \setminus \{e\}$ is a basis for V over $\langle e - \lambda v \rangle$. By hypothesis (4), the last line of the lemma now follows easily.

Lemma 2.3. Suppose that V is a vector space with basis B, which is linearly ordered by \prec . Suppose that

(1) $v_1, v_2 \in V$. (2) $e_1, e_2 \in B$ with $e_1 \neq e_2$. (3) λ is a scalar. (4) $e_1 \succ \max(\operatorname{supp}(v_1) \cup \operatorname{supp}(v_2))$. (5) $\{v_1, e_1\}$ is linearly independent. (6) $v_1 \notin \langle e_2 - \lambda v_2 \rangle$.

Then $\{v_1, e_1\}$ is linearly independent over $\langle e_2 - \lambda v_2 \rangle$.

Proof. Suppose that

$$\mu_1 v_1 + \mu_2 e_1 = \mu_3 (e_2 - \lambda v_2).$$

We need to show that $\mu_1 = \mu_2 = 0$.

Case 1: $e_1 \prec e_2$. In this case, we must have $\mu_3 = 0$ (by looking at the coefficient of e_2). Thus, $\mu_1 v_1 + \mu_2 e_1 = 0$, and hence $\mu_1 = \mu_2 = 0$ since $\{v_1, e_1\}$ is linearly independent.

Case 2: $e_1 \succ e_2$. In this case, we must have $\mu_2 = 0$ (by looking at the coefficient of e_1). Thus, $\mu_1 v_1 = \mu_3 (e_2 - \lambda v_2)$. Since $v_1 \notin \langle e_2 - \lambda v_2 \rangle$, this implies that $\mu_1 = 0$.

By applying the above three lemmas in the corresponding quotient, we obtain the following results.

Lemma 2.4. Suppose that V is a vector space, that $X \subseteq V$, that $\{v, w\}$ is linearly independent over $\langle X \rangle$, and that $u \notin \langle X \rangle$. Then there exists at most one λ such that $u \in \langle X \cup \{v - \lambda w\} \rangle$.

Lemma 2.5. Suppose that V is a vector space, that $X \subseteq V$, and that B is a basis for V over $\langle X \rangle$ that is linearly ordered by \prec . Suppose that

- (1) $v \in V$.
- (2) $e \in B$.
- (3) λ is a scalar.
- (4) $e \succ \max(\operatorname{supp}(v))$.

Then $B \setminus \{e\}$ is a basis for V over $\langle X \cup \{e - \lambda v\} \rangle$ and, for all $w \in V$, $\max(\operatorname{supp}_{B \setminus \{e\}}(w + \langle X \cup \{e - \lambda v\} \rangle)) \preceq \max(\operatorname{supp}_{B}(w)).$ **Lemma 2.6.** Suppose that V is a vector space, that $X \subseteq V$, and that B is a basis for V over $\langle X \rangle$ that is linearly ordered by \prec . Suppose that

- (1) $v_1, v_2 \in V.$ (2) $e_1, e_2 \in B$ with $e_1 \neq e_2.$
- (3) λ is a scalar.
- (4) $e_1 \succ \max(\operatorname{supp}(v_1) \cup \operatorname{supp}(v_2)).$
- (5) $\{v_1, e_1\}$ is linearly independent over $\langle X \rangle$.
- (6) $v_1 \notin \langle X \cup \{e_2 \lambda v_2\} \rangle$.

Then $\{v_1, e_1\}$ is linearly independent over $\langle X \cup \{e_2 - \lambda v_2\}\rangle$.

Proof of Theorem 1.5. Fix two disjoint c.e. sets A and B such that $\deg(S) \gg \mathbf{0}$ for any set S satisfying $A \subseteq S$ and $B \cap S = \emptyset$. Let V^{∞} be the vector space over the infinite computable field F on the basis e_0, e_1, e_2, \ldots (ordered by \prec as listed) and list V^{∞} as v_0, v_1, v_2, \ldots (viewed as being coded effectively by natural numbers). We may assume that v_0 is the zero vector of V^{∞} . Fix a computable injective function $g: \mathbb{N}^3 \to \mathbb{N}$ such that $e_{g(i,j,n)} \succ \max(\operatorname{supp}(v_i) \cup \operatorname{supp}(v_j))$ for all $i, j, n \in \mathbb{N}$. We build a computable subspace U of V^{∞} with the plan of taking the quotient $V = V^{\infty}/U$.

We have the following requirements for all $v_i, v_j \notin U$:

 $R_{i,j,n}: n \notin A \cup B \Rightarrow \text{ each of } \{v_i, e_{g(i,j,n)}\} \text{ and } \{v_j, e_{g(i,j,n)}\}$ are linearly independent over U,

$$n \in A \Rightarrow e_{g(i,j,n)} - \lambda v_i \in U$$
 for some nonzero $\lambda \in F$, and
 $n \in B \Rightarrow e_{g(i,j,n)} - \lambda v_j \in U$ for some nonzero $\lambda \in F$.

