Problem 1 Since g is integrable, there are $c < d$ such that $g : [a, b] \rightarrow [c, d]$. As we have proved last quarter, the continuous function $f : \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous on $[c, d]$. Therefore, for $\varepsilon > 0$ given, we can choose $\delta > 0$ such that we have

$$|f(x) - f(y)| \leq \varepsilon$$

for $x, y \in [c, d]$ with $|x - y| \leq \delta$. Moreover, we may of course assume that $\delta \leq \varepsilon$. Since g is integrable, we can choose step functions $\phi, \psi \in S(a, b)$ with $\phi \leq f \leq \psi$ and

$$\int_a^b (\psi - \phi) \leq \delta^2.$$

Let $a = t_0 < t_1 < \cdots < t_{k-1} < t_k = b$ be a partition of $[a, b]$ such that ϕ and ψ are constant on all of the subintervals (t_i, t_{i+1}). We define new step functions $\tilde{\phi}, \tilde{\psi} \in S(a, b)$ by

$$\tilde{\psi} = \sup_{(t_i, t_{i+1})} (f \circ g) \text{ on } [t_i, t_{i+1})$$

$$\tilde{\phi} = \inf_{(t_i, t_{i+1})} (f \circ g) \text{ on } [t_i, t_{i+1}).$$

Clearly, we have $\tilde{\phi} \leq f \circ g \leq \tilde{\psi}$. Note that if $\psi - \phi \leq \delta$ on (t_i, t_{i+1}) then $\tilde{\psi} - \tilde{\phi} \leq \varepsilon$ on (t_i, t_{i+1}), so we should try to estimate the total length of the intervals on which this can fail, let’s call them the bad intervals. In order to do so, let use denote by l be the sum of the lengths of the bad intervals. We have that

$$l \delta \leq \int_a^b (\psi - \phi) \leq \delta^2,$$

which implies that

$$l \leq \delta.$$

This in turn easily gives that

$$\int_a^b (\tilde{\psi} - \tilde{\phi}) \leq ((b - a) - l)\varepsilon + \sup_{[c,d]} |f| l \leq (b - a)\varepsilon + \sup_{[c,d]} |f| \delta \leq ((b - a) + \sup_{[c,d]} |f|)\varepsilon.$$

Since ε was arbitrary, this shows that $f \circ g : [a, b] \rightarrow \mathbb{R}$ is integrable.

Problem 2 The first part is induction. The base case is exactly the definition of convexity. For the induction step we may permute the λ_i if necessary and assume that $\lambda_{n+1} \neq 0$. Then we can write

$$\sum_{i=1}^{n+1} \lambda_i x_i = \sum_{i=1}^{n} \lambda_i x_i + \lambda_{n+1} x_{n+1}$$

$$= (1 - \lambda_{n+1}) \sum_{i=1}^{n} \frac{\lambda_i}{1 - \lambda_{n+1}} x_i + \lambda_{n+1} x_{n+1}.$$
Homework 2 - Solutions to Problem 3,4 Math 162-21, Winter 2019

Observe that
\[\sum_{i=1}^{n} \frac{\lambda_i}{1 - \lambda_{n+1}} = 1 \]
by assumption. Therefore, since \(f \) is convex and by induction hypothesis, this implies that
\[
f\left(\sum_{i=1}^{n+1} \lambda_i x_i\right) = f\left((1 - \lambda_{n+1}) \sum_{i=1}^{n} \frac{\lambda_i}{1 - \lambda_{n+1}} x_i + \lambda_{n+1} x_{n+1}\right) \\
\leq (1 - \lambda_{n+1}) f\left(\sum_{i=1}^{n} \frac{\lambda_i}{1 - \lambda_{n+1}} x_i\right) + \lambda_{n+1} f(x_{n+1}) \\
\leq (1 - \lambda_{n+1}) \sum_{i=1}^{n} \frac{\lambda_i}{1 - \lambda_{n+1}} f(x_i) + \lambda_{n+1} f(x_{n+1}) \\
\leq \sum_{i=1}^{n+1} \lambda_i f(x_i).
\]

