Compact Sets

This is an extremely important notion in analysis. The first definition we give may be a bit unintuitive.

We say that \(\{G_x\} \) is an open cover of a set \(E \subseteq X \), \((X,d_X)\) metric space, if each \(G_x \) open and \(E \subseteq \bigcup_{x \in E} G_x \).

We say that \(K \subseteq \) metric space \(X \) is compact if every open cover contains a finite subcover.

i.e., if \(\{E_x\} \) is an open cover of \(K \), then \(\exists \ \alpha_1, \ldots, \alpha_n \) s.t.

\[
K \subseteq \bigcup_{i=1}^{n} \bigcup_{x \in \alpha_i} G_x
\]
Compactness, unlike open/closed, behaves well w.r.t. relative-ness

Theorem 2.30: \(K \subseteq Y \subseteq X \). Then \(K \) compact rel. to \(Y \) \(\iff \) \(K \) compact rel. to \(X \).

This means that talking about a compact metric space makes sense.

Proof: I'll skip the proof read Thm's 2.30 and 2.33 in the book.

Theorem: Compact sets are closed.

Proof: Let \(K \) compact \(\subseteq X \) metric space.

We will show \(K^c \) open, if \(K = \emptyset \Rightarrow \emptyset \) open.

Let \(p \in K^c \). For each \(q \in K \) \(\exists \varepsilon > 0 \) (draw)

\[B(p, \varepsilon) \cap K = \emptyset \]
\(V_q = B(c_p, \frac{d(c_p, q)}{2}) \)

\(W_q = B(q, \frac{d(c_p, q)}{2}) \)

which are disjoint

\[\{W_q\}_{q \in K} \text{ covers } K \text{ (since } q \in W_q) \]

so \(\exists q_1, \ldots, q_n \text{ s.t. } \bigcup_{i=1}^n W_{q_i} \text{ covers } K \).

Let \(V = V_{q_1} \cap \ldots \cap V_{q_n} \) which is open

\(p \in V \) and

\[V \subset \bigcap_{i=1}^n W_{q_i} \subset K^c \]

so \(p \) is an interior pt of \(K^c \).

\(\Box \)
Then: Closed subsets of compact sets are compact.

Proof: Let E be closed and compact.

Let $\{G_x\}$ be an open cover of E.

$\bigcup_{x} G_x \subseteq E$ is an open cover of E.

$\Rightarrow E \subseteq G_1 \cup \cdots \cup G_n$, an open cover of E.

(E^c does not need to be in these since $E^c \cap E = \emptyset$)

Theorem: If $\{K_x\}$ is a collection of compact sets in metric space (X,d) such that for every finite subcollection

$\bigcap_{x \in A} K_x \neq \emptyset$, then

$\bigcap_{x \in A} K_x \neq \emptyset$.
proof: for each \(k \in \mathbb{N} \) put \(G_k = K_k \).

Suppose that \(\bigcap_{k \in \mathbb{N}} K_k \) is empty.

Then for each \(x \) left

\[
K_x \subset \bigcup_{k \in \mathbb{N}} G_k
\]

If a finite subcover \(G_{j_1}, \ldots, G_{j_n} \)

of \(K_x \)

but then \(K_{j_1} \cap \cdots \cap K_{j_n} \cap K_x = \emptyset \)

contradicting the finite intersection property.

Then (compact \(\Rightarrow \) sequentially compact)

If \(E \) is an infinite subset of a cnt space

then \(E \) has a limit point in \(X \).
Proof: Suppose otherwise. Pick for each $p \in K$ a neighborhood $B(p, r_p)$ such that $B(p, r_p) \cap E$ has at most one element. Then K has a finite subcover and it has a finite subcover on $E \cap \bigcup_{p \in K} B(p, r_p)$. This contradicts E being infinite. \Box
Now we begin on a proof of the following important theorem which shows that several definitions of compactness are equivalent.

Theorem: Let $E \subseteq \mathbb{R}^n$ a Euclidean metric space.

(i) E closed and bounded
(ii) E compact
(iii) Every infinite subset of E has a limit point in E.

Remark: (i) and (iii) are equivalent in any metric space, but (i) in general is not.

We will just prove the theorem in \mathbb{R}^n.

Read the book for proof in \mathbb{R}^n.
First let's show that closed intervals $[a, b] \subseteq \mathbb{R}$ are compact.

Theorem (FIP for intervals): If I_n is a nested (Downward) sequence of closed intervals of \mathbb{R} then

$$\bigcap_{n=1}^{\infty} I_n$$

is not empty.

Proof: $I_n = [a_n, b_n]$

Let $\mathcal{E} = \{a_n : n \in \mathbb{N}, n \rightarrow \infty\}$

$a_n \leq b_n$ for all n so \exists an odd above.

Call $x = \sup \mathcal{E}$.

Then $a_n \leq x$ for all n.

On the other hand

$$a_n \leq a_n + \epsilon \leq b_n \leq b_m$$

so b_m are all UB for \mathcal{E}.
So \(x \leq b_m \) for all \(m \)

\[\Rightarrow x \in I_n \quad \forall n \in \mathbb{N} \]

Remark: Closed bounded intervals \([a,b] \) are compact.

