
THE p-ADIC SIMPSON CORRESPONDENCE FOR RIGID ANALYTIC
VARIETIES

GAL PORAT

Abstract. This is a very brief summary of some main parts of Yupeng Wang’s paper on
the p-adic Simpson correspondence for rigid analytic varieties, together with a few examples.

1. Introduction and notation

The purpose of this note is to summarize the paper “A p-adic Simpson correspondence for
rigid analytic varieties” by Yupeng Wang. Throughout, we shall have the following global
setting. We have a formally smooth formal scheme X over SpfOC (here C = Cp), which
is locally of topologically finite type. We shall assume it is liftable, which means it has a
formally smooth lifting to SpfA2, where A2 := Ainf(OC)/ξ2. We set X for the generic fiber
of X over SpaQp, which is a rigid analytic variety.
When specializing to a local setting, we shall always assume X = SpfR+ and admits toric
coordinates, i.e. admits a formally etale morphism X ↪→ SpfOC

〈
T±1

1 , ..., T±1
d

〉
. The formal

smoothness assumption implies that any global X is locally in the etale topology in this local
form. In this local situation, we set R+

∞ = R+ ⊗OC〈T±1
1 ,...,T±1

d 〉 OC
〈
T
±(1/p∞)
1 , ..., T

±(1/p∞)
d

〉
,

which is affinoid perfectoid. Write R̂∞ = R̂+
∞[1/p]; in this setting we also set X∞ =

Spa
(
R̂∞, R̂

+
∞

)
, which is a perfectoid space. It is a Galois covering of X with Galois group

Γ∞; it is an open subgroup of Zdp.
Recall that we have the pro-etale site Xproet. It is defined in Scholze’s p-adic Hodge theory
paper, and its open subsets are roughly of the form V → U → X, where U is an etale
morphism and V → U is an inverse limit of finite etale maps. In the local setting, X∞ → X
is a covering in the pro-etale site by one open subset. We also have the usual etale sites Xet

and Xet.
There is a map of sites v : Xproet → Xet. We have the decompleted structure sheaves
O+
X := v∗O+

Xet
,OX := O+

X [1/p] and the completed structure sheaves Ô+
X := lim

←
O+
X/p

n, ÔX :=

Ô+
X [1/p]. For example, in the local setting, we have H0

proet(X∞,OX) = R∞ = R+
∞[1/p] and

H0
proet(X∞, ÔX) = R̂∞.

Finally, we set r = vp(ζp − 1) = 1
p−1

.
The p-adic Simpson correspondence gives an equivalence between two categories: one of
generalized representations, and one of Higgs modules. In the next sections we shall introduce
these two categories; then a period sheaf required to produce functors between them; and
finally we shall state the correspondence itself.
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2. Generalized representations

2.1. Generalized representations in the local setting.

Definition 2.1. 1. An integral a-small generalized representation is a finite free-R̂+
∞ module

M+
∞ of some rank l, endowed with a semilinear Γ∞ action, such that there is a Γ∞-equivariant

isomorphism M+
∞/p

a+r ∼=
(
R̂+
∞/p

a+r
)l

(in short, it is trivial mod pa+r).

2. An a-small generalized representation is a finite free-R̂∞ module M∞, endowed with a
semilinear Γ∞ action, such that there exists a sublattice M+

∞ ⊂ M∞ which is an integral
a-small generalized representation.

Example 2.1. 1. Let δ : Γ∞ → R̂∞ be a character such that for a set of generators γi of Γ∞
we have δ(γi) ≡ 1 mod pa+r. Then M∞ = R̂∞(δ) is an a-small generalized representation.

2. Take a linearR+ representationM+ given by the homomorphism Γ∞ →
(
I + p(a+r)Ml(R

+)
)
∩

GLl(R
+). Then M∞ := R̂∞ ⊗R+ M+ will be an a-small generalized representation. In fact,

Wang proves that every a-small generalized representation is of this form (Theorem 4.5).

2.2. Generalized representations in the global setting.

Definition 2.2. 1. An integral a-small generalized representation on is a locally finite free

Ô+
X-module of rank l satisfying L+/pa+r ∼=

(
Ô+
X/p

a+r
)l
.

2. An a-small generalized representation is locally finite free ÔX-module L of rank l such
that locally on Xproet it admits a sublattice L+ ⊂ L which is an integral a-small generalized
representation.

