The implicit function theorem

Let f be a C^1 function $f: \mathbb{R}^2 \to \mathbb{R}$

A level set of f is $\{ f(x, y) = c \}$ for $c \in \mathbb{R}$

Consider for example a level set $f(x, y) = 0$. This can be seek out on

An implicit equation for y in terms of x

or x in terms of y

If $f(a, b) = 0$ and $\frac{\partial f}{\partial y}(a, b) \neq 0$

Then locally we can solve for $x(y)$ so

$$f(x(y), y) = 0$$

e.g. Consider $f(x, y) = x^2 + y^2 - 1$

$$f(x, y) = 0$$

$Df(2, 1) = Df(2, 1) > 0$

so cannot solve uniquely for y near $(2, 1)$.

$Df(2, -1) = Df(2, -1) < 0$, so cannot

solve uniquely for $x(y)$ near
The Linear Version

Let $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$ and $(x, y) = (x_1, \ldots, x_n, y_1, \ldots, y_m) \in \mathbb{R}^{n+m}$

Let $A \in \mathcal{L}(\mathbb{R}^{n+m}, \mathbb{R}^n)$ we can split A as

$A_x h = A(h, 0)$ and $A_y k = A(0, k)$

with $A_x \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ and $A_y \in \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)$.

Then $A(h, k) = A_x h + A_y k$.

Proof: If $A \in \mathcal{L}(\mathbb{R}^{n+m}, \mathbb{R}^n)$ and A_x is invertible

Then for each $k \in \mathbb{R}^m$ there is $h \in \mathbb{R}^n$ such that

$A(h, k) = 0$ i.e. $A(h(\cdot), \cdot) = 0$

and $h = -A_x^{-1}A_y k$.

Since A_x is invertible.

$0 = A(h, k) = A_x h + A_y k = 0$ if $h = -A_x^{-1}A_y k$.

Thus, $A(h, k) = 0$.

Since A_x is invertible.
Nonlinear Version

The (Implicit Function) let \(f \) be \(C^1 \) mapping \(\mathbb{R}^m \times \mathbb{R}^n \) into \(\mathbb{R}^n \) such that \(f(a,b) = 0 \) for some \((a,b) \in E \).

Call \(A = f'(a,b) \) and assume that \(A \) is invertible.

Then there exists an open subset \(UC \mathbb{R}^m \), \(WC \mathbb{R}^m \) with boundary \(\partial V \), \(b \in W \) for each \(y \in E \) with

\[(x,y) \in V \quad \text{and} \quad f(x,y) = 0\]

If we call this \(x = g(y) \) then \(g : W \rightarrow \mathbb{R}^n \) is \(C^1 \), \(g(b) = a \) and

\[f(g(y),y) = 0 \quad \text{for} \quad y \in W.

And \(g'(b) = -A^{-1}A_y \)

before going into proof let discuss implications
and the relationship with Inverse Function Theorem.
let $f: \mathbb{R}^n \to \mathbb{R}^n$ be C^1 at a, $f(a) = b$

and $f'(a)$ is non-singular

Then define $h(x, y): \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$

$h(x, y) := f(x) - y$, $h(a, b) = 0$

then $Dh(a, b) = Df(a)$ is invertible so at a point W of b and any $g: W \to \mathbb{R}^n$ be C^1 s.t.

$0 = h(g(y), y) = f(g(y)) - y$ i.e. g is inverse of f.

and $g'(b) = -(Dh)^{-1} Dh |_{a,b}$

$= -f'(a)^{-1}(-I) = f'(a)^{-1}$

\[\text{Inverse FT } \Rightarrow \text{Implicit FT}\]

let $h: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ and $h(a, b) = 0$ for some $(a, b) \in \mathbb{R}^n$
Define \(f : \mathbb{R} \to \mathbb{R}^n \times \mathbb{R}^m \) by

\[
f(x,y) = (h(x,y), y)
\]

We want to apply inverse \(PT \) to \(f \),

\[
f'(x,y) = \begin{bmatrix}
0 \times h & D_y h \\
0 & I_{m \times m}
\end{bmatrix}
\]

(block matrix)

\[
f'(a,b)
\]

is invertible iff \(\text{D} h \bigg|_{(a,b)} \) is invertible.

If \(\text{D} h \big|_{(a,b)} \) is invertible then

Inverse \(PT \) is \(\mathcal{G} \) a natural open subset

\(U \times W \) of \((a,b) \) and \(X \times V \) of \((u,0,b) \)

s.t. \(f : U \times W \to X \times V \) is 1-1 and onto
Then define \(g(y) = \pi_x(f^{-1}(0, y)) \)

where \(\pi_x : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n \) is defined by

\[
\pi_x(x, y) = x
\]

\(y \) is defined as.

\[
f(g(y), y) = (0, y)
\]

i.e. \(h(g(y), y) = 0 \)

since \(g \) is a composition of \(C^1 \) mappings

it is \(C^1 \) and differentiable

\[
h'(g(y), y) = 0
\]

we get

\[
g'(y) = \left[\begin{array}{c|c} I_{n \times n} & 0 \\ \hline & f'(g(y), y) \end{array} \right]^{-1}
\]

\[
= \left[\begin{array}{c|c} I_{n \times n} & 0 \\ \hline & Df(g(y), y) \end{array} \right]^{-1}
\]

\[
\begin{pmatrix} 0 & \frac{\partial h}{\partial y_1} \\ \vdots & \vdots \\ 0 & \frac{\partial h}{\partial y_m} \end{pmatrix}
\]

\[
h'(g(y), y)\begin{bmatrix} g'(y) \\ 0 \end{bmatrix} = 0
\]
\[
\dot{y} = h'(g(y), y) \begin{bmatrix} g'(y) \\ I_n \end{bmatrix} = \begin{bmatrix} \text{Dx}(g(y), y), \text{Dy}(g(y), y) \end{bmatrix} \begin{bmatrix} g'(y) \\ I_n \end{bmatrix}
\]

\[
= \text{Dx} g'(y) + \text{Dy} h
\]

so \[
\begin{bmatrix} g'(y) \\ \text{Dy} \end{bmatrix} = \begin{bmatrix} \text{Dx} \end{bmatrix}^{-1} \text{Dy} h
\]

\[
\begin{bmatrix} g'(y) \\ \text{Dy} \end{bmatrix}(y, y) = 0
\]

Applications:

- Contraction mapping principle: Existence and uniqueness of solutions to systems of ODEs.

This will have to wait till the course on integration.