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Abstract. We show that the existence of a nontrivial proper sub-
space of a vector space of dimension greater than one (over an in�-
nite �eld) is equivalent toWKL0 over RCA0, and that the existence
of a �nite-dimensional nontrivial proper subspace of such a vector
space is equivalent to ACA0 over RCA0.

1. Introduction

This paper is a continuation of [3], which is a paper by three of the
authors of the present paper. In [3], the e�ective content of the theory
of ideals in commutative rings was studied; in particular, the following
computability-theoretic results were established:

Theorem 1.1. (1) There exists a computable integral domain R
that is not a �eld such that deg(I)� 0 for all nontrivial proper
ideals I of R.

(2) There exists a computable integral domain R that is not a �eld
such that deg(I) = 00 for all �nitely generated nontrivial proper
ideals I of R.

These results immediately gave the following proof-theoretic corol-
laries:

Corollary 1.2. (1) Over RCA0, WKL0 is equivalent to the state-
ment \Every (in�nite) commutative ring with identity that is
not a �eld has a nontrivial proper ideal."
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(2) Over RCA0, ACA0 is equivalent to the statement \Every (in�-
nite) commutative ring with identity that is not a �eld has a
�nitely generated nontrivial proper ideal."

In the present paper, we complement these results with related re-
sults from linear algebra. (We refer to [3] for background, motivation,
and de�nitions.)
We start with the following

De�nition 1.3. (1) A computable �eld is a computable subset F �
N equipped with two computable binary operations + and � on F ,
together with two elements 0; 1 2 F such that (F; 0; 1;+; �) is a
�eld.

(2) A computable vector space (over a computable �eld F ) is a
computable subset V � N equipped with two computable opera-
tions + : V 2 ! V and � : F�V ! V , together with an element
0 2 V such that (V; 0;+; �) is a vector space over F .

This notion was �rst studied by Dekker [2], then more systematically
by Metakides and Nerode [5] and many others.
As in [3] for nontrivial proper ideals in rings, one motivation in the

results below is to understand the complexity of nontrivial proper sub-
spaces of a vector space of dimension greater than one, and the proof-
theoretic axioms needed to establish their existence. For example, con-
sider the following elementary characterization of when a vector space
has dimension greater than one.

Proposition 1.4. A vector space V has dimension greater than one if
and only if it has a nontrivial proper subspace.

As in the case of ideals in [3], we will be able to show that this
equivalence is not e�ective, and to pin down the exact proof-theoretic
strength of the statement in two versions, for the existence of a non-
trivial proper subspace and of a �nite-dimensional nontrivial proper
subspace:

Theorem 1.5. (1) There exists a computable vector space V of di-
mension greater than one (over an in�nite computable �eld)
such that deg(W ) � 0 for all nontrivial proper subspaces W
of V .

(2) There exists a computable vector space V of dimension greater
than one (over an in�nite computable �eld) such that deg(W ) �
00 for all �nite-dimensional nontrivial proper subspaces W of V .

Again, after a brief analysis of the induction needed to establish
Theorem 1.5, we obtain the following proof-theoretic corollaries:
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Corollary 1.6. (1) Over RCA0, WKL0 is equivalent to the state-
ment \Every vector space of dimension greater than one (over
an in�nite �eld) has a nontrivial proper subspace."

(2) Over RCA0, ACA0 is equivalent to the statement \Every vector
space of dimension greater than one (over an in�nite �eld) has
a �nite-dimensional nontrivial proper subspace."

2. The proof of Theorem 1.5

For the proof of part (1) of Theorem 1.5, we begin with a few easy
lemmas:

Lemma 2.1. Suppose that V is a vector space, that fv; wg is a linearly
independent set of vectors in V , and that u 6= 0 is a vector in V . Then
there exists at most one scalar � such that u 2 hv � �wi.

Proof. Suppose that u 2 hv � �1wi and that u 2 hv � �2wi. Fix �1; �2
such that u = �1(v��1w) and u = �2(v��2w). Notice that �1; �2 6= 0
because u 6= 0. We now have

�1v � �1�1w = u = �2v � �2�2w;

and hence

(�1 � �2)v + (�2�2 � �1�1)w = 0:

Since fv; wg is linearly independent, it follows that �1 � �2 = 0 and
�2�2 � �1�1 = 0, hence �1 = �2 and �1�1 = �2�2. Since �1 = �2 6= 0,
it follows from the second equation that �1 = �2. �

Lemma 2.2. Suppose that V is a vector space with basis B, which is
linearly ordered by �. Suppose that

(1) v 2 V .
(2) e 2 B.
(3) � is a scalar.
(4) e � max(supp(v)) (where supp(v) = suppB(v), the support

of v, is the �nite set of basis vectors in B needed to write v as
a linear combination in this basis).

