Kakeya Sets

Jonathan Hickman

The University of Edinburgh
The Kakeya Problem

Definition
A Kakeya set $K \subset \mathbb{R}^n$ is a compact subset which contains a unit line segment in every direction.
Examples of Kakeya subsets of the plane:

Area = $\frac{\pi}{4}$
Examples of Kakeya subsets of the plane:

- Area = \(\frac{\pi}{4} \)
- Area = \(\frac{1}{\sqrt{3}} \)
Examples of Kakeya subsets of the plane:

- Area = $\frac{\pi}{4}$
- Area = $\frac{1}{\sqrt{3}}$
- Area = $\frac{\pi}{8}$
The Kakeya Problem

Question

What is the smallest possible area of a Kakeya set in the plane?
The Kakeya Problem

Question
What is the smallest possible area of a Kakeya set in the plane?

Answer (Besicovitch, 1919)
There exists a Kakeya $K \subseteq \mathbb{R}^2$ set of plane measure zero.
Construction of a Besicovitch set

Figure: Begin with an equilateral triangle of height 1. Partition the base into 2^k equal intervals and use the intervals to form 2^k triangles.
Construction of a Besicovitch set

Figure: Slide the small triangles horizontally and bunch them together so they have large overlap. Note the resulting figure will still contain a unit line in a range of directions covering $2\pi/3$ radians.
Construction of a Besicovitch set

Figure: Continue to slide the triangles horizontally.
Construction of a Besicovitch set

Figure: The final configuration of triangles has much smaller area than the original figure. We call it a **Perron tree**.
Construction of a Besicovitch set

Figure: The final configuration of triangles has much smaller area than the original figure. We call it a **Perron tree**. Moreover, by choosing k sufficiently large, the area of the Perron tree can be made arbitrarily small.
The Kakeya Problem
Connections with Harmonic Analysis
Kakeya sets over Finite Fields

Besicovitch sets

There have been numerous proofs of existence of Kakeya sets of measure zero. Notably:

▶ Kahane (1969) - by joining points of two parallel Cantor-like sets.
▶ There exists a set K of measure zero containing a full line in every direction (see Falconer's book).
Besicovitch sets

There have been numerous proofs of existence of Kakeya sets of measure zero. Notably:

- Kahane (1969) - by joining points of two parallel Cantor-like sets.
There have been numerous proofs of existence of Kakeya sets of measure zero. Notably:

- Kahane (1969) - by joining points of two parallel Cantor-like sets.
There have been numerous proofs of existence of Kakeya sets of measure zero. Notably:

- Kahane (1969) - by joining points of two parallel Cantor-like sets.
- There exists a set K of measure zero containing a full line in every direction (see Falconer’s book).
Although the Kakeya sets seem like a mere curiosity, they have been found to have numerous applications in various fields:

- Harmonic analysis (Fefferman)
- Study of solutions to the wave equation (Wolff)
- Additive combinatorics (Bourgain)
- Analytic number theory (Bourgain)
- Cryptography (Bourgain)
- Random number generation in computer science (Dvir, Wigderson)

Here I’ll briefly describe Fefferman’s classical (and ingenious!) application of Kakeya sets to the ball multiplier problem from Fourier analysis.
Although the Kakeya sets seem like a mere curiosity, they have been found to have numerous applications in various fields:

- Harmonic analysis (Fefferman)
- Study of solutions to the wave equation (Wolff)
- Additive combinatorics (Bourgain)
- Analytic number theory (Bourgain)
- Cryptography (Bourgain)
- Random number generation in computer science (Dvir, Wigderson)
Although the Kakeya sets seem like a mere curiosity, they have been found to have numerous applications in various fields:

- Harmonic analysis (Fefferman)
- Study of solutions to the wave equation (Wolff)
- Additive combinatorics (Bourgain)
- Analytic number theory (Bourgain)
- Cryptography (Bourgain)
- Random number generation in computer science (Dvir, Wigderson)

Here I’ll briefly describe Fefferman’s classical (and ingenious!) application of Kakeya sets to the **ball multiplier problem from Fourier analysis.**
Connections with Harmonic Analysis

