**70. **Control of transfer for p=3, in preparation.

**69. **(with Justin Lynd) Rigid automorphisms of linking systems, Forum Math.
Sigma 9 (2021), Paper no e23.

**68. **(with R. Guralnick, J. Lynd and G. Navarro), Centers of Sylow subgroups
and automorphisms, Israel Journal of Mathematics, 240 (2020), 253-266.

**67. **(with G. R. Robinson) More on a question of M. Newman on isomorphic
subgroups of solvable groups, J. Algebra, 532(2019), 1-7.

**66. **Symmetric Groups and Fixed Points on Modules: An Application of Group
Theory to Topology, Contemporary Mathematics 688(2017), 87-91.

**65. **(with Justin Lynd) Control of fixed points and existence and uniqueness of
centric linking systems, Invent. Math. 206 (2016), 441-484.

**64. **A partial analogue of Borel’s Fixed Point theorem for finite p-groups, J.
Algebra 450 (2016), 398-457.

**63. **(with L. Grabowski) Groups with Identical k-Profiles, Theory of Computing
11(2015), 395-401.

**62. **(with Avinoam Mann and Yoav Segev) A note on groups generated by
involutions and sharply 2-transitive groups, Proc. Amer. Math. Soc. 143(2015), 1925-1932.

**61. **Products of elements of even order, J. Algebra 398(2014), 314-317.

**60. **A pair of characteristic subgroups for pushing-up II, Proc. Edinburgh Math.
Soc. (2)56(2013), 71-133.

**59. **A note on finite p -groups with a maximal elementary subgroup of rank
2. Ischia group theory 2010, 159–163, World Sci. Publ., Hackensack,
NJ, 2012.

**58. **(with Ronald Solomon) A new characteristic subgroup of a p-stable group, J.
Algebra 368(2012), 231-236.

**57. **(with N. Mazza) p-Groups with maximal elementary abelian subgroups of
rank 2, J. of Algebra 323(2010), 1729-1737.

**56. **A p-group with no normal large abelian subgroup, Contemporary
Mathematics 524(2010), 61-65.

**55. **Existence of normal subgroups in finite p-groups, J. of Alg., 319(2008), 800-
805.

**54. **A partial extension of Lazard’s correspondence for finite p-groups, Groups,
Geometry and Dynamics, 1(2007), 421-468.

**53. **A note on abelian subgroups of p-groups, Groups St. Andrews 2005, Volume
2, 445-447, LMS Lecture Notes 340, Cambridge University Press (2007).

**52. **Centrally large subgroups of finite p-groups, J of Alg., 300(2006), 480-508.

**51. **Abelian subgroups of small index in finite p-groups, J. of Group Theory,
8(2005), 539-560.

**50. **An extension of Thompson’s Replacement Theorem by algebraic group
methods, Finite Groups 2003, 105-110, de Gruyter, Berlin 2004.

**49. **Large subgroups of small class in finite p-groups, J. of Alg., 272(2004), 128-
153.

**48. **(with Simon Norton) On McKay’s connection between the affine E8 diagram
and the Monster, Proceedings on moonshine and related topics (Montreal, QC, 1999), 37-42, CRM Proc. Lecture Notes, 30. AMS, Providence (2001).

**47. **Large abelian subgroups of groups of prime exponent, J. of Alg.,
237(2001),735-768.

**46. **A new look at the Feit-Thompson Odd Order Theorem, Matemática
Contemporânea, 16(1999), 73-92.

**45. **Limits of abelian subgroups of finite
$p$-groups, preprint (with J. Alperin). **(Preprint:
dvi
ps
pdf)**Large abelian subgroups of finite $p$-groups,

44.