GEOMETRIC DESCRIPTION OF PERIOD RINGS

GAL PORAT

Abstract. These are notes which aim to give a short summary of the geometric description of some of the various period rings appearing in p-adic Hodge theory.

For a more thorough discussion see Scholze and Weinstein’s Berkeley notes. Our notation for the rings follows Berger’s normalization.

1. THE PERIOD RINGS

We shall work here with \mathbb{Q}_p. In general, one can work with a finite extension of \mathbb{Q}_p.

1.1. The ring \mathbb{C}^\flat_p. Let $\mathcal{O}_{\mathbb{C}^\flat_p} = \lim_{x \leftarrow x^p} \mathcal{O}_{\mathbb{C}^p}/\mathbb{Z}_p$ and \mathbb{C}^\flat_p be its ring of fractions. It carries an action of $G_{\mathbb{Q}_p} = \text{Gal}(\mathbb{Q}_p/\mathbb{Z}_p)$. There’s a multiplicative map $\sharp: \mathbb{C}^\flat_p \rightarrow \mathbb{C}^p$ which sends an element $(\overline{x}_0, \overline{x}_1, \ldots)$ to $\lim_{n \rightarrow \infty} x_n^p$; in other words, it sends an element in $\mathcal{O}_{\mathbb{C}^\flat_p}$ to its zeroth $\mathcal{O}_{\mathbb{C}^p}$-coordinate. This allows us to define a valuation by $|x|_{\mathbb{C}^\flat_p} = |x^\sharp|_{\mathbb{C}^p}$.

If $x \in \mathbb{C}_p$, we let $x^\flat \in \mathbb{C}^\flat_p$ denote some element so that $(x^\flat)^\sharp$. It is very much not unique (though the ambiguity can be described in a precise way). For example, $p^\flat = (1, \zeta_p, \zeta_p^2, \ldots)$.

Other notations: the ring $\mathcal{O}_{\mathbb{C}^\flat_p}$ (resp. \mathbb{C}^\flat_p) is sometimes denoted \tilde{E}^+ (resp. \tilde{E}) by Berger and Colmez.

1.2. The ring A_{inf}. We set $A_{\text{inf}} = W\left(\mathcal{O}_{\mathbb{C}^\flat_p}\right)$. This ring has a lot of structure. On the one hand, we endow it with the $(p, [p^\flat])$-topology, which is sometimes also called the weak topology. Every element in A_{inf} has a unique Teichmüller expansion of the form $\sum_{n \geq 0} [x_n] p^n$ with $x_n \in \mathcal{O}_{\mathbb{C}^\flat_p}$, though working out the ring operations in terms of these ring expansions has to do with Witt polynomials and can be a bit messy. On the other hand, it has Frobenius map $\varphi: A_{\text{inf}} \rightarrow A_{\text{inf}}$ given by mapping $\varphi([x_n]) = [x_n^p]$, as well as a $G_{\mathbb{Q}_p}$ action induced from its action on \mathbb{C}^\flat_p. There is also Fontaine’s map $\theta: A_{\text{inf}} \rightarrow \mathbb{C}^p$ given by

$$\sum_{n \geq 0} [x_n] p^n \mapsto \sum_{n \geq 0} x_n^\sharp p^n.$$
It can be shown that \(\ker \theta = (p - [p^s]) = \left(\frac{[1^s] - 1}{(1^{1/p})^s - 1} \right). \) Sometimes one writes \(\xi = p - [p^s] \) and \(\omega = \frac{[1^s] - 1}{(1^{1/p})^s - 1}. \) The ker \(\theta \)-topology is stronger than the \((p, [p^s])\)-topology, because ker \(\theta \) is strictly contained in \((p, [p^s])\).

Other notations: the ring \(A_{\text{inf}} \) is sometimes denoted \(\tilde{A}^+ \) by Berger and Colmez.

