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Abstract

It is proved that for every countable structure A and a successive computable

ordinal α there is a countable structure A−α which is ≤Σ-least among all count-

able structures C such that A is Σ-definable in the α-th jump C(α). We also

show that this result does not hold for the limit α = ω. Moreover, we prove that

there is no countable structure A with the degree spectrum {d : a ≤ d(ω)} for
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1. Introduction

The notion of the jump of a structure has received much attention in com-

putable structure theory over the last decade. It is defined by adding to a

structure A a complete Σ1 relation. It was defined independently by various

researchers [1, 2, 3, 4, 5, 6, 7], as there are various ways of understanding what a

complete Σ1 relation: Montalbán used relatively intrinsic c.e. subsets of N×A<ω,

Soskov used the forcing relation for Π1 formulas over the Moschovakis extension

of A, and in Russia is common to use Σ-definable relations on the hereditarily

finite extension of A — we use the latter one here. (We refer the reader to [8,

Definition 5.1] for the history of the different definitions explained in more de-

tail.) It is an important concept because, as it turned out, many constructions

in the area can be better understood using the notion of jump.

Once the jump was defined, various jump inversion theorems were proved.

What is sometimes called the first jump inversion theorem states that for every

structure A that computes 0′ there is a structure B whose jump is equivalent to

A. Goncharov, Harizanov, Knight, McCoy, R. Miller and Solomon [9, Lemma

5.5] build a jump inversion to translate results about computable categoricity

to results about ∆0
α-categoricity even before the notion of jump was introduced.

Alexandra Soskova [3, 4] built another jump inversion using Marker extensions.

The question then was whether these two constructions are in any sense equiva-

lent. Both jump inversions are equivalent up to Muchnik reducibility (i.e., they

have the same degree spectrum), but this is two coarse of a measure to say

that the structures are “equivalent.” A better measure is Σ-definability, which

in the west is called effective interpretability with parameters. Effective inter-

pretability is like interpretability of structures in model theory, except that one is
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allowed to use a subset of A<ω to define the new structure, and the domain and

relations of the interpretation have to be relatively intrinsically computable [10,

Definition 5.1]. In this paper we will use the equivalent notion of Σ-definability

introduced by Ershov. It turned out that the jump inversion from [9] and [3, 4]

are not equivalent up to Σ-definability. Is there a canonical jump inversion of

a structure? In the Turing degrees we know there isn’t one. In this paper we

show that, for structures, there is: Among the jump inversions of a structure

there is one that is the least up to Σ-definability.

One can also iterate the jump and define the α jump of a structure for each

computable ordinal α. We show that the least Σ- jump inversion theorem also

works for infinite successor ordinal α but not for limit ones.

2. Background

A family HF (M) of hereditarily finite sets over M is defined by induction

as follows:

• H0(M) = {∅};

• Hn+1(M) = Hn(M) ∪ Pω(Hn(M) ∪M);

• HF (M) =
⋃
n<ωHn(M)

(where Pω(X) denotes the set of all finite subsets of X). If M is a structure

in a relational signature σ, then on HF (|M|) ∪ |M| we can define a structure

HF(M) in a signature σ ∪ {U1,∈2, ∅} (called a hereditarily finite superstructure

over M), so that UHF(M) = |M|, ∈HF(M)⊆ (HF (|M|) ∪ |M|) ×HF (|M|) is the

membership relation on HF(M), the constant symbol ∅ is interpreted as the

empty “set”, and symbols in the signature σ are interpreted in the same way as

on M.

Note that in this paper we will consider only countable algebraic structures

with finite relational languages.

A class of ∆0-formulas in the language of HF(M) is the least class which

contains atomic formulas and is closed under logical connectives ∨, &, →, ¬,
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and also under bounded quantification, i.e., if Φ is a ∆0-formula then so are

∀x ∈ tΦ and ∃x ∈ tΦ, where t is a term containing no occurrence of a variable

x. A class of Σ-formulas (or equivalently, Σ1-formulas) is the least class which

contains all ∆0-formulas and is closed under logical connectives ∨, &, bounded

quantification, and ∃. Π-formulas (or Π1-formulas) can be obtained from Σ-

formulas by replacing the unbounded quantifier ∃ with ∀. In a natural way,

these definitions can be generalized to Σn- and Πn-formulas.