We now effectively build a sequence U_2, U_3, U_4, \ldots of finite subsets of V^{∞} such that $U_2 \subseteq U_3 \subseteq U_4 \subseteq \ldots$, and we set $U = \bigcup_{n \geq 2} U_n$. We also define a function $h: \mathbb{N}^4 \to \{0, 1\}$ for which h(i, j, n, s) = 1 if and only if we have acted for requirement $R_{i,j,n}$ at some stage $\leq s$ (as defined below). We ensure that for all $k \geq 2$, we have $v_k \in U$ if and only if $v_k \in U_k$, which will make our set U computable. We begin by letting $U_2 = \{v_0\}$ and letting h(i, j, n, s) = 0 for all i, j, n, s with $s \leq 2$. Suppose that $s \geq 2$ and we have defined U_s and h(i, j, n, s) for all i, j, n. Suppose also that we have for any i, j, n, and s such that $v_i, v_j \notin \langle U_s \rangle$:

- (1) If h(i, j, n, s) = 0, then each of $\{v_i, e_{g(i,j,n)}\}$ and $\{v_j, e_{g(i,j,n)}\}$ is linearly independent over $\langle U_s \rangle$.
- (2) If h(i, j, n, s) = 1 and $n \in A_s$, then $e_{g(i,j,n)} \lambda v_i \in U_s$ for some nonzero $\lambda \in F$.
- (3) If h(i, j, n, s) = 1 and $n \in B_s$, then $e_{g(i,j,n)} \lambda v_j \in U_s$ for some nonzero $\lambda \in F$.

Check whether there exists a triple $\langle i, j, n \rangle < s$ (under some effective coding) such that

- (1) $v_i, v_j \notin \langle U_s \rangle$.
- (2) $n \in A_s \cup B_s$.
- (3) h(i, j, n, s) = 0.

Suppose first that no such triple $\langle i, j, n \rangle$ exists. If $v_{s+1} \in \langle U_s \rangle$, then let $U_{s+1} = U_s \cup \{v_{s+1}\}$, otherwise let $U_{s+1} = U_s$. Also, let h(i, j, n, s+1) = h(i, j, n, s) for all i, j, n.

Suppose then that such a triple $\langle i, j, n \rangle$ exists, and fix the least such triple. If $n \in A_s$, then search for the least (under some effective coding) nonzero $\lambda \in F$ such that $v_k \notin \langle U_s \cup \{e_{g(i,j,n)} - \lambda v_i\}\rangle$ for all $k \leq s$ such that $v_k \notin U_s$. (Such λ must exist by Lemma 2.4 and the fact that F is infinite.) Let $U'_s = U_s \cup \{e_{g(i,j,n)} - \lambda v_i\}$ and let h(i, j, n, s+1) = 1. If $n \in$ B_s , then proceed likewise with v_j replacing v_i . Now, if $v_{s+1} \in \langle U'_s \rangle$, then let $U_{s+1} = U'_s \cup \{v_{s+1}\}$; otherwise let $U_{s+1} = U'_s$. Also, let h(i, j, n, s + 1) = h(i, j, n, s) for all other i, j, n. Using Lemma 2.6, it follows that our inductive hypothesis is maintained, so we may continue.

We can now view the quotient space $V = V^{\infty}/U$ as the set of $<_{\mathbb{N}}$ least representatives (which is a computable subset of V^{∞}). Notice that V is not one-dimensional because $\{v_1, e_{g(1,2,n)}\}$ is linearly independent over U for any $n \notin A \cup B$ (since $v_1, v_2 \notin U$). Suppose that W is a nontrivial proper subspace of V, and fix W_0 such that $W = W_0/U$. Then W_0 is a W-computable subspace of V^{∞} , and $U \subset W_0 \subset V^{\infty}$. Fix $v_i, v_j \in V^{\infty} \setminus U$ such that $v_i \in W_0$ and $v_j \notin W_0$. Let $S = \{n : e_{g(i,j,n)} \in$ $W_0\}$. We then have that $S \leq_T W_0 \equiv_T W$, that $A \subseteq S$, and that $B \cap S = \emptyset$. Thus deg $(S) \gg \mathbf{0}$, establishing part (1) of Theorem 1.5.

Part (2) of Theorem 1.5 now follows easily from part (1) and Arslanov's Completeness Criterion [1]: If W is a finite-dimensional nontrivial proper subspace of the above vector space V then W_0 is a c.e. set that computes a degree $\gg \mathbf{0}$; thus deg(W) must equal $\mathbf{0}'$.