Theorem (M. Riesz, 1928)

Let $Q := [-1, 1]^2$ and

$$Sf = (\hat{f} \chi_Q) \ast f \in \mathcal{S}(\mathbb{R}^2).$$

Then S is a bounded operator on $L^p(\mathbb{R}^2)$ for $1 < p < \infty$.
Theorem (M. Riesz, 1928)
Let \(Q := [-1, 1]^2 \) and
\[
Sf = (\hat{f} \chi_Q)^\sim \quad f \in \mathcal{S}(\mathbb{R}^2).
\]
Then \(S \) is a bounded operator on \(L^p(\mathbb{R}^2) \) for \(1 < p < \infty \).

Theorem (C. Fefferman, 1971)
Let \(B := \{ x \in \mathbb{R}^2 : |x| \leq 1 \} \) and
\[
Tf = (\hat{f} \chi_B)^\sim \quad f \in \mathcal{S}(\mathbb{R}^2).
\]
Then \(T \) is a bounded operator on \(L^p(\mathbb{R}^2) \) if and only if \(p = 2 \).
Connections with Harmonic Analysis

Theorem (M. Riesz, 1928)
Let \(Q := [-1, 1]^2 \) and

\[
Sf = (\hat{f} \chi_Q)^\circ \quad f \in \mathcal{S}(\mathbb{R}^2).
\]

Then \(S \) is a bounded operator on \(L^p(\mathbb{R}^2) \) for \(1 < p < \infty \).

Theorem (C. Fefferman, 1971)
Let \(B := \{ x \in \mathbb{R}^2 : |x| \leq 1 \} \) and

\[
Tf = (\hat{f} \chi_B)^\circ \quad f \in \mathcal{S}(\mathbb{R}^2).
\]

Then \(T \) is a bounded operator on \(L^p(\mathbb{R}^2) \) if and only if \(p = 2 \).

At the heart of Fefferman’s proof lies (a variant of) the Perron tree described above.
Fefferman takes f to be the sum of characteristic functions of certain disjoint long thin tubes, multiplied by certain phase factors.

The tubes are arranged in relation to (some variant of) a Perron tree.
Fefferman takes f to be the sum of characteristic functions of certain disjoint long thin tubes, multiplied by certain phase factors.

The tubes are arranged in relation to (some variant of) a Perron tree.
It transpires that the ball multiplier operator T effectively shifts the tubes by a fixed amount in the direction of their long side.

The result is...
It transpires that the ball multiplier operator T effectively shifts the tubes by a fixed amount in the direction of their long side.

The result is...
The Kakeya Problem
Connections with Harmonic Analysis
Kakeya sets over Finite Fields

Jonathan Hickman
Kakeya Sets
Thus, T does not preserve the qualitative properties of the distribution of f and fails to be bounded on L^p for $p \neq 2$.
Introducing discretisation: replaced line segments in K with, say, a large collection of $1 \times \delta$ tubes for $0 < \delta \ll 1$.
Reviewing Fefferman’s proof

- Introduced discretisation: replaced line segments in K with, say, a large collection of $1 \times \delta$ tubes for $0 < \delta \ll 1$.
- Important to understand the optimal compression / pile-up for these tubes.
Reviewing Fefferman’s proof

- Introduced discretisation: replaced line segments in K with, say, a large collection of $1 \times \delta$ tubes for $0 < \delta \ll 1$.
- Important to understand the optimal compression / pile-up for these tubes.
- By arranging the tubes in a Perron-tree we achieved a high level of tube pile-up - led to bad behaviour.
Kakeya Conjecture

Given a Kakeya set K, the Minkowski dimension of K tells us how large the resulting set will be if we fatten the lines in K to δ tubes.
Kakeya Conjecture

Given a Kakeya set K, the Minkowski dimension of K tells us how large the resulting set will be if we fatten the lines in K to δ tubes.