Definition 1 (Ershov [11]). Let

Ψ0,Ψ1,Φ0, . . . ,Φn,Ψ
∗
1,Φ

∗
0, . . . ,Φ

∗
n

be a Σ-formulas in the language of HF(M),

• A0 = {x : HF(M) |= Ψ0(x)};

• η = A2
0 ∩ {(x, y) : HF(M) |= Ψ1(x, y)};

• Pi = Ami
0 ∩ {(x1, . . . , xmi

) : HF(M) |= Φi(x1, . . . , xmi
)}, i 6 n;

• A2
0 ∩ {(x, y) : HF(M) |= Ψ∗1(x, y)} = A2

0 \ η;

• Ami \ Pi = Ami
0 ∩ {(x1, . . . , xmi

) : HF(M) |= Φ∗i (x1, . . . , xmi
)}, i 6 n;

• η is a congruence relation on the structure A0 = (A0;P0, . . . , Pn).

We say that the system of formulas Ψ0,Ψ1,Φ0, . . . ,Φn,Ψ
∗
1,Φ

∗
0, . . . ,Φ

∗
n Σ-defines

a structure A in HF(M) if A ∼= A0/η. In this case we say that A is Σ-definable

in HF(M) (written A 6Σ M).

It is proved in [12] that for countable structures the notion of Σ-definability

of A in HF(B) is equivalent to existence of a computable functor from B to A.

Definition 2 ([5, 6, 7]). For any structure M the jump of M is the structure

M′ = 〈HF(M), T 〉, where T is a binary Σ-predicate on HF(M) universal for the

class of all unary Σ-predicates on HF(M).
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The concept of the jump with respect to Σ-definability is independent of the

choice of a universal Σ-predicate. As in the classical case, the Σ-jump operation

satisfies the following:

1. A 6Σ A′;

2. A 6Σ B⇒ A′ 6Σ B′.

We define A(n) by induction on n ∈ ω as follows: A0 = A, A(n+1) = (A(n))′. It

was shown in [6] that A is Σm+1-definable in HF(M) iff A 6Σ M(m).

Note also that the definition of the jump agrees with the Turing jumps of

the presentations of the structures (i.e. the degree spectra).

Theorem 1 (A. Montalbán [5]; A.A. Soskova, I.N. Soskov [4]). Let A be a

countable structure. If

Sp(A) = {degT (X) : X computes some isomorphic copy of A}

and Sp(A)(n) = {x(n) : x ∈ Sp(A)}, then Sp(A(n)) = Sp(A)(n).

The proof of the Theorem above is based on a construction of a copy of the

structure whose atomic diagram is 1-generic.

It follows from literature (see e.g. [3, 7, 9]) that the jump operation can be

inversed. Namely, if ∅′ is ∆ on HF(A) then B′ ≡Σ A for some structure B. Note

that such structure B is not unique up to Σ-equivalence. It is proved in [13]

that even if ∅′′ is ∆ on HF(A) and A is ∅′′-computable then there is at least two

different inversions B, one is obtained from the family of all total computable

functions, another is obtained from the family of all infinite c.e. sets. It is proved

in [14] that the last inversion B for such A has the least property: B ≤Σ C for

every countable structure C such that ∅′′ is ∆ on C′. In this paper we generalize

this result to arbitrary structure A and arbitrary successive jump iterations.

Namely, we can proceed iterating the jump on any (computable) ordinal.

For example,

Definition 3. For a structure M define the ω-jump as the structure M(ω) =

〈HF(M), Tω〉, where Tω is a predicate on ω ×HF (M) ×HF (M) such that for
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every n ∈ ω the predicate Tω(n, ·, ·) is Σn-universal in HF(M). This definition

can be easily extended for the α-th jump M(α) for every computable ordinal α.

