Orders on Computable Torsion-Free Abelian Groups

Asher M. Kach

(Joint Work with Karen Lange and Reed Solomon)

Midwest Computability Seminar

1 November 2011

Outline

- Classical Algebra Background
- Computing a Basis
- Computing an Order
 - With A Basis
 - Without A Basis
- Open Questions

Torsion-Free Abelian Groups

Remark

Disclaimer: Hereout, the word *group* will always refer to a countable torsion-free abelian group. The words *computable group* will always refer to a (fixed) computable presentation.

Definition

A group $\mathcal{G}=(G:+,0)$ is *torsion-free* if non-zero multiples of non-zero elements are non-zero, i.e., if

$$(\forall x \in G)(\forall n \in \omega) [x \neq 0 \land n \neq 0 \implies nx \neq 0].$$

Rank

Theorem

A countable abelian group is torsion-free if and only if it is a subgroup of \mathbb{Q}^{ω} .

Definition

The *rank* of a countable torsion-free abelian group \mathcal{G} is the least cardinal κ such that \mathcal{G} is a subgroup of \mathbb{Q}^{κ} .

Examples of Torsion-Free Abelian Groups

Example

Any subgroup ${\mathcal G}$ of ${\mathbb Q}$ is torsion-free and has rank one.

Examples of Torsion-Free Abelian Groups

Example

Any subgroup $\mathcal G$ of $\mathbb Q$ is torsion-free and has rank one.

Example

The subgroup \mathcal{H} of $\mathbb{Q} \oplus \mathbb{Q}$ (viewed as having generators b_1 and b_2) generated by b_1 , b_2 , and $\frac{b_1+b_2}{2}$

So elements of
$$\mathcal{H}$$
 look like $\beta_1 b_1 + \beta_2 b_2 + \alpha \frac{b_1 + b_2}{2}$ for $\beta_1, \beta_2, \alpha \in \mathbb{Z}$.

has rank two.

Remark

Note that $\frac{b_1}{2}$ and $\frac{b_2}{2}$ do not belong to \mathcal{H} despite their sum $\frac{b_1+b_2}{2}$ belonging to \mathcal{H} . We will often abuse notation and write such things as $\frac{1}{2}b_1+\frac{1}{2}b_2$ for $\frac{b_1+b_2}{2}$.

Outline

- Classical Algebra Background
- Computing a Basis
- Computing an Order
 - With A Basis
 - Without A Basis
- Open Questions

The Motivating Theorem

Definition

Fix a group $\mathcal{G} = (G: +, 0)$. A set $B \subset G$ (not containing 0) is a *basis* if it is a maximal linearly independent set (with coefficients in \mathbb{Z}).

The Motivating Theorem

Definition

Fix a group $\mathcal{G} = (G: +, 0)$. A set $B \subset G$ (not containing 0) is a *basis* if it is a maximal linearly independent set (with coefficients in \mathbb{Z}).

Theorem

Every torsion-free abelian group has a basis.

The Motivating Theorem

Definition

Fix a group $\mathcal{G} = (G: +, 0)$. A set $B \subset G$ (not containing 0) is a *basis* if it is a maximal linearly independent set (with coefficients in \mathbb{Z}).

Theorem

Every torsion-free abelian group has a basis.

Question

Does this remain true in the effective setting?

In other words, does every computable torsion-free abelian group admit a computable basis?

Basis Results (I)

Proposition (Folklore (?))

Every computable torsion-free abelian group \mathcal{G} has a basis $B \subset G$ computable from $\mathbf{0}'$.

Proof.

Enumerate G as $\{a_i\}_{i\in\omega}$. Recursively determine if we should place $a_i\in B$ by checking whether a_i is independent (over \mathbb{Z}) from $\{a_0,\ldots,a_{i-1}\}$.

Basis Results (I)

Proposition (Folklore (?))

Every computable torsion-free abelian group \mathcal{G} has a basis $B \subset G$ computable from $\mathbf{0}'$.

Proof.

Enumerate G as $\{a_i\}_{i\in\omega}$. Recursively determine if we should place $a_i\in B$ by checking whether a_i is independent (over \mathbb{Z}) from $\{a_0,\ldots,a_{i-1}\}$.

Theorem

The following are equivalent (over RCA_0):

- ACA₀.
- Every torsion-free abelian group has a basis.

Basis Results (I)

Proof.

Note that the linear (in)dependence relation can be computed from a basis.

Given elements a_{i_0}, \ldots, a_{i_n} , write each as a linear combination of the basis elements. Determine linear (in)dependence using linear algebra.

