The Smiley Face Theorem Lindström's First Theorem

26 April 2003

Slides available at http://www.math.wisc.edu/ kach/lindstrom

Based on Chapter XIII of *Mathematical Logic* by H.-D. Ebbinghaus, J. Flum, and W. Thomas.

Lindström's First Theorem:

Every regular logical system \mathcal{L} with $\mathcal{L}_I \leq \mathcal{L}$ satisfying LoSko(\mathcal{L}) and Comp(\mathcal{L}) is equally strong as \mathcal{L}_I , i.e.

$$(\mathcal{L}_I \leq \mathcal{L} \bigwedge \mathsf{LoSko}(\mathcal{L}) \bigwedge \mathsf{Comp}(\mathcal{L})) \longrightarrow \mathcal{L}_I \sim \mathcal{L}.$$

Corollary:

Either $Comp(\mathcal{L})$ or $LoSko(\mathcal{L})$ fails to hold for any regular logical system strictly stronger than first-order logic. **Defn:** A **logical system** \mathcal{L} is a function L and binary relation $\models_{\mathcal{L}}$ satisfying the properties:

- 1. If $S_0 \subseteq S_1$, then $L(S_0) \subseteq L(S_1)$.
- 2. If $\mathcal{A} \models_{\mathcal{L}} \varphi$, then, for some *S*, \mathcal{A} is an *S*-structure and $\varphi \in L(S)$.
- 3. If $\mathcal{A} \models_{\mathcal{L}} \varphi$ and $\mathcal{A} \cong \mathcal{B}$, then $\mathcal{B} \models_{\mathcal{L}} \varphi$.
- 4. If $S_0 \subseteq S_1$ and $\varphi \in L(S_0)$ and \mathcal{A} is an S_1 -structure, then

$$\mathcal{A}\models_{\mathcal{L}} \varphi \quad \text{iff} \quad \mathcal{A}\mid_{S_0} \models_{\mathcal{L}} \varphi.$$

We interpret L(S) as the set of S-sentences of \mathcal{L} and $\models_{\mathcal{L}}$ as the satisfaction relation.

Defn: We say a logical system \mathcal{L} is **regular** if the properties $\operatorname{Boole}(\mathcal{L})$, $\operatorname{Rel}(\mathcal{L})$, and $\operatorname{Repl}(\mathcal{L})$ are satisfied, where $\operatorname{Boole}(\mathcal{L})$ is an abbreviation for

" ${\mathcal L}$ contains propositional connectives",

where $\operatorname{Rel}(\mathcal{L})$ is an abbreviation for

" \mathcal{L} permits relativization",

and where $\operatorname{Repl}(\mathcal{L})$ is an abbreviation for

" ${\mathcal L}$ permits replacement of function and constant symbols by relation symbols" .

Defn: We say that the Compactness Theorem holds for \mathcal{L} , written $\operatorname{Comp}(\mathcal{L})$, provided

If $\Phi \subseteq L(S)$ and every finite subset of Φ is satisfiable, then Φ is satisfiable.

Defn: We say that the Löwenheim-Skolem Theorem holds for \mathcal{L} , written $LoSko(\mathcal{L})$, provided

If $\varphi \in L(S)$ is satisfiable, then there is a model of φ whose domain is at most countable.

Defn: If \mathcal{L} is a logical system and $\varphi \in L(S)$, define

 $\operatorname{Mod}_{\mathcal{L}}^{\mathbf{S}}(\varphi) := \{ \mathcal{A} \mid \mathcal{A} \text{ is an } S \text{-structure and } \mathcal{A} \models_{\mathcal{L}} \varphi \}.$

Defn: Let \mathcal{L} and \mathcal{L}' be two logical systems.

- 1. Let $\varphi \in L(S)$ and $\psi \in L'(S)$ for some set S. Then we say φ and ψ are **logically equivalent** if $Mod_{\mathcal{L}}^{S}(\varphi) = Mod_{\mathcal{L}'}^{S}(\psi)$.
- 2. If for every S and every $\varphi \in L(S)$ there is a $\psi \in L'(S)$ such that φ and ψ are logically equivalent, then we say \mathcal{L}' is **at least as strong as** \mathcal{L} and write $\mathcal{L} \leq \mathcal{L}'$.
- 3. We say \mathcal{L} and \mathcal{L}' are **equally strong** and write $\mathcal{L} \sim \mathcal{L}'$ if $\mathcal{L} \leq \mathcal{L}'$ and $\mathcal{L}' \leq \mathcal{L}$.

Let \mathcal{L} be a regular logical system with $\mathcal{L}_I \leq \mathcal{L}$.

Lemma: Suppose $\text{Comp}(\mathcal{L})$ and $\Phi \cup \{\varphi\} \subset L(S)$ with $\Phi \models_{\mathcal{L}} \varphi$. Then there is a finite subset Φ_0 of Φ such that $\Phi_0 \models_{\mathcal{L}} \varphi$.

Lemma: Suppose $\text{Comp}(\mathcal{L})$ and $\psi \in L(S)$. Then there is a finite subset S_0 of S such that for all S-structures \mathcal{A} and \mathcal{B}

If $\mathcal{A} \mid_{S_0} \cong \mathcal{B} \mid_{S_0}$, then $(\mathcal{A} \models_{\mathcal{L}} \psi \text{ iff } \mathcal{B} \models_{\mathcal{L}} \psi)$.