3. The proof of Corollary 1.6

As usual for these arguments, we only have to check that

- (i) WKL_0 (or ACA_0 , respectively) suffices to prove the existence of a (finite-dimensional) nontrivial proper subspace (establishing the left-to-right direction of Corollary 1.6); and
- (ii) the above computability-theoretic arguments can be carried out in RCA_0 (establishing the right-to-left direction of Corollary 1.6).

Part (i) just requires a bit of coding. Using WKL_0 , one can code membership in a nontrivial proper subspace W of a vector space V on a binary tree T where one arbitrarily fixes two linearly independent vectors $w, w' \in V$ such that $w \in W$ and $w' \notin W$ is specified. A node $\sigma \in T_W$ is now terminal if the subspace axioms for W are violated along σ using coefficients with Gödel number $\langle |\sigma|$, which can be checked effectively relative to the open diagram of the vector space. Using ACA₀, one can form the one-dimensional subspace generated by any nonzero vector in V.

Part (ii) boils down to checking that Σ_1^0 -induction suffices for the computability-theoretic arguments from Section 2. First of all, note that the definition of U and of the vector space operations on U can be carried out using Δ_1^0 -induction. WKL₀ is equivalent to showing Σ_1^0 -Separation, so fix any sets A and B that are Σ_1^0 -definable in our model of arithmetic. Then their enumerations $\{A_s\}_{s\in\omega}$ and $\{B_s\}_{s\in\omega}$ exist in the model, and from them we can define the subspace U, the quotient space $V = V^{\infty}/U$, and the function mapping each vector $v \in V^{\infty}$ to its $<_{\mathbb{N}}$ -least representative modulo U, using only Σ_1^0 -induction. (The latter function only requires that in RCA₀, any infinite Δ_1^0 -definable set can be enumerated in order.) The hypothesis now provides the nontrivial proper subspace W, and from it we can define the separating set S by Δ_1^0 -induction.

Proving the right-to-left direction of Corollary 1.6 (2) could be done using the concept of maximal pairs of c.e. sets as in our companion paper [3]. But for vector spaces, there is actually a much simpler proof: In the above construction, simply set A to be any Σ_1^0 -set and $B = \emptyset$. Now V must be a vector space of dimension greater than one. Since any finitely generated nontrivial proper subspace can compute a onedimensional subspace, we may assume we are given a one-dimensional subspace W, spanned by v_i , say. But then

> $n \in A$ iff $\{v_i, e_{g(i,1,n)}\}$ is linearly dependent in Viff $e_{g(i,1,n)} \in W$,

and so W can compute A as desired.

References

- Arslanov, Marat M., Some generalizations of a fixed-point theorem, Izv. Vyssh. Uchebn. Zaved. Mat. 25 (1981), no. 5, 9–16, translated in: Soviet Math. (Iz. VUZ) 25 (1981), no. 5, 1-10.
- [2] Dekker, Jacob C. E. Countable vector spaces with recursive operations. I, J. Symbolic Logic 34 (1969), 363–387.
- [3] Downey, Rodney G.; Lempp, Steffen; and Mileti, Joseph R., *Ideals in computable rings*, to appear.
- [4] Jockusch, Carl G., Jr. and Soare, Robert I., Π⁰₁ classes and degrees of theories, Trans. Amer. Math. Soc. 173 (1972), 33–56.

- 8 DOWNEY, HIRSCHFELDT, KACH, LEMPP, MILETI, AND MONTALBÁN
- [5] Metakides, George and Nerode, Anil, *Recursively enumerable vector spaces*, Ann. Math. Logic **11** (1977), 147–171.
- [6] Odifreddi, Piergiorgio, Classical recursion theory, North-Holland, Amsterdam, 1989.
- [7] Odifreddi, Piergiorgio, Classical recursion theory, Vol. II, North-Holland, Amsterdam, 1999.
- [8] Simpson, Stephen G., Subsystems of Second Order Arithmetic, Springer-Verlag, Berlin, 1999.
- [9] Soare, Robert I., Recursively enumerable sets and degrees, Springer-Verlag, Berlin, New York, 1987.

DEPARTMENT OF MATHEMATICS, VICTORIA UNIVERSITY, P. O. BOX 600, WELLINGTON, NEW ZEALAND

E-mail address: Rod.Downey@mcs.vuw.ac.nz

(Hirschfeldt/Mileti/Montalbán) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, IL 60637-1514, USA

E-mail address: drh@math.uchicago.edu E-mail address: mileti@math.uchicago.edu E-mail address: antonio@math.uchicago.edu

(Kach/Lempp) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WI 53706-1388, USA

E-mail address: kach@math.wisc.edu *E-mail address*: lempp@math.wisc.edu