Thus, it suffices to construct a computable group $\mathcal G$ for which the linear (in)dependence relation computes $\mathbf 0'$.

Let \mathcal{G} be the computable presentation of \mathbb{Z}^{ω} with generators $\{g_i\}_{i\in\omega}$. If i enters K at stage s, set $g_{2i+1}=s\,g_{2i}$.

Then $i \in K$ if and only if g_{2i} and g_{2i+1} are linearly dependent.

Basis Results (II)

Theorem (Dobritsa (1983))

Every computable torsion-free abelian group $\mathcal G$ has an isomorphic computable $\mathcal H$ admitting a computable basis.

Basis Results (II)

Theorem (Dobritsa (1983))

Every computable torsion-free abelian group $\mathcal G$ has an isomorphic computable $\mathcal H$ admitting a computable basis.

Corollary

Every computable torsion-free abelian group $\mathcal G$ of infinite rank has an isomorphic computable $\mathcal H$ for which every basis computes $\mathbf 0'$.

Proof.

Combine Dobritsa's construction with the ACA₀ construction.

Outline

- Classical Algebra Background
- Computing a Basis
- Computing an Order
 - With A Basis
 - Without A Basis
- Open Questions

The Motivating Question

Definition

An abelian group $\mathcal{G} = (G: +, 0)$ equipped with a binary relation \leq is *(totally) ordered* if the relation satisfies:

- antisymmetry (if $a \le b$ and $b \le a$, then a = b),
- transitivity (if $a \le b$ and $b \le c$, then $a \le c$),
- totality ($a \le b$ or $b \le a$), and
- translation invariance (if $a \le b$, then $a + c \le b + c$).

The Motivating Question

Definition

An abelian group $\mathcal{G} = (G: +, 0)$ equipped with a binary relation \leq is *(totally) ordered* if the relation satisfies:

- antisymmetry (if $a \le b$ and $b \le a$, then a = b),
- transitivity (if $a \le b$ and $b \le c$, then $a \le c$),
- totality ($a \le b$ or $b \le a$), and
- translation invariance (if $a \le b$, then $a + c \le b + c$).

Theorem (Levi (1942))

An abelian group is orderable if and only if it is torsion-free.

The Motivating Question

Definition

An abelian group $\mathcal{G} = (G:+,0)$ equipped with a binary relation \leq is *(totally) ordered* if the relation satisfies:

- antisymmetry (if $a \le b$ and $b \le a$, then a = b),
- transitivity (if $a \le b$ and $b \le c$, then $a \le c$),
- totality ($a \le b$ or $b \le a$), and
- translation invariance (if $a \le b$, then $a + c \le b + c$).

Theorem (Levi (1942))

An abelian group is orderable if and only if it is torsion-free.

Question

Does this remain true in the effective setting?

In other words, does every computable torsion-free abelian group admit a computable order?

Non-Archimedean Orders on \mathbb{Q}^{κ}

Example

Fixing a basis $\{b_0, b_1\}$ of \mathbb{Q}^2 , lexicograph order yields an ordering. Under this order, we have

$$b_0 \gg b_1 \gg 0$$

and so, for example, $\frac{1}{2}b_0 > \frac{1}{2}b_0 - 2b_1 > b_1 > 0 > -2b_0 + 18b_1$.

Non-Archimedean Orders on \mathbb{Q}^{κ}

Example

Fixing a basis $\{b_0, b_1\}$ of \mathbb{Q}^2 , lexicograph order yields an ordering. Under this order, we have

$$b_0 \gg b_1 \gg 0$$

and so, for example, $\frac{1}{2}b_0 > \frac{1}{2}b_0 - 2b_1 > b_1 > 0 > -2b_0 + 18b_1$.

Example

Fixing a basis $\{b_i\}_{i\in\omega}$ of \mathbb{Q}^ω , lexicograph order yields an ordering. Under this order, we have

$$b_0\gg b_1\gg b_2\gg\cdots\gg 0$$

and so, for example, $\frac{1}{2}b_0 > b_1 + b_2 > b_1 + 2b_3 > 0 > -b_2 + b_{18} > -b_2$.

Archimedean Orders on \mathbb{Q}^{κ}

Example

Fixing a basis $\{b_0, b_1\}$ of \mathbb{Q}^2 and an irrational $r \in \mathbb{R}$, the order induced by putting $b_0 := 1 \in \mathbb{R}$ and $b_1 := r$ is an ordering on \mathbb{Q}^2 .

Thus, for example if $r := \sqrt{2} \approx 1.41$, we have $1.4b_0 < b_1 < 1.5b_0$.

