
Characterizing the Computable Structures:
Boolean Algebras and Linear Orders

Asher M. Kach

University of Wisconsin - Madison

Southern Wisconsin Logic Colloquium
Thesis Defense

1 May 2007

Asher M. Kach (UW - Madison) BAs and LOs SWLC 1 / 27



Acknowledgements

Remark
Although I am grateful to many (consult my thesis), I do want to
especially recognize and thank both the UW-Madison Math
department and Steffen Lempp.

My committee, Jin-Yi Cai, Eric Knuth, Ken Kunen, Steffen Lempp, and
Joel Robbin, also deserves special recognition.

Asher M. Kach (UW - Madison) BAs and LOs SWLC 2 / 27



Outline

1 General Background and Notation

2 Shuffle Sums

3 Boolean Algebras of Low Depth

Asher M. Kach (UW - Madison) BAs and LOs SWLC 3 / 27



Computable Model Theory

Definition
A countable structure (with finite signature) is computable if its
universe can be identified with ω in such as way as to make the
functions and relations on it computable.

Remark
Here we will be considering two specific classes of structures: Boolean
algebras and linear orders. We view a Boolean algebra as a structure
in the signature B = (B : +, ·,−, 0, 1) and a linear order as a structure
in the signature L = (L :≺).
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The Feiner Hierarchy

Definition

For n ∈ ω, define ∅(≤n) to be the set

∅(≤n) = {〈k , m〉 : m ∈ ∅(k), k ≤ n}.

Definition ([1])

Let S ⊆ ω be a set computable in ∅(ω). Then S is (a, b) in the Feiner
hierarchy if there exists an index e such that

1 The function ϕ∅(ω)

e is total and is the characteristic function of S,
i.e., ϕ∅(ω)

e (n) = χS(n) for all n.

2 The computations ϕ∅(≤bn+a)

e (n) and ϕ∅(ω)

e (n) are identical; in
particular, the latter queries ∅(ω) on no number 〈k , m〉 with
k > bn + a.
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Shuffle Sums

Definition
Let S = {Lx} be a countable set of linear orders. Then the shuffle sum
of S, denoted σ(S), is the linear order obtained by partitioning the
rationals Q into |S| many dense sets {Qx} and replacing each point
q ∈ Qx with the linear order Lx .

Definition
If L = (L :≺) is a linear order and La = (La :≺a) is a linear order for
each a ∈ L, the lexicographic sum of L and {La}a∈L is the linear order
with universe {(a, b) : a ∈ L, b ∈ La} under the lexicographic order
induced by ≺ and ≺a.

Definition
The shuffle sum of a set S = {Lx}x∈ω is the linear order

∑
a∈Q La,

where La is the linear order Lx if a ∈ Qx .
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LIMINF Sets

Definition
A set S ⊆ ω + 1 is a limit infimum set, written LIMINF set, if there is a
total computable function g(x , s) : ω × ω → ω such that the function

f (x) = lim infs g(x , s)

enumerates S. Here we use the convention that lim infs g(x , s) = ω if
lims g(x , s) = ∞.
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LIMMON Sets

Definition ([2])

A set S ⊆ ω + 1 is a limitwise monotonic set relative to (0′), written
LIMMON (0′) set, if there is a total (0′)-computable function
g̃(x , t) : ω × ω → ω satisfying

g̃(x , t) ≤ g̃(x , t + 1) for all x and t

such that the function

f̃ (x) = limt g̃(x , t).

enumerates S. Again we use the convention that limt g̃(x , t) = ω if
limt g̃(x , t) = ∞.
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Shuffle Sums: The Main Result

Theorem (K)
For sets S ⊆ ω + 1, the following are equivalent:

1 The shuffle sum σ(S) is computable.
2 The set S is a LIMINF set.
3 The set S is a LIMMON (0′) set.
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Proof of (1) implies (2)

Proof (Sketch).
From a computable presentation of σ(S), define a computable function
g(x , s) as the “sum” of the number of points to the left of x in the block
of x , one, and the number of points to the right of x in the block of x .

As the block of x is not computable, we guess that it extends from the
point last enumerated to the left of x to the point last enumerated to the
right of x (exclusive).

Verify that this approximation works, separating the case when the
block size of x is finite from when the block size is infinite.
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Proof of (2) implies (1)

Proof (Sketch).
From a function g witnessing that S is a LIMINF set, build infinitely
many copies of the linear order g(x , s) at all rationals in the set Qx .

When the value of g(x , s) increases, add additional points. When the
value of g(x , s) decreases, dissassociate the extra points from the
rational in q ∈ Qx .

Prioritize the disassociated points so that they eventually become
permanently associated to some other rational q′ ∈ Qx ′ .
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Proof of (2) if and only if (3)

Proof (Sketch).

From a computable function g(r , s) witnessing that S is a LIMINF set,
define a (0′)-computable function g̃(r , t) witnessing that S is a
LIMMON (0′) set.