Note that replacing the 1-genericity by the arithmetic genericity in the proof

of Theorem 1 we get the following

Corollary 1. Sp(A(α)) = Sp(A)(α), where Sp(A)(α) = {x(α) : x ∈ Sp(A)},

3. The Least Jump Inversion

Our first result shows that for every countable structure A there is a Σ-

least structure A−1 such that A 6Σ (A−1)′. Coding Turing degrees x into the

structures M one can deduce that A−1 has an x-computable copy if and only if

A has an x′-computable copy. It follows from [13] that only the last property

does not determine A−1 up to Σ-equivalence.

Theorem 2. For every countable structure A there is a countable structure A−1

such that

1. A 6Σ (A−1)′;

2. A 6Σ M′ ⇒ A−1 6Σ M for every countable structure M.

Proof. Let A = (A, σ) be a structure in a finite relational signature σ. Without

loss of generality we can assume that there is a congruence relation ∼ in σ

such that each congruence class is infinite. If not we can consider a structure

Ã replacing each element of A by an infinite ∼- congruence class, where ∼ is a

new congruence symbol. It is easy to see that A ≡Σ Ã.

Define the structure A−1 of A with the relational signature

{W 1, E2} ∪ {Pn+1
R , Nn+1

R : Rn ∈ σ}

and the universe

C = A ∪B,A ∩B = ∅,

where

1. A−1 |= W (x) ⇐⇒ x ∈ A;
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2. (B,E) is the equivalence structure with two-element equivalence classes

pR,~x,i = {pR,~x,i,0, pR,~x,i,1},

nR,~x,i = {nR,~x,i,0, nR,~x,i,1},

for each Rn ∈ σ, ~x ∈ An, i ∈ ω, and one-element equivalence classes

p′R,~x,i = {p′R,~x,i,0},

for each i ∈ ω, Rn ∈ σ, ~x ∈ An, such that A |= R(~x), and one-element

equivalence classes

n′R,~x,i = {n′R,~x,i,0},

for each i ∈ ω, Rn ∈ σ, ~x ∈ An, such that A |= ¬R(~x) (the index i here

duplicates these one- and two-element equivalence classes infinitely many

times);

3. A−1 |= PR(~x, y) ⇐⇒ y ∈
⋃
i∈ωpR,~x,i ∨ y ∈

⋃
i∈ω p′R,~x,i & A |= R(~x);

4. A−1 |= NR(~x, y) ⇐⇒ y ∈
⋃
i∈ωnR,~x,i ∨ y ∈

⋃
i∈ω n′R,~x,i & A |= ¬R(~x).

By the definition we have

A |= R(~x) ⇐⇒ (∃y)(∀z)[PR(~x, y) & [E(y, z) =⇒ y = z]]

and

A |= ¬R(~x) ⇐⇒ (∃y)(∀z)[NR(~x, y) & [E(y, z) =⇒ y = z]],

so that A ≤Σ (A−1)′. It remains to prove that A−1 ≤Σ M for each countable

structure M such that A ≤Σ M′.

Suppose A ≤Σ M′. Then there is a structure B in the signature Σ ∪ {≡}

Σ2-definable in HF(M) such that (B/ ≡) ∼= A. Since

B � σ ∼= Ã ∼= A

the structure A itself is Σ2-definable in HF(M), and without loss of generality

we can assume that the universe of A is A = HF(|M|). For each R ∈ σ we fix

∆0-formulae ΦR and ΨR such that

A |= R(~x) ⇐⇒ HF(M) |= (∃~y)(∀~z)ΦR(~x, ~y, ~z),
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A |= ¬R(~x) ⇐⇒ HF(M) |= (∃~y)(∀~z)ΨR(~x, ~y, ~z).

