Embeddings of Computable Linear Orders

Asher M. Kach

University of Connecticut - Storrs

Southern Wisconsin Logic Colloquium
11 March 2008
Definition

A infinite order type \mathcal{L} is *computable* if it has a *computable presentation*, i.e., if there is a computable binary relation \prec on ω such that $\mathcal{L} \cong (\omega : \prec)$.

If $\mathcal{L}_1 = (L_1 : \prec_1)$ and $\mathcal{L}_2 = (L_2 : \prec_2)$ are computable presentations of computable linear orders, then an embedding $\pi : L_1 \rightarrow L_2$ is *computable* if π is computable as a function.
Definition

A infinite order type \mathcal{L} is *computable* if it has a *computable presentation*, i.e., if there is a computable binary relation \prec on ω such that $\mathcal{L} \cong (\omega : \prec)$.

If $\mathcal{L}_1 = (L_1 : \prec_1)$ and $\mathcal{L}_2 = (L_2 : \prec_2)$ are computable presentations of computable linear orders, then an embedding $\pi : L_1 \rightarrow L_2$ is *computable* if π is computable as a function.

Theorem (Folklore)

Uniformly in an index for a Δ^0_3 linear order \mathcal{L} with distinguished least element, there is an index for a computable presentation of the linear order $\omega \cdot \mathcal{L}$.
Theorem (Folklore)

If L is an infinite order type, then at least one of ω or ω^* classically embeds.
Theorem (Folklore)

If \mathcal{L} is an infinite order type, then at least one of ω or ω^* classically embeds.

Theorem (Denisov; Tennenbaum; Lerman)

The order types ω, ω^*, $\omega + \omega^*$, and $\omega + \zeta \cdot \eta + \omega^*$ form a bases for computable presentations of computable linear orders. In other words, if $\mathcal{L} = (L : \prec)$ is any computable presentation of a computable linear order, there is a computable subset of order type one of these.
Theorem (Denisov; Tennenbaum)

There is a computable presentation of the order type $\omega + \omega^*$ such that neither ω nor ω^* computably embeds.
Theorem (Denisov; Tennenbaum)

There is a computable presentation of the order type $\omega + \omega^$ such that neither ω nor ω^* computably embeds.*

Proof.

We construct a computable presentation of the order type $\omega + \omega^*$ meeting the following requirements \mathcal{R}_e.

\mathcal{R}_e: *If W_e is infinite, then $W_e \not\subseteq \omega$ and $W_e \not\subseteq \omega^*$.*

We meet \mathcal{R}_e by putting one element of W_e into ω and one element into ω^*. To facilitate this, we maintain a virtual fence separating these points with priority e. Note that if a higher priority fence prevents us from separating points in W_e, we can wait for additional points to be enumerated; if none appear, then we win as $|W_e| < \infty$. □
The Question

Remark

It is natural to ask what can be said about the effectiveness of embeddings of L_1 into L_2, allowing the presentations of L_1 and L_2 to vary to minimize the complexity of the embedding.
Remark

It is natural to ask what can be said about the effectiveness of embeddings of \mathcal{L}_1 into \mathcal{L}_2, allowing the presentations of \mathcal{L}_1 and \mathcal{L}_2 to vary to minimize the complexity of the embedding.

Question

Are there computable linear orders \mathcal{L}_1 and \mathcal{L}_2 such that \mathcal{L}_1 classically embeds into \mathcal{L}_2 but for no computable presentations of \mathcal{L}_1 and \mathcal{L}_2 does \mathcal{L}_1 computably embed into \mathcal{L}_2?
The Question

Remark

It is natural to ask what can be said about the effectiveness of embeddings of \(L_1 \) into \(L_2 \), allowing the presentations of \(L_1 \) and \(L_2 \) to vary to minimize the complexity of the embedding.

Question

Are there computable linear orders \(L_1 \) and \(L_2 \) such that \(L_1 \) classically embeds into \(L_2 \) but for no computable presentations of \(L_1 \) and \(L_2 \) does \(L_1 \) computably embed into \(L_2 \)?

