Characterizing the Computable Structures: Boolean Algebras and Linear Orders

Asher M. Kach

University of Wisconsin - Madison

Southern Wisconsin Logic Colloquium Thesis Defense 1 May 2007

Remark

Although I am grateful to many (consult my thesis), I do want to especially recognize and thank both the UW-Madison Math department and Steffen Lempp.

My committee, Jin-Yi Cai, Eric Knuth, Ken Kunen, Steffen Lempp, and Joel Robbin, also deserves special recognition.

General Background and Notation

2 Shuffle Sums

3 Boolean Algebras of Low Depth

< 17 ▶

→ ∃ →

A countable structure (with finite signature) is computable if its universe can be identified with ω in such as way as to make the functions and relations on it computable.

A countable structure (with finite signature) is computable if its universe can be identified with ω in such as way as to make the functions and relations on it computable.

Remark

Here we will be considering two specific classes of structures: Boolean algebras and linear orders. We view a Boolean algebra as a structure in the signature $\mathcal{B} = (B : +, \cdot, -, 0, 1)$ and a linear order as a structure in the signature $\mathcal{L} = (L : \prec)$.

For $n \in \omega$, define $\emptyset^{(\leq n)}$ to be the set

$$\emptyset^{(\leq n)} = \{ \langle k, m \rangle : m \in \emptyset^{(k)}, k \leq n \}.$$

Definition ([1])

Let $S \subseteq \omega$ be a set computable in $\emptyset^{(\omega)}$. Then S is (a, b) in the Feiner hierarchy if there exists an index e such that

- The function $\varphi_{e}^{\emptyset^{(\omega)}}$ is total and is the characteristic function of S, i.e., $\varphi_{e}^{\emptyset^{(\omega)}}(n) = \chi_{S}(n)$ for all n.
- Interpotential computations φ_e^{Ø(≤bn+a)}(n) and φ_e^{Ø(ω)}(n) are identical; in particular, the latter queries Ø^(ω) on no number ⟨k, m⟩ with k > bn + a.

イロト イ押ト イヨト イヨト

General Background and Notation

3 Boolean Algebras of Low Depth

A (10) A (10) A (10)

Let $S = \{\mathcal{L}_x\}$ be a countable set of linear orders. Then the shuffle sum of S, denoted $\sigma(S)$, is the linear order obtained by partitioning the rationals \mathbb{Q} into |S| many dense sets $\{Q_x\}$ and replacing each point $q \in Q_x$ with the linear order \mathcal{L}_x .

Let $S = \{\mathcal{L}_x\}$ be a countable set of linear orders. Then the shuffle sum of S, denoted $\sigma(S)$, is the linear order obtained by partitioning the rationals \mathbb{Q} into |S| many dense sets $\{Q_x\}$ and replacing each point $q \in Q_x$ with the linear order \mathcal{L}_x .

Definition

If $\mathcal{L} = (L : \prec)$ is a linear order and $\mathcal{L}_a = (L_a : \prec_a)$ is a linear order for each $a \in L$, the lexicographic sum of \mathcal{L} and $\{\mathcal{L}_a\}_{a \in L}$ is the linear order with universe $\{(a, b) : a \in L, b \in L_a\}$ under the lexicographic order induced by \prec and \prec_a .

Definition

The shuffle sum of a set $S = \{\mathcal{L}_x\}_{x \in \omega}$ is the linear order $\sum_{a \in \mathbb{Q}} \mathcal{L}_a$, where \mathcal{L}_a is the linear order \mathcal{L}_x if $a \in Q_x$.

A set $S \subseteq \omega + 1$ is a limit infimum set, written LIMINF set, if there is a total computable function $g(x, s) : \omega \times \omega \rightarrow \omega$ such that the function

 $f(x) = \liminf_{s} g(x, s)$

enumerates S. Here we use the convention that $\liminf_{s} g(x, s) = \omega$ if $\lim_{s} g(x, s) = \infty$.