Define a Σ-definable interpretation D of A−1 as follows:

1. the universe D = {〈0, x〉 : x ∈ A}∪

{〈1, j, i, S,R, ~x, 0〉 : j ∈ {0, 1}, i ∈ ω, S ∈ {P,N}, R ∈ σ, ~x ∈ Ai 7→i}∪

{〈2, 0, i, S,R, ~x, ~y〉 : i ∈ ω, S ∈ {P,N}, R ∈ σ, ~x, ~y ∈ Ai 7→i}∪

{〈2, 1, i, P,R, ~x, ~y〉 : i ∈ ω,R ∈ σ, ~x, ~y ∈ Ai 7→i : (∃~z)¬ΦR(~x, ~y, ~z)}∪

{〈2, 1, i, N,R, ~x, ~y〉 : i ∈ ω,R ∈ σ, ~x, ~y ∈ Ai7→i : (∃~z)¬ΨR(~x, ~y, ~z)}

is Σ-definable in HF(M) (where ~x is identified with the set-theoretic tuple

function 〈~x〉, the finite set {P,N} is identified with the set {0, 1}, each

element R ∈ σ is identified by an unique natural number);

2. the predicate W (t) ⇐⇒ “t = 〈0, c〉 for some c” is ∆ on HF(M);

3. the predicate E(s, t) ⇐⇒ “s = 〈m, j, i, S,R, c, d〉 and

t = 〈m, k, i, S,R, c, d〉 for some m ∈ {1, 2}, i, S,R, c, d” is ∆ on HF(M);

4. the predicate PR(~s, t) ⇐⇒ “~s = 〈0, ~x〉 and t = 〈m, j, i, P,R, ~x, ~y〉 for

some m ∈ {1, 2}, j, i, ~x, ~y ” is ∆ on HF(M) for each R ∈ σ;

5. the predicate NR(~s, t) ⇐⇒ “~s = 〈0, ~x〉 and t = 〈m, j, i,N,R, ~x, ~y〉 for

some m ∈ {1, 2}, j, i, ~x, ~y ” is ∆-definable in HF(M) for each R ∈ σ;

It is easy to check that the Σ-definable structure D is isomorphic to A−1. Indeed,

let

~s = (s1, s2, . . . , sk) ∈ Ai 7→i

be a tuple such that W (si) holds for every i, 1 ≤ i ≤ k. We can consider the

tuple

~x = (x1, x2, . . . , xk) ∈ Ai 7→i,

such that si = 〈0, xi〉. Then we have infinitely many two-element E-classes

p̂R,~s,i = {〈1, 0, i, P,R, ~x, 0〉, 〈1, 1, i, P,R, ~x, 0〉},

n̂R,~s,i = {〈1, 0, i, N,R, ~x, 0〉, 〈1, 1, i, N,R, ~x, 0〉}

such that D |= PR(~s, p) and D |= PN (~s, n) for p ∈ p̂R,~s,i and n ∈ n̂R,~s,i.

8



If A |= R(~x) then for some tuple ~y ∈ Ai7→i we have A |= (∀~z)ΦR(~x, ~y, ~z), so

that 〈2, 1, i, P,R, ~x, ~y〉 /∈ D and, therefore, the elements

p̂′R,~x,i,~y = {〈2, 0, i, P,R, ~x, ~y〉}, i ∈ ω,

represent infinitely many one-element E-classes such that D |= PR(~s, p), p ∈

p̂′R,~s,i,~y. On another hand, if A |= R(~x) then for every ~y ∈ Ai 7→i we have A |=

(∃~z)¬ΨR(~x, ~y, ~z), so that 〈2, 1, i, N,R, ~x, ~y〉 ∈ D and, therefore, each element n

with D |= NR(~s, n) belongs to some of two-element E-classes

n̂R,~s,i = {〈1, 0, i, N,R, ~x, 0〉, 〈1, 1, i, N,R, ~x, 0〉}

or

n̂′′R,~s,i,~y = {〈2, 0, i, N,R, ~x, ~y〉, 〈2, 1, i, N,R, ~x, ~y〉}.

