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1. INTRODUCTION

It does not seem entirely impossible that wordpress might disappear at
some point. It would be a shame to lose all my old blog posts. Already, some of
my older posts suffer both from link rot and from latex issues related to changes in
how wordpress interacts with latex. There are a number of posts which I wrote that
contain arguments and remarks (and even Theorems) not proved anywhere else, and
(as much for me as anyone else) I thought I would try to preserve them by collating
them into a single file. It also makes it easier to search. I've restricted myself to
posts with some mathematical content, with the exception of § 50 (OK, perhaps § 96
is not about mathematics either). I’ve included some of the comments, and I also
occasionally added notes which reflect any particularly relevant updates. I’ve made
some latex modifications (such as using theorem and conjecture environments) and
I’ve also included a bibliography and put in citations (inconsistently, sorry) where
the blog simply referenced the paper either by name or by link, but otherwise
the posts are unmodified. (The conversion to latex may even have introduced new
errors.) My rate of posting has slowed over the years. There are two reasons. One,
ironically, is that I started collaborating more and doing more mathematics, which
meant more time was spent writing papers and less writing blog posts. The second
reason is explained later (at least obliquely). Still, I have every intention to continue
posting. This is intended to be an organic document which gets updated from time
to time as I keep posting, so please free free to point out errors or updates that can
be included in future notes.
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2. EVEN GALOIS REPRESENTATIONS MOD p

Sun, 7 Oct 2012

Suppose that p : Gq — GLQ(FP) is a continuous irreducible Galois represen-
tation. What does the Langlands program say about such p? When 7 is odd, the
situation is quite satisfactory, the answer being given by Serre’s conjecture. For
example, having fixed a Serre weight £ > 2 and a Serre level N, one knows that
there will only be finitely many such representations and they will all come from
classical modular forms for GL(2)/Q.

When 7 is even, however, there is an equally good (if conjectural) description
of such representations. First, the dihedral representations are well understood by
class field theory, so let us assume we are not in this case. Then, replacing p by
the adjoint representation ad’p and restricting to some (any) imaginary quadratic
field, one obtains an irreducible (conjugate) self-dual representation, which, by the
generalization of Serre’s conjecture | |, should come from an automorphic rep-
resentation for U(3). It follows that, as in the odd case, there will (conjecturally)
only be finitely many such p for a fixed pair (V, k). However, things are even bet-
ter in the even case. Namely, if one fixes (N, k) but allows p to vary, then there
will still only be finitely many even representations, in contrast to the odd case
where (for (N, k) = (1,12) for example) such representations occur for infinitely
many p. The reason is that all such representations will have to arise from a fixed
finite dimensional space of automorphic forms determined by N and k, and thus
(by the pigeonhole principle) there will exist an automorphic II for U(3) whose
mod p representation extends to an even representation of Q for infinitely many p.
By multiplicity one, it would follow that II ~ II¢ ~ IIV and hence II itself must
come from the adjoint representation of a form from GL(2) over Q, which would
imply (since we are in regular weight) that the representations are odd. Note that
it is important in the definition of Serre weight here that k£ > 2; if one allows
k =1 then there exist representations in characteristic zero which give rise to mod
p representations for all p.

Here’s a specific example in which one can prove finiteness. Suppose that we
consider representations with k = 2 and NV = 1. Then there are no such even p
for a stupid reason, because the determinant will be cyclotomic (Tate deals with
the case p = 2.) Now consider the case when k = 2 and N = 4. In the even
case, the determinant must be the cyclotomic character times the unique (odd)
character of conductor 4. Let’s prove that there are no such representations. Tate
like arguments reduce to the case when the representation has image containing
SLy(F,) and p > 7. Now take the auxiliary imaginary quadratic field to be Q(y/—1).
The corresponding adjoint representation now is unramified outside primes above p
(the quadratic extension eliminating the ramification at 2) and is Fontaine—Laffaille
with weights [—1, 0, 1] at primes dividing p. Using the lifting results of | I,
we may lift this to a compatible family of self-dual representations of level one
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and weight zero which is potentially modular. Because these representations are
potentially modular and are not CM, we know that they are all irreducible by
Blasius—Rogawski. We now specialize these representations to p = 5, and because
the Hodge—Tate weights are sufficiently small ([0, 1, 2]) and Q(v/—1) is also small, we

can use results of Fontaine [ | and Abrashkin to deduce that the corresponding
5-adic representation is reducible, which is a contradiction. We thus deduce (using
Khare-Wintenberger | , | for the odd case) that there do not exist

any irreducible finite flat group schemes G of type (p, p) over Spec(Z[v/—1]) whose
generic fibre admits descent data to Q. This entire argument is really just a version
of the Khare-Wintenberger proof of Serre’s conjecture for U(3). Unfortunately,
one doesn’t quite have enough modularity lifting theorems at this point to deduce
Serre’s conjecture completely for U(3).