Example 2.2. 1. Let L be a Qp-local system on Xét. Locally on Xét , L admits a Zp-
lattice L+ such that L+/pn is trivial as a Zp/pn -local system for some fixed n > a + r.
Then L+ = L(L)+ := Ô+

X ⊗Zp L+ is an integral a-small generalized representation and
L = L(L) := ÔX ⊗Zp L is an a-small generalized representation.
2. The generalized representations in the global setting do specialize to these in the local
setting when X = SpfR+ and it admits local coordinates, in a sense which will now be
explained. This is not formal but requires proof, mainly having to do with the behaviour
of reductions mod power of p and taking global sections. On the one hand, if L is an
a-small generalized representation in the sense of definition 2.2, then the global sections
(M∞,M

+
∞) =

(
H0

proet(X∞,L),H0
proet(X∞,L+)

)
is an a-small generalized representation in

the sense of definition 2.1 (Lemma 6.14 of Wang). On the other hand, if M∞ is given as
in definition 2.1, there is a unique a-small generalized representation corresponding to it
with (M∞,M

+
∞) =

(
H0

proet(X∞,L),H0
proet(X∞,L+)

)
, because X∞ is affinoid perfectoid, so

the theory of sheaves on affinoid perfectoids behaves like that of quasi-coherent sheaves on
affines.
3. There will be more examples arising from Higgs modules via the Simpson correspondence
of section 5.
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3. Higgs modules

3.1. Higgs bundles in the local setting.

Definition 3.1. 1. An integral a-small Higgs bundle is a pair (H+, θH+) where H is a finite
free R+-module H+ and θH+ is an R+-linear morphism

θH+ : H+ → H+ ⊗R+ Ω̂1
R+(−1)

such that θH+(H+) ⊂ p(a+r)H+ ⊗R+ Ω̂1
R+(−1) and θH+ ∧ θH+ = 0. This latter condition

means that if we consider the natural map

s : Ω̂1
R+(−1)⊗ Ω̂1

R+(−1)→ Ω̂2
R+(−2), ω ⊗ η 7→ ω ∧ η

then the composition

H+ θH+−−→ H+ ⊗R+ Ω̂1
R+(−1)

(Id⊗s)◦(θH+⊗Id)
−−−−−−−−−−→ H+ ⊗R+ Ω̂2

R+(−2)

in equal to 0.
2. An a-small Higgs bundle is a finite free R-module H on R-linear morphism

θH : H → H ⊗R Ω̂1
R(−1)

with θH∧θH = 0 such that there is an R+-sublattice H+ such that (H+, θH |H+) is an integral
a-small Higgs bundle.

Example 3.1. 1. Let H = Rl and let Ai ∈ pa+rMl(R
+) for i = 1, ..., d. Set

θH : H → H ⊗R Ω̂1
R(−1)

θH(x) =
∑
i

Aix⊗
d log Ti

t
.

Then (H, θH) is a Higgs bundle.
2. There will be more examples arising from generalized representations via the Simpson
correspondence of section 5.

3.2. Higgs bundles in the global setting. The definition in the global setting is a straight-
forward generalization of the of the local setting.

Definition 3.2. 1. An integral a-small Higgs bundle is a pair (H+, θH+) where H is alocally
finite free OX-module H+ on Xét and θH+ is an OX-linear morphism

θH+ : H+ → H+ ⊗OX
Ω̂1

X(−1)

such that θH+(H+) ⊂ p(a+r)H+⊗OX
Ω̂1

X(−1) and θH+ ∧ θH+ = 0. This latter condition means
that if we consider the natural map

s : Ω̂1
X(−1)⊗ Ω̂1

X(−1)→ Ω̂2
X(−2), ω ⊗ η 7→ ω ∧ η

then the composition

H+ θH+−−→ H+ ⊗OX
Ω̂1

X(−1)
(Id⊗s)◦(θH+⊗Id)
−−−−−−−−−−→ H+ ⊗OX

Ω̂2
X(−2)

in equal to 0.
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2. An a-small Higgs bundle is a locally finite free OX[1/p]-module H on Xét together with an
OX-linear morphism

θH+ : H → H⊗OX
Ω̂1

X(−1)

with θH∧θH = 0 such that locally on Xét there is an OX sublattice H+ such that (H+, θH|H+)
is an integral a-small Higgs bundle.