Remark

Of particular (and natural) interest are the special cases when \(L_1 = \eta \) and \(L_1 = \omega^* \).
1. Introduction

2. Non-Scattered Linear Orders

3. Non-Well-Ordered Linear Orders

4. Non-Scattered Linear Orders (Revisited)

5. Non-Well-Ordered Linear Orders (Revisited)

6. Other Classes of Algebraic Structures

7. Summary
The Goal and the Strategy

Remark

The goal is to produce a computable non-scattered linear order \mathcal{L} such that η does not computably embed into any computable presentation of \mathcal{L}.

Remark

The strategy to produce a computable non-scattered linear order that is intrinsically computably scattered will be to encode trees T into linear orders L_T in such a way that any embedding of η into L_T gives information about an infinite path through T in a fairly effective manner. By choosing T simple enough so that L_T is computable but complex enough so that its paths are complicated, we obtain an appropriate linear order. The map $T \mapsto L_T$ depends on the goal.
Remark
The goal is to produce a computable non-scattered linear order \mathcal{L} such that η does not computably embed into any computable presentation of \mathcal{L}.

Remark
The strategy to produce a computable non-scattered linear order that is intrinsically computably scattered will be to encode trees T into linear orders \mathcal{L}_T in such a way that any embedding of η into \mathcal{L}_T gives information about an infinite path through T in a fairly effective manner.

By choosing T simple enough so that \mathcal{L}_T is computable but complex enough so that its paths are complicated, we obtain an appropriate linear order.

The map $T \mapsto \mathcal{L}_T$ depends on the goal.
The Encoding for $T \subseteq 2^{<\omega}$

Definition

If $T \subseteq 2^{<\omega}$ is any tree, define linear orders $L_{\langle \sigma, \tau \rangle}$ via corecursion by

$$L_{\langle \sigma, \tau \rangle} = \langle \sigma, \tau \rangle + \hat{L}_{\langle \sigma \rhd 0, \tau \rhd 0 \rangle} + \hat{L}_{\langle \sigma \rhd 0, \tau \rhd 1 \rangle} + \hat{L}_{\langle \sigma \rhd 1, \tau \rhd 0 \rangle} + \hat{L}_{\langle \sigma \rhd 1, \tau \rhd 1 \rangle} + \langle \sigma, \tau \rangle$$

where

$$\hat{L}_{\langle \sigma \rhd i, \tau \rhd j \rangle} = \begin{cases} \zeta + L_{\langle \sigma \rhd i, \tau \rhd j \rangle} + \zeta & \text{if } \sigma \rhd i \in T, \\ \zeta & \text{otherwise.} \end{cases}$$

Define L_T to be the linear order $L_{\langle \epsilon, \epsilon \rangle}$, where ϵ denotes the empty string.
Theorem

There is a computable, non-scattered, rank two linear order \mathcal{L} that is intrinsically computably scattered.

Proof.

Let $T \subseteq 2^{<\omega}$ be any infinite Δ^0_3 tree with no Δ^0_3 paths. Then \mathcal{L}_T is computable, non-scattered, rank two, and intrinsically computably scattered.
Claim
If \(T \subseteq 2^{<\omega} \) is \(\Delta^0_3 \), then \(\mathcal{L}_T \) is computable.

Remark
Recall that \(\mathcal{L}_T \) was effectively defined in terms of the linear orders

\[
\hat{\mathcal{L}}_{\langle \sigma \ast i, \tau \ast j \rangle} = \begin{cases}
\zeta + \mathcal{L}_{\langle \sigma \ast i, \tau \ast j \rangle} + \zeta & \text{if } \sigma \ast i \in T, \\
\zeta & \text{otherwise.}
\end{cases}
\]