1.3. The rings \(B_{\text{dr}}^+ \) and \(B_{\text{dR}}. \)

The ring \(B_{\text{dr}}^+ \) is defined to be the ker \(\theta \)-completion of \(A_{\text{inf}}, \) and \(B_{\text{dR}} = \text{Frac}(B_{\text{dr}}^+). \) One can show that \(t = \log [1^s] \) exists and is a uniformizer of \(B_{\text{dr}}^+ \), making it into a DVR and endowing it with a filtration \(\text{Fil}^i B_{\text{dr}} = t^i B_{\text{dr}}^+. \)

1.4. The rings \(\tilde{A}' \) and \(\tilde{B}' \).

(See section 2 of Berger’s thesis). Let \(\varpi \) be a pseudouniformizer of \(O_{F_p} \), with valuation \(|\varpi|_p = p^{-\frac{p-1}{p-1}}. \) For example, you could take \(\varpi = \left(\frac{p^p}{p^{p-1}} \right)^b = (p^{p-1/p}, p^{p-1/p^2}, \ldots) \) or \(\varpi = (\zeta_p - 1)^b, \) so that \(\varpi = (0, \zeta_p - 1, \zeta_p^2 - 1, \ldots). \) (The latter element is sometimes dubbed \(\varepsilon - 1 \) by Berger or Colmez). Given \(r \leq s \in \mathbb{Z}_{\geq 0}/1/p \) and \(I = [r, s], \) one sets

\[
\tilde{A}^{[r,s]} = A_{\text{inf}} \langle \frac{p}{\varpi^r}, \frac{[\varpi]^s}{p} \rangle.
\]

Here, the notation \(\langle \cdot \rangle \) means completion with respect to the \((p, [\varpi]) = (p, [p^s])\)-topology. This is the same as completion with respect to the \(p \)-adic topology, because \(p \) divides a power of \([\varpi]\) in this ring.

We also define

\[
\tilde{A}^{[r,\infty]} = A_{\text{inf}} \langle \frac{p}{\varpi^r} \rangle, \tilde{A}^{[\infty,\infty]} = A_{\text{inf}} \langle \frac{1}{\varpi} \rangle,
\]

where the completion is taken with respect to the \(p \)-adic topology.

In all of these cases we may define \(\tilde{B}' = \tilde{A}'[1/p]. \)

When \([r_2, s_2] \subset [r_1, s_1] \) there are injective maps \(\tilde{A}^{[r_1,s_1]} \to \tilde{A}^{[r_2,s_2]} \) and \(\tilde{B}^{[r_1,s_1]} \to \tilde{B}^{[r_2,s_2]} \).

Finally, for a general interval we can set \(\tilde{A}' = \cap_{[r,s] \subset I} \tilde{A}^{[r,s]} \) and \(\tilde{B}' = \tilde{A}'[1/p]. \)

These rings can also be defined by a valuation. Any element of \(A_{\text{inf}}[1/p [\varpi]] \) can be written uniquely in the form \(\sum_{n \gg -\infty} x_n p^n. \) If \(I \) is an interval, set \(V_I \) for the valuation given by

\[
V_I \left(\sum_{n \gg -\infty} x_n p^n \right) = \inf_{r \in I} \inf_{n \in \mathbb{Z}} \left(n + \frac{p - 1}{p^{r}} \text{val}_p (x_n) \right).
\]

Then one can define \(\tilde{A}' \) as the ring of integers of \(\tilde{B}', \) where we define

\[
\tilde{B}' = \left\{ \begin{array}{ll}
\text{The completion of } A_{\text{inf}}[1/p [\varpi]] \text{ with respect to } V_I & 0 \notin I \\
\text{The completion of } A_{\text{inf}}[1/p] \text{ with respect to } V_I & 0 \in I.
\end{array} \right.
\]