Definition

A subset $E \subseteq \mathbb{R}^n$ has Minkowski dimension at least α if for any $0 < \epsilon \leq 1$ there exists a constant C_ϵ such that

$$|E_\delta| \geq C_\epsilon \delta^{n-\alpha+\epsilon}$$
Kakeya Conjecture

Given a Kakeya set K, the Minkowski dimension of K tells us how large the resulting set will be if we fatten the lines in K to δ tubes.

Definition
A subset $E \subseteq \mathbb{R}^n$ has Minkowski dimension at least α if for any $0 < \epsilon \leq 1$ there exists a constant C_ϵ such that

$$|E_\delta| \geq C_\epsilon \delta^{n-\alpha} + \epsilon$$

Small Minkowski dimension implies very large tube pile-up.
Kakeya Conjecture

Given a Kakeya set K, the Minkowski dimension of K tells us how large the resulting set will be if we fatten the lines in K to δ tubes.

Definition

A subset $E \subseteq \mathbb{R}^n$ has Minkowski dimension at least α if for any $0 < \epsilon \leq 1$ there exists a constant C_ϵ such that

$$|E_\delta| \geq C_\epsilon \delta^{n-\alpha} + \epsilon$$

Small Minkowski dimension implies very large tube pile-up.

Conjecture

*Any Kakeya set $K \subseteq \mathbb{R}^n$ has Minkowski dimension n.***
The Kakeya conjecture essentially tells us any pile-up of tubes cannot be much worse than what we have already experienced.

This is related to many problems in PDE and Fourier analysis...
Kakeya Conjecture

Local Smoothing
\[\Downarrow\]
Maximal Bochner-Riesz
\[\Downarrow\]
Spherical Bochner-Riesz
\[\Downarrow\]
Spherical Restriction
\[\Downarrow\]
Parabolic Restriction \[\iff\] Parabolic Bochner-Riesz
\[\Downarrow\]
Maximal Kakeya
\[\Downarrow\]
Kakeya Conjecture
Kakeya Conjecture

Conjecture

Any Kakeya set $K \subseteq \mathbb{R}^n$ has Minkowski dimension n.
Kakeya Conjecture

Conjecture

Any Kakeya set $K \subseteq \mathbb{R}^n$ has Minkowski dimension n.

- Dimension 2 case is known (Davies 1971, Cordoba 1977).
Kakeya Conjecture

Conjecture

Any Kakeya set $K \subseteq \mathbb{R}^n$ has Minkowski dimension n.

- Dimension 2 case is known (Davies 1971, Cordoba 1977).
- Partial results are known in all dimensions, but obtaining sharp results seems very difficult.
Conjecture

Any Kakeya set $K \subseteq \mathbb{R}^n$ has Minkowski dimension n.

- Dimension 2 case is known (Davies 1971, Cordoba 1977).
- Partial results are known in all dimensions, but obtaining sharp results seems very difficult.
- Wolff proposed a finite field analogue of the Kakeya conjecture to act as a toy model.
Definition
Let \mathbb{F} be a finite field. We say $K \subseteq \mathbb{F}^n$ is a Kakeya set if it contains a line in every direction.
Definition
Let \mathbb{F} be a finite field. We say $K \subseteq \mathbb{F}^n$ is a Kakeya set if it contains a line in every direction. That is, for every “direction” $\omega \in \mathbb{F}^n \setminus \{0\}$ there exists $y \in \mathbb{F}^n$ such that the line

$$\{y + t\omega : t \in \mathbb{F}\}$$

lies in K.

Note $\omega_1, \omega_2 \in \mathbb{F}^n \setminus \{0\}$ define the same direction if $\omega_1 = t\omega_2$ for some $t \in \mathbb{F}$. Therefore there are $|\mathbb{F}|^n - 1$ distinct directions in \mathbb{F}^n.