Then B n feg is a basis for V over he � �vi, and, for all w 2 V ,
max(suppBnfeg(w + he� �vi)) � max(suppB(w)).

Proof. Notice that e 2 h(B n feg) [ fe� �vgi because e =2 supp(v), so
(B n feg)[fe��vg spans V . Suppose that e1; e2; : : : ; en 2 B n feg are
distinct and �1; �2; : : : ; �n are scalars such that

�1e1 + �2e2 + � � �+ �nen 2 he� �vi:
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Fix � such that

�1e1 + �2e2 + � � �+ �nen = �(e� �v)

and notice that we must have � = 0 (by looking at the coe�cient of e),
hence each �i = 0 because B is a basis. Therefore, B n feg is a basis
for V over he� �vi. By hypothesis (4), the last line of the lemma now
follows easily. �

Lemma 2.3. Suppose that V is a vector space with basis B, which is
linearly ordered by �. Suppose that

(1) v1; v2 2 V .
(2) e1; e2 2 B with e1 6= e2.
(3) � is a scalar.
(4) e1 � max(supp(v1) [ supp(v2)).
(5) fv1; e1g is linearly independent.
(6) v1 =2 he2 � �v2i.

Then fv1; e1g is linearly independent over he2 � �v2i.

Proof. Suppose that

�1v1 + �2e1 = �3(e2 � �v2):

We need to show that �1 = �2 = 0.
Case 1: e1 � e2. In this case, we must have �3 = 0 (by looking at

the coe�cient of e2). Thus, �1v1 + �2e1 = 0, and hence �1 = �2 = 0
since fv1; e1g is linearly independent.

Case 2: e1 � e2. In this case, we must have �2 = 0 (by looking at
the coe�cient of e1). Thus, �1v1 = �3(e2��v2). Since v1 =2 he2��v2i,
this implies that �1 = 0. �

By applying the above three lemmas in the corresponding quotient,
we obtain the following results.

Lemma 2.4. Suppose that V is a vector space, that X � V , that fv; wg
is linearly independent over hXi, and that u =2 hXi. Then there exists
at most one � such that u 2 hX [ fv � �wgi. �

Lemma 2.5. Suppose that V is a vector space, that X � V , and that
B is a basis for V over hXi that is linearly ordered by �. Suppose that

(1) v 2 V .
(2) e 2 B.
(3) � is a scalar.
(4) e � max(supp(v)).

Then B n feg is a basis for V over hX [ fe� �vgi and, for all w 2 V ,
max(suppBnfeg(w + hX [ fe� �vgi)) � max(suppB(w)). �
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Lemma 2.6. Suppose that V is a vector space, that X � V , and that
B is a basis for V over hXi that is linearly ordered by �. Suppose that

(1) v1; v2 2 V .
(2) e1; e2 2 B with e1 6= e2.
(3) � is a scalar.
(4) e1 � max(supp(v1) [ supp(v2)).
(5) fv1; e1g is linearly independent over hXi.
(6) v1 =2 hX [ fe2 � �v2gi.

Then fv1; e1g is linearly independent over hX [ fe2 � �v2gi. �

Proof of Theorem 1.5. Fix two disjoint c.e. sets A and B such that
deg(S) � 0 for any set S satisfying A � S and B \ S = ;. Let
V 1 be the vector space over the in�nite computable �eld F on the
basis e0; e1; e2; : : : (ordered by � as listed) and list V 1 as v0; v1; v2; : : :
(viewed as being coded e�ectively by natural numbers). We may as-
sume that v0 is the zero vector of V 1. Fix a computable injective
function g : N3 ! N such that eg(i;j;n) � max(supp(vi) [ supp(vj)) for
all i; j; n 2 N. We build a computable subspace U of V 1 with the plan
of taking the quotient V = V 1=U .
We have the following requirements for all vi; vj =2 U :

Ri;j;n : n =2 A [B ) each of fvi; eg(i;j;n)g and fvj; eg(i;j;n)g

are linearly independent over U;

n 2 A) eg(i;j;n) � �vi 2 U for some nonzero � 2 F , and

n 2 B ) eg(i;j;n) � �vj 2 U for some nonzero � 2 F .