Definition ([2])

A set $S \subseteq \omega + 1$ is a limitwise monotonic set relative to $(\mathbf{0}')$, written LIMMON $(\mathbf{0}')$ set, if there is a total $(\mathbf{0}')$ -computable function $\tilde{g}(x, t) : \omega \times \omega \to \omega$ satisfying

 $ilde{g}(x,t) \leq ilde{g}(x,t+1)$ for all x and t

such that the function

 $\tilde{f}(x) = \lim_t \tilde{g}(x, t).$

enumerates S. Again we use the convention that $\lim_t \tilde{g}(x, t) = \omega$ if $\lim_t \tilde{g}(x, t) = \infty$.

Theorem (K)

For sets $S \subseteq \omega + 1$, the following are equivalent:

- The shuffle sum $\sigma(S)$ is computable.
- The set S is a LIMINF set.
- The set S is a LIMMON (0') set.

Proof (Sketch).

From a computable presentation of $\sigma(S)$, define a computable function g(x, s) as the "sum" of the number of points to the left of x in the block of x, one, and the number of points to the right of x in the block of x.

As the block of x is not computable, we guess that it extends from the point last enumerated to the left of x to the point last enumerated to the right of x (exclusive).

Verify that this approximation works, separating the case when the block size of x is finite from when the block size is infinite.

Proof (Sketch).

From a function g witnessing that S is a LIMINF set, build infinitely many copies of the linear order g(x, s) at all rationals in the set Q_x .

When the value of g(x, s) increases, add additional points. When the value of g(x, s) decreases, dissassociate the extra points from the rational in $q \in Q_x$.

Prioritize the disassociated points so that they eventually become permanently associated to some other rational $q' \in Q_{x'}$.

Proof of (2) if and only if (3)

Proof (Sketch).

Asher M. Kach (UW - Madison)

イロト イポト イヨト イヨ

Proof (Sketch).

From a computable function g(r, s) witnessing that *S* is a LIMINF set, define a (**0**')-computable function $\tilde{g}(r, t)$ witnessing that *S* is a LIMMON (**0**') set.

Proof (Sketch).

From a computable function g(r, s) witnessing that *S* is a LIMINF set, define a (**0**')-computable function $\tilde{g}(r, t)$ witnessing that *S* is a LIMMON (**0**') set.

Conversely, from a (**0**')-computable function $\tilde{g}(r, t)$ witnessing that S is a LIMMON (**0**') set, define a computable function g(r, s) witnessing that S is a LIMINF set.

General Background and Notation

2 Shuffle Sums

Definition ([5])

A measure σ is a map from the countable atomless Boolean algebra \mathcal{F} to the countable ordinals satisfying $\sigma(\mathbf{x} + \mathbf{y}) = \max\{\sigma(\mathbf{x}), \sigma(\mathbf{y})\}.$

・ロト ・ 同ト ・ ヨト ・ ヨ

Definition ([5])

A measure σ is a map from the countable atomless Boolean algebra \mathcal{F} to the countable ordinals satisfying $\sigma(\mathbf{x} + \mathbf{y}) = \max\{\sigma(\mathbf{x}), \sigma(\mathbf{y})\}.$

Remark

By associating the countable atomless Boolean algebra with finite unions of cones of $2^{<\omega}$, a measure can be viewed as a map $\sigma : 2^{<\omega} \to \omega_1$ satisfying $\sigma(\tau) = \max\{\sigma(\tau \cap 0), \sigma(\tau \cap 1)\}$. Under this interpretation, a measure can be thought of as a labelled binary tree.

イロト イ理ト イヨト イヨト 二臣

Definition ([5])

If $\sigma : \mathcal{F} \to \omega_1$ is a measure, define maps $\Delta^{\alpha} \sigma$ with domain \mathcal{F} for $\alpha < \omega_1$ recursively by setting $\Delta^0 \sigma = \sigma$,

$$\Delta^{\alpha+1}\sigma(\mathbf{x}) = \{(\Delta^{\alpha}\sigma(\mathbf{x}_1),\ldots,\Delta^{\alpha}\sigma(\mathbf{x}_n)): \mathbf{x} = \mathbf{x}_1 \oplus \cdots \oplus \mathbf{x}_n\},\$$

and $\Delta^{\gamma}\sigma(\mathbf{x})$ as the inverse limit of $\Delta^{\beta}\sigma(\mathbf{x})$ for $\beta < \gamma$.

