
COMPLETED COHOMOLOGY: BASIC EXAMPLES AND
COMPUTATIONS

GAL PORAT

Abstract. This note contains some basic examples and computations in completed coho-
mology.

1. The set up

Let G be a reductive group over Q, let K∞ be a maximal compact open of G∞ = G(R),
A∞ the R-points of a maximal Q-split torus of the center of G (this has A◦∞ = 1 if G is
semisimple), let Kp ⊂ G(Ap) a fixed compact open (tame level) and let Kr,p for r ≥ 1 be
a system of compact mormal open neighborhoods of the identity in G(Qp). One forms the
locally symmetric spaces

Yr = G(Q)\G(A)/K◦∞A
◦
∞K

pKr,p.

(Note that if we let X◦ = G◦∞/K
◦
∞A

◦
∞, each Yr is a finite disjoint union of quotients of X

by congruences subgroups. In particular dimYr = dimX = d (independently of r) as a real
manifold).
If Kp = K0,p is sufficiently small, we get a tower ...→ Y1 → Y0 where all the maps Ym → Yn
are Galois coverings with group Kn,p/Km,p.
The completed cohomology of G of tame level Kp is then defined to be

H̃i (G, Kp) = lim
s→∞

colim
r→∞

Hi (Yr,Z/ps) .

We also have completed homology

H̃i (G, Kp) = lim
r→∞

Hi (Yr,Zp) .

One sometimes considers the variant

H̃i (G) = colimKpH̃i (G, Kp) .

2. What kind of an object is completed cohomology?

The object H̃i (G) is a obviously a Zp-module. It is endowed with actions the big p-adic Hecke
algebra T and the adelic group G(A) (at infinity, this action factors through the action of the
connected component of G∞/A◦∞K◦∞). If G is such that the Y (Kf ) admit the structure of a
shimura variety (but not otherwise) then it also has an action of a Galois group Gal(Q/E),
where E is something like the reflexe field. It is a unit ball in a very large Banach space
H̃i (G) ⊗Zp Qp, which is reminiscient of the Banach spaces occuring in the cohomology of
perfectoid spaces (made precise by Scholze). Its rationalization H̃i (G)Qp

= H̃i (G) ⊗Zp Qp

1
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is a p-adic analogue of L2(G(Q)\G(A)) which sees cuspidal algebraic automorphic forms
as well as other non algebraic objects; indeed, it is complete, and the Hecke eigenspaces
of H̃i (G)Qp

know about p-adic systems of Hecke eigenvalues, similalrly to what happens to
L2(G(Q)\G(A)). Both are global objects with local coefficients. Moreover, both have a
dense set of interest: in L2(G(Q)\G(A)) these are the automorphic forms A(G), for which
the action at ∞ is subsituted for the action of a (g, K)-module; in H̃i (G)Qp

it’s the locally
analytic vectors H̃i (G)la

Qp
, which now have an action of gl2(Qp). The subset H̃i (G)la

Qp
is a

direct limit of (much) smaller Banach spaces. The locally algebraic objects are supposed to
capture information about the algebraic systems of Hecke eigenvalues, or what is conjecturally
the same, geometric Galois representations of Gal(Q/Q) with Qp coefficients (again, similar
to the case of L2(G(Q)\G(A)), where algebraicity should have something to do with the
parameters of the (g, K)-action to be integers).

3. Some general properties

3.1. How are the actions defined? The Galois action of Gal(Q/E) (when it exists) is
induced from the structure of etale cohomology on each Hi (Yr,Z/ps).
The adelic group acts as follows. At infinity, G∞ acts through G∞ � G∞/G

◦
∞ = π0 (G∞), i.e.

the action which swaps connected components of X = G∞/K
◦
∞A

◦
∞, which then induces an

action on each Yr. (For example, for G = GL2 we have X = H± and the action of π0
∼= {±1}

is the conjugation which swaps between the components).
At each g ∈ G(Af ), one has a map action Y (Kf )→ Y (g−1Kfg) by mapping G(Q)γK◦∞A

