Problem 1
(a) Since
\[|1 - f_n(x)| = |x^2/n| \leq 1/n \to 0 \]
if \(x \in [0,1] \) it follows that \(f_n \to 1 \) uniformly.
(b) For \(x \in \mathbb{R} \), if we take some \(N > |x| + 1 \) we find that for any \(n \geq N \) that \(g_n(x) = 0 \). This clearly implies that \(g_n \to 0 \) pointwise. On the other hand, \(g_n(n) = 1 \) so the convergence is not uniform.
(c) If \(x = 0 \), then \(h_n(x) = 0 \) for any \(n \in \mathbb{N} \). If \(x \neq 0 \), we have that \(-n|x| \to -\infty \) as \(n \to \infty \) and hence \(h_n(x) \to 0 \) as \(n \to \infty \). Since any \(h_n \) is continuous but the pointwise limit is not, the convergence can not be uniform.

Problem 2 To show uniform convergence note that the function \(y \mapsto ye^{-y} \) is bounded on \([0, \infty)\) by some constant \(C > 0 \) (we proved this last quarter!). This implies that for \(x \in [0, \infty) \)
\[|f_n(x)| \leq \frac{1}{n} \left| \frac{x}{n} e^{-x/n} \right| \leq \frac{C}{n}, \]
which easily implies that \(f_n \to 0 \) uniformly. A straightforward computation yields
\[\int_0^\infty f_n(x) \, dx = 1. \]

Problem 3 You can simply copy the proof of the corresponding statement for continuous functions. Let’s do that. Let \(\varepsilon > 0 \), take \(n \in \mathbb{N} \) such that \(\sup_{x \in K} |f_n(x) - f(x)| \leq \varepsilon \). Since \(f_n \) is uniformly continuous, there is the corresponding \(\delta \). If then \(x, y \in K \) with \(|x - y| < \delta \), we find from the triangle inequality that
\[|f(x) - f(y)| \leq |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(x)| \leq 3\varepsilon. \]

Problem 4 Fix \(x \in [a,b] \), then
\[|f_n(x) - f_m(x)| \leq \|f_n - f_m\|_{C^0([a,b])}, \]
which implies that \((f_n(x))_{n \in \mathbb{N}} \) is a Cauchy sequence in \(\mathbb{R} \). As such,
\[f(x) := \lim_{n \to \infty} f_n(x) \]
exists. We now show that \((f_n) \) converges uniformly to \(f \), which in particular implies that \(f \) is continuous. Given \(\varepsilon > 0 \) let \(N \in \mathbb{N} \) such that \(\|f_n - f_m\|_{C^0([a,b])} < \varepsilon \) for any \(n, m \geq N \). For \(x \in [a,b] \), take \(m \geq N \) such that \(|f_m(x) - f(x)| \leq \varepsilon \). We then find that
\[|f_n(x) - f(x)| \leq |f_n(x) - f_m(x)| + |f_m(x) - f(x)| \leq 2\varepsilon. \]
if \(n \geq N \) (the estimate you eventually obtain does not depend on \(x \) or any choice of \(m! \)).

Problem 5 This goes by the name Dini’s theorem and is a bit tricky. We first make some simplifying assumptions. Since \(f \) is continuous, by subtracting \(f \), we may assume that \(f_n \) converge pointwise monotone to 0.

We argue by contradiction and assume that \(f_n \) does not converge uniformly to \(f \). Then we can find some \(\varepsilon > 0 \) and for any \(N \in \mathbb{N} \) some \(n \geq N \) and a point \(x \in [a, b] \) such that \(f_n(x_n) > \varepsilon \) (the last inequality uses that \(f_n \geq 0 \) and \(f = 0 \)).

If we take \(N = 1 \), this gives us some \(n_1 \geq 1 \) and a corresponding point \(x_1 \in [a, b] \) such that \(f(x_1) > \varepsilon \). Next, take \(N = n_1 + 1 \) to find some \(n_2 > n_1 \) and a corresponding point \(x_2 \in [a, b] \) such that \(f(x_2) > \varepsilon \). By continuing this process inductively, we find a subsequence \((f_{n_k})_{k \in \mathbb{N}} \) and sequence of points \((x_k)_{k \in \mathbb{N}} \), all in \([a, b]\), such that \(f_{n_k}(x_k) \geq \varepsilon \). To make our life a bit simpler we simply suppose that \(n_k = k \) (this is only a matter of simplifying notation a bit!). With this notation our choice of the points \(x_n \) reads as follows

\[
f_n(x_n) \geq \varepsilon.
\]

Since the convergence is assumed to be pointwise monotone this implies that

\[
(0.1) \quad f_l(x_n) \geq f_n(x_n) \geq \varepsilon
\]

if \(l \leq n \). By Bolzano–Weierstraß we can find a subsequence of \((x_n)_{n \in \mathbb{N}} \), which we do not relabel once again, such that

\[
\lim_{n \to \infty} x_n = x_\ast \in [a, b],
\]

where we use that \([a, b]\) is a closed interval. Since \(f_l \) is a continuous function we find that

\[
f_l(x_\ast) = \lim_{n \to \infty} f_l(x_n) \geq \varepsilon,
\]

since when taking the limit we eventually have \(l \leq n \), so that (0.1) applies. Now this works for any \(l \in \mathbb{N} \) and therefore the pointwise convergence of \(f_l \) implies that

\[
0 \lim_{l \to \infty} f_l(x_\ast) \geq \varepsilon
\]

which is a contradiction.