The set $\Delta^{\alpha} \sigma(\mathbf{1}_{\mathcal{B}})$ is the α^{th} derivative of \mathcal{B}_{σ} .

Theorem (K)

For each set $S \subseteq \omega_1$ satisfying |S| = 1, there is exactly one depth zero Boolean algebra with range S, namely $B_{u(S)} = B_{v(S)}$.

For each set $S \subseteq \omega_1$ with greatest element satisfying |S| > 1, there are exactly two depth zero Boolean algebras with range *S*, namely $B_{u(S)}$ and $B_{v(S)}$.

Theorem (K)

For each set $S \subseteq \omega_1$ satisfying |S| = 1, there is exactly one depth zero Boolean algebra with range S, namely $B_{u(S)} = B_{v(S)}$.

For each set $S \subseteq \omega_1$ with greatest element satisfying |S| > 1, there are exactly two depth zero Boolean algebras with range S, namely $B_{u(S)}$ and $B_{v(S)}$.

Proof (Sketch).

Show the existence of at least two, then of at most two. For the former, define the Boolean algebras $\mathcal{B}_{u(\alpha+1)}$ and $\mathcal{B}_{v(\alpha+1)}$ by induction on α . For the latter, either use pseudo-indecomposability and primitiveness or appeal directly to the depth zero definition.

・ロト ・ 四ト ・ ヨト ・ ヨト

Proposition (K)

There are continuum many depth one, rank ω Boolean algebras with range $\omega + 1$.

Proposition (K)

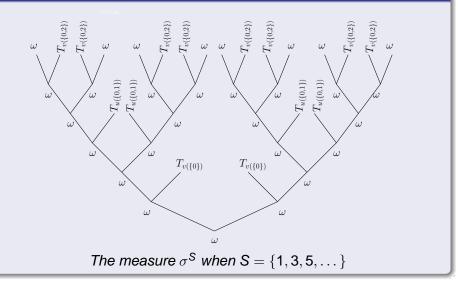
There are continuum many depth one, rank ω Boolean algebras with range $\omega + 1$.

Proof (Sketch).

Code subsets of the positive integers into a Boolean algebra \mathcal{B}^S . Have $\sigma_{u(\{0,n\})}$ be a subalgebra of \mathcal{B}^S if and only if $n \in S$; have $\sigma_{v(\{0,n\})}$ be a subalgebra of \mathcal{B}^S if and only if $n \notin S$.

Depth One, Rank ω Example

Example



Asher M. Kach (UW - Madison)

Depth ω , Rank One

Proposition (K)

There are continuum many depth ω , rank one measures.

Proposition (K)

There are continuum many depth ω , rank one measures.

Proof (Sketch).

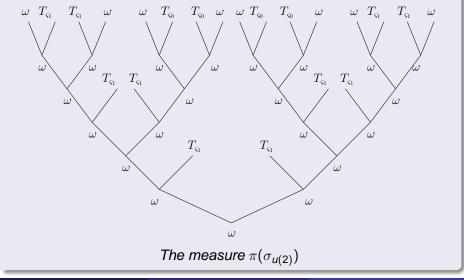
Define a map π from the space of uniform Boolean algebras to the space of uniform rank one Boolean algebras. The algebra $\pi(\mathcal{B})$ is the algebra generated by the (any) characteristic function of a subset of the rationals whose clopen algebra is \mathcal{B} .

Argue that $\pi(\mathcal{B}_{u(S)})$ and $\pi(\mathcal{B}_{v(S)})$ are (at most) depth ω for sets $S \subseteq \omega + 1$.

イロト イ押ト イヨト イヨト

Depth ω , Rank One Example

Example



Asher M. Kach (UW - Madison)

Proposition (K)

If σ is a depth zero measure of rank at most $\lambda < \omega_1^{CK}$, then σ is computable (i.e., there is a computable measure σ' such that $\mathcal{B}_{\sigma} = \mathcal{B}_{\sigma'}$) if and only if $\Delta \sigma(1_{\mathcal{B}})$ is computably enumerable.

