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Abstract

Almost everyone, mathematician or not, is comfortable with

the standard model (N : +, ·) of arithmetic. Less familiar, even

among logicians, are the non-standard models of arithmetic. In

this talk we prove their existence, explore their structure,

discuss their uniqueness, and examine various model and

computability theoretic properties they possess. As much as is

reasonably possible, the history of their discovery and study will

be integrated into the talk.

Slides are available online at

http://www.math.wisc.edu/~kach/mathematics/nsmoa

or from the author at kach@math.wisc.edu.
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Definitions and Notation

Throughout we will refer to N0 = (N : +, ·) as the standard model
of arithmetic. Any model of Th(N0) not isomorphic to N0 will be
termed a non-standard model of arithmetic, or more briefly a
non-standard model.

An element x ∈M will be called finite if x ∈ N0; otherwise x will
be called infinite.

Working in a model M, we will say that x is less than or equal to
y, denoted x ≤ y, if there is a z ∈M such that x+ z = y. We
define y −· x to be z if such a z exists and 0 if no such z exists.

We will use N, Z, Q, and R to denote both the usual set and its
order type. If α and β are order types, we will use αβ to denote the
order type obtained by replacing each element of β by a copy of α.
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Existence of Non-Standard Models

Theorem: (Skolem, 1934 / 1955) There is a countable
non-standard model of arithmetic.

Proof 1: (Idea) Letting F = {fi : i ∈ ω} be the set of
definable functions in N0, define a one-to-one increasing
function g that allows an ordering to be put on
equivalence classes of F . Define addition and
multiplication to be pointwise and verify that
(F/≡: +/≡, ·/≡) ∈ Mod(Th(N0)).

Proof 2: (Idea) After augmenting the language with a
constant c, use the Compactness Theorem to show the
consistency of an infinite number via the set of
sentences Φ = {c > n : n ∈ ω}.
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Order Types of Non-Standard Models

Theorem: (Henkin, 1950) The order type of any non-standard
model of arithmetic is of the form N + Zθ for some dense linear
order θ without endpoints.

Proof: (Sketch) For denseness, between any two elements
a� b, either q = (a+ b)/2 or q = (a+ b+ 1)/2 exists.
In either case, it must be that a� q � b. Extend q to
a Z-chain by adding and subtracting finite integers. For
unboundedness, for any infinite a, the element 2a must
satisfy a� 2a.

Corollary: Any countable non-standard model of arithmetic has
order type N + ZQ.

Proof: Up to isomorphism, the only countable dense
linear order without endpoints is Q.
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Continuum Many Countable Non-Standard Models

Theorem: There are exactly 2ℵ0 non-isomorphic countable
non-standard models of arithmetic.

Proof: (Sketch) Augment the language with an extra
constant c. Let P be any set of (finite) prime numbers
and let ΦP be the set of sentences

{p | c : p ∈ P} ∪ {p 6 | c : p 6∈ P}.

Use the Compactness Theorem to show consistency of
ΦP and Löwenheim - Skolem to get a countable model.
Finally argue that if there were fewer than continuum
many countable models, then not all types would be
realised.
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The Overspill Principle

Theorem: Let M be a non-standard model of arithmetic and let b
be any element of M .

(Weak Overspill) Let ϕ(x, y) have free variables x and y. Then

∀x ∈ ω[M |= ϕ(x, b)]

if and only if

∃a infinite [M |= (∀x < a)ϕ(x, b)].

Proof: (Sketch) Show that the set of natural numbers
ω ⊂M is not definable (using parameters) in M. For
the non-trivial direction, if there was no such infinite a,
use that ω is not definable to contradict that M was
assumed to be a non-standard model.
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The Overspill Principle (Continued)

(Strong Overspill) Let ϕ(x, y, z) have free variables x, y, and z,
and suppose ϕ(x, y, b) defines a function F : M →M . Then

∀x ∈ ω[F (x) is infinite]

if and only if

∃a infinite ∀x < a[F (x) is infinite].

Proof: For the non-trivial direction, apply Weak Overspill
to the formula ϕ(x) given by Fx > x.

Corollary: For any infinite integer a, there is an infinite integer c
with 2c < a.

Proof: As 2x is finite for all finite integers x, and hence
smaller than a, there must be an infinite integer c with
2c < a by Weak Overspill.
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Order Type of the Reals Not Realised

Theorem: (Klaus Potthoff) There is no non-standard model of
arithmetic with order type N + ZR.

Proof: (Sketch) Assume there was a non-standard model
of order type N + ZR, and let a be any infinite element
of it. Identify real numbers r with the corresponding
Z-chain, Zr. Let rn for n ∈ ω be the Zr in which the
element na resides. As the rn are increasing and
bounded by the copy of Z in which the element a2

resides, the sequence {rn} converges to some real
number r. Let b be any element of Zr, choosing b
smaller than the multiple of a in Zr if one exists. Define
S = {x : a|x and x < b}. Then ω = {n : na ∈ S}, a
contradiction to ω not being definable in any
non-standard model of arithmetic.
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Extension Types

Let M⊆ N be models of arithmetic, not necessarily non-standard.

