Math 27200, Homework 4
Due Tuesday, April 30

Exercise 1 (Royden-Fitzpatrick 13.30). Let X be a Banach space and $P \in \mathcal{L}(X, X)$ be a projection. Show that P is open.

Exercise 2 (Royden-Fitzpatrick 13.31). Let X and Y be Banach spaces and $T \in \mathcal{L}(X, Y)$. Show that T is open if the image under T of the open unit ball in X is dense in a neighborhood of the origin in Y.

Exercise 3. Suppose that X is a Banach space and $T : X \to \mathbb{R}$ is discontinuous. Show that $T^{-1} (\{0\})$ is dense in X.

Exercise 4 (Royden-Fitzpatrick 13.34). Let X be a banach space, $T \in \mathcal{L}(X, X)$ be open, and X_0 be a closed subspace of X. The restriction T_0 of T to X_0 is continuous. Is T_0 necessarily open?

Exercise 5 (Royden-Fitzpatrick 13.35). Let V be a linear subspace of a linear space X. Argue as follows that V has a linear complement in X.

(i) If $\dim X < \infty$, let $\{e_i\}_{i=1}^n$ be a basis for V. Extend this basis for V to a basis $\{e_i\}_{i=1}^{n+k}$ for X. Then define $W = \text{span}\{e_{n+1}, \ldots, e_{n+k}\}$.

(ii) If $\dim X = \infty$, apply Zorn’s Lemma to the collection \mathcal{F} of all subspaces of Z of X for which $V \cap Z = \{0\}$, ordered by set inclusion.

Exercise 6 (Royden-Fitzpatrick 13.37). Let Y be a normed linear space. Show that Y is a Banach space if and only if there is a Banach space X and a continuous, linear, open mapping of X onto Y.

Exercise 7 (Royden-Fitzpatrick 13.39). Let $\{f_n\}$ be a sequence in $L^\infty[a, b]$ for $a < b$. Suppose that for each $g \in L^1[a, b]$, $\lim_{n \to \infty} \int_a^b g(x)f_n(x)dx$ exists. Show that there is $f \in L^\infty[a, b]$ such that $\int_a^b g f = \lim_{n \to \infty} \int_a^b g f_n$ for all $g \in L^1[a, b]$.

Exercise 8. Suppose that X and Z are a Banach spaces and $Y \subset X$ is a dense subspace of X. If $T \in \mathcal{L}(Y, Z)$, then there is a unique extension $\tilde{T} \in \mathcal{L}(X, Z)$ such that $\tilde{T}|_Y = T$.

Exercise 9. Define the Fourier transform $\mathcal{F} : L^1(\mathbb{R}; \mathbb{C}) \to L^\infty(\mathbb{R}; \mathbb{C})$ by

$$\mathcal{F} f(\xi) = \frac{1}{\sqrt{2\pi}} \int e^{-ix\xi} f(x)dx.$$

1. Show that $\mathcal{F} \in \mathcal{L}(L^1, L^\infty)$.

2. For any $\sigma > 0$, let

$$G_\sigma(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma}}.$$

Show that $\mathcal{F}G_\sigma = G_{\sigma^{-1}}$.

*Here we use $L^\infty(\mathbb{R}; \mathbb{C})$ to denote the space of almost everywhere bounded functions whose domain is \mathbb{R} and whose codomain is \mathbb{R}.***
3. Define $T_\sigma : L^1 \cap L^2 \rightarrow L^1 \cap L^2$ by

$$(T_\sigma f)(x) = G(x) * f(x) = \int_{\mathbb{R}} G(x-y)f(y)dy.$$

Show that $T_\sigma \rightarrow id$. Note: $\|\cdot\|_{L^1 \cap L^2} := \|\cdot\|_{L^1} + \|\cdot\|_{L^2}$.

4. Show that if $f, g \in L^1 \cap L^2$, then $\mathcal{F}(G_\sigma * f) = (\mathcal{F}G_\sigma)(\mathcal{F}f)$ and

$$\int_{\mathbb{R}} f(x)g(x)dx = \int_{\mathbb{R}} \mathcal{F}f(\xi)\mathcal{F}g(\xi)d\xi.$$ [Hint: Part (iii) is useful here!]

5. Show that \mathcal{F} extends to an isometry in $\mathcal{L}(L^2, L^2)$.

Definition 10. Let X and Y be Banach spaces. We say that $T \in \mathcal{L}(X, Y)$ is a **compact operator** if $T(B_1(0))$ is a compact set.

Exercise 11.

1. Suppose that X is a Banach space. Show that id : $X \rightarrow X$ is compact if and only if X is finite dimensional.

2. Give an example of an infinite dimensional Banach space and an injective map on it that is compact.