Galois Actions and Quadratic Reciprocity

Ignacio Darago

Abstract. In these notes we will give a brief overview of the influence of the action of the Galois group in the prime decomposition, and then we will give a proof of the quadratic reciprocity law, following [Mar77] and [Neu99].

1. Galois Actions

Given a finite extension of number fields $L|k$, one may consider the rings of integers $\mathcal{O}_k \subseteq \mathcal{O}_L$. Then, given a prime ideal p of \mathcal{O}_k it is natural to consider the set of prime ideals \mathfrak{P} of \mathcal{O}_L such that $\mathfrak{P} \cap \mathcal{O}_k = p$. Indeed, since $p\mathcal{O}_L$ is an ideal in a Dedekind domain, it must decompose in a unique way into a product of prime ideals $p\mathcal{O}_L = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r}$. From here on, we will simply write p instead of $p\mathcal{O}_L$ in a slight abuse of notation. One may clearly see that the set of primes in \mathcal{O}_L which lie over p is precisely the set of primes $\{\mathfrak{P}_1, \ldots, \mathfrak{P}_r\}$ that appear in the prime factorization of p. The exponent e_i is called the ramification index and the degree of the field extension $f_i = [\mathcal{O}_L/\mathfrak{P}_i : \mathcal{O}_k/p]$ is called the inertia degree of \mathfrak{P}_i over p. When the extension $L|k$ is separable, the ramification index and the inertia degree are linked by the following theorem.

Theorem 1 (Fundamental Identity). Let $L|k$ be a separable extension of degree n. For any prime p of \mathcal{O}_k we have

$$\sum_{i=1}^r e_if_i = n.$$

Proof. For a proof see [Neu99, p. 46]. □

We say that a prime p is totally split in L if in the decomposition $p = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r}$ we have that $e_i = f_i = 1$ for all $i = 1, \ldots, r$ and $r = [L:k]$. On the other extreme, if $r = 1$ we will say that p is non-split. The fundamental identity thus tells us that if the inertia degree is small, the ideal p is likely to split, that is, factor into different prime ideals.

If $L|k$ is a separable extension, by the primitive element theorem there is some element $\theta \in \mathcal{O}_L$ such that $L = k(\theta)$ (however it may happen that $\mathcal{O}_k[\theta] \subsetneq \mathcal{O}_L$ is properly contained). The decomposition of a prime p of \mathcal{O}_k in \mathcal{O}_L is closely related to the decomposition of the minimal polynomial of $\theta \in \mathcal{O}_k[x]$ over the residue class field \mathcal{O}_k/p. However, there is a technical consideration to be taken into account. The conductor of the ring $\mathcal{O}_k[\theta]$ is defined to be the biggest ideal \mathfrak{f} of \mathcal{O}_L which is contained in $\mathcal{O}_k[\theta]$, or in other words

$$\mathfrak{f} = \{a \in \mathcal{O}_L : a\mathcal{O}_L \subseteq \mathcal{O}_k[\theta]\}.$$

Theorem 2 (Dedekind). Let $L|k$ be a separable extension of number fields and p be a prime ideal of \mathcal{O}_k which is relatively prime to the conductor of $\mathcal{O}_k[\theta]$ where $\theta \in \mathcal{O}_L$ is a primitive element of $L|k$. If $f \in \mathcal{O}_k[x]$ is the minimal polynomial of θ and

$$f(x) = f_1(x)^{e_1} \cdots f_r(x)^{e_r}$$

is the factorization of f into irreducibles f_i over \mathcal{O}_k/p. Then $\mathfrak{P}_i = p + (f_i(\theta))$ are the different prime ideals of \mathcal{O}_L lying over p. Moreover, the inertia degree of \mathfrak{P}_i is the degree of $f_i(x)$ and we have

$$p = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r}.$$
Proof. See [Neu99, p. 48].

A classical problem in number theory is the question of taking square roots modulo a prime \(p \in \mathbb{Z} \). That is, we ask for \(a \in \mathbb{F}_p \) if there exists some \(x \in \mathbb{F}_p \) such that \(x^2 = a \). This is equivalent to finding integer solutions to the diophantine equation \(x^2 + py = a \). We may consider the (multiplicative) group morphism \(\mathbb{F}_p^* \to \mathbb{F}_p^* \), \(x \mapsto x^2 \) and we ask if \(a \in \mathbb{F}_p \) is in the image of this morphism. By noticing that the kernel of that morphism is \(\{ -1, +1 \} \), the image \((\mathbb{F}_p^*)^2\) is a subgroup of index 2. Because \(\mathbb{F}_p^* \) is a cyclic group, one may easily verify that \(a \) is a square modulo \(p \) if and only if \(a^{\frac{p-1}{2}} \equiv 1 \pmod{p} \) and thus we may define the Legendre symbol as \(\left(\frac{a}{p} \right) \) to be \(a^{\frac{p-1}{2}} \pmod{p} \) and it will be 1 if \(a \) is a quadratic residue and \(-1\) if not. The symbol is multiplicative and therefore is the unique character of order 2 in \(\mathbb{F}_p^* \).

