A path in a metric space X is a continuous function

$$\gamma : [0,1] \rightarrow X$$

such that

$$\gamma (0) = x, \quad \gamma (1) = y.$$

A space X is called path connected if for every $x, y \in X$ there exists a path γ in X from x to y.

Theorem: If $E \subset \mathbb{R}^k$ is open and E is path connected, then E is connected.

Proof: Suppose E is not connected, then there exist open sets U, V in \mathbb{R}^k such that $E = U \cup V$ and $U \cap V = \emptyset$, then E is not path connected.
Let $x \in U \cap E$ and $y \in U \cap E$

and γ a path from x to y

since the image of connected set under an is connected $\gamma([0,1])$

is connected, but $U \cup V$

separate $\gamma([0,1])$, as well since $x \notin U \cap \gamma([0,1])$ and $y \notin U \cap \gamma([0,1])$

\implies so E not path connected.

Now suppose E is connected and

$\exists \ x, y \in E$ with no path in E between them.

Call

\[U = \{ z \in E : \exists \text{ path from } x \text{ to } z \text{ in } E \} \]

\[V = \{ z \in E : \exists \text{ path from } y \text{ to } z \text{ in } E \} \]

\[W = \{ z \in E : z \text{ does not have a path to } x \text{ or } y \text{ in } E \} \]
\[\text{Huh, } U, V, W \text{ are open, all disjoint.} \]

Thus, \(W\) now and \(V\) would separate \(E\) (which is a contradiction).

1. \(U\) open,

suppose \(z \in E \Rightarrow \exists \text{ a path } \gamma \text{ from } x \text{ to } z, \]

let \(\delta > 0\) small enough that \(B(z, \delta) \subseteq E \subseteq B(0, \delta)\) open.

For \(z' \in B(z, \delta)\), define

\[\gamma(t) = \begin{cases} R \left(\frac{t}{1 - \delta} \right) & \text{for } 0 \leq t \leq 1 - \delta \\ z + (t - (1 - \delta))(z' - z) & \text{for } 1 - \delta \leq t \leq 1 \end{cases} \]

Which is now a \(C^1\) path from \(x\) to \(z'\).

\(z' \in U \Rightarrow B(z', \delta) \subseteq U\)

\(\therefore U\) is open. \(Q.E.D.\)
Same argument \Rightarrow V is open.

Since $B = U \cup U \cup W$ and all disjoint and B open,

for W, since E is open, $B \ni x \cong B(\delta,\epsilon) \subseteq E$

therefore $B(\delta,\epsilon) \cap U \cap B(\delta,\epsilon) \cap W$

nonempty then we could make a path in E from x or y resp.

to z as before which

Contradiction $z \in W \subseteq B(\delta,\epsilon) \cap W$.

Similar argument for U, V, W disjoint.

If $z \in U \cap V$ then $E \ni x, y \cong y \in$ path $x \to z = x, y \in$ path $y \to z$
\[\gamma(t) = \begin{cases} \gamma_1(2t) & 0 \leq t \leq \frac{1}{2} \\ \gamma_2((-2t+1) \frac{1}{2}) & \frac{1}{2} \leq t \leq 1 \end{cases} \]

is a path from \(x \) to \(y \) which we assumed did not exist.

So \(U \cup V \) separate \(E \)

which is a contradiction. \(\blacksquare \)

Example: Metric space which is connected but not path connected.

Let \(X = \) the closure in \(\mathbb{R}^2 \) of

\[\{ \alpha \gamma(0, \frac{1}{2}) = x \in \mathbb{R}^2 \} \]

with the Euclidean metric.