Defn: Two S-structures \mathcal{A} and \mathcal{B} are *m*-isomorphic, written $\mathcal{A} \cong_m \mathcal{B}$, if there is a sequence I_0, \ldots, I_m of non-empty sets of partial isomorphisms from \mathcal{A} to \mathcal{B} with the property

For $0 \le n \le m-1$ and $p \in I_{n+1}$ and $a \in A$ (resp. $b \in B$), there is $q \in I_n$ such that $p \subset q$ and $a \in \text{dom}(q)$ (resp. $b \in \text{rg}(q)$).

Lemma: Let S be a relational symbol set and ψ be an L(S)-sentence not logically equivalent to any sentence in first-order logic. Then, for every finite $S_0 \subset S$ and every $m \in \mathbb{N}$, there are S-structures \mathcal{A} and \mathcal{B} such that

 $\mathcal{A} \mid_{S_0} \cong_m \mathcal{B} \mid_{S_0}, \quad \mathcal{A} \models_{\mathcal{L}} \psi, \quad \text{ and } \mathcal{B} \models_{\mathcal{L}} \neg \psi.$

1.
$$\forall p(Pp \longrightarrow \forall x \forall y(Gpxy \longrightarrow (Ux \land Vy)))$$

- 2. $\forall p(Pp \longrightarrow \forall x \forall x' \forall y \forall y')$ $((Gpxy \land Gpx'y') \longrightarrow (x \equiv x' \longleftrightarrow y \equiv y')))$
- 3. $\forall p(Pp \longrightarrow \forall \bar{x} \forall \bar{y})$ $((Gpx_1y_1 \land \dots \land Gpx_ny_n) \longrightarrow (R\bar{x} \longleftrightarrow R\bar{y})))$
- 4. Φ_{pord}
- 5. $\forall x(Wx \longleftrightarrow (x \equiv c \lor \exists y(y < x \lor x < y)))$ $\land \forall x(Wx \longrightarrow (x < c \lor x \equiv c))$
- 6. $\forall x (\exists yy < x \longrightarrow (fx < x \land \neg \exists z (fx < z \land z < x)))$

- 7. $\forall x(Wx \longrightarrow \exists p(Pp \land Ixp))$
- 8. $\forall x \forall p \forall u ((fx < x \land Ixp \land Uu) \longrightarrow$ $\exists q \exists v (Ifxq \land Gquv \land \forall x' \forall y' (Gpx'y' \longrightarrow Gqx'y')))$
- 9. $\forall x \forall p \forall v ((fx < x \land Ixp \land Vv) \longrightarrow$ $\exists q \exists u (Ifxq \land Gquv \land \forall x' \forall y' (Gpx'y' \longrightarrow Gqx'y')))$
- 10. $\exists x U x \land \exists y V y \land \psi^U \land (\neg \psi)^V$

Main Lemma: Let \mathcal{L} be a regular logical system with $\mathcal{L}_I \leq \mathcal{L}$ and $\text{LoSko}(\mathcal{L})$. Furthermore, let S be a relational symbol set, and let ψ be an L(S)-sentence which is not logically equivalent to any sentence in first-order logic. Then one of the following holds:

- 1. For all finite symbol sets S_0 with $S_0 \subset S$, there are *S*-structures \mathcal{A} and \mathcal{B} such that $\mathcal{A} \models_{\mathcal{L}} \psi$, $\mathcal{B} \models_{\mathcal{L}} \neg \psi$, and $\mathcal{A} \mid_{S_0} \cong \mathcal{B} \mid_{S_0}$.
- 2. For a unary relation symbol W and a suitable symbol set S^+ with $S \cup \{W\} \subset S^+$ and finite $S^+ \setminus S$, there is a $L(S^+)$ -sentence χ such that
 - 2a. In every model \mathcal{C} of χ , W^C is finite and nonempty.
 - 2b. For every $m \ge 1$, there is a model C of χ in which W^C has exactly m elements.

Lindström's First Theorem:

Every regular logical system \mathcal{L} with $\mathcal{L}_I \leq \mathcal{L}$ satisfying LoSko(\mathcal{L}) and Comp(\mathcal{L}) is equally strong as \mathcal{L}_I , i.e.

 $(\mathcal{L}_I \leq \mathcal{L} \bigwedge \mathsf{LoSko}(\mathcal{L}) \bigwedge \mathsf{Comp}(\mathcal{L})) \longrightarrow \mathcal{L}_I \sim \mathcal{L}.$

Proof:

Assume otherwise, namely that there is some $\psi \in L(S)$ not logically equivalent to any firstorder sentence in $L_I(S)$. As \mathcal{L} is regular, we may assume that S contains only relational symbols. As $Comp(\mathcal{L})$ holds, there is a finite set $S_0 \subseteq S$ such that

If $\mathcal{A} \mid_{S_0} \cong \mathcal{B} \mid_{S_0}$, then $(\mathcal{A} \models_{\mathcal{L}} \psi \text{ iff } \mathcal{B} \models_{\mathcal{L}} \psi)$. The above contradicts the [1] of the Main Lemma, so [2] must hold. Then we have

 $\chi \cup \{ \text{``}|W| \ge n \text{''} : n \in \mathbb{N} \}$

is finitely satisfiable (c.f. [2a]) but isn't satisfiable (c.f. [2b]), a contradiction to $Comp(\mathcal{L})$.

Lindström's Second Theorem:

Let \mathcal{L} be an effective regular logical system such that $\mathcal{L}_I \leq_{\text{eff}} \mathcal{L}$. If LoSko(\mathcal{L}) and the set of valid sentences is enumerable for \mathcal{L} , then $\mathcal{L}_I \sim_{\text{eff}} \mathcal{L}$.