◦
∞Kf

to G(Q) (γg)K◦∞A
◦
∞ (g−1Kfg). If Kf is normal (which we will always assume), then this is a

map from Y (Kf )→ Y (Kf ), so it induces the map on cohomology. Since we are keeping Kp

fixed, the action of G(Ap
f ) on H̃i (G) is smooth, i.e. each element in cohomology is fixed by a

compact open. Indeed if if g ∈ Kp then the map Y (Kf )→ Y (g−1Kfg) is not doing anything,
so elements of H̃i (G, Kp) are fixed by Kp (and in fact H̃i (G)K

p

= H̃i (G, Kp)). The action of
G(Qp) is not smooth, but rather has some interesting locally analyic vectors which are not
smooth.
As for the Hecke algebra, I think this goes as follows. Recall local p-adic Hecke algebras are
just locally constant functions on Zp [Kl\G(Ql)/Kl]. If Kl is sufficiently generic (hyperspecial
andG is unramified at l) then the Satake isomorphism says this is some symmetric polynomial
algebra. Now the p-adic spherical Hecke algebra Hsph(Kp) is the restricted tensor product of
the local Hecke algebras at these sufficiently generic places. We stash all the rest of the places
away from p rest into a tensor product Hram (Kp) which is usually not commutative, and set
H = Hram (Kp)⊗Zp Hsph(Kp). This acts on cohomology as follows. Basically every element
here is a finite sum of elements 1KpgKp for g ∈ G(Ap

f ). One can always write KpgKp = qgiKp

for a finite disjoint union and gi ∈ G(Ap
f ). Then each such element acts on Hi (Y (Kf )) (with

any coefficients) by mapping x 7→
∑

i g
∗
i x (the action of g∗i induced from that on Y (Kf )

explained above). This action on H̃i (G, Kp) factors through the smaller Hecke algebra T
which is just what you get when you mod out by the relations you get when acting on all
finite cohomology Hi (Y (KpKp,r)), because of the spectral sequence explained in 3.4 below.
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3.2. Duality. Up to p-power torsion, the groups H̃i (G, Kp) and H̃i (G, Kp) are duals; there
are short exact sequences

0→ Homcont

(
H̃i−1 (G, Kp) ,Qp/Zp

)
→ H̃i (G, Kp)→ Homcont

(
H̃i (G, Kp) ,Zp

)
→ 0

and

0→ Homcont

(
H̃i+1 (G, Kp) ,Qp/Zp

)
→ H̃i (G, Kp)→ Homcont

(
H̃i (G, Kp) ,Zp

)
→ 0

. There are also Poincare duality spectral sequences which are best expressed in terms of
homology (here H̃BM

i means Borel-Moore completed homology, or compactly supported com-
pleted homology)

Ei,j
2 := Exti(H̃j,Zp [[Kp]])⇒ H̃BM

d−i−j

and
Ei,j

2 := Exti(H̃BM
j ,Zp [[Kp]])⇒ H̃d−i−j,

where d is the dimension of the symmetric space G∞/A◦∞K◦∞.

3.3. The basic structure. The completed cohomology objects H̃i (G, Kp) are admissi-
ble representations of G(Qp); dually, H̃i (G, Kp) are finitely generated Zp [[Kp]]-modules.
Once we invert p, we get something which fits better into the paradigm of locally ana-
lytic representation theory. The groups H̃i (G, Kp)Qp

and H̃i (G, Kp)Qp
are now duals; the

group H̃i (G, Kp)Qp
is a C(Kp,Qp)-module which injects into a finite sum C(Kp,Qp)

⊕d while
H̃i (G, Kp)Qp

is a finitely generated Zp [[Kp]] ⊗Zp Qp-module, and they are linked via the
Schneider-Teitelbaum formalism for continuous representations.

3.4. The relation to classical cohomology. For each r ≥ 0 there are spectral sequences

Ei,j
2 := Hi(Kp,r, H̃

j)⇒ Hi+j (Yr,Zp) .

. These sequences are Hecke equivariant, which leads eventually to the realization that all the
classical cohomological systems of Hecke eigenvalues can be seen in completed cohomology,
and that if these sequence degenerate sufficiently then in fact completed cohomology will be
the closure of the classical cohomlogical systems.

4. Special cases

4.1. Top degree completed cohomology and completed homology. Let’s call the
symmetric space X◦ = G◦∞/A

◦
∞K

◦
∞, and suppose d > 0. The set Yr is a finite disjoint union

of spaces of the form Γr\X◦. If these spaces are not compact then each Hd (Yr,Zp) = 0 by
general theorems. So in this case H̃d = 0. We also have Hd (Yr,Z) = 0 and it follows from
the universal coefficient theorem for cohomology that H̃d = 0. If they are compact, then we
can use the fundamental class; it is basically multiplied by #Kr,p/Kr+1,p when passing from
Yr+1 to Yr or vice versa; so we still get vanishing H̃d = H̃d = 0.
Summarizing: one always has H̃d = H̃d = 0, if d > 1.
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4.2. Zero degree completed cohomology and homology. We first compute the com-
pleted homology in degree 0 in several steps.