Conversely, from a (0′)-computable function g̃(r , t) witnessing that S is
a LIMMON (0′) set, define a computable function g(r , s) witnessing
that S is a LIMINF set.
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Measures

Definition ([5])
A measure σ is a map from the countable atomless Boolean algebra F
to the countable ordinals satisfying σ(x + y) = max{σ(x), σ(y)}.

Remark
By associating the countable atomless Boolean algebra with finite
unions of cones of 2<ω, a measure can be viewed as a map
σ : 2<ω → ω1 satisfying σ(τ) = max{σ(τ a 0), σ(τ a 1)}. Under this
interpretation, a measure can be thought of as a labelled binary tree.
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Measure Derivatives

Definition ([5])
If σ : F → ω1 is a measure, define maps ∆ασ with domain F for
α < ω1 recursively by setting ∆0σ = σ,

∆α+1σ(x) = {(∆ασ(x1), . . . ,∆
ασ(xn)) : x = x1 ⊕ · · · ⊕ xn},

and ∆γσ(x) as the inverse limit of ∆βσ(x) for β < γ.

The set ∆ασ(1B) is the αth derivative of Bσ.
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Classical Depth Zero

Theorem (K)
For each set S ⊆ ω1 satisfying |S| = 1, there is exactly one depth zero
Boolean algebra with range S, namely Bu(S) = Bv(S).

For each set S ⊆ ω1 with greatest element satisfying |S| > 1, there are
exactly two depth zero Boolean algebras with range S, namely Bu(S)

and Bv(S).

Proof (Sketch).
Show the existence of at least two, then of at most two. For the former,
define the Boolean algebras Bu(α+1) and Bv(α+1) by induction on α.
For the latter, either use pseudo-indecomposability and primitiveness
or appeal directly to the depth zero definition.
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Depth One, Rank ω

Proposition (K)
There are continuum many depth one, rank ω Boolean algebras with
range ω + 1.

Proof (Sketch).

Code subsets of the positive integers into a Boolean algebra BS. Have
σu({0,n}) be a subalgebra of BS if and only if n ∈ S; have σv({0,n}) be a
subalgebra of BS if and only if n 6∈ S.
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Depth One, Rank ω Example

Example
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The measure σS when S = {1, 3, 5, . . . }
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Depth ω, Rank One

Proposition (K)
There are continuum many depth ω, rank one measures.

Proof (Sketch).
Define a map π from the space of uniform Boolean algebras to the
space of uniform rank one Boolean algebras. The algebra π(B) is the
algebra generated by the (any) characteristic function of a subset of
the rationals whose clopen algebra is B.

Argue that π(Bu(S)) and π(Bv(S)) are (at most) depth ω for sets
S ⊆ ω + 1.
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Depth ω, Rank One Example
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Effective Boolean Algebras: The Main Results

Proposition (K)

If σ is a depth zero measure of rank at most λ < ωCK
1 , then σ is

computable (i.e., there is a computable measure σ′ such that Bσ = Bσ′)
if and only if ∆σ(1B) is computably enumerable.

Moreover, from an index for either σ or ∆σ(1B), an index for the other
can be given uniformly.

Theorem (K)

Let S ⊆ ω + 1 be a set with greatest element. Then the following are
equivalent:

1 The Boolean algebra Bu(S) is computable.
2 The Boolean algebra Bv(S) is computable.
3 The set S is (2, 2) in the Feiner hierarchy.
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Proof of (1), (2) implies (3)

Proof (Sketch).

Uniformly in n, define Σ0
2n+3 sentences ϕn satisfying

Bu(S),Bv(S) |= ϕn if and only if n ∈ S.

When defining these formulas, make use of the fact that there are
formulas (uniform in α) of complexity Π0

2α+1 identifying whether an
element is an α-atom.
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Proof of (3) implies (1), (2)

Proof (Sketch).
Assume without loss of generality that S is infinite.

Construct Bu(S) (Bv(S), respectively) from an index e witnessing that S
is (2, 2) in the Feiner hierarchy. Do so by building a linear order

L =
∑

τ∈2<ω

Lτ

and taking its interval algebra.

The linear order Lτ depends on S and the value of σu(ω+1)(τ)
(σv(ω+1)(τ), respectively). It is built by iterating the following technical
lemma.
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Technical Lemma (Statement)

Lemma (K)

Uniformly in

a ∆0
3 index for the atomic diagram D(A) of a linear order

A = (A :≺) = ({a0, a1, . . . } :≺) with distinguished first element

and an index for a Σ0
3 predicate ∃n∀u∃vR(n, u, v),

there is an index for a ∆0
1 linear order B such that B ∼=

∑
a∈A La, where

Lan = 1 + η + ω if ∀u∃vR(n, u, v) and Lan = ω otherwise.
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Technical Lemma (Proof)

Proof (Sketch).
An infinite injury argument using work of Thurber as an outline.
Approximate the atomic diagram of A using the Limit Lemma twice,
imposing (without loss of uniformity) constraints on the approximating
functions.

Introduce chronological priorities and build each block as the sum of a
singleton segment, a dense segment, and a discrete segment. As the
approximations change, attach and detach blocks appropriately.
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