Problem 1 Let $A \subset \mathbb{R}^n$ be non-empty and $f_n : A \rightarrow \mathbb{R}$ a sequence of functions such that

(i) There is $\alpha \in (0, 1]$ and $C > -0$ such that $|f_n(x) - f_n(y)| \leq C|x - y|^\alpha$ for any $x, y \in A$ and $n \in \mathbb{N}$.

(ii) f_n converges pointwise to $f : A \rightarrow \mathbb{R}$.

Show that also f is Hölder (or Lipschitz if $\alpha = 1$) continuous with exponent α.

Problem 2 Let $A \subset \mathbb{R}^n$ be non-empty and $f_n : A \rightarrow \mathbb{R}$ a sequence of functions that converge uniformly to a Lipschitz continuous function $f : A \rightarrow \mathbb{R}$. Does it follow that also f_n is Lipschitz continuous for n sufficiently large?

Problem 3 (hard) Let $A \subset \mathbb{R}^k$ be compact and $f_n : A \rightarrow \mathbb{R}$ be a sequence of functions such that

(i) $\{f_n : n \in \mathbb{N}\}$ is equicontinuous, i.e. for any $x \in A$ and any $\varepsilon > 0$ there is $\delta > 0$ such that for any $n \in \mathbb{N}$ and $y \in A$ with $|x - y| < \delta$ it follows that $|f_n(x) - f_n(y)| < \varepsilon$.

(ii) For any $x \in A$ the set $\{f_n(x) : x \in A\} \subset \mathbb{R}$ is bounded.

Show that you can there is a subsequence $(f_{n_l})_{l \in \mathbb{N}}$ that converges uniformly to a continuous function $f : A \rightarrow \mathbb{R}$. Hint: Enumerate the rational points in A, then iteratively take subsequences that converge at these points and use a diagonal sequence.

A metric space (X, d) is connected if the only two subsets that are open and closed at the same time are \emptyset and X. We call (X, d) path connected if for any two points $x, y \in X$ there is a continuous map $\gamma : [0, 1] \rightarrow X$ such that $\gamma(0) = x$ and $\gamma(1) = y$.

Problem 4 Let $A \subset [0, 1]$ be a subset that is open and closed.

(i) Show that $[0, 1]$ with the standard metric is connected. Hint: If $A \neq \emptyset$ you may assume wlog that $0 \in A$ (why?), then try to use the supremum of the set

 $\{x \in [0, 1] : [0, x] \subseteq A\}$

(ii) Using the first part, show that a path connected space is connected.

(iii) Let $U \subset \mathbb{R}^n$ be open and connected show that U is also path connected. Hint: Fix $x \in U$ and consider the set

 $\{y \in U : \exists \gamma \in C^0([0, 1], U) \text{ with } \gamma(0) = x, \gamma(1) = y\}$.

(iv) Let $U \subset \mathbb{R}^n$ be open and connected and $f : U \rightarrow \mathbb{R}$ be differentiable with $Df(x) = 0$ for any $x \in U$. Show that f is constant.

Remark 0.1. The assertion in (iii) really needs the assumption of U being open, see e.g. https://en.wikipedia.org/wiki/Topologist%27s_sine_curve

Problem 5 Show that the Laplacian in spherical coordinates is given by

$$
\Delta f(x, y, z) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial g}{\partial r}(r, \theta, \phi) \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial g}{\partial \theta}(r, \theta, \phi) \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 g}{\partial \phi^2}(r, \theta, \phi),
$$

if $(x, y, z) = h(r, \theta, \phi) := (r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta)$ and $g = f \circ h$.

Problem 6 Let $U, V \subset \mathbb{R}^n$ be open and $\Phi : U \rightarrow V$ a C^1-diffeomorphism. Show that

$$
\partial(\Phi(A)) = \Phi(\partial A)
$$

for any $A \subset U$.

Problem 7 Let $f : \mathbb{R} \to \mathbb{R}$ and write

$$\Gamma_f = \{(x, f(x))\} \subset \mathbb{R}^2$$

for the graph of f.

(i) Show that Γ_f is a closed subset of \mathbb{R}^2 if and only if f is continuous.

(ii) Give an example of a function as above such that $\partial \Gamma_f = \mathbb{R} \times 0 \cup \mathbb{R} \times \{1\}$.

(iii) Show that the graph cannot be an open subset of \mathbb{R}^2.

Problem 8 Let $U \subset \mathbb{R}^n$ be open, $x \in U$ and $\xi \in \mathbb{R}^n$ such that $\{x + t\xi : t \in [0, 1]\} \subset U$. Show that for $f : U \to \mathbb{R}$ a continuously differentiable function, we have that

$$f(x + \xi) = \int_0^1 \langle \nabla f(x + t\xi), \xi \rangle \, dt.$$

Problem 9 Let $U \subset \mathbb{R}^n$ be open, $a \in U$ and $f : U \to \mathbb{R}$. Recall the definition of a directional derivative: For $v \in \mathbb{R}^n$

$$D_v f(a) = \lim_{h \to 0} \frac{f(a + hv) - f(a)}{h}.$$

Show the following properties of directional derivatives provided that f is differentiable:

$$D_{v+w} f(a) = D_v f(a) + D_w f(a), \quad D_{\lambda v} f(a) = \lambda D_v f(a),$$

where $v, w \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$ (in particular all of these exist). What can you say if you don’t assume that f is differentiable but some/all of the involved directional derivatives exist?