Consider a simple random walk on \mathbb{Z}

$$(X^k_j)_{k \in \mathbb{N}} \quad \cdots \quad \frac{1}{2} \quad \frac{1}{2} \quad \cdots \quad \frac{1}{2} \quad \cdots \quad \frac{1}{2} \quad \cdots$$

$X_{k+1} = \begin{cases} X_k + 1 & \text{with prob } \frac{1}{2} \\ X_k - 1 & \text{w/ prob } \frac{1}{2} \end{cases}$

independent coin flips at each step.

$X_0 = 0$

for a different initial point $x \in \mathbb{Z}$.

call X^x_n SRW started at x.

can also choose initial point x randomly

from a distribution $\mathbb{P} : \mathbb{Z} \rightarrow \mathbb{R}_+$

\[\sum_{x \in \mathbb{Z}} \mathbb{P}(x) = 1 \]

call this $(X^0_n)_{k \in \mathbb{N}}$.

What is the probability distribution of X^0_n for the location of X^0_n?

call measure $\mu_n(X) = \mathbb{P} (X^0_n = x)$
$$u(x_{k+1}^1) = \left(x_{k+1}^1 = x \right)$$

$$= \frac{1}{2} \mathbb{P}(X_k^1 = x + 1) + \frac{1}{2} \mathbb{P}(X_k^1 = x - 1)$$

$$= u(x_{k+1}^1) + \frac{1}{2} (u(x+1, k) + u(x-1, k) - 2u(x, k))$$

or rearranging

$$u(x_{k+1}^1) - u(x, k) = \frac{1}{2} (u(x+1, k) + u(x-1, k) - 2u(x, k))$$

discrete heat equation.

discrete heat equation tracks the evolution of the probability distribution function for simple random walk.

heat equation tracks evolution of pdf for Brownian motion.

Laplace equation:

Consider again the SRW now on \mathbb{Z}^2

just to see how Laplace comes up

instead of another PDE operator

consistent with Laplace in 1-D?
let \(\Lambda \subset \mathbb{Z}^2 \) a connected bounded region.

\[
\frac{1}{4} \lor \frac{1}{2} \lor \frac{1}{4} \\
\frac{1}{4} \lor \frac{1}{2} \lor \frac{1}{4}
\]

Call \(\partial \Lambda \) the outer vertical boundary,
\(\forall \mathbf{e} \in \mathbb{Z}^2 \) so that \(x \pm \mathbf{e}_1, x \pm \mathbf{e}_2 \) is \(\in \Lambda \)
and let \(g: \partial \mathbf{4} \Lambda \rightarrow \mathbb{R} \).

Look at \(U(x) = \mathbb{E}C \sum_{x \in \Lambda_2} g(X^x_{\mathbf{e} \in \Lambda}) \)

where \(\mathbf{e} \mathbf{r}(\Lambda) = \inf \{ \mathbf{e} \mathbf{r}_0 : X^x_{\mathbf{e} \in \Lambda} \} \)

Note \(\mathbf{e} \mathbf{r}(\Lambda) \) is a random variable

\[
\mathbf{e} \mathbf{r}(\Lambda) \in \partial \mathbf{4} \Lambda
\]

Define \(\Lambda \) as

\[
U(x) = \frac{1}{4} (u(x+e_1) + u(x-e_1) + u(x+e_2) + u(x-e_2))
\]

or

\[
\frac{1}{2} \mathbf{D} = \frac{1}{4} \left((u(x+e_1) + u(x-e_1) - 2u(x)) + (u(x+e_2) + u(x-e_2) - 2u(x)) \right)
\]

\(\frac{1}{2} \mathbf{D} \) is the discrete Laplace operator on \(\mathbb{Z}^2 \).
\[\begin{align*}
\Delta_2 u(x) &= 0 & x \in \Lambda \\
u(x) &= g(x) & x \in \partial \Omega \setminus \Lambda
\end{align*} \]

a Dirichlet problem for Laplace operator.

So solution of Dirichlet problem can be interpreted as the expected value of \(g \) at the location where Brownian motion started at \(x \) leaves domain \(\Omega \).