Jonathan Hickman
Kakeya Sets
Definition
Let F be a finite field. We say $K \subseteq F^n$ is a Kakeya set if it contains a line in every direction.
That is, for every “direction” $\omega \in F^n \setminus \{0\}$ there exists $y \in F^n$ such that the line
$$\{y + t\omega : t \in F\}$$
lies in K.
Note $\omega_1, \omega_2 \in F^n \setminus \{0\}$ define the same direction if $\omega_1 = t\omega_2$ for some $t \in F$. Therefore there are
$$\frac{|F|^n - 1}{|F| - 1} \sim |F|^{n-1}$$
distinct directions in F^n.
Conjecture (Finite field Kakeya conjecture)

If $K \subseteq \mathbb{F}^n$ is a Kakeya set, then

$$|K| \geq c_n|\mathbb{F}|^n$$

where $0 < c_n$ is a constant depending only on n.
Conjecture (Finite field Kakeya conjecture)

If $K \subseteq \mathbb{F}^n$ is a Kakeya set, then

$$|K| \geq c_n|\mathbb{F}|^n$$

where $0 < c_n$ is a constant depending only on n.

In analogy with the Kakeya conjecture this tells us any “tube pile-up” cannot be too large:
Conjecture (Finite field Kakeya conjecture)

If $K \subseteq \mathbb{F}^n$ is a Kakeya set, then

$$|K| \geq c_n|\mathbb{F}|^n$$

where $0 < c_n$ is a constant depending only on n.

In analogy with the Kakeya conjecture this tells us any “tube pile-up” cannot be too large:

- There are $\sim |\mathbb{F}|^{n-1}$ lines in K pointing in different directions;
Conjecture (Finite field Kakeya conjecture)

If $K \subseteq \mathbb{F}^n$ is a Kakeya set, then

$$|K| \geq c_n |\mathbb{F}|^n$$

where $0 < c_n$ is a constant depending only on n.

In analogy with the Kakeya conjecture this tells us any “tube pile-up” cannot be too large:

- There are $\sim |\mathbb{F}|^{n-1}$ lines in K pointing in different directions;
- Each line contains $|\mathbb{F}|$ elements;
The Kakeya Problem
Connections with Harmonic Analysis
Kakeya sets over Finite Fields

Kakeya sets over Finite Fields

Conjecture (Finite field Kakeya conjecture)

If \(K \subseteq \mathbb{F}^n \) is a Kakeya set, then

\[
|K| \geq c_n |\mathbb{F}|^n
\]

where \(0 < c_n \) is a constant depending only on \(n \).

In analogy with the Kakeya conjecture this tells us any “tube pile-up” cannot be too large:

- There are \(\sim |\mathbb{F}|^{n-1} \) lines in \(K \) pointing in different directions;
- Each line contains \(|\mathbb{F}| \) elements;
- The conjecture states union of these lines has \(\sim |\mathbb{F}|^n \) elements - therefore the lines are essentially disjoint.

Jonathan Hickman
Kakeya Sets
Initially very little progress was made on this conjecture (despite the attention of Wolff, Mockenhaupt, Rogers, Tao, et al.).
Initially very little progress was made on this conjecture (despite the attention of Wolff, Mockenhaupt, Rogers, Tao, et al.)

Remarkably the conjecture was completely proven in 2008 by Dvir.
Initially very little progress was made on this conjecture (despite the attention of Wolff, Mockenhaupt, Rogers, Tao, et al.)

Remarkably the conjecture was completely proven in 2008 by Dvir.

He used a completely elementary combinatorial / algebraic method.
Initially very little progress was made on this conjecture (despite the attention of Wolff, Mockenhaupt, Rogers, Tao, et al.)

Remarkably the conjecture was completely proven in 2008 by Dvir.

He used a completely elementary combinatorial / algebraic method.

It could easily fit in a first year linear algebra course!
Theorem (Finite field Kakeya conjecture)

If $K \subseteq \mathbb{F}^n$ is a Kakeya set, then

$$|K| \geq c_n |\mathbb{F}|^n.$$

Proof.
Theorem (Finite field Kakeya conjecture)

If $K \subseteq \mathbb{F}^n$ is a Kakeya set, then

$$|K| \geq c_n|\mathbb{F}|^n.$$

Proof.