The second part follows by approximating the integral by Riemann sums. Since \(f \) and \(f \circ g \) are integrable we may simply use our favourite Riemann sum to approximate them. By the first part (note that the normalization factor \(1/(b - a) \) allows us to apply this) we have that
\[
f\left(\frac{1}{b - a} \sum_{i=1}^{n} g\left(a + i \frac{b - a}{n}\right) \frac{b - a}{n}\right) \leq \frac{1}{b - a} \sum_{i=1}^{n} (f \circ g)\left(a + i \frac{b - a}{n}\right) \frac{b - a}{n}
\]
By the theorem on Riemann sums and since \(f \) is continuous passing to the limit \(n \to \infty \) gives
\[
f\left(\frac{1}{b - a} \int_{a}^{b} g(x) \, dx\right) = f\left(\lim_{n \to \infty} \frac{1}{b - a} \sum_{i=1}^{n} g\left(a + i \frac{b - a}{n}\right) \frac{b - a}{n}\right) \\
= \lim_{n \to \infty} f\left(\frac{1}{b - a} \sum_{i=1}^{n} g\left(a + i \frac{b - a}{n}\right) \frac{b - a}{n}\right) \\
\leq \lim_{n \to \infty} \frac{1}{b - a} \sum_{i=1}^{n} (f \circ g)\left(a + i \frac{b - a}{n}\right) \frac{b - a}{n} \\
= \frac{1}{b - a} \int_{a}^{b} (f \circ g)(x) \, dx.
\]

Problem 3 The first two parts are done by integration by parts. We have for given \(x \in \mathbb{R} \) that
\[
\int_{0}^{x} t \sin(t) \, dt = -t \cos(t)\big|_{t=0}^{x} + \int_{0}^{x} \cos(t) \, dt \\
= -x \cos(x) + \sin(x),
\]
which defines a primitive on all of \(\mathbb{R} \). Using the first part we find
\[
\int_0^x t^2 \cos(t) \, dt = t^2 \sin(t){\bigg |}_0^x - 2 \int_0^x t \sin(t) \, dt
\]
\[
= x^2 \sin(x) + 2x \cos(x) - 2 \sin(x),
\]
which is also a primitive on all of \(\mathbb{R} \).

For the third part we use the substitution \(s = \sin(t) \) and get for \(x \in [-1, 1] \) that
\[
\int_0^x \arcsin(t) \, dt = \int_0^{\arcsin(x)} s \cos(s) \, ds
\]
Analogously to the first part, one finds that \(s \sin(s) + \cos(s) \) is a primitive of \(s \cos(s) \). Therefore, we get
\[
\int_0^x \arcsin(t) \, dt = s \sin(s) + \cos(s){\bigg |}_{s=0}^{\arcsin(x)}
\]
\[
= x \arcsin(x) + \cos(\arcsin(x))
\]
\[
= x \arcsin(x) + \sqrt{1 - x^2}.
\]

For \(n, m \in \mathbb{N} \) we integrate by parts (using that \(\sin(nx) \) and \(\sin(mx) \) vanish at 0 and \(2\pi \)) twice to find that
\[
\int_0^{2\pi} \sin(nx) \sin(mx) \, dx = -\frac{m}{n} \int_0^{2\pi} \cos(nx) \cos(mx) \, dx
\]
\[
= \frac{m^2}{n^2} \int_0^{2\pi} \sin(nx) \sin(mx) \, dx
\]
This implies that if \(n \neq m \), then
\[
\int_0^{2\pi} \sin(nx) \sin(mx) \, dx = \int_0^{2\pi} \cos(nx) \cos(mx) \, dx = 0.
\]
For \(n = m \), we use that (by symmetry considerations), we need to have
\[
\int_0^{2\pi} \cos^2(nx) \, dx = \int_0^{2\pi} \sin^2(nx) \, dx.
\]
We then combine this with
\[
2\pi = \int_0^{2\pi} \left(\sin^2(nx) + \cos^2(nx) \right) \, dx
\]
to find
\[
\int_0^{2\pi} \cos^2(nx) \, dx = \int_0^{2\pi} \sin^2(nx) \, dx = \pi.
\]