Now, let us see that the condition of being a quadratic residue may be translated into terms of the prime decomposition. Consider the extension \(\mathbb{Q}(\sqrt{a})/\mathbb{Q} \). We know that the ring of integers of a quadratic extension is \(\mathbb{Z}[\sqrt{a}] \) if \(a \equiv 2, 3 \pmod{4} \) and \(\mathbb{Z}\left[\frac{1+\sqrt{a}}{2} \right] \) if \(a \equiv 1 \pmod{4} \) and then it is clear that the conductor of \(\mathbb{Z}[\sqrt{a}] \) is a divisor of 2. The minimal polynomial of \(\sqrt{a} \) is \(x^2 - a \), and reducing modulo \(p \), it remains irreducible if and only if \(a \) is not a quadratic residue, and in the case it is a quadratic residue it splits as \(x^2 - a = (x - b)(x + b) \) for some \(b \in \mathbb{F}_p \). Therefore, Dedekind’s theorem shows that \(\left(\frac{a}{p} \right) = 1 \) if and only if \((p) \) is totally split in \(\mathbb{Q}(\sqrt{a}) \). We will pursue this link further on in section 2.

When \(L/k \) is a Galois extension, we may understand more thoroughly the problem of prime factorization since we now have an action of the Galois group \(\text{Gal}(L/k) \) on the set of prime factors of \(p \). Indeed, clearly the action of the Galois group \(\text{Gal}(L/k) \) on \(L \) restricts to an action on \(\mathcal{O}_L \) and if \(\mathfrak{P} \) is a prime lying over \(p \) then \(\sigma(\mathfrak{P}) \) is also a prime and we have

\[\sigma(\mathfrak{P}) \cap \mathcal{O}_k = \sigma(\mathfrak{P} \cap \mathcal{O}_k) = \sigma(p) = p. \]

Let us prove that this action is transitive. Given primes \(\mathfrak{P}_1, \mathfrak{P}_2 \) which lie over \(p \) we shall suppose that \(\mathfrak{P}_2 \neq \sigma(\mathfrak{P}_1) \) for every \(\sigma \in \text{Gal}(L/k) \) and via the Chinese remainder theorem there exists \(x \in \mathcal{O}_L \) such that \(x \equiv 0 \pmod{\mathfrak{P}_2} \) and \(x \equiv 1 \pmod{\sigma(\mathfrak{P}_1)} \) for every \(\sigma \in \text{Gal}(L/k) \). Then, the norm \(N_{L/k}(x) = \prod_{\sigma \in \text{Gal}(L/k)} \sigma(x) \) belongs to \(\mathfrak{P}_2 \cap \mathcal{O}_k = p \) but it does not belong to \(\mathfrak{P}_1 \) because \(\sigma(x) \notin \mathfrak{P}_1 \) for every \(\sigma \in \text{Gal}(L/k) \), which yields a contradiction.

Because of the transitivity of the Galois action, given a prime \(\mathfrak{P} \) lying over \(p \) we obtain every prime ideal lying over \(p \) simply by considering the orbit \(\{ \sigma(\mathfrak{P}) : \sigma \in \text{Gal}(L/k) \} \). Thus, the stabilizer \(G_{\mathfrak{P}} = \{ \sigma \in \text{Gal}(L/k) : \sigma(\mathfrak{P}) = \mathfrak{P} \} \) encodes the number of different prime ideals into which a prime decomposes, for the orbit-stabilizer theorem tells us that the orbit has \((\text{Gal}(L/k) : G_{\mathfrak{P}}) \) elements. We will call \(G_{\mathfrak{P}} \) the decomposition group of \(\mathfrak{P} \) over \(K \). By the previous discussion, it is clear that \(G_{\mathfrak{P}} = 1 \) if and only if \(p \) is totally split and \(G_{\mathfrak{P}} = \text{Gal}(L/k) \) if and only if \(p \) is nonsplit.