Lemma 4.1. We have

H̃0 (G, Kp) = Zp [[π0(Y (Kp))]] := lim
∞←r

Zp [π0(Y (KpKp,r))] .

Proof. This follows immediately from the definition, since H̃0(Y,Zp) = Zp [π0(Y (KpKp))]. �

Now let G(Q)◦ = G(R)◦ ∩G(Q).

Proposition 4.1. We have π0(Y (Kf )) = G(Q)◦\G(A∞)/Kf , an equality of pointed sets.

Proof. Let X = G(R)/A◦∞K
◦
∞. Then

Y (Kf ) = G(Q)\(X ×G(A∞))/Kf
∼= G(Q)◦\(X◦ ×G(A∞))/Kf ,

the isomorphism holding because G(Q) is dense in G(R). Now by a theorem of Borel,
G(Q)◦\G(A∞)/Kf is finite, so if we write γi for the representatives, we see that

Y (Kf ) = qiG(Q)◦ ∩ γiKfγ
−1
i \X◦,

and each G(Q)◦ ∩ γiKfγ
−1
i \X◦ is connected, being a quotient of X◦. So the connected

componets are indeed indexed by G(Q)◦\G(A∞)/Kf , where the trivial coset corresponding
to the point of π0(Y (Kf )). �

Proposition 4.2. If Kf is sufficiently small and K ′f ⊂ Kf , then

π0(Y (K ′f )) = π0(Y (Kf ))×
(
G(Q)◦ ∩Kf\Kf/K

′
f

)
.

Proof. If Kf is sufficiently small then Y (K ′f ) → Y (Kf ) is a Galois covering with Galois
group Kf/K

′
f ; in particular, every connected component of Y (Kf ) has an equal amount of

connected components of Y (K ′f ) being sent to it. To find out what it is, it’s enough to find the
fiber over the connected component of the trivial coset of π0(Y (Kf )) = G(Q)◦\G(A∞)/Kf .
Clearly, this is just the image of Kf in G(Q)◦\G(A∞)/K ′f , which is G(Q)◦∩Kf\Kf/K

′
f . �

Theorem 4.1. For Kp fixed and sufficiently small, there is some finite group ∆ such that

H̃0 (G, Kp) = Zp
[[

∆×
(
G(Q)◦ ∩Kf\Kp

)]]
∼= Zp

[[(
G(Q)◦ ∩Kf\Kp

)]]∆

,

where G(Q)◦ ∩Kf is defined as

G(Q)◦ ∩Kf = lim
∞←r

G(Q)◦ ∩Kf/G(Q)◦ ∩KpKp,r.

Proof. Set ∆ = π0(Y (KpK
p)). According to Proposition 2.2 and Lemma 2.1, we have

H̃0 (G, Kp) = lim
∞←r

Zp [π0(Y (KpKp,r))] = lim
∞←r

Zp [∆× (G(Q)◦ ∩Kf\Kp/Kp,r)] .

Now, we have the exact sequence

1→ G(Q)◦ ∩KpKp/G(Q)◦ ∩KpKp,r → Kp/Kp,r → G(Q)◦ ∩KpKp\Kp/Kp,r → 1.

Taking the inverse limit (and noting the Mittag-Leffler condition is satisfied), we see that the
completion of G(Q)◦ ∩KpKp\Kp/Kp,r is G(Q)◦ ∩KpKp\Kp, as required. �
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Now use duality to conclude that H̃0 (G, Kp) = C
(

∆×
(
G(Q)◦ ∩Kf\Kp

)
,Zp
)
.

Summarizing: H̃0 (G, Kp) = Zp
[[

∆×
(
G(Q)◦ ∩Kf\Kp

)]]
and H̃0 (G, Kp) = C

(
∆×

(
G(Q)◦ ∩Kf\Kp

)
,Zp
)

for ∆ = π0(Y (KpK
p)), if Kp is sufficiently small.