Proof.
Let \(\exists k \forall m \exists n R(\sigma, k, m, n) \) be a \(\Sigma^0_3 \) predicate for \(T \). Build \(\hat{\mathcal{L}}_{\langle \sigma, \tau \rangle} \) by building a sum \(\cdots \hat{\mathcal{L}}_3 + \hat{\mathcal{L}}_1 + \hat{\mathcal{L}}_0 + \hat{\mathcal{L}}_2 + \hat{\mathcal{L}}_4 + \cdots \) and attempting to build \(\mathcal{L}_{\langle \sigma, \tau \rangle} \) at each \(\hat{\mathcal{L}}_k \), adding additional points to \(\hat{\mathcal{L}}_k \) only when a new witness \(n \) for the next \(m \) appears. \(\square \)
Claim

If $T \subseteq 2^{<\omega}$ is infinite (i.e., has an infinite path), then \mathcal{L}_T is non-scattered.

Proof.

Let $X \subseteq T$ be an infinite path. Define an embedding $\pi : 2^{<\omega} \rightarrow \mathcal{L}_T$ by recursion.

Define $\pi(\epsilon)$ to be any point in either one of the $\mathcal{L}_{\langle \epsilon, \epsilon \rangle}$ copies of ζ between $\mathcal{L}_{\langle x(0), 0 \rangle}$ and $\mathcal{L}_{\langle x(0), 1 \rangle}$.

Define $\pi(\rho \upharpoonright i)$ to be any element in either one of the $\mathcal{L}_{\langle x(0)\ldots x(|\rho|), \rho \upharpoonright i \rangle}$ copies of ζ between $\mathcal{L}_{\langle x(0)\ldots x(|\rho|+1), \rho \upharpoonright i \upharpoonright 0 \rangle}$ and $\mathcal{L}_{\langle x(0)\ldots x(|\rho|+1), \rho \upharpoonright i \upharpoonright 1 \rangle}$.
Claim

If $T \subseteq 2^{<\omega}$ is an infinite Δ^0_3 tree with no Δ^0_3 path, then \mathcal{L}_T is intrinsically computably scattered.

Proof.

If there were a computable embedding $\pi : \eta \to \mathcal{L}_T$, then we could recover a Δ^0_3 path in T. Specifically, determining whether a set of elements form a maximal block is Π^0_2. Starting with $\rho_0 = \epsilon = \tau_0$, we set $\rho_{s+1} = \rho_s \upharpoonright i$ and $\tau_{s+1} = \tau_s \upharpoonright j$, where $i, j \in \{0, 1\}$ are such that there exists two maximal blocks of size $\langle \rho \upharpoonright i, \tau \upharpoonright j \rangle$ with the range of π containing at least two points in this interval.
A Theorem

Theorem

There is a computable, non-scattered, rank two linear order L that is intrinsically computably scattered.

Proof.

Let $T \subseteq 2^{<\omega}$ be any infinite Δ^0_3 tree with no Δ^0_3 paths. Then L_T is computable, non-scattered, rank two, and intrinsically computably scattered.
Outline

1. Introduction
2. Non-Scattered Linear Orders
3. Non-Well-Ordered Linear Orders
4. Non-Scattered Linear Orders (Revisited)
5. Non-Well-Ordered Linear Orders (Revisited)
6. Other Classes of Algebraic Structures
7. Summary
Remark

The goal is to produce a computable non-well-ordered linear order \mathcal{L} such that ω^* does not computably embed into any computable presentation of \mathcal{L}.
The Goal and the Strategy

Remark

The goal is to produce a computable non-well-ordered linear order \mathcal{L} such that ω^* does not computably embed into any computable presentation of \mathcal{L}.

Remark

The strategy to produce a computable non-well-ordered linear order that is intrinsically computably well-ordered will be to encode functions F into linear orders \mathcal{L}_F in such a way that

- Any descending chain in \mathcal{L}_F is (almost) cofinal [downwards] in \mathcal{L}_F.
- The linear order \mathcal{L}_F is not computable.
- The linear order $\omega^+ \mathcal{L}_F$ is computable.