Archimedean Orders on \mathbb{Q}^{κ}

Example

Fixing a basis $\{b_0, b_1\}$ of \mathbb{Q}^2 and an irrational $r \in \mathbb{R}$, the order induced by putting $b_0 := 1 \in \mathbb{R}$ and $b_1 := r$ is an ordering on \mathbb{Q}^2 .

Thus, for example if $r := \sqrt{2} \approx 1.41$, we have $1.4b_0 < b_1 < 1.5b_0$.

Example

Fixing a basis $\{b_i\}_{i\in\omega}$ of \mathbb{Q}^{ω} , the order induced by putting $b_0:=1\in\mathbb{R}$ and $b_i:=\sqrt{p_i}$ for i>0 is an ordering on \mathbb{Q}^{ω} .

Under this order, we have $1.4b_0 < b_1 < 1.5b_0$ (as $\sqrt{p_1} = \sqrt{2} \approx 1.41$) and $1.2b_1 < b_2 < 1.3b_1$ (as $\sqrt{p_2}/\sqrt{p_1} = \sqrt{3}/\sqrt{2} \approx 1.22$).

Orders From a Basis

Theorem (Solomon (2002))

Fix a computable torsion-free abelian group \mathcal{G} with rank at least two. Let $B \subseteq G$ be an X-computable basis. Then \mathcal{G} has orders in all degrees computing X.

Proof.

Let r := X (with r irrational). Enumerate $B = \{b_i\}_{i \in \omega}$. The order on \mathcal{G} induced by

$$b_0 = rb_1 \gg b_2 \gg b_3 \gg 0$$

has degree X.

In order to compute X from the order, determine whether 0 is in X by comparing b_0 and $2b_1$: note $0 \in X$ if $b_0 < 2b_1$ and $0 \notin X$ if $b_0 > 2b_1$.

Orders From a Basis

Theorem (Solomon (2002))

Fix a computable torsion-free abelian group \mathcal{G} with rank at least two. Let $B \subseteq G$ be an X-computable basis. Then \mathcal{G} has orders in all degrees computing X.

Corollary

Fix a computable torsion-free abelian group $\mathcal G$. Then $\mathcal G$ has an order of every degree computing $\mathbf 0'$.

Corollary (Low Basis Theorem)

Every computable torsion-free abelian group has a low order.

Proof.

It is a Π_1^0 property for a relation to be an order.

Corollary (Low Basis Theorem)

Every computable torsion-free abelian group has a low order.

Proof.

It is a Π_1^0 property for a relation to be an order.

Theorem (Downey and Kurtz (1986))

There is a computable torsion-free abelian group admitting no computable order.

Corollary (Low Basis Theorem)

Every computable torsion-free abelian group has a low order.

Proof.

It is a Π_1^0 property for a relation to be an order.

Theorem (Downey and Kurtz (1986))

There is a computable torsion-free abelian group admitting no computable order.

Theorem (Hatzikiriakou and Simpson (1990))

The following are equivalent (over RCA₀):

- WKL₀.
- Every torsion-free abelian group is orderable.

Proof.

Let $f: \omega \to \omega$ and $g: \omega \to \omega$ be computable functions with disjoint range. Let $\mathcal G$ be the abelian group with generators y and x_i for $i \in \omega$ with relations

$$p_{2n+1}x_{f(n)} = y$$
 and $p_{2n}x_{g(n)} = -y$

(where p_k is the kth prime).

Show this group exists (in RCA₀) and is torsion-free.

Note that any order computes a separating set as:

- $k \in \text{range}(f)$ implies x_k and y have same sign
- $k \in \text{range}(g)$ implies x_k and y have opposite sign.

More Questions

Question

Is there, for every Π_1^0 tree \mathcal{P} , a computable torsion-free abelian group whose orders are in one-to-one correspondence with the paths in \mathcal{P} ?

More Questions

Question

Is there, for every Π_1^0 tree \mathcal{P} , a computable torsion-free abelian group whose orders are in one-to-one correspondence with the paths in \mathcal{P} ?

Remark

The immediate answer is No as \leq^* (where $y \leq^* x$ if and only if $x \leq y$) is an order whenever \leq is an order.

Further, the space of orders on a torsion-free abelian group has size two (if its rank is one) or size continuum (if its rank is greater than one).

More Questions

Question

Is there, for every Π_1^0 tree \mathcal{P} , a computable torsion-free abelian group whose orders are in one-to-one correspondence with the paths in \mathcal{P} ?

Remark

The immediate answer is No as \leq^* (where $y \leq^* x$ if and only if $x \leq y$) is an order whenever \leq is an order.

Further, the space of orders on a torsion-free abelian group has size two (if its rank is one) or size continuum (if its rank is greater than one).