5. The l0 and q0

One defines
l0 = rankG∞ − rankA∞K∞

(when G is semisimple, this is the defect from having discrete series, i.e. a compact torus of
full rank), and

q0 = (dimG∞ − dimA∞K∞ − l0) /2.

Note that dimG∞ − dimA∞K∞ = dimYr.
Let us recall what the rank of a real Lie group. By definition, it is the dimension of a Cartan
subalgebra of its Lie algebra. A Cartan subalgebra of a Lie algebra g is a nilpotent subalgebra
hthat is self normalizing, meaning that if [X, h] ⊂ h then X ∈ h. (In the semisimple case this
is basically a maximal abelian subalgebra).
Calegari and Emerton have conjectures regarding to these quantities. Namely, define the
codimension of a Zp [[Kp]]-module M to be the smallest i ≥ 0 for which Exti (M,Zp [[Kp]]) 6=
0. Then they conjecture that

codimH̃q0 = l0,

that H̃i vanishes for i > q0 and that H̃i has codimension greater than l0 + q0 − i if i < q0.
The conjecture that codimH̃q0 = l0 is related to the expected Krull dimension of the Hecke
algebra T being equal to 1 + dimB− l0, where B is a Borel subgroup of G. One conjectures
in fact that H̃q0 is something like a faithful module of T.

6. Some examples

Here are some examples of things we have done so far.

6.1. G = GL1. In this case X◦ is just a point so d = 0. Thus the completed homology
and cohomology vanish above degree 0. In degree 0, we can compute what happens by our
previous analysis. Let Kp = K(N) for some N , i.e. the kernel of Ẑp× → (Z/NZ)× for some
N coprime to p. Then if Kp,r = 1 + pr+1Zp, we see that

∆ = π0(Y (KpK
p)) = Y (KpK

p) = (Z/pZ)× × (Z/NZ)× .

On the other hand we have (need to massage this a bit for p = 2)

G(Q)◦ ∩Kf\Kp = {±1} ∩ (1 + pZp)\(1 + pZp) = (1 + pZp).
So we get that by section 4

H̃0 (G, Kp) = C
(
Z×p × (Z/NZ)× ,Zp

)
and

H̃0 (G, Kp) = Zp
[[
Z×p × (Z/NZ)×

]]
.
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It is easy to calculate that in this case l0 = q0 = 0, so everything fits in with the conjecture
of Calegari and Emerton.
What about the structure? This should have actions of A× × T (this is not the case where
we have an action of a subgroup of Gal(Q/Q)). The action of A× is just the right regular
action on C

(
Z×p × (Z/NZ)× ,Zp

)
by precomposing with the Grossencharacter

A× ∼= Q× × R×>0 × Ẑ× � Ẑ× � Z×p × (Z/NZ)× .

The big Hecke algebra is just T = Zp
[
Z×p × (Z/NZ)×

]
, because Z×p × (Z/NZ)× is the Galois

group of the maximal abelian extension of level Kp (by the Kronecker Weber Theorem). It
also acts via the right regular action (or maybe the left regular action, there might be a
difference in the signs here). How is this seen from our description above? Well first we
have the spherical Hecke algebra. At each l - Np we have the locally constant functions on
Z×l \Q

×
l /Z

×
l
∼= lZ, so Hsph = Zp [el]l-Np, with el being the indicator function for the double

coset Z×l · l · Z
×
l . The ramified part is simply Zp [el]l|N

[
(Z/NZ)×

]
. Altogether we get that

H = Zp [el]l 6=p
[
(Z/NZ)×

]
. Now Y (Kp,rK

p) = (Z/pr+1Z)
×× (Z/N)×, and the action of elKp

on this is thus given by multiplication with l on both coordinates. Thus el acts on Z×p ×
(Z/NZ)× by multiplication with l, and hence acts on H̃0 (G, Kp) = C

(
Z×p × (Z/NZ)× ,Zp

)
by precomposing with l. This shows the action of Zp

[
Z×p × (Z/NZ)×

]
is also given by the

right regular action.

In a sense this example is pretty much saying that H̃0 *is* T, and we really see it’s a faithful
module for it.
If we take the limit over all Kp, like one sometimes does, we see that

H̃0 (GL1) ∼= C
(
Z×p ,Zp

)
⊗ Csm

(
Ẑp×,Zp

)
(see also page 48 of Emerton’s interpolation paper).

