The Cantor Set

Recall that a perfect set \(E \) in a metric space \(X \) is such that every \(x \in E \) is a limit point of \(E \). Also recall that perfect sets are uncountable.

The Cantor set is an important example for several reasons. It is a perfect subset of \(\mathbb{R} \) that contains no interval. (As a corollary) it is also totally disconnected in the sense that its only connected subsets are points.

Much later you will see it again as an example of a set with "dimension" strictly between 0 and 1.
The middle third Cantor set is

\[C = \{ x \in \{0,1,2\}^\mathbb{N} : x \text{ has no } 2\text{'s in its ternary expansion} \} \]

(although this classification isn't so useful)

The construction is inductive

Call \(C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1] \)

(removing the middle third of the interval)

Then \(C_2 = [0, \frac{1}{9}] \cup [\frac{2}{9}, \frac{3}{9}] \cup [\frac{7}{9}, \frac{8}{9}] \cup [\frac{10}{9}, 1] \)

at each stage

\[C_n = \bigcup_{i=1}^{3^n} I_i \]

of length \(3^{-n} \).

\[C_n < C_{n-1} < \ldots \]
Given C_0, define C_n by as $(I_i^1 - (a_i, b_i)]$.

$$C_n = \bigcup_{i=1}^{2^n} \left(A_i^n, a_i^n + \frac{b_i^n - a_i^n}{3} \right) \cup \left(B_i^n - \frac{b_i^n - a_i^n}{3}, b_i^n \right)$$

Indeed, this is union of 2^{n+1} closed disjoint intervals of length

$$\frac{1}{3^n} \text{ length } I_i^n = 3^{-n+1}$$

Call $C = \bigcap_{n=1}^{\infty} C_n$ the middle $\frac{1}{3}$ Cantor set.

C is compact and non-empty (Cantor intersection) of compact.

Further, no segment

$$\left(\frac{3b_n}{3^n}, \frac{3b_{n+2}}{3^n} \right)$$

intersects C.

(Since it is removed at stage n)
but every interval I_{i12} has a segment of thin from contained in it. \[I = [a, \infty) \]

Let $n \geq 3^m$.

Let k be minimal in Z suit.

\[\frac{1}{2^{k+1}} \in (\alpha, \beta) \]

by minimality.

\[\frac{3(k-1)+1}{3^n} \leq \alpha \]

\[\frac{3k-1}{3^n} - \frac{2k-1}{3^{n+1}} \geq \alpha \leq \frac{1}{3^n-1} \]

so

\[\frac{3(k+2)}{3^n} - \alpha \leq \frac{1}{3^n} + \frac{1}{3^{n+1}} = \frac{4}{3^n} \leq \frac{4(\beta - \alpha)}{\beta - \alpha} < \beta - \alpha \]
to show that C is perfect we show that C has no isolated point.

Let $x \in C$ and $A = (a, b)$ be an open interval containing x.

Since $x \in C$, for $n \in \mathbb{N}$ let I_n be the interval of C containing x.

For n sufficiently large (i.e., $3^{-n} < \min \{x - a, b - x\}$), $I_n \subseteq A$.

Let x_0 be the other end point of I_n which is not x.

Thus, for every open interval containing x, I_n intersects C at a pt other than x.

Hence C is perfect.

Rem: C has measure zero.