Sequential compactness for continuous functions

Given a sequence \(f : E \rightarrow \mathbb{R} \) what kind of conditions can we put to get subsequential convergence?

For we certainly need \(f(x) \) to be bounded for each \(x \in E \).

(Sequences of real numbers have convergent subsequences (more or less) in real boundedness)

Def we say \(f \) uniformly bounded on \(E \) if \(\exists M > 0 \) s.t.

\[
|f(x)| \leq M \quad \forall x \in E, \forall n \in \mathbb{N}.
\]
A slightly

If \(f_n \) uniformly hold and \(E \subset \mathbb{R} \) is countable then we can find the converging phases on \(E \).

Subsequence Diagonal argument:

\[E_1 = \{ x_1, x_2, \ldots \} \]

Let \(S \) be a subset of \(E \).

Let \(\{ f_n(x) \} \) converge.

Let \(\{ f_n(x_1) \} \) be a subseq of \(\{ f_n(x) \} \) and \(\{ f_n(x_2) \} \) converge.

and so on.
Take the diagonal subseq $f_{k,k}
\text{then } f_{k,k}(x_j) \text{ converge as } k \to \infty \text{ for each } j \in \mathbb{N}.

In general this is not enough to make f converge everywhere.

Example $f(x) = \sin(nx)$
Equicontinuity

To get an everywhere convergent subseq we will need to put a stronger assumption.
(no to make an assumption to get)
just put more convergence around the point

Def: A family \(\mathcal{F} \) of functions \(f: X \to \mathbb{R} \) (metric space \(X \)) is called equicontinuous if

\[\forall \varepsilon > 0 \exists s \in S \text{ s.t. } \forall x, y, z \in X \quad |f_x - f_y| < \varepsilon \text{ for all } \delta > 0 \text{ and all } f \in \mathcal{F}. \]
Theorem If \(K \) is a compact metric space and \(f_n \in C(K) \) s.t. \(f_n \) converges uniformly on \(K \), then \(f_n \) is equicontinuous in \(K \).

Therefore, if \(Q \subseteq C(K) \) is sequentially compact \(\Rightarrow \) equicontinuous and uniformly bounded.

Theorem If \(Q \subseteq C(K) \) is compact then \(Q \) is uniformly bounded and equicontinuous.

Proof: \(B \subseteq C(K) \Rightarrow \) bounded (in sup norm intrinsic case) \(\Rightarrow \) uniformly bounded

\[\|f\|_{\sup} \leq M \quad \forall f \in Q \]

for some \(M > 0 \)

Let \(\varepsilon > 0 \) and \(f_1, \ldots, f_n \in Q \) s.t. \(f_n \) s.t.

\[\|f_n - f\|_{\sup} < \varepsilon/3 \quad \text{for all some} \quad i,j \in \mathbb{N} \]
Now \(f_j \) are equicontinuous, \(\forall \varepsilon > 0 \)

so \(\exists \varepsilon \in \mathbb{R}^+ \) such that

\[
\forall x, y \in
\frac{|f_j(x) - f_j(y)|}{\varepsilon} < \varepsilon \forall \varepsilon \in \mathbb{R}.
\]

Now let \(f \) be arbitrary, \(\forall \varepsilon > 0 \)

and \(f_j \) s.t.

\[
|f_j(x) - f_j(y)| < \varepsilon \forall \varepsilon \in \mathbb{R}.
\]

\[
|f(x) - f(y)| \leq |f(x) - f_j(x)| + |f_j(x) - f_j(y)| + |f_j(y) - f(y)|
\]

\[
\leq 3 \cdot \frac{\varepsilon}{3} = \varepsilon
\]

\[\Rightarrow f \text{ is equicontinuous family.}\]

In particular, convergent sequences from \(\mathbb{C}^k \) sub to \(f \) if \(f \) is \(\varepsilon \) mit \(\forall \varepsilon \in \mathbb{R} \) and equicontinuous.
If \(f \in C(K) \) is uniformly bounded and equicontinuous then \(f \) is compact in \(C(K) \).

I.e., if sequence \(f_n \) is uniformly bounded and equicontinuous then it has a subsequence \(f_{n_k} \) converging uniformly on \(K \).

This is called the Arzelà–Ascoli Theorem.

One of the most important results of this class.

Proof: Since \(K \) is compact, it is separable.

Let \(E \subset K \) be a countable dense set.

By previous result any sequence \(f \in C(K) \) has a subsequence \(f_{n_k} \) which converges on \(E \).

Let just call this \(f_k \) and forget about original sequence.
Let \(\varepsilon > 0 \) and pick \(\delta \) from the appropriate \(\delta \)-\(\varepsilon \) continuity.

\[f(x) - f(y) < \varepsilon \quad \text{if} \quad d(x,y) < \delta \]

for all \(x, y \in \mathbb{R}^n \).

Since \(E \) dense, \(K \subseteq \bigcup_{x \in E} B(x, \delta) \)

\(K \) is compact \(\Rightarrow \) \(K \subseteq B(x_1, \delta) \cup \cdots \cup B(x_m, \delta) \)

for some \(x_1, \ldots, x_m \in E \).

Since \(f \) converges on \(E \), there is \(N \in \mathbb{N} \) s.t. \(k \geq N \Rightarrow \)

\[|f_k(x_i) - f(x_i)| < \varepsilon \quad \forall \ 1 \leq i \leq m. \]

Then for \(x \in K, \ x = x_i \\text{ in } \text{d}(x_i, x) < \varepsilon \)

\[|f_k(x) - f(x)| \leq |f_k(x) - f_k(x_i)| + |f_k(x_i) - f(x_i)| + |f(x_i) - f(x)| \]

\[\leq 3\varepsilon \]

so \(|f_k - f|_{\text{sup}} < \varepsilon \) for \(k \geq N \). \(\square \)