These arguments are quite general. For example, there should only exist finitely
many even representations p : Gq :— GL,(F,) (whose image contains SL,,(F,))
of fixed Serre weight and level, even when one ranges over all primes p, providing
n > 2.

——- 0 D O

3. HILBERT MODULAR FORMS OF PARTIAL WEIGHT ONE, PART I

Sat, 13 Oct 2012

Let 7 be an algebraic Hilbert modular cuspform for some totally real field F'+.
Then, associated to 7, one has a compatible family of Galois representations:

7”)\(7'(') : GF+ — GLQ(O,\)

which are unramified outside finitely many primes (this is the work of many people).
The expectation is that this representation should satisfy local global compatibility
at all primes. This is known if 7 has regular weight, and also if 7 has parallel weight
one. However, this is not known, even for the case p # ¢ (Here £ is the characteristic
of O/)). The problem is that these representations are constructed via congruences,
not from geometry. Deforming in families does give some control, and indeed one
can prove that, for v|p and p # ¢,

WD(ry(m)

which is a way of saying you get the correct answer up to the monodromy opera-
tor N, and moreover the monodromy operator on the Galois side can only be more
degenerate than the automorphic side. In English, if (for example) 7, is Steinberg,
then one may deduce (as expected) that the image of inertia on the Galois side is
unipotent, but not necessarily that it is non-trivial. In fact, by solvable base change,
this is really the only problem one has to worry about (so we shall assume we are
in this case below).

The usual methods for computing the monodromy N are all geometric (nearby
cycles), and, as it seems hopeless to try to construct any (conjectural) motive as-
sociated to m, there doesn’t seem to be much one can do.

One does, however, have the following strategy, which I learnt from Martin Luu,
which should suffice for all but finitely many primes A for which r) () is ordinary.
Namely, take the A-adic Galois representation associated to mw, and prove that it
is potentially automorphic using extensions of the Buzzard—Taylor idea (which has
been employed by Sasaki, Kassaei, Pilloni and others in the case of Hilbert modular

)F—ss

G, < rec(my)
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forms of parallel weight one, but should also apply in this context). The result is that
one shows that r(m)|G g+ for some totally real extension ET/F 7 is now associated
to a cuspidal automorphic form II of the right level. How does this help? Well, now
using what we know from local global compatibility (which is ok in the unramified
case), we deduce that II,, for some w|v is associated to the corresponding local
Galois representation r(7)|q, . Now this representation has the property that it
looks unipotent on inertia mod A™ for all n, but, assuming local-global compatibility
fails, is actually unramified at p. In particular, the semi-simplification is given by
two characters whose ratio is the cyclotomic character, whereas I1,, is an unramified
principal series. This implies that the Satake parameters { ., 8., } satisfy o, /B, =
N(w), which contradicts Ramanujan. We are not done yet, because one doesn’t
have purity in partial weight one. However, one can appeal to bounds coming from
Rankin-Selberg, and this is enough to obtain a contradiction.

The only obvious examples of partial weight one HMF (which are not of parallel
weight one) are CM, and since those are potentially unramified, the monodromy
operator will always be trivial on the autormophic side (and hence also on the Galois
side). So this suggests (but does not beg) the question: do there actually erist any
partial weight one (but not parallel weight one) Hilbert modular forms which are
not CM? Stay tuned for part II!

4. WHY IT IS GOOD TO BE PURE

Mon, 15 Oct 2012

There do not exist any regular pure motives M over Q which are not essentially
self dual. Here is why. M gives rise to a compatible family of Galois representations
for each rational prime v such that the characteristic polynomial R(X) of Frobenius
is independent of this choice. By purity, the eigenvalues v of R(X) are algebraic
integers lying in a CM-field such that |ta|? = p® for some integral weight w and
any complex embedding ¢. In particular, if « is a root of R(X), then a¢ = p¥/a is
a root of X" R(p*/X). Since R(X) has coefficients in Z, it follows that o€ is also
a root of R(X), from which one may deduce that R(X) = X" R(p*/X) (up to the
appropriate constant which makes the RHS monic, this doesn’t affect any of the
arguments). Yet this implies that M (w) ~ M, by the Cebotarev density theorem.
(Caveat: it really says that the p-adic avatars of M are essentially self-dual. Perhaps
deducing the result for M actually requires the standard conjectures.)