The Frobenius map \(\varphi : A_{\text{inf}} \to A_{\text{inf}} \) induces maps \(\tilde{A}' \to \tilde{A}^p \) and \(\tilde{B}' \to \tilde{B}^p. \)
1.5. **The rings** $A^+_{\text{max}}, B^+_{\text{max}}$ and B_{max}. We set $r_n = p^{n-1}(p-1)$ so that $r_0 = \frac{p-1}{p}$. Then we define

$$B^+_{\text{max}} = \widehat{\mathbb{B}}[0, r_0] = \widehat{\mathbb{B}}[0, \frac{p-1}{p}] = A_{\text{inf}} \left[\frac{[\pi^{p-1}_p]}{p} \right] \left[1/p \right] = A_{\text{inf}} \left(\frac{[p^\flat]}{p} \right) \left[1/p \right]$$

and similarly $A^+_{\text{max}} = \widehat{\mathbb{A}}[0, r_0]$. The ring B^+_{max} admits a map to B_{dR}^+. Indeed, we have the identity

$$\frac{[p^\flat]}{p} = 1 + \left(\frac{[p^\flat] - p}{p} \right) \equiv 1 \mod \ker \theta,$$

so sequences $\sum_n a_n \left(\frac{[p^\flat]}{p} \right)^n$ with $a_n \rightarrow 0$ in the $(p, [p^\flat])$-topology also have $a_n \left(\frac{[p^\flat]}{p} \right)^n \rightarrow 0$ in the ker θ-topology.

The rings $A^+_{\text{max}}, B^+_{\text{max}}$ and B_{max} have an action of φ via the composition $\widehat{\mathbb{B}}[0, r_0] \xrightarrow{\varphi} \widehat{\mathbb{B}}[0, p r_0] \hookrightarrow \widehat{\mathbb{B}}[0, r_0]$.

The element $t = \log [1^\flat]$ makes sense in B^+_{max}. Indeed, we have $[1^\flat] - 1 \in \ker \theta = (p - [p^\flat])$, so that $\frac{([1^\flat]-1)_n}{n} = (\text{integral}) \frac{p^n \left(\frac{[p^\flat]}{p} \right)}{n} \rightarrow 0$ in $A_{\text{inf}} \left(\frac{[p^\flat]}{p} \right)$. It follows that

$$t = \log [1^\flat] = \sum_{n \geq 1} (-1)^{n-1} \frac{([1^\flat]-1)_n}{n}$$

converges in $A_{\text{inf}} \left(\frac{[p^\flat]}{p} \right) \left[1/p \right]$.

1.6. **The rings** $A^+_{\text{cris}}, B^+_{\text{cris}}$ and B_{cris}. The ring A^+_{cris} is defined to be the p-adic completion of $A_{\text{inf}} \left[\frac{(p-[p^\flat])_n}{n!} \right]_{n \geq 1}$. We define $B^+_{\text{cris}} = A^+_{\text{cris}}[1/p]$. Since $[1^\flat] - 1 \in \ker \theta = (p - [p^\flat])$, we have

$$\frac{([1^\flat]-1)_n}{n} = (n-1)! \text{(integral)} \frac{(p-[p^\flat])_n}{n!}$$

so that $t = \log [1^\flat]$ belongs to B^+_{cris}. We set $B_{\text{cris}} = B^+_{\text{cris}}[1/t]$.

The ring B^+_{cris} is very close to being equal to $\widehat{\mathbb{B}}[0, \frac{(p-[p^\flat])^2}{p}] = A_{\text{inf}} \left(\frac{[p^\flat]}{p} \right) \left[1/p \right]$. On the one hand, we claim there is a containment $B^+_{\text{cris}} \subset \widehat{\mathbb{B}}[0, \frac{(p-[p^\flat])^2}{p}]$. Indeed, given n we will show that $\frac{(p-[p^\flat])_n}{n!} \in \widehat{\mathbb{B}}[0, \frac{(p-[p^\flat])^2}{p}]$. Write $n = k(p-1) + r$ with $0 \leq r \leq p-2$, and remember that $v_p(n!) = \frac{n - s_p(n)}{p-1} = k + \frac{r - s_p(n)}{p-1}$, where $s_p(n)$ is the sum of digits of n in base p. Then we have

$$\frac{(p-[p^\flat])_n}{n!} = (\text{unit}) \left(\frac{(p-[p^\flat])^{p-1}}{p} \right)^k p^{\frac{n-s_p(n)-r}{p-1}} (p-[p^\flat])^r.$$
Now, we see that \(\left(\frac{(p-[p])}{p} \right)^{p-1} \) belongs to \(\bar{B}^{[0,(p-1)^2/p]} \), as well as \((p-[p])^r \). On the other hand \(\frac{s_p(n)-r}{p-1} \geq \frac{p-2}{p-1} > -1 \), but it is also an integer, so \(\frac{s_p(n)-r}{p-1} \geq 0 \). It follows that \(p^{\frac{s_p(n)-r}{p-1}} \) is a positive power of \(p \), so we see that the entire product, which is \(\frac{(p-[p])^n}{n!} \), lies in \(\bar{B}^{[0,(p-1)^2/p]} \).