\textbf{References}

Finite Difference Schemes
The Heat Equation

\[
\begin{aligned}
\{ & u_t - \Delta u = 0 & \text{in } \mathbb{R}^n \times (0, \infty) \\
& u(x, 0) = f(x) & \text{in } \mathbb{R}^n \\
\end{aligned}
\]

- Smoothing
- Energy dissipation (Energy dissipation)
- Backwards ill-posedness
- Maximum principle

Mass Conservation if \(u \) solves heat equation \(\nabla \cdot u = 0 \)

\[
\frac{\partial}{\partial t} \int_{\mathbb{R}^n} u \, dx = \int_{\mathbb{R}^n} u_t \, dx = \int_{\mathbb{R}^n} \Delta u \, dx = 0
\]

so

\[
\int_{\mathbb{R}^n} u \, dx = \int_{\mathbb{R}^n} u(0) \, dx
\]

For Scaling Invariance

Suppose we have \(u \) solving

\[
\begin{aligned}
& u_t - \Delta u = 0 & \text{in } \mathbb{R}^n \\
\end{aligned}
\]

when is \(u_\lambda(x, t) = u(\lambda x, \lambda^2 t) \) a solution for all \(\lambda > 0 \)?

\[
\begin{aligned}
& u_\lambda_t = \lambda^2 u_\lambda & \text{in } \mathbb{R}^n \\
& \Delta u_\lambda = \lambda^2 \Delta u & \text{so } u_\lambda_t - \Delta u_\lambda = \lambda^2 u_\lambda - \lambda^2 \Delta u = 0
\end{aligned}
\]

so \(u_\lambda(x, t) = u(\lambda x, \lambda^2 t) \) is a solution when \(\lambda = 2 \).
Let's look for a scale invariant solution

\(\sqrt{x(t)} = \lambda \)

\(\sqrt{x(t)} = \lambda \sqrt{v(x, \lambda^2 t)} \quad \forall \lambda > 0 \)

so to preserve mass under the rescaling

\(\lambda = e^x - 1 \)

Note that if \(\lambda = e^x \)

\(\sqrt{x(t)} = e^{\lambda^2 t} \sqrt{\frac{\lambda^2}{e^{\lambda^2 t}}} \)

so \(x \) is determined just by a function

\(y = \frac{x}{\lambda} \quad v(y) = \sqrt{y} \)

\(\sqrt{\frac{x(t)}{\lambda}} = \frac{1}{\lambda^{1/2}} v\left(\frac{x}{\lambda}\right) \) again, since

A solution of heat can have \(\frac{df}{dt} u = 0 \)

need to choose \(\lambda = 1 \), but

let's just think about the requirement

\(0 = \partial_t u - \partial_x \partial_x u = -\frac{1}{2} \frac{1}{\lambda^{1/2}} \frac{\lambda^{1/2}}{t^{3/2}} \frac{\lambda^{1/2}}{t^{3/2}} V'' - \frac{1}{2} \frac{1}{t^{3/2}} \frac{\lambda^{1/2}}{t^{3/2}} V' - \frac{1}{t^{1/2}} \frac{\lambda^{1/2}}{t^{3/2}} V' \)

\(= \frac{1}{t^{1/2}} \left(V'' + \frac{1}{2} \frac{\lambda^{1/2}}{t^{3/2}} V' + \frac{\lambda^{1/2}}{t^{3/2}} V' \right) \)
\[v'' + \frac{1}{2} y v' + \frac{1}{2} v = 0 \]

\[v'' + \frac{1}{2} (yv)' = 0 \]

Integrating

\[\frac{y v'}{2} = \frac{v^2}{4} \]

\[v' + \frac{1}{2} y v = A \]

Using an integrating factor

\[(e^{y^{3/4} v})' = Ae^{y^{3/4}} \]

We can set \(A = 0 \)

Since we are just looking for one solution

\[e^{y^{3/4} v(y)} = B \]

so \(v(y) = Be^{-y^{3/4}} \)

We choose \(B \) so that

\[1 = \int_{-\infty}^{\infty} v(y) \, dy = B \int_{-\infty}^{\infty} e^{-y^{3/4}} \, dy = B \sqrt{4\pi} \]

So

\[v(y) = \frac{1}{\sqrt{4\pi}} e^{-y^{3/4}} \]

\[E(x,t) = \frac{i}{\sqrt{2\pi}} v \left(\frac{x}{\sqrt{t}} \right) = \frac{i}{\sqrt{\pi \sqrt{t}}} e^{-x^2/4t} \]

The fundamental solution of heat eqn.
\[
\begin{cases}
\frac{\partial u}{\partial t} - \Delta u = 0 & \text{in } \mathbb{R} \times (0,\infty) \\
\frac{\partial u}{\partial x} (x, 0) = \phi(x)
\end{cases}
\]

We will see \(u(x, 0) = \delta_0 \).