4. The period sheaf OC†

4.1. The ring S†∞. Work in the local setting. To construct the ring S†∞, one constructs a for
each ρ with |ρ| < 1

p−1
a canonical short exact of R̂+

∞-modules, called the Faltings extension.
It is of the form

0→ R̂+
∞ → E+

ρ → ρR̂+
∞ ⊗R+ Ω̂1

R+(−1)→ 0.

This makes E+
ρ into a free R̂+

∞-module of rank d+ 1. We then have natural maps

SymnE+
ρ → Symn+1E+

ρ ,

x1 ⊗ ...⊗ xn 7→ 1⊗ x1 ⊗ ...⊗ xn.
We then obtain the R̂+

∞-algebras

Ŝ+,ρ
∞ =

(
lim
n→∞

SymnE+
ρ

)∧
p

S+,†
∞ = lim

ρ→0
S+,ρ
∞

S†∞ = S+,†
∞ [1/p].

We have the following description. Set Yi ∈ E+
ρ for lifts of 1⊗ d log Ti

t
. Then

Ŝ+,ρ
∞
∼= R̂+

∞ 〈ρY1, ..., ρYd〉

which makes S†∞ into a limit of rings of functions on smaller and smaller closed discs in the
variables Y1, ..., Yd.
The ring S†∞ (as well as the other versions) has two structures apart from the R̂+

∞-algebra
structure.
1. It has an R̂+

∞-linear operator

∇ : S†∞ → S†∞ ⊗R+ Ω̂1
R+(−1)

induced from the Faltings extension. It is uniquely determined by the conditions:
(i).∇ is R̂+

∞-linear;
(ii). ∇(xy) = x∇(y) + y∇(x);
(iii) ∇(Yi) = 1⊗ d log Ti

t
;

(iv) ∇ is p-adically continuous.
It is a Higgs field, which means that ∇∧∇ = 0, in a similar sense to the condition appearing
in section 3 for θ.
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2. The ring S†∞ also has an action of Γ∞ induced from the Faltings extension. It is determined
by it being R̂+

∞-semilinear and by

γj(Yi) = Yi + δij

for the element γj ∈ Γ∞ which acts by

γj(T
(1/pm)
i ) = ζ

δij
pmT

(1/pm)
i .

The action of Γ∞ commutes with that of ∇ (when we let Γ∞ act trivially on Ω̂1
R+(−1)). This

follows by direct computation from the identity

(γj ◦ ∇) (Y n
i ) = n (Yi + δij)

n−1 ⊗ d log Ti
t

= (∇ ◦ γj) (Y n
i ).

4.2. The period sheaf OC†. The sheaf OC† is a sheaf version of the ring S†∞. This is
essentially straightforward since the Faltings extension sheafifies well. More precisely, the
Faltings extension becomes an extension of Ô+

X-modules

0→ Ô+
X → E

+
ρ → ρÔ+

X ⊗OX
Ω̂1

X(−1)→ 0,

and by using a similar procedure we obtain a sheaf OC† on Xproet. Similar to before, it is an
ÔX-algebra, endowed with a ÔX-linear operator

∇ : OC† → OC† ⊗OX
Ω̂1

X(−1)

which is a Higgs field. It has an action of Γ∞ when we define these correctly in the sense of
actions of groups on sheaves.
If we are in the local situation (so that X = SpfR+ admits toric coordinates as usual), then
H0

proet

(
X∞,OC†

)
= S†∞ and all the structure of OC† induces the structure of S†∞described

in 4.1.

5. The p-adic Simpson correspondence

5.1. The local p-adic Simpson correspondence. In this subsection we work in the lo-
cal setting so that X = SpfR+ and admits local coordinates. The local p-adic Simpson
correspondence is a ⊗-equivalence of categories

{a− small generalized represntations M∞} ∼= {a− small Higgs modules H} .

Let us define the functors in both directions.
There is a functor

H : {a− small generalized representations M∞} → {a− small Higgs modules H} ,

H(M∞) :=
(
M∞ ⊗R̂∞ S

†
∞
)Γ∞=1

.

One can show thatH(M∞) is finite free and rankRH(M∞) = rankR̂∞M∞. The Higgs operator
θH(M∞) is defined as follows. There is a map

IdM∞ ⊗∇ : M∞ ⊗R̂∞ S
†
∞ →M∞ ⊗R̂∞ S

†
∞ ⊗R+ Ω̂1

R+(−1).
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Taking Γ∞ invariants and noting IdM∞ ⊗ ∇ commutes with Γ∞ (since ∇ does), we obtain
the desired Higgs operator

θH(M∞) :
(
M∞ ⊗R̂∞ S

†
∞
)Γ∞ →

(
M∞ ⊗R̂∞ S

†
∞
)Γ∞ ⊗R+ Ω̂1

R+(−1).