Proof: Suppose there is an open cover
\[\{ G_x \} \] and \(\{ \} \) no finite subcover.

Divide \(I \) into half

\[[a, b] = \left[a, \frac{a+b}{2} \right] \cup \left[\frac{a+b}{2}, b \right] \]

\(\{ G_x \} \) covers left and right halves

and must fail to have a finite subcover for one of the two

Call that interval \(I_1 \).

Apply the same reasoning inductively to get

\[I_j \quad j \in \mathbb{N} \text{ nested intervals} \]

\[w \quad (b_j - a_j) = 2^{-j} (b-a) \]
by the NIP of intervals,

so \(\bigcap I_j \) is nonempty, containing some \(x_p \).

Since \(G_1 \) is open, \(\exists r > 0 \) such that

\[B(x_p, r) \subseteq G_1. \]

Let \(j \) sufficiently large (by Archimedean property)

\[2^{-j} (b-a) < \frac{r}{2}. \]

Then \(x_p \in I_j \),

so \(b - x_p \leq 2^{-j} (b-a) < r \)

\(x_p - a \leq 2^{-j} (b-a) < r \)

so \(I_j \subseteq B(x_p, r) \subseteq G_1 \)

this is a finite subset of \(I_j \)

\(\Rightarrow \)
Theorem (Heine-Borel)

Let $E \subseteq \mathbb{R}$ (or \mathbb{R}^n) be a \textit{tube}.

\begin{enumerate}[(a)]
 \item E is closed
 \item E is compact
 \item Every infinite subset of E has a limit point in E
\end{enumerate}

\textbf{Proof:}
(b) \implies (c) true in general metric space, but harder

If (a) holds then hold \textit{c}.

\textbf{Thus:}

(a) $E \subseteq [a,b]$ for some a,b

so closed subset of compact set is compact

\implies (b)

\textbf{Hence (b) \implies (a):}

closed we know, also E hold since for any fixed $x \in X$

\[\{B(x, R) \}_{R>0} \] is an open cover of E.

Take finite subcover $\{B(x_i, R_i) \}_{i \geq 1}$ and let $R_x = \max_{i \geq 1} R_i$

then $E \subseteq B(x_i, R_x)$.

So (b) \implies (a)

Now let show (c) \implies (b)

\[\text{(we already know (b) \implies (c))} \]
Finally we show (e) \Rightarrow (a)

Suppose E is not closed

$\Rightarrow \exists x_n \in E \forall n \in \mathbb{N}$

$\{x_1, x_2, \ldots\}$ is infinite

and does no limit points

so E is total

Suppose E is not closed $\Rightarrow \exists x \in \mathbb{R} \text{ limit pt of } E \text{ but not in } E$.

Since x_1 is a limit pt of E

A neib $E \ni x_n \in E$ w

$|x_n - x_1| < \frac{1}{n}$ (and $x_n \neq x_1$)

let $S = \{x_1, x_2, \ldots\}$

then S is infinite

S has x_1 as a limit point and no other $y \notin E$ since

$|x_n - y| = |x_n - x_1 + x_1 - y| = |x_n - x_1| + |y - x_1| - \frac{1}{n}$
which is \(\geq \frac{1}{2} |x_n - y| \)

for all but finitely many \(n \)

\(\Rightarrow \ y \) not a limit point of \(E \)

if \(y \neq x_k \)

Thus since \(S \) has a limit point in \(E \)

that must be \(x_k \) so \(x_k \in E \)

Perfect Sets

Theorem Let \(P \) be a perfect set in \(\mathbb{R}^n \). Then \(P \) is uncountable.

Proof: Since \(P \) has limit pts \(P \) must be infinite. Suppose \(P \) countable.

Enumerate \(P \) by \(x_1, x_2, \ldots \)

Consider \(\mathcal{V}_1 = B(x_1, r) \) for any some \(r > 0 \)

\[\mathcal{V}_1 = \{ x : |x - x_1| \leq r \} \]
suppose \(V_n \) constructed and
\[V_n \cap P \text{ non-empty} \]
since every pt of \(P \) is a limit pt of \(P \)
we can choose a nbhd \(V_{n+1} \) s.t.
\[\overline{V_{n+1}} \subset V_n, \quad x \notin \overline{V_{n+1}} \text{ and } V_{n+1} \cap P \neq \emptyset \]
construct \(V_n \) inductively in this way
Call \(K_n = \overline{V_n} \cap P \) closed, bold and hence Cpt sets of \(\mathbb{R}^n \)
\[x \notin \bigcap_{n=1}^{\infty} K_n \quad \text{and} \quad \bigcap_{n=1}^{\infty} K_n \neq \emptyset \]
Since \(K_n \subset P \Rightarrow \bigcap_{n=1}^{\infty} K_n = \emptyset \)
but by since each \(K_n \) nonempty
\[\bigcap_{n=1}^{\infty} K_n \text{ nonempty} \]