Similarly, if A |= ¬R(~x) then we have infinitely many one-element E-classes

n̂′R,~s,i,~y = {〈2, 0, i, N,R, ~x, ~y〉}

with D |= NR(~s, n), n ∈ n̂′R,~s,i,~y and only two-element E-classes

p̂R,~s,i = {〈1, 0, i, P,R, ~x, 0〉, 〈1, 1, i, P,R, ~x, 0〉},

p̂′′R,~s,i,~y = {〈2, 0, i, P,R, ~x, ~y〉, 〈2, 1, i, P,R, ~x, ~y〉}.

whose elements p satisfy D |= PR(~s, p). Therefore, D ∼= A−1, and hence A−1 ≤Σ

M.

Stukachev [7] proved that if ∅′ is ∆ on HF(A) then A ≡Σ B′ for some

structure B. Therefore,

Corollary 2. If ∅′ is ∆ on HF(A) for a countable A then A ≡Σ (A−1)′.

4. The Least Inversion for Infinitely Iterated Jumps

The next theorem generalizes Theorem 2 for every successive computable

ordinal. Now this result can be considered as a refinement of the results from [9].
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Theorem 3. For every countable structure A and computable successive ordinal

α there is a countable structure A−α such that

1. A 6Σ (A−α)(α);

2. A 6Σ M(α) ⇒ A−α 6Σ M for every countable structure M.

Proof. For simplicity we will consider only the case α = ω + 1. For arbitrary

successive α the proof is almost the same. The next lemma formally allows to

approximate the formulas from the ω-jump.

Lemma 1. Let M be an algebraic structure of signature σ and Φ(x1, . . . , xn) be

a Σ-formula of signature σ ∪ {Tω,∈, U}. Then there is a uniformly computable

sequence of formulas {Φk(x1, . . . , xn)}k∈ω such that Φk ∈ Σk for every k and

for all a1, . . . , an ∈ HF (M), m ∈ ω

M(ω) |= Φ(a1, . . . , an) ⇐⇒ ∃k [HF(M) |= Φk(a1, . . . , an)].

Proof. It is enough to prove the lemma for the case when Φ is a ∆-formula

with parameters from HF (M). Note that the negation ¬Tn(x, y) is equivalent

to Tn+1(z, 〈x, y〉) for some z. Hence, without loss of generality we can also

assume that Φ is in the prenex normal form and each instance of Tω is positive

(in the disjunctive normal form of the prefix-free part). Let T̃n(k, x, y) be the

Σn-formula for ”k ≤ n & Tω(k, x, y)”, and let Φn be the result of replacement

of each instance of Tω by T̃n. By hereditarily finiteness of HF(M) each Φn is

equivalent to a Σn-formula. An easy induction shows that

M(ω) |= Φ(a1, . . . , am) ⇐⇒ ∃n [HF(M) |= Φn(a1, . . . , am)]

for every a1, . . . , am ∈ HF (M).

Now we are ready to proceed the proof of the theorem. Since every structure

is Σ-equivalent to a graph (see [6]) we can assume for a simplicity that signature

σ of A contains only symmetric binary predicate symbols R. As in the previous

proof we can also assume that σ contains a congruence symbol ∼ with infinitely
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many congruence classes such that each congruence class is infinite. Also it is

convenient to assume that for any R ∈ σ there is an R′ ∈ σ such that

A |= R′(x, y) ⇐⇒ A |= ¬R(x, y).

The definition of the structure A−(ω+1) will use the iterations X−2 = (X−1)−1,

X−3 = ((X−1)−1)−1, . . . for the operator X 7→ X−1 defined in the previous theo-

rem. The structures X here will code positive and negative facts about the edge

relation on A. For this reason we fix one-element structures B0 and B1 with an

atomic predicate V such that B0 |= ¬V and B1 |= V . Then to build A−(ω+1)

we should replace each R ∈ σ by a binary relation IR which connects each pair

x, y ∈ |A| with infinitely many ω-chains with corresponding sequence of graphs

B−ih(i), i ∈ ω as it is shown below:

0 1 2 . . . m . . .

x

y

B−1
h(1) B−2

h(2) B−mh(m)

IR

IR

IR IR IR IR IR

IR IR IR

where the elements of B−mh(m) are connected to corresponding elements from

the chain via IR, and h is any {0, 1}-valued non-increasing function such that

lims h(s) = 1 =⇒ A |= R(x, y). That is, h is either a one-step function with

the limit 0, or it is the constant 1. The latter is possible only if R(x, y) holds.