In the converse direction, we have the functor

M∞ : {a− small Higgs modules H} → {a− small generalized represntations M∞} ,

M∞(H) =
(
H⊗R+ S

†
∞
)∇H=0

where ∇H := θH ⊗ Id + Id⊗∇. The Γ∞-action is induced by letting Γ∞ act trivially on H.
The two functors are inverses of each other.

Example 5.1. 1. Suppose that d = 1 (for simplicity) and thatM∞ = M⊗RR̂∞ as in example
2.1.2 (this is always possible). Let γ be a generator of Γ∞ ∼= Zp, and write A = Mat(γ) for
the matrix of γ in a basis of M+. By the a-smallness assumption, A− I ≡ 0 mod pa+r. Then
Wang computes from definition that

H(M∞) = A−YM.

More precisely,

H(M∞) = (A−1)YM = (I + Y (A−1 − I) +

(
Y

2

)
(A−1 − I)2 + ....)M ⊂M ⊗R̂∞ S

†
∞,

which is a finite free R-module of rank equal to rankR̂∞M∞.
Indeed, we see it has the correct rank, and we can compute that is fixed by the action of γ,
since for x = A−Y y ∈ A−YM we have

γ(x) = γ(A−Y y) = γ(A−Y )Ay = A−(Y+1)Ay = Ay = x.

The Higgs operator θH is given by ∂/∂Y ⊗ d log T
t

. Since ∂/∂Y
(
A−Y

)
= (− logA)A−Y , we

see that
Mat(θH) = − log(A)⊗ d log T

t
if we choose the basis of H(M∞) which is A−Y applied to the original basis of M+.
Conversly, Wangalso computes that if we start from

(
H,Mat (θH) = B ⊗ d log T

t

)
then we have

M = exp(−B)H ⊂ H ⊗R S†∞.
Written briefly, we have a correspondence

(M∞,Mat(γ) = A) 7→
(
H,Mat (θH) = − log(A)⊗ d log T

t

)
,

and conversely (
M∞,Mat(γ) = e−B

)
← [
(
H,Mat (θH) = B ⊗ d log T

t

)
2. As a more specific case in dimension 2, take M∞ to be the a-small generalized represen-
tation with

MatM+(γ) =

(
1 γ
0 1

)
.
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Then Mat (θH) =

(
0 −γ
0 0

)
⊗ d log T

t
.

5.2. The global p-adic Simpson correspondence. The global setting is similar to the
previous subsection, but what requires a little bit of explanation is the description of the
functors, which on the face of it will look different.
The global p-adic Simpson correspondence is a ⊗-equivalence of categories
{a− small generalized represntations L on Xproet} ∼= {a− small Higgs bundles on Xét} .

Let us define the functors in both directions.
There is a functor
H : {a− small generalized represntations L on Xproet} → {a− small Higgs bundles on Xét} ,

H(L) := Rv∗

(
L ⊗ÔX

OC†
)
,

with Higgs operator θH(L) := v∗ (1⊗∇). In fact the complex Rv∗
(
L ⊗ÔX

OC†
)
turns out

to be discrete, so we can just think of the ordinary pushforward v∗
(
L ⊗ÔX

OC†
)
.

In the converse direction, we have the functor
L : {a− small Higgs bundles on Xét} → {a− small generalized represntations L on Xproet} ,

L(H) =
(
H⊗Ox OC†

)∇H=0
,

where ∇H = θH ⊗ id + idH ⊗∇. The Γ∞-action is induced by letting Γ∞ act trivially on H.
The two functors are inverses of each other.
Now let us explain what is the relation between the functor H of the previous subsection and
the functor H. The idea is that in the local setting, we have

H
(
H0

proet (X∞,L)
)

= H0
ét (H (L))) ,

so in fact the two definitions coincide when we identify L with M∞ = H0
proet (X∞,L). The

reason for this is Lemma 6.17 of Wang’s paper, which relates Galois cohomology with respect
to Γ∞ (as in the functor H) to the pro etale cohomology of L (as in the functor H, which
is defined via the pushforward v∗

(
L ⊗ÔX

OC†
)
, whose sections are ultimately computed in

terms of pro etale cohomology).