Again, the map $F \mapsto \mathcal{L}_F$ depends on the goal.
The Encoding for $F : \omega \rightarrow \omega$

Definition

If $F : \omega \rightarrow \omega$ is a function with infinite support, define the linear order \mathcal{L}_F by

$$\mathcal{L}_F = \cdots + \omega^n \cdot F(n) + \cdots + \omega^2 \cdot F(2) + \omega \cdot F(1) + F(0).$$
Theorem

There is a computable, non-well-ordered, scattered, rank $\omega + 1$ linear order L that is intrinsically computably well-ordered.

Proof.

Let F be any $\Delta^0_{(2n+1)}$-limit infimum function such that L_F is not computable. Then the linear order $\omega^\omega + L_F$ is computable, non-well-ordered, scattered, rank $\omega + 1$, and intrinsically computably well-ordered.
Limit Infimum Functions

Definition

A function $F : \omega \to \omega$ is a limit infimum function if there is a total computable function $f : \omega \times \omega \to \omega$ such that

$$F(n) = \lim_{s} \inf f(n, s)$$

for all n.

∆₀(2n + 1)-limit infimum function

A function $F : \omega \to \omega$ is a ∆₀(2n + 1)-limit infimum function if there is a functional $\phi_{e} : \omega \times \omega \to \omega$ such that

$$F(n) = \lim_{s} \inf \phi_{e}(2n, f(n, s))$$

for all n.
Limit Infimum Functions

Definition

A function $F : \omega \to \omega$ is a \textit{limit infimum function} if there is a total computable function $f : \omega \times \omega \to \omega$ such that

$$F(n) = \liminf_s f(n, s)$$

for all n.

Definition

A function $F : \omega \to \omega$ is a $\Delta^0_{(2n+1)}$-\textit{limit infimum function} if there is a functional $\varphi_e : \omega \times \omega \to \omega$ such that

$$F(n) = \liminf_s \varphi_e^{0(2n)}(n, s)$$

for all n.
There is an F

Claim

There is a $\Delta^0_{(2n+1)}$-limit infimum function $F : \omega \to \omega$ such that \mathcal{L}_F is not computable.

Proof.

A diagonalization argument that builds a $\{0, 1\}$-valued function F. Roughly speaking, the strategy $S_{i,n}$ (for $n \geq i$) uses $F(2n)$ and $F(2n + 1)$ to assure that $\mathcal{L}_F \neq \mathcal{L}_i$.

For example, to assure $\mathcal{L}_F \neq \mathcal{L}_0$, the strategy $S_{0,0}$ begins setting $f(0, s) = 0$ and $f(1, s) = 1$. If a point appears to the right of a_0, the strategy $S_{0,0}$ switches to setting $f(0, s) = 1$ and $f(1, s) = 0$. Note that if a_0 is part of the $F(0)$ or $\omega \cdot F(1)$ blocks of \mathcal{L}_0, then $\mathcal{L}_F \neq \mathcal{L}_0$.

□
Claim

If $F : \omega \to \omega$ is a $\Delta^0_{(2n+1)}$-limit infimum function, then $\omega^\omega + \mathcal{L}_F$ is computable.

Proof.

If $F(n) > 0$ for all n, build a computable copy of \mathcal{L}_F by viewing it as the sum

$$\cdots + \left[\omega^n \cdot (\omega + F(n) - 1)\right] + \cdots + \left[\omega^2 \cdot (\omega + F(2) - 1)\right] + \left[\omega \cdot (\omega + F(1) - 1)\right] + \left[\omega + F(0)\right]$$

and building each summand separately.

For general F, use the Recursion Theorem to assure the garbage either settles down or collects in the copy of ω^ω. \hfill \Box
Claim

If $F : \omega \rightarrow \omega$ is any $\Delta^0_{(2n+1)}$-limit infimum function such that L_F is not computable, then $\omega^\omega + L_F$ is intrinsically computably well-ordered.

Proof.

If there were a computable embedding $\pi : \omega^* \rightarrow \omega^\omega + L_F$, then the linear order with universe

$$\{ x \in \omega^\omega + L_F : \pi(z) \prec x \text{ for some } z \in \omega^* \}$$

and order inherited from $\omega^\omega + L_F$ would be computable. But this is L_F, a contradiction.
A Theorem

Theorem

There is a computable, non-well-ordered, scattered, rank $\omega + 1$ linear order \mathcal{L} that is intrinsically computably well-ordered.

