MATH 20000: Topics on Hour Test I
Math 200: Section 11, Autumn 2015, Instructor: William Feldman

You should be familiar with the concepts covered in lecture and in the textbook from Chapters 1, 2 and 3.1-3.4. Here is a list of concepts/techniques that you should be familiar with.

- **Chapter 1**
 - Vector operations (addition, subtraction, scalar multiplication) and their geometric interpretation.
 - The parametric equation of a line given (1) point and vector, (2) two points.
 - The inner product, the norm, their geometric interpretation.
 - Orthogonal projection.
 - Determinants of 2×2 and 3×3 matrices and their geometric interpretation (as area/volume of parallelogram and parallelepiped respectively).
 - Cross product, geometric interpretation, algebraic rules.
 - Triple product $((a \times b) \cdot c)$ relation with determinants of 3×3 matrices.
 - Equation of a plane in \mathbb{R}^3 given point and normal vector.
 - Distance from a point to a plane.
 - Definition of cylindrical and spherical coordinate systems and basic geometry, converting between coordinate systems.
 - Inner product in \mathbb{R}^n, matrix multiplication and matrix vector multiplication.

- **Chapter 2**
 - The definition of a vector valued function, its domain and range.
 - The graph of a function, level sets, sections. Using the level sets and sections to produce an accurate drawing of the graph.
 - Open sets, definition of limits by neighborhoods.
 - Basic properties of limits.
 - Definition of continuity, basic properties, checking whether a function is continuous.
 - The partial derivative of a function of multiple variables.
 - Definition of differentiability for vector valued functions of several variables (i.e. $f : \mathbb{R}^n \to \mathbb{R}^m$), calculating the matrix Df. What is a C^1 function on a domain $U \subset \mathbb{R}^n$.
 - The tangent plane to the graph of a function $f : \mathbb{R}^n \to \mathbb{R}$.
 - Relationship between differentiability and continuity.
 - Paths/curves in \mathbb{R}^n (what is the distinction?). Parametrizations, re-parametrizations of a curve by different paths.
 - Velocity vector of a path, speed of a path, tangent vector/line to a curve.
 - Differentiation rules, products, sums, constant multiples, quotients, and the chain rule.
 - Directional derivatives.
 - Understanding the gradient ∇f as direction of fastest increase, normal to level surfaces of f.
 - The equation of the tangent plane to a level surface of $f : \mathbb{R}^n \to \mathbb{R}$.

- **Chapter 3**
 - What is a C^2 function, the mixed partial derivatives, equality of mixed partials.
 - Taylor’s Theorem up to second order for functions of several variables and its interpretation.
 - Local minima, maxima, critical points.
 - First derivative test for local extrema.
 - Quadratic functions in \mathbb{R}^n and the Hessian of $f : \mathbb{R}^n \to \mathbb{R}$.
 - Positive/negative definiteness for a quadratic.
 - The second derivative test for local extrema, esp. the case $n = 2$ where it is much easier to check positive-definiteness.
 - Saddle points.
 - Strategy for finding the global maxima and minima of $f : U \subseteq \mathbb{R}^n \to \mathbb{R}$ by parametrizing ∂U.
 - The method of Lagrange multipliers for constrained extrema.
 - The method of Lagrange multiplies for finding the global maxima and minima of $f : U \subseteq \mathbb{R}^n \to \mathbb{R}$.