- Show if $E \subseteq \mathbb{F}^n$ is small, then there exists a non-zero polynomial of low degree which vanishes on E. (This is a simple dimension-counting argument).
Theorem (Finite field Kakeya conjecture)

If $K \subseteq \mathbb{F}^n$ is a Kakeya set, then

$$|K| \geq c_n |\mathbb{F}|^n.$$

Proof.

- Show if $E \subseteq \mathbb{F}^n$ is small, then there exists a non-zero polynomial of low degree which vanishes on E. (This is a simple dimension-counting argument).
- Use the structure of a Kakeya set to show any polynomial of low degree which vanishes on K must be the zero polynomial.
Kakeya sets over Finite Fields

Theorem (Finite field Kakeya conjecture)

If \(K \subseteq \mathbb{F}^n \) is a Kakeya set, then

\[
|K| \geq c_n |\mathbb{F}|^n.
\]

Proof.

- Show if \(E \subseteq \mathbb{F}^n \) is small, then there exists a non-zero polynomial of low degree which vanishes on \(E \). (This is a simple dimension-counting argument).
- Use the structure of a Kakeya set to show any polynomial of low degree which vanishes on \(K \) must be the zero polynomial.
- Conclude \(K \) is not small.
Kakeya sets over Finite Fields

Theorem (Finite field Kakeya conjecture)

If $K \subseteq \mathbb{F}^n$ is a Kakeya set, then

$$|K| \geq c_n |\mathbb{F}|^n.$$

Proof.

- Show if $E \subseteq \mathbb{F}^n$ is small, then there exists a non-zero polynomial of low degree which vanishes on E. (This is a simple dimension-counting argument).
- Use the structure of a Kakeya set to show any polynomial of low degree which vanishes on K must be the zero polynomial.
- Conclude K is not small.
Lemma

If $E \subset \mathbb{F}^n$ with $|E| < \binom{n+d}{n}$, then there exists a non-zero polynomial of degree at most d which vanishes on E.
Lemma
If $E \subset \mathbb{F}^n$ with $|E| < \binom{n+d}{n}$, then there exists a non-zero polynomial of degree at most d which vanishes on E.

Proof.
The space of polynomials of degree at most d on \mathbb{F}^n is $\binom{n+d}{n}$-dimensional. The linear map

$$\text{eval} : \mathbb{F}^{|E|} \rightarrow \mathbb{F}^{|E|}$$
$$\text{eval} : P \mapsto (P(x))_{x \in E}$$

therefore has non-trivial kernel.
Kakeya sets over Finite Fields

- Show if $E \subseteq \mathbb{F}^n$ is small, then there exists a non-zero polynomial of low degree which vanishes on E. ✓
- Use the structure of a Kakeya set to show any polynomial of low degree which vanishes on K must be the zero polynomial.
Proposition

If $P : \mathbb{F}^n \to \mathbb{F}$ is a polynomial of degree at most $|\mathbb{F}| - 1$ which vanishes on K, then P is identically zero.
Proposition

If \(P : \mathbb{F}^n \to \mathbb{F} \) is a polynomial of degree at most \(|\mathbb{F}| - 1\) which vanishes on \(K \), then \(P \) is identically zero.

- Assume \(P \neq 0 \). Then \(P = \sum_{i=0}^{d} P_i \) where each \(P_i \) is homogeneous of degree \(i \) and \(P_d \neq 0 \). Since \(P \) vanishes on \(K \), the polynomial is non-constant and \(d > 0 \).
Proposition

If $P : \mathbb{F}^n \rightarrow \mathbb{F}$ is a polynomial of degree at most $|\mathbb{F}| - 1$ which vanishes on K, then P is identically zero.

- Assume $P \neq 0$. Then $P = \sum_{i=0}^{d} P_i$ where each P_i is homogeneous of degree i and $P_d \neq 0$. Since P vanishes on K, the polynomial is non-constant and $d > 0$.