It is \(p \)-adically complete, so \(B_{\text{cris}}^+ \subset \bar{B}^{[0,(p-1)^2/p]} \).

In the other direction, it is almost true that \(\bar{B}^{[0,(p-1)^2/p]} = A_{\text{inf}} \left(\frac{[p]^{(p-1)+pr}}{p} \right) [1/p] \subset B_{\text{cris}}^+ \).

However there are some rationality problems, i.e. \(B_{\text{cris}}^+ \) only contains some power of the variable \(\frac{[p]^{(p-1)+pr}}{p} \). Indeed, give such an \(r \), take \(n \) divisible by \(p-1 \) and such that \(s_p((p-1)n) \leq prn \). This is possible because \(s_p \) grows logarithmically. We then have

\[
\left(\frac{p-[p]}{p} \right)^{(p-1)n} = p^{s_p(n)} \left(\frac{(p-[p])^{p-1}}{p} \right)^n \equiv \mod A_{\text{inf}} p^{s_p(n)} \left(\frac{[p]^{p-1}}{p} \right)^n.
\]

This shows that \(p^{s_p(n)} \left(\frac{[p]^{p-1}}{p} \right)^n \in B_{\text{cris}}^+ \). This element divides \(p^{prn} \left(\frac{[p]^{p-1}}{p} \right)^n = \left(\frac{[p]^{(p-1)+pr}}{p} \right)^n \), so we see that \(\left(\frac{[p]^{(p-1)+pr}}{p} \right)^n \in B_{\text{cris}}^+ \) as claimed. Making this argument a little more precise will also show that \(\left(\frac{[p]^{(p-1)+pr}}{p} \right)^n \in B_{\text{cris}}^+ \) for all \(n >> 0 \).

We summarize the above discussion in the following proposition.

Proposition 1.1. We have \(B_{\text{cris}}^+ \subset \bar{B}^{[0,(p-1)^2/p]} \). For any \(r > 0 \) there exists a finite map \(\bar{B}^{[0,(p-1)^2/p]} \to B_r = \text{such that } B_r \subset B_{\text{cris}}^+ \).

We notice a few more things. The first is that \(\bar{B}^{[0,p-1]} \subset B_{\text{cris}}^+ \) (no need for a finite extension). The reason is that the coordinate of \(\bar{B}^{[0,p-1]} \) is given by \(\frac{[p]^p}{p} \), which is equivalent \(\mod A_{\text{inf}} \) to a unit times \(\frac{[p]^p}{p^l} \). It then follows from some algebra of divided powers that all powers of \(\frac{[p]^p}{p} \) lie in \(B_{\text{cris}}^+ \). The ring \(B_{\text{cris}}^+ \) is endowed with a Frobenius map, because of an identity having to do with divided powers. Moreover, we have

\[
\varphi(B_{\text{max}}^+) = \bar{B}^{[0,p-1]} \subset B_{\text{cris}}^+ \subset \bar{B}^{[0,(p-1)^2/p]} \subset \bar{B}^{[0,(p-1)^2/p]} = B_{\text{max}}^+,
\]

so another way we can think of \(\varphi \) is by being the map induced from \(B_{\text{cris}}^+ \to B_{\text{max}}^+ \to \varphi(B_{\text{max}}^+) \to B_{\text{cris}}^+ \).