Definition: An element a ∈ N −M is said to be M-infinite if
a > b for all b ∈M ; otherwise it is said to be M-finite.

Definition: If every element of N −M is M-infinite, then N is
said to be an end extension of M. We write M⊆e N in this case.

If every element of N −M is M-finite, then N is said to be a
cofinal extension of M. We write M⊆c N in this case.

If N −M contains bothM-finite andM-infinite integers, then N is
said to be a mixed extension ofM. We writeM⊆m N in this case.
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Extension Existence

Theorem: Every non-standard model M of PA has a proper
elementary mixed extension (trivial), a proper elementary end
extension (MacDowell and Specker, 1961), and a proper elementary
cofinal extension (Rabin, 1962).

Theorem: (Gaifman, 1971) Let M⊆ N be models of PA. Then
there is a unique model M̂ of PA such that M⊆c M̂ ⊆e N .
Moreover, the cofinal extension M⊆c M̂ is elementary.

Corollary: Cofinal extensions are necessarily elementary.

Proof: Let M⊆ N be any cofinal extension. Then
M̂ = N by uniqueness and so the extension is
elementary.
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Recovering a Structure
From End Segments

Theorem: (Smoryński, 1977) Let M be a model of arithmetic
with M = I ∪ E, an initial segment and end segment. Then M can
be completely recovered from the structure E = (E : +, ·).

Proof: (Idea) Similar to the construction of a field of
quotients from an integral domain. In E , define x < y,
S(x) = y (i.e. x+ 1 = y), and x|y. With

M ′ = {(a, b) ∈ E2 : E |= b|a},

argue that
M∼= (M ′/≡: +/≡, ·/≡),

where ≡ is the equivalence relation given by
(a, b) ≡ (c, d) if and only if ad = bc.
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Corollaries

Corollary: If M1 and M2 are models of arithmetic with
isomorphic end segments, then M1 and M2 are isomorphic.

Corollary: The theory of non-standard parts of non-standard
models of PA is Π1

1 complete.

Corollary: The theory of end segments of non-standard models of
PA is recursively axiomatizable.
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A Number Theoretic Result

Theorem: (Rabin, 1962) For every non-standard model of
arithmetic M, there are parameters ai1...in

for 0 ≤ ij ≤ k in M

such that the diophantine equation∑
0≤ij≤k

ai1...int
i1
1 . . . tin

n = 0

is not solvable in M but is solvable in some model of arithmetic
M′ with M⊂M′.

Remark: Note that a diophantine equation with parameters from
the standard model is solvable in the standard model if and only if
it is solvable in some non-standard model.
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Standard Systems

Definition: Let M be a model of arithmetic. A set X ⊆ ω is
standard in M if there is a formula ϕ(x, ȳ) and b̄ ∈M such that
X = {x ∈ ω :M |= ϕ(x, b̄)}. The standard system of M is the
collection of standard sets in M.

Proposition: If X is a standard set in M, then X has arbitrarily
small infinite codes.

Proof: Let X be defined by ϕ(x, ȳ) and b̄. For any infinite
integer a, let c be an infinite integer with 2c < a. Define

F (x) =

2x if ϕ(x, b̄)

0 otherwise.

Then d =
∑c−2

i=0 F (x) + 2c−1 < 2c < a is an infinite code
for X.
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Embeddability Results

Theorem: Let M and N be countable non-standard models of
arithmetic.

• (Friedman) Then M is embeddable in N if and only if
SSym(M) ⊆ SSym(N ) and Th∃(M) ⊆ Th∃(N ).

• (Friedman) Then M is isomorphic to an initial segment of N if
and only if SSym(M) = SSym(N ) and ThΣ1(M) ⊆ ThΣ1(N ).

• (Wilkie, 1977) Then M is isomorphic to arbitrarily large initial
segments of N if and only if SSym(M) = SSym(N ) and
ThΠ2(M) ⊆ ThΠ2(N ).

Corollary: Any countable non-standard model of arithmetic is
isomorphic to a proper initial segment of itself.
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Random Theorems

Theorem: (Rabin, 1962) There is an ascending chain
M1 ⊂M2 ⊂ . . . of models of arithmetic such that the union
M = ∪iMi is not a model of arithmetic.

Corollary: There is no AE set S ⊂ Th(N0) such that S |= Th(N0).

Proof: The union of a ascending chain of models of an AE
set S is a model of S.

Theorem: (Rabin, 1962) There is a non-standard model of
arithmetic M with elementary submodels M1 and M2 such that
M1 ∩M2 is not a model of arithmetic.

Theorem: (Knight, 1973, 1975) Let Σ be a complete type with
respect to Th(N0) omitted in N0. Then for every cardinal κ, there
is a model of Th(N0) with cardinality κ omitting the type Σ.
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C. Smoryński, Lectures on nonstandard models of arithmetic: Commemorating Guiseppe Peano, in Logic

Colloquium ’82, North-Holland, 1984, pp. 1-70.

17