Proof.

Let F be any $\Delta^0_{(2n+1)}$-limit infimum function such that \mathcal{L}_F is not computable. Then the linear order $\omega^\omega + \mathcal{L}_F$ is computable, non-well-ordered, scattered, rank $\omega + 1$, and intrinsically computably well-ordered.
1. Introduction
2. Non-Scattered Linear Orders
3. Non-Well-Ordered Linear Orders
4. Non-Scattered Linear Orders (Revisited)
5. Non-Well-Ordered Linear Orders (Revisited)
6. Other Classes of Algebraic Structures
7. Summary
The Encoding for $T \subseteq \omega^{<\omega}$

Definition

If $T \subseteq \omega^{<\omega}$ is any tree, define linear orders $L_{\langle \sigma, \tau \rangle}$ via corecursion by

$$L_{\langle \sigma, \tau \rangle} = \omega + \langle \sigma, \tau \rangle + \zeta + \left(\sum_{i \in \omega} L_{\langle \sigma \upharpoonright i, \tau \upharpoonright 0 \rangle} \right)^* + \left(\sum_{i \in \omega} L_{\langle \sigma \upharpoonright i, \tau \upharpoonright 1 \rangle} \right) + \zeta + \langle \sigma, \tau \rangle + \omega^*.$$

Let L_T be the linear order $L_{\langle \epsilon, \epsilon \rangle}$, where ϵ denotes the empty string.
There is a computable, non-scattered linear order \mathcal{L} that is intrinsically hyperarithmetically scattered.

Proof. Let $T \subseteq \omega^{<\omega}$ be a computable tree with infinite paths but no hyperarithmetic paths. Then \mathcal{L}_T is computable, non-scattered, and intrinsically hyperarithmetically scattered.
Theorem

*If \mathcal{L} is any computable rank one, non-scattered linear order, then there is a computable embedding of η into some computable presentation of \mathcal{L}.***

Proof.

Any such linear order is (almost) of the form

$$\mathcal{L}_F = \sum_{q \in \mathbb{Q}} F(q)$$

for some function $F : \mathbb{Q} \to \omega \cup \{\omega^*, \zeta, \omega\}$. If it isn’t, argue that it might as well be by considering either $\mathcal{L}^* + \mathcal{L}$, $\mathcal{L} + \mathcal{L}^*$, or $\sum_{z \in \zeta} \mathcal{L}$.

Handle the case when F is unbounded on every interval separate from when F is bounded on some interval.
When F is Bounded on an Interval

Proof.

Demonstrate η computably embeds into *every* computable presentation of \mathcal{L}. Add a point in \mathcal{L} into the range of π whenever it is separated on the left and on the right by N points in \mathcal{L} not yet in the range of π.

Question

If η computably embeds into every computable presentation of a linear order \mathcal{L}, must \mathcal{L} be strongly η-like on some interval?
When F is Unbounded on Every Interval

Proof.

For functions $F : \mathbb{Q} \to \omega \cup \{\omega^*, \zeta, \omega\}$ unbounded on every interval, the following are equivalent:

- The linear order \mathcal{L}_F is computable.
- There are limit infimum functions $L : \mathbb{Q} \to \omega$ and $R : \mathbb{Q} \to \omega$ such that $F(q) = L(q)^* + 1 + R(q)$ for all q.
- There are $0'$-limitwise monotonic functions $L : \mathbb{Q} \to \omega$ and $R : \mathbb{Q} \to \omega$ such that $F(q) = L(q)^* + 1 + R(q)$ for all q.

\[\square\]
Outline

1. Introduction
2. Non-Scattered Linear Orders
3. Non-Well-Ordered Linear Orders
4. Non-Scattered Linear Orders (Revisited)
5. Non-Well-Ordered Linear Orders (Revisited)
6. Other Classes of Algebraic Structures
7. Summary
A Theorem

Theorem

For every computable ordinal α, there is a computable, non-well-ordered linear order L that is intrinsically $\emptyset^{(\alpha)}$-computationally well-ordered.