Higher dimensions

In \(\mathbb{R}^n \),

\[
\begin{align*}
\frac{\partial u}{\partial t} - \Delta u &= \sum_{j=1}^{n} \frac{\partial^2 u}{\partial x_j^2} + \sum_{i<j}^n \frac{\partial^2 u}{\partial x_i \partial x_j} - \sum_{i<j}^n \frac{\partial^2 u}{\partial x_i \partial x_j} \\
&= 0
\end{align*}
\]

So \(u(x, t) = \frac{1}{(4\pi t)^{n/2}} \exp \left(-|x|^2 / 4t \right) \).
Properties of the fundamental solution

$\overline{u}(x, t)$ solves heat equation away from $(0, 0)$

$x \neq y$, so

$\overline{u}(x - y, t)$ solves away from $(y, 0)$

\[
\overline{u}(x, t) = \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{-|x - y|^2/4t} \overline{g}(y) \, dy
\]

Should be a solution as well.

Then let $g \in C^0(\mathbb{R}^n)$ be bounded and

\[
\overline{u}(x, t) = (\overline{u}(x, t) * g)(x)
\]

Then

1. $u(t) \in C^0(\mathbb{R}^n)$ for every $t > 0$
2. $u_t + \Delta u = 0$ for all $(x, t) \in \mathbb{R}^n \times (0, \infty)$
3. $\lim_{(x, t) \to (x_0, 0)} u(x, t) = g(x_0)$
proof: \(\Omega(x, t) \equiv C^0 \) and all derivatives have exponential decay so differentiating under integral will be justified.

\[
u_t - \Delta u = \int_\Omega \left(\Omega(x-y, t) - \Delta \Omega(x-y, t) \right) g(y) \, dy
\]

\[= 0\]

so \(u \) solving heat eqn.

Let \(\varepsilon_0 > 0 \), since \(g \in C(\overline{\Omega^n}) \) \(E \neq 0 \)

so that \(|x - x^0| \leq \varepsilon \Rightarrow |g(x) - g(x^0)| \leq \varepsilon \)

\[
\left| g(x^n) - g(x^0) \right| = \int_{\Omega^n} \left| \Gamma(x-y, t) \right| (g(y) - g(x^0)) \, dy
\]

(by usual trick since \(\int_{\Omega^n} \Gamma(x-y, t) \, dy = 1 \))

\[
\leq \int_{\Omega^n} \left| g(y) - g(x^0) \right| \, dy
\]

now for \(|y - x^0| \leq \varepsilon \) \(|g(y) - g(x^0)| \leq \varepsilon \)

while for \(|y - x^0| > \varepsilon \) \(\Omega(x-y, t) \) will have

Whisky Horse \(\Omega \) t \(\to 0 \)
\[\sup_{|x|, k} |g(x)| \leq \int_{|y-x| \leq \delta} \max(|x-y, t| \geq \delta) \left| g(y) - g(x^0) \right| \, dy \]

\[+ \int_{|y-x| > \delta} \max(|x-y, t| \geq \delta) \left| g(y) - g(x^0) \right| \, dy \]

\[\leq 2 \cdot \int_{|y-x| \leq \delta} \max(|x-y, t| \geq \delta) \, dy + 2 \sup_{R^n} \int_{|y-x| > \delta} \, dy \]

\[\leq 1 \]

\[= \int_{|x-y| \geq \delta} \frac{1}{(4\pi t)^{n/2}} e^{-\frac{|x-y|^2}{4t}} \, dy \]

Now if \(|x-x^0| \leq \frac{\delta}{2} \)

\[\Rightarrow |y-x| \geq \frac{\delta}{2} - \frac{1}{2} |y-x^0| \]

for \(y \) in the region of integration.

\[\leq \int_{|x-y| \geq \delta} \frac{1}{(4\pi t)^{n/2}} e^{-\frac{|x-y|^2}{4t}} \, dy \]
Changing variables to

\[z = \frac{y-x_0}{4\sigma t}, \quad dz = \frac{1}{(4\pi t)^{n/2}} \, dy \]

\[= \frac{1}{(4\pi t)^{n/2}} \int_{\Omega} e^{-|z|^2} \, dz \]

\[= \left(\frac{4\pi t}{n}\right)^{n/2} \int_{121z^2 > \frac{t}{48\sigma}} e^{-|z|^2} \, dz \to 0 \quad \text{as} \quad t \to 0 \]

since \(e^{-|z|^2} \) is integrable.