Each such function h is repeated in the ω-chains infinitely often. Note that

for the case α > ω+1 we should replace the ω-chains by the (α−1)-chains with

additional predicates for the ordering and for limit element markers (in other

words we should present the notation of α).

By the uniformity of Bh(i) ≤Σ (B−ih(i))
(i) from Theorem 2 there is a comupt-
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able sequence of formulas {Φi}i∈N such that Φi is a Σi-formula and

h(i) = 1 ⇐⇒ HF(B−ih(i)) |= Φi.

Therefore, the condition ”h is the constant 1” is Π on (A−(ω+1))(ω), for a fixed

chain. Since σ contains all negations from σ we can define all atomic relations

in A using Σ2-formulas in (A−(ω+1))(ω), and so A 6Σ (A−(ω+1))(ω+1).

Let A 6Σ M(ω+1) for some countable structure M. Without loss of generality

we can assume |A| = HF (|M|). Let us prove that A−(ω+1) is Σ-definable in

HF(M). Fix an arbitrary R ∈ σ. To show that the relation IR of A−(ω+1) is

Σ-definable in HF(M) it is sufficient to establish the existence of a family of

structures Pa,kx,y, a, x, y ∈ HF (|M|), k ∈ ω, such that

1. for all a, x, y ∈ HF (|M|) there is a {0, 1}-valued non-increasing function

h such that Pa,kx,y = Bh(k) for every k;

2. for all x, y ∈ HF (|M|), A |= R(x, y) iff there is an a ∈ HF (M) such that

Pa,kx,y = B1 for every k;

3. there is a Σ-formula Φ such that for all a, x, y ∈ HF (|M|), k ∈ ω,

Φ(a, x, y, k) defines (Pa,kx,y)−k in HF(M).

Since A 6Σ M(ω+1) we have A 6Σ2
M(ω). Let Ψ be a ∆0-formula in M(ω) such

that

A |= R(x, y) ⇐⇒ M (ω) |= ∃a∀bΨ(a, b, x, y).

Using Lemma 1 we can fix a sequence of formulas {Θk}k∈ω such that Θk is Πk

in HF(M) for every k and

M(ω) |= ∀bΨ(a, b, x, y) ⇐⇒ ∀k [HF(M) |= Θk(a, x, y)],

M(ω) |= ¬∀bΨ(a, b, x, y) ⇐⇒ ∃k0∀k > k0 [HF(M) |= ¬Θk(a, x, y)],

for all a ∈ HF (|M|). Define

Pa,kx,y =

B1, if HF(M) |= Θk(a, x, y),

B0, if HF(M) |= ¬Θk(a, x, y).
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Note that Pa,kx,y 6Σ M(k) uniformly by all parameters. Therefore, using Theorem

2 we have also uniform definabilities (Pa,kx,y)−k 6Σ M. So that the structures

Pa,kx,y satisfy the conditions 1-3. This ends the proof.

For an analogue of Corollary 2 we need at least one structure B with B(α) ≡Σ

A. An analysis of Σcα-relations in the proofs from [9] gives us such an B.

Corollary 3. If α is a successive computable ordinal and ∅(α) is ∆ on HF(A)

for a countable A then A ≡Σ (A−α)(α).

Proof. Let A∗ be the structure constructed by Goncharov, Harrizanov, Knight,

McCoy, Miller, Solomon [9]. It is not hard to see that within α jumps one can

recover A from A∗. For the other direction, it is clear that A∗ has a Σ-definable

copy M in HF(A), but we need to show that the Σα-diagram of M is also Σ-

definable in HF(A). For this, we show that the Σα-diagram of M within A is

r.i.c.e. (relatively intrinsically c.e.) in HF(A). Consider any presentation A1

of A. It codes ∅(α), so there is a real Y such that Y (α) is Turing equivalent to

the degree of the presentation. Using [9, Lemma 5.5], we get that since A1 is

Y (α)-computable, the corresponding copy M1 of A∗1 is Y -computable, and the

isomorphism between M and M1 is Y (α)-computable. Now, Y (α) can compute

the Σα-diagram of M1, and mapping it through the isomorphism, it can also

compute the Σα-diagram of M1 as wanted. Thus, (A∗)(α) ≡Σ A, and also

A−α 6Σ A∗ by Theorem 3. Therefore, A 6Σ (A−α)(α) 6Σ (A∗)(α) 6Σ A.