6.2. G = ResFQGL1 where F is a number field. We have

ResFQGL1(R) = (F ⊗Q R)× ∼=
(
R×
)r1 × (C×)r2 .

Thus K◦∞ = (S1)
r2 and A◦∞ ∼= R×>0 for the embedding R×>0 → (F ⊗Q R)×, 1 7→ 1 ⊗ x. This

shows that
l0 = r1 + 2r2 − r2 − 1 = r1 + r2 − 1.

On the other hand we also see that ResFQGL1(R)/K◦∞R×>0 is isomorphic to a finite union of
Rr1+r2−1. So d = r1 + r2 − 1 and q0 = 0.
Now

(G(Q)◦ ∩Kp) ∩Kp = G(Z)◦ ∩Kp = O×,+F ∩Kp.

Note that
G(Zp) = (OF ⊗Z Zp)× ∼=

∏
v

O×Fv
,
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so if Kp ⊂ G(Zp) is sufficiently small we have Kp
∼= Zr1+2r2

p . On the other hand O×,+F ∩Kp

be isomorphic to Zr1+r2−1−δ
p , where δ is Leopoldt’s defect. Thus

H̃0 (G, Kp) ∼= Zp
[[(
O×,+F ∩Kp\Kp

)]]∆ ∼= Zp
[[
Zr2+δ
p

]]∆
.

This has codimension r1 + r2 − 1− δ, so we see it is equal to l0 if and only if δ = 0. So the
conjecture of Calegari and Emerton in this case is equivalent to Leopoldt’s conjecture.

6.3. G = ResFQSL2 where F is a quadratic imaginary field. We have

G(R) = ResFQSL2(R) = SL2 (C)

so that K∞ = SU2(C) and A◦∞ = 1, because Z(ResFQSL2) = ResFQSL2 = ResFQµ2. It follows
that dimG∞ = 6, dimK∞ = 3 so that d = 3. Moreover, the Cartan subgroup of SL2(C) is
the set of diagonal matrices inM2(C) with zero trace, while the Cartan subgroup of SU2(C) is
the set of matrices in M2(R) with trace zero. Thus rank(SL2(C)) = 2 while rankSU2(C) = 1,
so that l0 = 1.
Let’s figure out what one can say about the completed homology groups. First, by general
principles, the homology H̃i vanishes for i ≥ 3. Second, by a general theorem of Calegari and
Emerton, one knows that the H̃i are all torsion if G is semisimple. Second, one knows that
the spaces Y (Kf ) are all connected, because of strong approximation for semisimple simply
connected and connected groups. Thus H̃0 = Zp (Lemma 4.1).
To say something about the completed homology groups, one uses the duality spectral se-
quences Ei,j

2 := Exti(H̃j,Zp [[Kp]])⇒ H̃BM
3−i−j and E

i,j
2 := Exti(H̃BM

j ,Zp [[Kp]])⇒ H̃3−i−j. One

knows that Ext0(H̃j,Zp [[Kp]]) = Hom
(

H̃j,Zp [[Kp]]
)

= 0 for all j, since the groups H̃j are
torsion. Thus the leftmost column of the second page of the first spectral sequence vanishes.
Moreover, since H̃0 = Zp, we have that Ext6(H̃j,Zp [[Kp]]) = Zp and Exti(H̃j,Zp [[Kp]]) = Zp
for 0 ≤ i ≤ 5, i.e. we have vanishing in the lowest row before the 6th column. Examining
the second diagonal now shows that Ext1

(
H̃1,Zp [[Kp]]

)
∼= H̃BM

1 , and in particular, H̃BM
1 is

torsion. On the other hand, by general principles H̃BM
0 = 0 since the symmetric space of

SL2 (C) is not compact. So examining the second spectral sequence shows the entire low-
est row vanishes, which implies Hom

(
H̃BM

1 ,Zp [[Kp]]
)
∼= H̃2, and as H̃BM

1 is torsion, we get

H̃2 = 0. So the second row in the first spectral sequence also vanishes. We will now explain
why From examining the differentials now one sees that Ext1(H̃1,Zp [[Kp]]) 6= 0; indeed, if
not then we must have H̃BM

1 = 0, which would show the first row of the second spectral
sequnce vanishes, and hence H̃1

∼= Hom
(

H̃BM
2 ,Zp [[Kp]]