Moreover, from an index for either σ or $\Delta \sigma(\mathbf{1}_{\mathcal{B}})$, an index for the other can be given uniformly.

Proposition (K)

If σ is a depth zero measure of rank at most $\lambda < \omega_1^{CK}$, then σ is computable (i.e., there is a computable measure σ' such that $\mathcal{B}_{\sigma} = \mathcal{B}_{\sigma'}$) if and only if $\Delta \sigma(\mathbf{1}_{\mathcal{B}})$ is computably enumerable.

Moreover, from an index for either σ or $\Delta \sigma(\mathbf{1}_{\beta})$, an index for the other can be given uniformly.

Theorem (K)

Let $S \subseteq \omega + 1$ be a set with greatest element. Then the following are equivalent:

- **1** The Boolean algebra $\mathcal{B}_{u(S)}$ is computable.
- 2 The Boolean algebra $\mathcal{B}_{v(S)}$ is computable.
- The set S is (2,2) in the Feiner hierarchy.

Proof (Sketch).

Uniformly in *n*, define Σ_{2n+3}^{0} sentences φ_n satisfying

$$\mathcal{B}_{u(S)}, \mathcal{B}_{v(S)} \models \varphi_n$$
 if and only if $n \in S$.

When defining these formulas, make use of the fact that there are formulas (uniform in α) of complexity $\Pi^0_{2\alpha+1}$ identifying whether an element is an α -atom.

Proof (Sketch).

Assume without loss of generality that S is infinite.

Construct $\mathcal{B}_{u(S)}$ ($\mathcal{B}_{v(S)}$, respectively) from an index *e* witnessing that *S* is (2,2) in the Feiner hierarchy. Do so by building a linear order

$$\mathcal{L} = \sum_{ au \in \mathbf{2}^{<\omega}} \mathcal{L}_{ au}$$

and taking its interval algebra.

The linear order \mathcal{L}_{τ} depends on *S* and the value of $\sigma_{u(\omega+1)}(\tau)$ ($\sigma_{v(\omega+1)}(\tau)$, respectively). It is built by iterating the following technical lemma.

・ロト ・ 同ト ・ ヨト ・ ヨ

Lemma (K)

Uniformly in

a Δ₃⁰ index for the atomic diagram D(A) of a linear order
A = (A : ≺) = ({a₀, a₁, ...} : ≺) with distinguished first element

• and an index for a Σ_3^0 predicate $\exists n \forall u \exists v R(n, u, v)$,

there is an index for a Δ_1^0 linear order \mathcal{B} such that $\mathcal{B} \cong \sum_{a \in \mathcal{A}} \mathcal{L}_a$, where $\mathcal{L}_{a_n} = 1 + \eta + \omega$ if $\forall u \exists v R(n, u, v)$ and $\mathcal{L}_{a_n} = \omega$ otherwise.

Proof (Sketch).

An infinite injury argument using work of Thurber as an outline. Approximate the atomic diagram of A using the Limit Lemma twice, imposing (without loss of uniformity) constraints on the approximating functions.

Introduce chronological priorities and build each block as the sum of a singleton segment, a dense segment, and a discrete segment. As the approximations change, attach and detach blocks appropriately.

Bibliography

Feiner, Lawrence.

Hierarchies of Boolean algebras. Journal of Symbolic Logic, 35:365-374, 1970.

Hisamiev, N.G.

Criterion for constructivizability of a direct sum of cyclic *p*-groups *Izv. Akad. Nauk Kazakh. SSR Ser. Fiz.-Mat.* 1:51-55,86, 1981.

Kach, Asher.

Computable shuffle sums of ordinals. Archives of Mathematical Logic, accepted.

Kach, Asher.

Boolean algebras of low Ketonen depth. In preparation.

Ketonen, Jussi.

The structure of countable Boolean algebras. *Annals of Mathematics*, 108(1):41-89, 1978.

Pierce, R.S.

Countable Boolean algebras.

Handbook of Boolean Algebras, Vol. 3:775-876, 1989.

イロト イポト イヨト イヨ