5. Inversions of the ω-jump

Soskov [15] proved that for limit ordinal α = ω some structures A can

computably interpret ∅(ω) having no ω-jump inversions B, B(ω) ≡Σ A. In this

section we prove that there are structures A which have such inversions but

have no least one in the sense of Theorem 3. Namely, we can consider the word

structures 〈ω, s(x) = x + 1, A(x)〉, where A >T ∅(ω). The ω-jump inversions of

such structures exist since B(ω) ≡T A for some set B.
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To show that there is no Σ-least ω-jump inversions we need the following

technical definition and lemma.

Definition 4 ([16]). Fix a set Y . A sequence of sets {Ai}i∈N is Σ0
i7→i(Y ) if

there is an index e such that Ai = WY (i)

e for all i. In other words, the sequence

of sets {Ai}i∈N is Σ0
i 7→i(Y ) if Ai is Σ0

i+1(Y ) for all i, uniformly in i. If Y = ∅

we simply write Σ0
i7→i.

Lemma 2. Fix a set X. If a sequence of sets {Ai}i∈N is Σ0
i7→i(Y ) for all Y

with X 6T Y (ω), then the sequence {Ai}i∈N is Σ0
i 7→i.

Proof. Fix a set X and a sequence of sets {Ai}i∈N. We suppose the sequence

{Ai}i∈N is not Σ0
i 7→i and show there is a Y with X 6T Y (ω) for which the

sequence {Ai}i∈N is not Σ0
i 7→i(Y ). The construction of the set Y is done by

finite extension: Depending on the parity (modulo three) of the stage, we work

towards coding X into Y (ω), towards making Y arithmetically generic, and

towards making the sequence {Ai}i∈N is not Σ0
i 7→i(Y ).

Construction: We define Y [0] = λ, the empty string.

At stage s = 3t, we code another bit of X into Y , defining

Y [s+ 1] = Y [s]̂ X(s).

At stage s = 3t+ 1, we work towards arithmetic genericity, defining

Y [s+ 1] =


Y [s]̂ ρs, if ρs is the length-lexicographically least string ρ

with m ∈WY [s]̂ ρs⊕∅(k)

j ,

Y [s], otherwise, i.e., if no such ρ exists,

where j, k, and m are such that t = 〈j, k,m〉.

At stage s = 3t+ 2, we define an auxiliary sequence {Bi}i∈N by

Bi = {z : ∃γ [z ∈WY [s]̂ γ⊕∅(i)
t ]}.

As {Bi}i∈N is Σ0
i 7→i and {Ai}i∈N is not, we let l be the least index i with Ai 6= Bi.

We work towards making {Ai}i∈N not Σ0
i7→i(Y ), defining

Y [s+ 1] = Y [s]̂ γs,

14



where γs is an effective prefix-free description of the length-lexicographically

least string γ witnessing zs ∈ Bl \Al, where zs is minimal witnessing Bl 6⊆ Al, if

Bl 6⊆ Al; and where γs is the effective prefix-free description of the empty string

otherwise.

We define Y =
⋃
s Y [s].

Verification: Together, the sets Y and ∅(ω) can recover the action of the con-

struction, stage by stage: Given Y [s] and Y , if s = 3t, we have X(s) = Y [|Y [s]|].

Given Y [s], if s = 3t+1, the oracle Y [s]⊕∅(k+1) can uniformly identify whether

a string ρ exists and, if one does, the lexicographically-least string ρs. Given

Y [s] and Y , if s = 3t+2, by checking Y [|Y [s]|] we can identify whether Al 6⊆ Bl
and, if not, identify the string γs (since it was encoded in an effective prefix-free

manner).