- Given a direction $\omega \in \mathbb{F}^n \setminus \{0\}$, there exists $y \in \mathbb{F}^n$ such that P vanishes on the line $\{y + t\omega : t \in \mathbb{F}\}$.
Proposition

If $P : \mathbb{F}^n \to \mathbb{F}$ is a polynomial of degree at most $|\mathbb{F}| - 1$ which vanishes on K, then P is identically zero.

- Assume $P \neq 0$. Then $P = \sum_{i=0}^{d} P_i$ where each P_i is homogeneous of degree i and $P_d \neq 0$. Since P vanishes on K, the polynomial is non-constant and $d > 0$.
- Given a direction $\omega \in \mathbb{F}^n \setminus \{0\}$, there exists $y \in \mathbb{F}^n$ such that P vanishes on the line $\{y + t\omega : t \in \mathbb{F}\}$.
- Hence $Q(t) := P(y + t\omega)$ is a univariate polynomial of degree less than $|\mathbb{F}|$ which vanishes for all $t \in \mathbb{F}$.

Jonathan Hickman

Kakeya Sets
Proposition

If $P : \mathbb{F}^n \to \mathbb{F}$ is a polynomial of degree at most $|\mathbb{F}| - 1$ which vanishes on K, then P is identically zero.

- Assume $P \neq 0$. Then $P = \sum_{i=0}^{d} P_i$ where each P_i is homogeneous of degree i and $P_d \neq 0$. Since P vanishes on K, the polynomial is non-constant and $d > 0$.
- Given a direction $\omega \in \mathbb{F}^n \setminus \{0\}$, there exists $y \in \mathbb{F}^n$ such that P vanishes on the line $\{y + t\omega : t \in \mathbb{F}\}$.
- Hence $Q(t) := P(y + t\omega)$ is a univariate polynomial of degree less than $|\mathbb{F}|$ which vanishes for all $t \in \mathbb{F}$.
- Q is identically zero and, in particular the t^d coefficient, which is $P_d(\omega)$, is zero.
Proposition

If $P : \mathbb{F}^n \to \mathbb{F}$ is a polynomial of degree at most $|\mathbb{F}| - 1$ which vanishes on K, then P is identically zero.

- Assume $P \neq 0$. Then $P = \sum_{i=0}^{d} P_i$ where each P_i is homogeneous of degree i and $P_d \neq 0$. Since P vanishes on K, the polynomial is non-constant and $d > 0$.
- Given a direction $\omega \in \mathbb{F}^n \setminus \{0\}$, there exists $y \in \mathbb{F}^n$ such that P vanishes on the line $\{y + t\omega : t \in \mathbb{F}\}$.
- Hence $Q(t) := P(y + t\omega)$ is a univariate polynomial of degree less than $|\mathbb{F}|$ which vanishes for all $t \in \mathbb{F}$.
- Q is identically zero and, in particular the t^d coefficient, which is $P_d(\omega)$, is zero.
- Therefore $P_d(x) = 0$ for all $x \in \mathbb{F}^n$. Since the degree of P_d is less than $|\mathbb{F}|$, one concludes P_d is identically zero, a contradiction.
Corollary

Any Kakeya set $K \subseteq \mathbb{F}^n$ has cardinality

$$|K| \geq \binom{n + |\mathbb{F}| - 1}{n} \geq \frac{1}{n!}|\mathbb{F}|^n$$
Corollary

Any Kakeya set $K \subseteq \mathbb{F}^n$ has cardinality

$$|K| \geq \binom{n + |\mathbb{F}| - 1}{n} \geq \frac{1}{n!}|\mathbb{F}|^n$$

- If $E \subset \mathbb{F}^n$ with $|E| < \binom{n+d}{n}$, then there exists a non-zero polynomial of degree at most d which vanishes on E.
- If $P : \mathbb{F}^n \to \mathbb{F}$ is a polynomial of degree at most $|\mathbb{F}| - 1$ which vanishes on a Kakeya set K, then P is identically zero.
Impact

- The (continuous) Kakeya conjecture remains open.
- Multilinear-Kakeya
- Numerous combinatorial problems amenable to polynomial method: solution to the Joints problem and Erdös distance conjecture.