Question

Is there a computable torsion-free abelian group with rank at least two whose degrees of orders is not upward closed?

Theorem (Kach, Lange, and Solomon)

There is a computable torsion-free abelian group \mathcal{G} of isomorphism type \mathbb{Q}^{ω} and a noncomputable c.e. set C such that:

- The group G has exactly two computable orders.
- Every C-computable order on G is computable.

Thus, the set of degrees of orders on G is not closed upwards.

Theorem (Kach, Lange, and Solomon)

There is a computable torsion-free abelian group $\mathcal G$ of isomorphism type $\mathbb Q^\omega$ and a noncomputable c.e. set C such that:

- The group G has exactly two computable orders.
- Every C-computable order on G is computable.

Thus, the set of degrees of orders on G is not closed upwards.

Proof.

Build the computable presentation \mathcal{G} , a computable order \leq , and the set C simultaneously via a finite injury construction.

For each $i, e \in \omega$, satisfy the requirements

 \mathcal{P}_i : That $C \neq \Phi_i$.

 \mathcal{N}_e : If Φ_e^C is an order on \mathcal{G} , then \leq_e^C is either \leq or \leq^* .

Theorem

There is a computable torsion-free abelian group \mathcal{G} of isomorphism type \mathbb{Z}^{ω} and a noncomputable c.e. set C such that:

- The group G has exactly two computable orders.
- Every C-computable order on G is computable.

Thus, the set of degrees of orders on G is not closed upwards.

Proof.

As before. The major differences are that we can no longer measure *size* using only multiples of b_0 and we can no longer create arbitrary rational dependencies.

Meeting an \mathcal{N}_e Requirement.

Meeting an \mathcal{N}_e Requirement.

Measure size by building the computable order so that the even basis elements b_{2k} satisfy $0 < b_{2k} \le \frac{1}{2^k}$, identifying $b_0 := 1 \in \mathbb{R}$. Maintain a basis restraint K preventing extra divisibility to any basis element b_k with k < K.

If THEM puts $b_s <_e^C nb_k$ or $(n+1)b_k <_e^C b_s$, we declare $b_s = qb_k$.

Meeting an \mathcal{N}_e Requirement.

Measure size by building the computable order so that the even basis elements b_{2k} satisfy $0 < b_{2k} \le \frac{1}{2^k}$, identifying $b_0 := 1 \in \mathbb{R}$. Maintain a basis restraint K preventing extra divisibility to any basis element b_k with k < K.

If THEM puts $b_s <_e^C nb_k$ or $(n+1)b_k <_e^C b_s$, we declare $b_s = qb_k$. If THEM puts $nb_k <_e^C b_s <_e^C (n+1)b_k$, we declare $b_s = m_1b_k - m_2b_j$.

Outline

- Classical Algebra Background
- Computing a Basis
- Computing an Order
 - With A Basis
 - Without A Basis
- Open Questions

The Questions

Question

Is the choice of \mathbb{Q}^{ω} and \mathbb{Z}^{ω} important? In other words, is there, for every computable torsion-free abelian group \mathcal{G} , an isomorphic computable \mathcal{H} for which the set of degrees of orders on \mathcal{H} is not upward closed?

The Questions

Question

Is the choice of \mathbb{Q}^{ω} and \mathbb{Z}^{ω} important? In other words, is there, for every computable torsion-free abelian group \mathcal{G} , an isomorphic computable \mathcal{H} for which the set of degrees of orders on \mathcal{H} is not upward closed?

Question

What more can be said about the set of degrees of orders for the groups \mathcal{G} constructed?

The Questions

Question

Is the choice of \mathbb{Q}^{ω} and \mathbb{Z}^{ω} important? In other words, is there, for every computable torsion-free abelian group \mathcal{G} , an isomorphic computable \mathcal{H} for which the set of degrees of orders on \mathcal{H} is not upward closed?

Question

What more can be said about the set of degrees of orders for the groups \mathcal{G} constructed?

Question

Is there a computable torsion-free abelian group whose orders are either computable or compute **0**'?

References

V. P. Dobritsa.

Some constructivizations of abelian groups.

Sibirsk. Mat. Zh., 24(2):18-25, 1983.

R. G. Downey and Stuart A. Kurtz.

Recursion theory and ordered groups.

Ann. Pure Appl. Logic, 32(2):137-151, 1986.

F. W. Levi.

Ordered groups.

Proc. Indian Acad. Sci., Sect. A., 16:256-263, 1942.

Reed Solomon.

 Π_1^0 classes and orderable groups.

Ann. Pure Appl. Logic, 115(1-3):279-302, 2002.