Thus, together, the sets Y and ∅(ω) can recover X. Consequently, we have

Y (ω) >T Y ⊕ ∅(ω) >T X as needed. Indeed, more is true, namely that Y ⊕

∅(n) >T Y (n) for all n. For n = 1, this is a consequence of forcing the jump of Y

at stages s of the form s = 3〈j, 0,m〉+ 1. For larger n, this is a consequence of

the inductive hypothesis (the statement is true for n− 1) and forcing the jump

of Y at stages s of the form s = 3〈j, n,m〉+ 1.

It remains to show the {Ai}i∈N are not Σ0
i7→i(Y ). Fixing an index j, we

show there is an index k such that Ak 6= WY (k)

j . Since Y ⊕ ∅(k) >T Y (k),

there is an index j′ such that WY (k)

j = WY⊕∅(k)

j′ . We consider the action of

the construction at stage s = 3j′ + 2. If Al 6⊆ Bl, then there is an integer

z ∈ Al such that z 6∈WY [s]̂ γ⊕∅(l)
j′ for any γ. Thus z 6∈WY⊕∅(l)

j′ = WY (l)

j , so the

index l suffices. Otherwise, let zs be the least integer z with z 6∈ Bl \ Al. Let

γs be the length-lexicographically least string γ with zs ∈ WY [s]̂ γ⊕∅(l)
j′ . Thus

zs 6∈WY⊕∅(l)
j′ = WY (l)

j , so the index l suffices.

We conclude that the {Ai}i∈N are not Σ0
i 7→i(Y ).

Now we are ready to prove the main result of the section, which gives us

not only non-existence of the Σ-least inversions of the ω-jump, but also the

non-existence of the structures with the degree spectrum {d : d(ω) > a}.
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Theorem 4. Fix a degree a with a > 0(ω). There is no structure S such that

for every Turing degree d

S has a d-computable copy ⇐⇒ d(ω) > a.

Proof. Assume that there is a structure S such that for every Turing degree d

S has a d-computable copy ⇐⇒ d(ω) > a.

Let a = degT (A). Then by Theorem 5 from [17] the sets A and A are Σ-definable

in S(ω). Fix a Σ-formula Φ and a tuple ~a ∈ HF (S) such that for every integer

n

n ∈ A ⇐⇒ S(ω) |= Φ(~a, n).

By Lemma 1, there is a uniformly computable sequence of formulas {Φk}k∈ω
such that Φk ∈ Σk for every k and

n ∈ A ⇐⇒ ∃k [HF(S) |= Φk(~a, n)]

for all n ∈ ω. For every k ∈ ω define Ak by

Ak = {n : HF(S) |= Φk(~a, n)}.

It’s easy to see that A =
⋃
k Ak, and for every Y which computes a copy of S we

have Ak ∈ Σk(Y ) uniformly by k. Therefore, the sequence {Ak}k∈ω is Σ0
i 7→i(Y )

for all Y with A 6T Y (ω). By Lemma 2, {Ak}k∈ω is Σ0
i7→i. Hence, A ∈ Σ0

1(∅(ω)).

Similarly, we obtain A ∈ Σ0
1(∅(ω)). This contradicts the fact that a > 0(ω).

It follows immediately from the last theorem, that for a > 0(ω) the structures

with the degree spectra {d : d > a} (i.e, the a-computable structures in which

an of element of a is ∆-definable) have no Σ-least ω-jump inversion.

Corollary 4. Let a > 0(ω) and let A be any countable structure which has

a d-computable copy iff d > a for every Turing degree d (for example, A =

〈ω, s(x) = x+ 1, A(x)〉, where A ∈ a). Then there is no structure S such that

1. A 6Σ S(ω);
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2. A 6Σ M(ω) ⇒ S 6Σ M for every countable structure M.

Indeed, to deduce the corollary from Theorem 4 it is enough to consider

every degree d as a d-computable structure Md in which an element of d is

∆-definable. Also it easy to check that all our arguments for ω can be adapted

to any computable limit ordinal.
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