We now e�ectively build a sequence U2; U3; U4; : : : of �nite subsets
of V 1 such that U2 � U3 � U4 � : : : , and we set U =

S
n�2 Un.

We also de�ne a function h : N4 ! f0; 1g for which h(i; j; n; s) = 1 if
and only if we have acted for requirement Ri;j;n at some stage � s (as
de�ned below). We ensure that for all k � 2, we have vk 2 U if and
only if vk 2 Uk, which will make our set U computable. We begin by
letting U2 = fv0g and letting h(i; j; n; s) = 0 for all i; j; n; s with s � 2.
Suppose that s � 2 and we have de�ned Us and h(i; j; n; s) for all i; j; n.
Suppose also that we have for any i, j, n, and s such that vi; vj =2 hUsi:

(1) If h(i; j; n; s) = 0, then each of fvi; eg(i;j;n)g and fvj; eg(i;j;n)g is
linearly independent over hUsi.

(2) If h(i; j; n; s) = 1 and n 2 As, then eg(i;j;n) � �vi 2 Us for some
nonzero � 2 F .

(3) If h(i; j; n; s) = 1 and n 2 Bs, then eg(i;j;n) � �vj 2 Us for some
nonzero � 2 F .
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Check whether there exists a triple hi; j; ni < s (under some e�ective
coding) such that

(1) vi; vj =2 hUsi.
(2) n 2 As [Bs.
(3) h(i; j; n; s) = 0.

Suppose �rst that no such triple hi; j; ni exists. If vs+1 2 hUsi, then let
Us+1 = Us[fvs+1g, otherwise let Us+1 = Us. Also, let h(i; j; n; s+1) =
h(i; j; n; s) for all i; j; n.
Suppose then that such a triple hi; j; ni exists, and �x the least such

triple. If n 2 As, then search for the least (under some e�ective coding)
nonzero � 2 F such that vk =2 hUs [ feg(i;j;n) � �vigi for all k � s such
that vk =2 Us. (Such � must exist by Lemma 2.4 and the fact that F is
in�nite.) Let U 0

s = Us[feg(i;j;n)��vig and let h(i; j; n; s+1) = 1. If n 2
Bs, then proceed likewise with vj replacing vi. Now, if vs+1 2 hU

0
si, then

let Us+1 = U 0
s [ fvs+1g; otherwise let Us+1 = U 0

s. Also, let h(i; j; n; s+
1) = h(i; j; n; s) for all other i; j; n. Using Lemma 2.6, it follows that
our inductive hypothesis is maintained, so we may continue.
We can now view the quotient space V = V 1=U as the set of <N-

least representatives (which is a computable subset of V 1). Notice that
V is not one-dimensional because fv1; eg(1;2;n)g is linearly independent
over U for any n =2 A [ B (since v1; v2 =2 U). Suppose that W is a
nontrivial proper subspace of V , and �x W0 such that W = W0=U .
Then W0 is a W -computable subspace of V 1, and U � W0 � V 1. Fix
vi; vj 2 V 1 nU such that vi 2 W0 and vj =2 W0. Let S = fn : eg(i;j;n) 2
W0g. We then have that S �T W0 �T W , that A � S, and that
B \ S = ;. Thus deg(S)� 0, establishing part (1) of Theorem 1.5.
Part (2) of Theorem 1.5 now follows easily from part (1) and Ar-

slanov's Completeness Criterion [1]: If W is a �nite-dimensional non-
trivial proper subspace of the above vector space V thenW0 is a c.e. set
that computes a degree � 0; thus deg(W ) must equal 00. �

3. The proof of Corollary 1.6

As usual for these arguments, we only have to check that

(i) WKL0 (or ACA0, respectively) su�ces to prove the existence of a
(�nite-dimensional) nontrivial proper subspace (establishing the
left-to-right direction of Corollary 1.6); and

(ii) the above computability-theoretic arguments can be carried out
in RCA0(establishing the right-to-left direction of Corollary 1.6).