Proof.

Let $F : \omega \to \omega$ be a $\Delta^0_{(2n+1)}(\emptyset^{(\alpha)})$-limit infimum function such that L_F is not $\emptyset^{(\alpha)}$ computable. Then $\omega^\alpha \cdot (\omega^\omega + L_F)$ suffices. □
Theorem

For every computable ordinal α, there is a computable, non-well-ordered linear order L that is intrinsically $\emptyset^{(\alpha)}$-computably well-ordered.

Proof.

Let $F : \omega \to \omega$ be a $\Delta^0_{2n+1}(\emptyset^{(\alpha)})$-limit infimum function such that L_F is not $\emptyset^{(\alpha)}$ computable. Then $\omega^\alpha \cdot (\omega^\omega + L_F)$ suffices. □

Remark

By a result of Harrison, this is best possible.
Theorem

If L is a computable, rank ω, scattered, non-well-ordered linear order, then there is a computable embedding of ω^* into some computable presentation of L.

Proof.

Demonstrate the ability to build a computable presentation into which ω^* computably embeds if a non-greatest point in $c^n(L)$ has no immediate successor in $c^n(L)$. Note that ω^* and ζ cannot be the order type of a maximal block in any $c^n(L)$ if L is intrinsically computably well-ordered.

Lemma

If L is a Δ^0_3 linear order with distinguished least element having a Δ^0_3 embedding of ω^* and R is any Σ^0_3 predicate, then $R \cdot L$ has a computable presentation into which ω^* computably embeds.
A Conjecture

Conjecture

There is a computable, non-well-ordered, non-scattered, rank $\omega + 1$ linear order L that is intrinsically computably well-ordered.

Proof.

Define a linear order similar to L_T for $T \subseteq 2^{<\omega}$ except use linear orders $L_F = \cdots + \omega^n \cdot F(n) + \cdots + \omega \cdot F(1) + F(0) + \omega^\omega$ as markers rather than finite linear orders $\langle \sigma, \tau \rangle$. As $L_{F_1} \cong L_{F_2}$ if and only if $F_1 \equiv^* F_2$, code σ into L_F by having the support of F be a subset of the multiples of σ.
\qed
Outline

1. Introduction
2. Non-Scattered Linear Orders
3. Non-Well-Ordered Linear Orders
4. Non-Scattered Linear Orders (Revisited)
5. Non-Well-Ordered Linear Orders (Revisited)
6. Other Classes of Algebraic Structures
7. Summary
Let X be the class of directed (acyclic) graphs, the class of undirected graphs, the class of commutative rings, the class of two-step nilpotent groups, the class of integral domains, or the class of commutative semigroups.

Then there are computable structures $S_1, S_2 \in X$ such that S_1 classically embeds into S_2 but for no computable presentations of S_1 and S_2 is there a computable embedding.
Theorem

Let X be the class of directed (acyclic) graphs, the class of undirected graphs, the class of commutative rings, the class of two-step nilpotent groups, the class of integral domains, or the class of commutative semigroups.

Then there are computable structures $S_1, S_2 \in X$ such that S_1 classically embeds into S_2 but for no computable presentations of S_1 and S_2 is there a computable embedding.

Proof.

Show the result for X the class of directed acyclic graphs. The other classes then follow from previous work (Hirschfeldt, Khoussainov, Shore, Slinko).
Proof.

Let T be an infinite computable tree with no computable paths. Let S_2 be the graph of T after replacing edges by either a directed diamond or a directed hexagon depending on whether the edge represents a string ending in a 0 or a 1. Let S_1 be the graph of exactly one (directed) infinite path.

Proof.