Problem 4 Why should you expect this to hold? On the one hand, the rescaling of \(g \) essentially lets you see an entire copy of \(g \) within an interval of size \(1/n \). On the other hand, since \(f \) is (uniformly) continuous, once \(n \) is sufficiently large, \(f \) is almost constant on any interval of size \(1/n \). Finally, combine this with the observation that the assertion trivially holds if \(f \) is constant.
If we assume $g \geq 0$ there is a short proof as follows. By the mean value theorem, we find $\xi_i \in [i/n, (i + 1)/n]$ such that

$$
\int_0^1 f(x)g(nx) \, dx = \sum_{i=0}^{n-1} \int_{i/n}^{(i+1)/n} f(x)g(nx) \, dx \\
= \sum_{i=0}^{n-1} \int_{i/n}^{(i+1)/n} f(x) \, dx \\
= \sum_{i=0}^{n-1} f(\xi_i) \int_{i/n}^{(i+1)/n} g(nx) \, dx \\
= \sum_{i=0}^{n-1} f(\xi_i) \frac{1}{n} \int_{i}^{i+1} g(x) \, dx \\
= \int_0^1 g(x) \, dx \sum_{i=0}^{n-1} f(\xi_i) \frac{1}{n},
$$

where we have used the substitution formula and the periodicity of g. By the theorem on Riemann sums, the last term converges to

$$
\left(\int_0^1 g(x) \, dx \right) \left(\int_0^1 f(x) \, dx \right)
$$

for $n \to \infty$.

Problem 5 We can not use the mean value theorem anymore. Therefore, the computation above only works up to the second line. Instead of the mean value theorem, we will use that f is uniformly continuous, which will essentially allow us to pretend that f is constant on the short subintervals. We start as above and find that

$$
\int_0^1 f(x)g(nx) \, dx = \sum_{i=0}^{n-1} \int_{i/n}^{(i+1)/n} f(x)g(nx) \, dx \\
= \sum_{i=0}^{n-1} \int_{i/n}^{(i+1)/n} f(x) \, dx \\
= \sum_{i=0}^{n-1} \int_{i/n}^{(i+1)/n} (f(x) - f(i/n))g(nx) \, dx + \sum_{i=0}^{n-1} \int_{i/n}^{(i+1)/n} f(i/n)g(nx) \, dx \\
= \sum_{i=0}^{n-1} \int_{i/n}^{(i+1)/n} (f(x) - f(i/n))g(nx) \, dx + \int_0^1 g(x) \, dx \sum_{i=0}^{n-1} f(i)/n \frac{1}{n}
$$
by the same computation as above. Again by the theorem on Riemann sums, the second summand converges to
\[
\left(\int_0^1 g(x) \, dx \right) \left(\int_0^1 f(x) \, dx \right)
\]
for \(n \to \infty \). Therefore, we need to show that the first summand goes to zero. Since \(f \) is continuous on \([0,1]\) it is uniformly continuous on \([0,1]\). Thus, given \(\varepsilon > 0 \), we can choose \(N \in \mathbb{N} \) such that if \(x, y \in [0,1] \) with \(|x - y| \leq 1/N \), then \(|f(x) - f(y)| < \varepsilon \). For \(n \geq N \), we obtain from the triangle inequality that
\[
\left| \sum_{i=0}^{n-1} \int_{i/n}^{(i+1)/n} (f(x) - f(i/n)) g(nx) \, dx \right| \leq \sum_{i=0}^{n-1} \int_{i/n}^{(i+1)/n} |f(x) - f(i/n)||g(nx)| \, dx
\]
\[
\leq \varepsilon \sum_{i=0}^{n-1} \int_{i/n}^{(i+1)/n} |g(nx)| \, dx
\]
\[
\leq \varepsilon \int_0^1 |g(nx)| \, dx
\]
\[
\leq \sup_{[0,1]} |g| \varepsilon,
\]
where we have used the periodicity of \(g \). Since \(g \) is bounded, the assertion follows.