This is a (rigorous) justification that \(\Phi(t) \to 0 \) as \(t \to 0 \) in the sense of distributions.
Ockam’s Principle for the Inhomogeneous Heat Eq

\[\begin{cases} \frac{\partial u}{\partial t} - \Delta u = f(x,t) & \text{in } \mathbb{R}^n \times (0,\infty) \\ u(x,0) = g(x) & \end{cases} \]

We can think of \(f \)

We will build solution again using \(E \)

Note \(E(x-y, t-s) \) solves heat

\[u(x,t) = \int_{\mathbb{R}^n} E(x-y, t-s) g(y) \, dy \]

\[u(x,s) \] \text{ satisifies}

\[\begin{cases} \frac{\partial u}{\partial t} - \Delta u (x,t) = 0 & \text{in } \mathbb{R}^n \times (s,\infty) \\ u(x,s) = f(x,s) & \text{in } \mathbb{R}^n \end{cases} \]
so we already know a solution

\[u(x,t; s) = \int_{\Omega^n} \mathcal{E}(x-y, t-s) f(y, s) \, dy \, ds \]

The Duhham's principle says

\[u(x,t; t) = \int_{\Omega^n} \mathcal{E}(x-y, t) g(y) \, dy + \int_0^t \int_{\Omega^n} \mathcal{E}(x-y, t-s) f(y, s) \, dy \, ds \]

Then, let \(f \in C^{2,1}(\Omega^n \times (0,\infty)) \) and \(g \in C^0(\Omega^n) \) hold then

\[\text{U(x;t) from Duhham's formula solve} \]

\[\begin{cases} u_t - Au = f(x,t) & \text{in } \Omega^n \times (0,\infty) \\ u(x,0) = g(x) & \text{in } \Omega^n \end{cases} \]

(1) \(u \in C^{2,1}(\Omega^n \times (0,\infty)) \)

(2) \(\lim_{(x,t) \to (x,0)} u(x,t) = g(x) \)
Proof. We just need to analyse

\[u(x, t) = \int_0^t u(x, t; s) \, ds \]

Check that it is regular and solve

\[
\begin{aligned}
 & v_t - \Delta v = f(x, t) & \quad & \text{in } \mathbb{R}^n \times (0, \infty) \\
 & v(x, 0) = 0 & \quad & \text{in } \mathbb{R}^n
\end{aligned}
\]

Note: by previous result, \(u(x, t; s) \) is

\[u(x, t; s) \to \frac{f(x, s)}{t-s} \quad \text{as} \quad t \to s \]

\[u_t(x, t) = u(x, t; t) + \int_0^t u_t(x, t; s) \, ds \]

\[= f(x, t) + \int_0^t u_t(x, t; s) \, ds \]

\[\Delta u(x, t) = \int_0^t \Delta u(x, t; s) \, ds \]

\[v_t - \Delta v = f(x, t) + \int_0^t (u_t(x, t; s) - \Delta u(x, t; s)) \, ds \]

\[= f(x, t) \]
Initial / Boundary Value Problem

\[(D) \begin{cases} u_t - \Delta u = 0 & \text{in } \Omega_T = \Omega \times [0, T] \\ u(x, t) = g(x, t) & \text{on } \Gamma_T = \Gamma_T \cup \Gamma_T \end{cases}\]

\(\Omega_T\) called the parabolic cylinder

\(\Gamma_T\) called parabolic boundary

It is the sides and bottom of the cup

boundary data needs to be specified

on the sides and bottom of \(\Omega_T\)

\(\Gamma_T\)

Then \(\text{Suppose } \text{there is at most one solution}

of \((D)\) in } C^{2,1}(\overline{\Omega_T}) \text{ ACCURATE.}

proof