Problem 1
(i) Show that a set \(A \subset \mathbb{R}^n \) has measure zero if and only if for any \(\varepsilon > 0 \) there is a cover by closed rectangles \((R_i)_{i \in \mathbb{N}} \) such that \(\sum_{i \in \mathbb{N}} \text{vol}(R_i) < \varepsilon \).
(ii) If \(A \subset \mathbb{R}^n \) has measure 0 and \(f: \mathbb{R}^n \to \mathbb{R}^n \) is a Lipschitz function, show that \(f(A) \subset \mathbb{R}^n \) has measure 0.
(iii) For \(r > 0 \) show that \(\{ x \in \mathbb{R}^2 : |x| = r \} \) has measure 0.
(iv) Given an example of an open set \(U \subset \mathbb{R} \) such that the boundary \(\partial U \) does not have measure 0.

Problem 2 Let \(R \subset \mathbb{R}^n \) be a closed rectangle and \(f: R \to \mathbb{R} \) be a bounded function. Let \(S_1, \ldots, S_k \subset R \) be the subrectangles coming from a partition \(P \) of \(R \). Prove that \(f \) is integrable on \(R \) if and only if \(f|_{S_i} \) is integrable for any \(i = 1, \ldots, k \). Moreover, in this case we have that \(\sum_{i=1}^{k} \int_{S_i} f = \int_R f \).

Problem 3 Let \(U \subset \mathbb{R}^n \) be open and \(f: U \to \mathbb{R} \) be bounded. Show that the set \(\mathcal{R} = \{ x \in U : f \text{ is continuous at } x \} \) is a countable intersection of open sets.

Remark 0.1. Using the Baire category theorem one can show that \(\mathbb{Q} \) is not of the type above, hence there can be no function on \(\mathbb{R} \), which is continuous exactly at the rational numbers.

Problem 4 We inductively define sets \(C_n \subset [0, 1] \) as follows \(C_0 = [0, 1] \) and \(C_n = \{ x/3 : x \in C_{n-1} \} \cup \{ 2/3 + x/3 : x \in C_{n-1} \} \) for \(n \geq 1 \). Let \(C = \bigcap_{n=0}^{\infty} C_n \). Show that
(i) \(C \) is compact.
(ii) \(C \) has measure 0.
(iii) \(C \) is uncountable.

For the last part you may use that any real number in \([0, 1] \) can be uniquely written as \(x = \sum_{i=1}^{\infty} a_i 2^{-i} \) with \(a_i \in \{0, 1\} \). (We essentially proved this in last quarters HW.)

Problem 5 Define a function \(f_n: [0, 1] \to \mathbb{R} \) as follows \(f_0(x) = x \)
\[
f_{n+1}(x) = \begin{cases}
f_n(3x)/2 & \text{if } x \in [0, 1/3] \\
1/2 & \text{if } x \in [1/3, 2/3] \\
1/2 + f_n(3x - 2)/2 & \text{if } x \in [2/3, 1].
\end{cases}
\]

Show that
(i) Each \(f_n \) is continuous.
(ii) \(f_n \) converges uniformly to a function \(f \)
(iii) \(f \) is differentiable in \([0, 1] \setminus C \) with \(f'(x) = 0 \) for any \(x \in [0, 1] \setminus C \).
(iv) \(f(C) = [0, 1] \). Hint: Show that \(f(0) = 0, \, f(1) = 1 \), then apply the intermediate value theorem and use (iii).

Problem 6* Show that \(f \) is Hölder continuous with Hölder exponent \(\alpha = \log(2)/\log(3) \) but not Hölder continuous for any exponent \(\beta > \alpha \).