Part (i) just requires a bit of coding. Using WKL0, one can code
membership in a nontrivial proper subspace W of a vector space V on
a binary tree T where one arbitrarily �xes two linearly independent
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vectors w;w0 2 V such that w 2 W and w0 =2 W is speci�ed. A node
� 2 TW is now terminal if the subspace axioms for W are violated
along � using coe�cients with G�odel number < j�j, which can be
checked e�ectively relative to the open diagram of the vector space.
Using ACA0, one can form the one-dimensional subspace generated by
any nonzero vector in V .
Part (ii) boils down to checking that �0

1-induction su�ces for the
computability-theoretic arguments from Section 2. First of all, note
that the de�nition of U and of the vector space operations on U can
be carried out using �0

1-induction. WKL0 is equivalent to showing �0
1-

Separation, so �x any sets A and B that are �0
1-de�nable in our model

of arithmetic. Then their enumerations fAsgs2! and fBsgs2! exist in
the model, and from them we can de�ne the subspace U , the quotient
space V = V 1=U , and the function mapping each vector v 2 V 1 to its
<N-least representative modulo U , using only �0

1-induction. (The latter
function only requires that in RCA0, any in�nite �0

1-de�nable set can
be enumerated in order.) The hypothesis now provides the nontrivial
proper subspace W , and from it we can de�ne the separating set S by
�0

1-induction.
Proving the right-to-left direction of Corollary 1.6 (2) could be done

using the concept of maximal pairs of c.e. sets as in our companion
paper [3]. But for vector spaces, there is actually a much simpler proof:
In the above construction, simply set A to be any �0

1-set and B = ;.
Now V must be a vector space of dimension greater than one. Since
any �nitely generated nontrivial proper subspace can compute a one-
dimensional subspace, we may assume we are given a one-dimensional
subspace W , spanned by vi, say. But then

n 2 A iff fvi; eg(i;1;n)g is linearly dependent in V

iff eg(i;1;n) 2 W;

and so W can compute A as desired.

References

[1] Arslanov, Marat M., Some generalizations of a �xed-point theorem, Izv. Vyssh.
Uchebn. Zaved. Mat. 25 (1981), no. 5, 9{16, translated in: Soviet Math. (Iz.
VUZ) 25 (1981), no. 5, 1-10.

[2] Dekker, Jacob C. E. Countable vector spaces with recursive operations. I, J.
Symbolic Logic 34 (1969), 363{387.

[3] Downey, Rodney G.; Lempp, Ste�en; and Mileti, Joseph R., Ideals in com-

putable rings, to appear.
[4] Jockusch, Carl G., Jr. and Soare, Robert I., �0

1
classes and degrees of theories,

Trans. Amer. Math. Soc. 173 (1972), 33{56.



8 DOWNEY, HIRSCHFELDT, KACH, LEMPP, MILETI, AND MONTALB�AN

[5] Metakides, George and Nerode, Anil, Recursively enumerable vector spaces,
Ann. Math. Logic 11 (1977), 147{171.

[6] Odifreddi, Piergiorgio, Classical recursion theory, North-Holland, Amsterdam,
1989.

[7] Odifreddi, Piergiorgio, Classical recursion theory, Vol. II, North-Holland, Am-
sterdam, 1999.

[8] Simpson, Stephen G., Subsystems of Second Order Arithmetic, Springer-
Verlag, Berlin, 1999.

[9] Soare, Robert I., Recursively enumerable sets and degrees, Springer-Verlag,
Berlin, New York, 1987.

Department of Mathematics, Victoria University, P. O. Box 600,

Wellington, NEW ZEALAND

E-mail address: Rod.Downey@mcs.vuw.ac.nz

(Hirschfeldt/Mileti/Montalb�an) Department of Mathematics, University

of Chicago, Chicago, IL 60637-1514, USA

E-mail address: drh@math.uchicago.edu
E-mail address: mileti@math.uchicago.edu
E-mail address: antonio@math.uchicago.edu

(Kach/Lempp) Department of Mathematics, University of Wisconsin,

Madison, WI 53706-1388, USA

E-mail address: kach@math.wisc.edu
E-mail address: lempp@math.wisc.edu


	1. Introduction
	2. The proof of Theorem 1.5
	3. The proof of Corollary 1.6
	References