1.7. **The rings** \(\bar{B}_{\text{rig}}^+, \bar{B}_{\text{rig}}^{t,r} \text{ and } \bar{B}_{\text{rig}}^{t,l} \). We set \(\bar{B}_{\text{rig}}^+ = \bar{B}^{[0,\infty]} \), \(\bar{B}_{\text{rig}}^{t,r} = \bar{B}^{[r,\infty]} \) and \(\bar{B}_{\text{rig}}^{t,l} = \bigcup_{r \geq 0} \bar{B}_{\text{rig}}^{t,r} \).

The Frobenius map induces \(\varphi : \bar{B}_{\text{rig}}^{t,r} \to \bar{B}_{\text{rig}}^{t,r} \) and hence \(\varphi : \bar{B}_{\text{rig}}^+ \to \bar{B}_{\text{rig}}^+ \) and \(\varphi : \bar{B}_{\text{rig}}^{t,l} \to \bar{B}_{\text{rig}}^{t,l} \).
GEOMETRIC DESCRIPTION OF PERIOD RINGS

It is useful to note that \(\overline{B}_{\text{rig}}^+ = \cap_{n \geq 1} \varphi^{-n}(B_{\text{max}}^+) = \cap_{n \geq 1} \varphi^{-n}(B_{\text{cris}}^+) \), which makes \(\varphi \) into an automorphism of \(\overline{B}_{\text{rig}}^+ \).

2. THE GEOMETRIC SPACES

The spaces we shall work with here are adic or pre-adic spaces. The specific formalism of adic spaces is not too important for us, but if \((R, R^+) \) is a Huber pair, \(\text{Spa}(R, R^+) \) is a space whose points correspond to valuations and whose functions are basically \(R \). The space \(\text{Spa}(R, R^+) \) is not always a locally ringed space (the structure presheaf is not always a sheaf), and that’s the distinction between being a pre-adic and an adic space. If \(x \) is a point, we denote the valuation by \(f \mapsto |f(x)| \). There is a well defined operation of evaluating at a point: if \(x \) is a point, then the kernel of its valuation is a prime ideal of \(R \), and so we think of \(\text{Frac}(R/\ker | \cdot |) \) as being the residue field at \(x \). Finally, we note that these valuations may be valued in strange groups, but the operation of “maximal generization” always returns a point whose valuation is valued in \(\mathbb{R}_{\geq 0} \) (see section 4.2 of the Berkeley notes). Recall also an analytic point is a valuation whose kernel is nonopen.

Let \(A_{\text{inf}} \) be as in section 1. The space \(\text{Spa}(A_{\text{inf}}) = \text{Spa}(A_{\text{inf}}, A_{\text{inf}}) \) is a pre-adic space. It is probably also an adic space but it’s not clear if that is known at the moment (see footnote in section 12 of Berkeley notes). In \(\text{Spa}(A_{\text{inf}}) \), it is useful to denote four special points by their residue fields.

1. \(x_{\mathbb{F}_p} \) is the unique non-analytic point, given by \(A_{\text{inf}} \to A_{\text{inf}}/(p, [p^\flat]) = \mathbb{F}_p \).
2. \(x_{\mathbb{C}_p} \) is given by \(A_{\text{inf}} \to A_{\text{inf}}/p = \mathcal{O}_{\mathbb{C}_p} \to \mathbb{C}_p^\flat \).
3. \(x_{\mathbb{C}_p} \) is given by \(A_{\text{inf}} \to A_{\text{inf}}/(p - [p^\flat]) = \mathcal{O}_{\mathbb{C}_p} \to \mathbb{C}_p \).
4. \(x_{\mathbb{Q}_p} \) is given by \(A_{\text{inf}} \to A_{\text{inf}}/ [p^\flat] = \mathbb{Z}_p \to \mathbb{Q}_p \).

This is basically how all points look like, at least those which correspond to close prime ideals. See Colmez’s survey on the Fargues-Fontaine curve, corollary 3.3.