Also, the transitivity of the Galois action forces the ramification index and inertia degree to be independent of the prime in the factorization and will be denoted \(e \) and \(f \) respectively. Indeed, if we write \(p = \mathfrak{P}_1^{e_1} \cdots \mathfrak{P}_r^{e_r} \) then considering for each \(i \) some \(\sigma_i \in \text{Gal}(L/k) \) such that \(\sigma_i(\mathfrak{P}_1) = \mathfrak{P}_i \), we have an isomorphism \(\mathcal{O}_L/\mathfrak{P}_1 \isom \mathcal{O}_L/\mathfrak{P}_i \) via \(a \mod \mathfrak{P}_1 \mapsto \sigma_i(a) \mod \mathfrak{P}_i \) and thus the inertia degrees \(f_i = f_1 \) must be equal. Also, applying \(\sigma \) gives us a permutation of the prime factors

\[p = \sigma(\mathfrak{P}_1)^{e_1} \cdots \sigma(\mathfrak{P}_r)^{e_r} = \mathfrak{P}_1^{e_{\tau(1)}} \cdots \mathfrak{P}_r^{e_{\tau(r)}} \]

where \(\tau \) is the permutation associated with the action of \(\sigma^{-1} \) on the set \(\{ \mathfrak{P}_1, \ldots, \mathfrak{P}_r \} \). Therefore, \(e_{\tau(i)} = e_i \) for every \(i \) and the transitivity tells us that it must be independent of \(i \).

Consider the fixed field of the decomposition group, that is, \(\mathcal{Z}_{\mathfrak{P}} = \{ x \in L : \sigma(x) = x \ \forall \sigma \in G_{\mathfrak{P}} \} \). This field will be called the decomposition field of \(\mathfrak{P} \) over \(K \). Then, the prime decomposition may be
understood in two steps, first by decomposing in the extension \(Z_q \mid k \) and second by decomposing in the extension \(L \mid Z_q \).

Proposition 3. Let \(\mathfrak{P}_Z = \mathfrak{P} \cap Z_q \) be the prime ideal of \(Z_q \) below \(\mathfrak{P} \). Then we have:

1. \(\mathfrak{P}_Z \) is nonsplit in \(L \), that is \(\mathfrak{P} \) is the only prime ideal of \(L \) above \(\mathfrak{P}_Z \).
2. \(\mathfrak{P} \) over \(Z_q \) has ramification index \(e \) and inertia degree \(f \).
3. The ramification index and the inertia degree of \(\mathfrak{P}_Z \) over \(k \) both equal 1.

Proof. The main theorem of Galois theory tells us that \(\text{Gal}(L \mid Z_q) = G_q \) and therefore the prime ideals above \(\mathfrak{P}_Z \) are the \(\sigma(\mathfrak{P}_Z) \) for \(\sigma \in G_q \), and they are all equal to \(\mathfrak{P} \).

In the Galois case, the fundamental identity reads \(n = efr \) where \(n = [L : k] = \sharp \text{Gal}(L \mid k) \) and \(r = (\text{Gal}(L \mid k) : G_q) \). Therefore it is clear that \(\sharp \text{Gal}(L \mid Z_q) = \sharp G_q = ef \). Suppose that \(e', e'' \) and \(f', f'' \) are the ramification indices and inertia degrees of \(\mathfrak{P} \) over \(Z_q \) and of \(\mathfrak{P}_Z \) over \(k \) respectively. It is then clear that \(e = e'e'' \) and \(f = f'f'' \) and the fundamental identity for \(\mathfrak{P}_Z \) in \(L \) tells us that \(\sharp \text{Gal}(L \mid Z_q) = e'f' = ef \). Then, \(e''f'' = 1 \) and then \(e'' \) is always divisible by \(d \) as desired.

2. Quadratic Reciprocity

In this section we will provide a proof of the law of quadratic reciprocity by understanding first the law of decomposition in cyclotomic fields.

Recall that if \(p \) is a prime number and \(\zeta_p \) is a primitive \(p \)-th root of unity, then \(\mathbb{Q}(\zeta_p) \mid \mathbb{Q} \) is called the \(p \)-th cyclotomic extension. One may prove that the ring of integers of the cyclotomic extension is \(\mathbb{Z}[\zeta_p] \). Also, recall that \(\text{Gal}(\mathbb{Q}(\zeta_p) \mid \mathbb{Q}) = \mathbb{F}_p^\times \) and so, by the main theorem of Galois theory, there exists for each \(d \mid p \) a unique subextension \(F_d \) of \(\mathbb{Q}(\zeta_p) \mid \mathbb{Q} \) of degree \(d \) over \(\mathbb{Q} \) and moreover \(d_1 \mid d_2 \) if and only if \(F_{d_1} \subseteq F_{d_2} \). The following theorem extends the relationship between being a power modulo \(p \) and the prime factorization in certain extensions, as we have outlined in section 1.