)
, but H̃BM

2 = 0 by the first spectral

sequence, so we get H̃1 = 0; thus in the first spectral sequence, all rows above the lowest one
are just 0, so from Ext6(H̃j,Zp [[Kp]]) = Zp one gets a contribution to H̃BM

−3 which doesn’t
make any sense. So this is a contradiction and we are finished.
To recap: H̃0 = Zp, H̃1 has codimension 1 and all the rest of the homology vanishes. This
agrees with the prediction of Calegari and Emerton.
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7. The case of GL2 and local global compatibility

The case GL2 is of a lot of interest because in this case the symmetric spaces are modular
curves. In particular the completed cohomology carries around an action of Gal(Q/Q).
First of all, we note that l0 = 0, q0 = 1. The completed cohomology vanishes except in degrees
0, 1. In degree 0, it is not hard to check that the determinant map implies an isomorphism
H̃0 (GL2, K

p) ∼= H̃0 (GL2, det (Kp)), and as such it is isomorphic to C
(
∆× Z×p ,Zp

)
for some

finite set ∆. See 7.2.11 in Emerton’s “dedicated to Coates’” paper for the actions (similar to
the case of GL1 but also have a Galois action now: basically it’s the same but now the Galois
group acts in the expected way too).
The really interesting thing happens in degree 1. Fix a maximal non Eisenstein idealm in the
Hecke algebra T (we are implicitly fixing a tame level, which determines the Hecke algebra).
One has an associated p-adic Galois representation ρ = ρm of Gal

(
Q/Q

)
. (To make what

follows absolutely true one probably wants to assume more conditions, but I will ignore this).
Then it seems like one has a result of the following form

H̃1 (GL2) ∼= ρuniv ⊗Tm πp

(
ρuniv|Gal(Qp/Qp)

)
⊗′

l 6=pTm

πl

(
ρuniv|Gal(Ql/Ql)

)
,

(giving a decomposition of Gal
(
Q/Q

)
×GL2(Qp)⊗GL2(Af ) representations) where we have

implicitly identified Tm and Rρ via an R = T theorem; here is πp
(
ρuniv|Gal(Qp/Qp)

)
the Banach

space representation attached to ρuniv|Gal(Qp/Qp) by the p-adic Langlands correspondence while

πl

(
ρuniv|Gal(Ql/Ql)

)
is associated to ρuniv|Gal(Ql/Ql)

by the local Langlands correspondence (note
however there is some caveat that this is not exactly the definition of the πl in general for
some reason). (I feel also like the action of G∞ should also appear here somewhere via
conjugation).
In the case where Kp = 1, Emerton says in 12:40 of his youtube talk that

H̃1 (GL2) ∼= ρuniv ⊗Tm πp

(
ρuniv|Gal(Qp/Qp)

)
⊗ HomZp (Tm,Zp)

so we get something easier.
The issue with the modification of πl is explained very well in Emerton’s local global com-
patibility conjecture paper, section 2.1.1. Namely, πl (σ) is just the local langlands corre-
spondence if σ is such that the local langlands thing is generic (i.e. admits a Whittaker
model, i.e. is infinite dimensional). In the remaining case (i.e. exactly when LLC(σ) is a
character composed with the determinant) one modifies this so that πl (σ) is the induction
for which the LLC(σ) is a subquotient (i.e. an extension of this character and the twist of
a Steinberg). So it is some kind of a closure of LLC so that dimensions of LLC don’t go
completely insane (drop from ifninity to 1 at a point) so they can live in families. Note that
one has to use the Tate normalization of LLC for this entire story. Finally, we note that if
f is a classical cuspidal newform, then all the πl’s are generic so it’s just the same as taking
LLC (see remark 7.1.2 of Emerton’s a local global compatibility conjecture paper).
Really, it seems this statement is probably more of a conjecture than an actual theorem,
because we are taking here the p-adic Langlands correspondence and the local langlands
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correspondence in families, which may or may not exist. But this is the kind of theorem
mentioned by Emerton in his talk. See also the introduction to Emerton’s local global
compatibility paper.
In particular, this implies a theorem of the following form. For each ρ a representation into
Qp reducing to ρ, one should have

HomQp[Gal(Q/Q)]

(
ρ, H̃1 (GL2)

)
∼= πp

(
ρ|Gal(Qp/Qp)

)
⊗′

l 6=pTm

πl

(
ρ|Gal(Ql/Ql)

)
.

This is actually a theorem (Theorem 1.2.1 of Emerton).