Let $\omega^\omega + \mathcal{L}_F$ be a computable non-well-ordered intrinsically computably well-ordered linear order. Let S_2 be the graph whose vertices are the elements of $\omega^\omega + \mathcal{L}_F$, with a directed edge connecting vertex i to vertex j if and only if $j < i$ in the linear order. Again, let S_1 be the graph of exactly one (directed) infinite path.
Definition

A tree is a partial order \((T : \prec)\) with a least element such that for all \(x \in T\), the set \(\{y \in T : y \preceq x\}\) is a finite linearly ordered set.

Theorem (Binns, Kjos-Hanssen, Lerman, Schmerl, Solomon)

There are computable trees \(T_1\) and \(T_2\) such that \(T_1\) classically embeds into \(T_2\) but for no computable presentations of \(T_1\) and \(T_2\) is there a computable embedding.

Proof.

Let \(T_1 \cong 2^{<\omega}\) and let \(T_2\) be an appropriate perfect binary branching tree. Build \(T_2\) computable so that any function \(f : \omega \to \omega\) that dominates the properly \(\emptyset''\)-computable branching function \(b : \omega \to \omega\) satisfies \(b \leq_T f \oplus \emptyset'\).
Boolean Algebras

Theorem

There are no computable Boolean algebras \mathcal{B}_1 and \mathcal{B}_2 such that \mathcal{B}_1 classically embeds into \mathcal{B}_2 but for no computable presentations of \mathcal{B}_1 and \mathcal{B}_2 is there a computable embedding.

Proof.

If \mathcal{B}_2 is superatomic, then \mathcal{B}_1 is superatomic; and the result is immediate.

If \mathcal{B}_2 is non-superatomic, it suffices to show that the countable atomless Boolean algebra computably embeds into some computable presentation of \mathcal{B}_2. Note that it suffices to consider uniform \mathcal{B}_2. With α the minimal ordinal in the range of $\sigma_{\mathcal{B}_2}$, note $\mathcal{B}_2 = \mathcal{B}_2 \oplus \mathcal{B}_{\sigma_u(\{\alpha\})}$. There is a nice presentation of the latter into which the countable atomless Boolean algebra computably embeds.
1. Introduction
2. Non-Scattered Linear Orders
3. Non-Well-Ordered Linear Orders
4. Non-Scattered Linear Orders (Revisited)
5. Non-Well-Ordered Linear Orders (Revisited)
6. Other Classes of Algebraic Structures
7. Summary
A Summary of Embedding Results

Theorem

There is a computable, non-scattered, rank two linear order \mathcal{L} that is intrinsically computably scattered.

There is a computable, non-well-ordered, scattered, rank $\omega + 1$ linear order \mathcal{L} that is intrinsically computably well-ordered.

There is a computable, non-well-ordered, non-scattered, rank $\omega + 1$ linear order \mathcal{L} that is intrinsically computably well-ordered?

There is a computable, non-scattered, linear order \mathcal{L} that is intrinsically hyperarithmetically scattered.

For many nice classes of algebraic structures X (but not X the class of Boolean algebras), there are computable S_1 and S_2 in X such that S_1 classically embeds into S_2 but for no computable presentations of S_1 and S_2 is there a computable embedding.
Ambos-Spies, Klaus and Cooper, S. Barry and Lempp, Steffen.
Initial Segments of Recursive Linear Orders.

Harrison, Joseph.
Recursive Pseudo-Well-Orderings.

Binns, Stephen and Kjos-Hanssen, Bjorn and Lerman, Manuel and Schmerl, James H. and Solomon, Reed
Self-Embeddings of Computable Trees.

Hirschfeldt, Denis R. and Khoussainov, Bakhadyr and Shore, Richard A. and Slinko, Arkadii M.
Degree Spectra and Computable Dimensions in Algebraic Structures

Kach, Asher M.
Computable Shuffle Sums of Ordinals.
Archive of Mathematical Logic, to appear.

Lerman, Manuel.
On Recursive Linear Orderings.

Rosenstein, Joseph G.
Linear Orderings.

Watnick, Richard.
A Generalization of Tennenbaum's Theorem on Effectively Finite Recursive Linear Orderings