Theorem 4. Let \(p, q \) be odd primes and suppose that \(d \mid p - 1 \). Then \(q \) is a \(d \)-th power modulo \(p \) if and only if \(q \) totally splits in \(F_d \) the only subextension of \(\mathbb{Q}(\zeta_p) \mid \mathbb{Q} \) of degree \(d \).

Proof. Suppose that the order of \(q \) in the multiplicative group \(\mathbb{F}_p^\times \) is \(\frac{p-1}{d} \). We claim that \(q \) is always totally split in \(F_d \). Indeed, we must only prove, by virtue of Dedekind’s theorem, that \(\Phi_p(x) \) factors as the product of \(r \) irreducible polynomials over \(\mathbb{F}_q \). This may be done by considering \(\omega \) a primitive \(p \)-th root of unity in \(\overline{\mathbb{F}_q} \) and considering the polynomial \((x-\omega)(x-\omega^q)\cdots(x-\omega^{q^{\frac{p-1}{r}}-1}) \) and all of the \(r \) factors will be of this form.

Take \(q \) a prime in \(\mathbb{Z}[\zeta_p] \) lying over \(q \) and consider the decomposition field \(Z_q \). Notice that \([Z_q : \mathbb{Q}] = \sharp \text{Gal}(\mathbb{Q}(\zeta_p) \mid \mathbb{Q}) : G_q \) is the number of elements in the orbit of \(q \) in the Galois action, that is, the number of primes over \(q \) which is precisely \(r \). Then, \(Z_q \) is the only degree \(r \) subextension of \(\mathbb{Q}(\zeta_p) \mid \mathbb{Q} \).

Since \(\mathbb{F}_p^\times \) is cyclic, it follows that \(q \) is a \(d \)-th power modulo \(p \) if and only if \(d \mid r \), which in turn happens if and only if \(F_d \subseteq F_r \). Therefore, if \(q \) is a \(d \)-th power modulo \(p \) we have that \(F_d \subseteq F_r \) and as \(q \) is totally split over \(F_r \), the same holds for \(F_d \) as the inertia degree of \(q \cap Z_q \) over \(Q \) is 1 by Proposition 3. Conversely, if \(q \) is totally split over \(F_d \) write \(q = p_1 \cdots p_d \) with \(p_i \) primes in \(F_d \). Because of the transitivity of the Galois action there is \(\sigma \) such that \(\sigma(p_1) = p_1 \) and extending \(\sigma \in \text{Gal}(F_d \mid \mathbb{Q}) \) to \(\sigma \in \text{Gal}(\mathbb{Q}(\zeta_p) \mid \mathbb{Q}) \) we obtain a bijection of the primes above \(p_1 \) and the primes above \(p_1 \). This implies that the number of prime ideals \(r \) in the decomposition of \(q \) over \(\mathbb{Q}(\zeta_p) \mid \mathbb{Q} \) is divisible by \(d \) and we are done.
Finally, in order to prove the quadratic reciprocity law we will characterize the only quadratic subextension of $\mathbb{Q}(\xi_p)|\mathbb{Q}$. The Gauss sum will be the key for understanding this. It is defined as
\[\tau = \sum_{a \in \mathbb{F}_p} \left(\frac{a}{p} \right) \xi_p^a. \]
It is clear that $\tau \in \mathbb{Q}(\xi_p)$ and $\tau \notin \mathbb{Q}$, so if we prove that $\tau^2 \in \mathbb{Q}$ the only subextension of $\mathbb{Q}(\xi_p)|\mathbb{Q}$ of degree 2 will be $\mathbb{Q}(\tau)$. Moreover, it holds that $\tau^2 = \left(\frac{-1}{p} \right) p = (-1)^{p-1} \frac{p^*}{p} = p^*$. For a proof of this, see [IR90].

The previous discussion allows us to reformulate Theorem 4 for the case $d = 2$: given odd primes p, q then q is a quadratic residue modulo p if and only if q totally splits in $\mathbb{Q}(\sqrt{p^*})$. We are in conditions to prove:

Theorem 5 (Gauss reciprocity law). Let p, q be odd distinct primes. Then
\[\left(\frac{p}{q} \right) \left(\frac{q}{p} \right) = (-1)^{\frac{p-1}{2} + \frac{q-1}{2}}. \]

Proof. We know from section 1 that $\left(\frac{p^*}{q} \right) = 1$ if and only if q is totally split in $\mathbb{Q}(\sqrt{p^*})$, and by the previous discussion this is equivalent to $\left(\frac{q}{p} \right) = 1$. Therefore, we have proved that $\left(\frac{p^*}{q} \right) = \left(\frac{q}{p} \right)$ and a simple manipulation of terms gives us the desired result.

REFERENCES