We let \(\mathcal{Y} = \text{Spa}A_{\text{inf}} - \{ x_{\mathbb{F}_p} \} \), which is known to be an analytic adic space. There exists a surjective continuous map \(\kappa : \mathcal{Y} \to [0, \infty] \), given by

\[
\kappa(x) = \frac{\log |p^\flat(\overline{x})|}{\log |p(x)|}.
\]

We have \(\kappa \circ \varphi = p\kappa \). In particular,

\[
\kappa\left(x_{\mathbb{C}_p} \right) = 0, \kappa\left(x_{\mathbb{C}_p} \right) = 1, \kappa\left(\varphi^n (x_{\mathbb{C}_p}) \right) = p^n, \kappa\left(x_{\mathbb{C}_p} \right) = \infty.
\]

This can be seen in the following picture, from page 101 of the Scholze-Weinstein notes.
For an interval $I \subset [0, \infty]$, we let Y_I be the interior of the preimage of Y under κ.

We visualize Y as being a sphere, and $\kappa = 0$ and $\kappa = \infty$ correspond to two opposing poles of this sphere. In the middle $\kappa = r$ represent circles lying in between.

With this in place, we may now give a geometric interpretation for the various rings appearing above.

2.1. **The ring C^p.** The ring C^p is the residue ring of x_{C^p} in Y. Thus $C^p = k\left(x_{C^p}\right)$.

2.2. **The ring A_{inf}.** The ring A_{inf} is the coordinate ring of $\text{Spa}A_{\text{inf}}$.

2.3. **The rings B^+_{dR} and B_{dR}.** The ring B^+_{dR} is the completion of the local ring of x_{C^p}. Thus $B^+_{dR} = \hat{O}_{Y,x_{C^p}}$. We may think of $t = \log\left[1^p\right]$ as giving a choice of a local coordinate. Thus if we are given a function which is defined in x_{C^p}, it has an image in B^+_{dR}, and this image is its Taylor expansion at x_{C^p} in terms of t. Evaluating this function gives an element of C_p, which is the same as taking the image through the homomorphism $B^+_{dR} \to B^+_{dR}/t$.

2.4. **The ring \tilde{B}'.** Let $\rho(r) := \frac{p^r}{p^r}$ and $\rho(\infty) = 0$. This operation reverses directions between r and s and renormalizes. If $I = [r, s]$, let $\rho(I) = [\rho(s), \rho(r)]$. The ring \tilde{B}' is none other than $H^0\left(Y_{p^{-1}I}, O_Y\right)$, the rings of functions converging on a closed rational set. In fact if I is closed (maybe also need $0 \notin I$), this set is an affinoid (proved by Kedlaya and Liu), so can be thought of as a coordinate ring.

Since we think of Y as a sphere, if $I \subset (0, \infty)$ it's useful to think of this as being the ring of functions converging on some annuli.
2.5. **The ring** B_{max}^+. We have $\rho \left(\left[0, \frac{p-1}{p} \right] \right) = [1, \infty]$, so B_{max}^+ is the same as $H^0 \left(\mathcal{Y}_{[1,\infty]}, \mathcal{O}_Y \right)$. Thus it is the ring of functions on a closed disc.

2.6. **The ring** B_{cris}^+. It follows from the discussion before that B_{cris}^+ is something like the ring of functions on a space, which on the one hand covers the disc $\mathcal{Y}_{[\frac{1}{p-1}, \infty]}$, and on the other hand for $r > 0$ admits cover by a finite covering of the slightly larger disc $\mathcal{Y}_{[r, \infty]}$ for $r < \frac{1}{p-1}$.

2.7. **The rings** $\tilde{B}_{\text{rig}}^+, \tilde{B}_{\text{rig}}^{+r}$ and \tilde{B}_{rig}^t. The ring \tilde{B}_{rig}^+ is the ring of functions $H^0 \left(\mathcal{Y}_{(0,\infty]}, \mathcal{O}_Y \right)$, the ring $\tilde{B}_{\text{rig}}^{+r}$ is the ring of functions $H^0 \left(\mathcal{Y}_{(0,\frac{1}{p-1}]}, \mathcal{O}_Y \right)$ (on a punctured annulus), and \tilde{B}_{rig}^t is the local ring on at the puncture of 0, in other words it’s the local ring $\mathcal{O}_{\mathcal{Y},x_{C_p}}$ except that we also allows arbitrary poles at x_{C_p}.