This argument no longer applies if one relaxes the conditions slightly; there do
exist non-self dual motives of rank three with coefficients; Bert van Geemen and
Jaap Top | | found some explicit examples with coefficients in an imaginary
quadratic extension of Q. The point where the argument above fails is that it iden-
tifies the polynomial X" R(p*/X) with the complex conjugate polynomial R¢(X),
which need not equal R(X) anymore.

Stefan Patrikis and Richard Taylor use a similar argument in their recent pa-
per | | to prove a nice result. Start with a regular pure motive M over Q (so
by the above remarks, it is essentially self dual). Suppose that the corresponding
v-adic Galois representation:

Ty © GQ — GLn(Qv)


https://arxiv.org/abs/1307.1640
https://arxiv.org/abs/1307.1640

8 F. CALEGARI

is not absolutely irreducible. One may ask: are the irreducible constituents s, them-
selves essentially-self dual? They show that the answer is yes. Let S(X) denote the
corresponding characteristic polynomials. If S(X) lies in Z[X], then the same ar-
gument above applies to s,. But it may be the case that the representation r,
only decomposes over an extension of Q. By looking at the eigenvalues, it trivially
follows that each of the S(X) may be defined over some CM field F//F*. More im-
portantly, by a technical argument which I will omit but which is not too difficult,
one may find a fized CM field M/M™ which contains all the polynomials S(X)
(one may even do this [in some sense| independently of v, although we won’t use
that here). Consider the Galois representation (s,)¢, where ¢ is acting on the coef-
ficients. Let a be a root of S(X). Then a¢ = p¥/a is now a root of X™S(p¥/X),
and so S°(X) and X™S(p*/X) coincide. Since X"R(p*/X) = R(X), we deduce
that (s,)¢ is a sub-representation of (r,)¢ = r,. In particular, (s,)¢ and s, are
both sub-representations of r,. But the Hodge—Tate weights of s, and (s, )¢ are the
same! (Literally, the Hodge-Tate weights of (s,)¢ are the Hodge-Tate weights of
¢(s,) where ¢(s,)(g) = s,(cgc™!), but since s, is a representation of Q, conjugation
by ¢ is conjugation by a matrix, so there is an isomorphism s, =~ ¢(s,).) It follows
(from the regularity assumption) that s, = (s,)¢, and then the argument above
implies that s, is self-dual.

One may use this argument as follows. As in | ], one may find a prime v
such that all of the s, are residually irreducible, and so (if v is sufficiently large) are
also potentially modular (by | | again). In particular, either all of the r,
are reducible or they are irreducible for a set of density one set of primes. Moreover,
any regular motive over Q is potentially modular, which is only three adjectives
away from the complete reciprocity conjecture!

Patrikis and Taylor do something slightly more general, instead of pure regular
motives over Q, they consider essentially self-conjugate regular compatible systems
(with coefficients) of G for some CM field F/F*. For reasons alluded to above,
the coefficients live in some CM-field M. This extra generality (mostly) adds some
notational complexity to the argument above. (To see the type of complications
that arise, consider an elliptic curve E with CM and then restrict to the CM field
F'. Then any reducible constituent s, = x, is related not to its complex conjugate
X$ acting on M, but the complex conjugate “x¢ of this where complex conjugation
is now acting on the coefficients M and on the Galois group F.) As expected, one
obtains (using | ]) some nice consequences, like potential automorphy of
regular polarizable compatible systems, as well as irreducibility (for a density one
set of primes) of Galois representations associated to RAESDC automorphic form
IT.

Comment 4.1 (Persiflage). Regularity is not used anywhere in the first result, so
the argument applies to all motives with coefficients in Q. As a sanity check, if y
is a character of a finite group with values in Q, then the dual character is X =
so x is self-dual. Indeed, this is basically the same argument (in weight w = 0.)

e

5. REMARKS ON BUZZARD—TAYLOR
Thu, 18 Oct 2012
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Let p : Gq,s — GLg(Qp) be continuous and unramified at p. The Fontaine—

Mazur conjecture predicts that p has finite image and is automorphic. Buzzard

and Taylor proved this result under the assumption the natural assumption that

p is odd, that p is modular (now uneccessary), but also under the further two
assumptions:

(1) p is irreducible,
(2) p is p-distinguished.

(caveat: there are mild extra assumptions required when p = 2.) The point of
this post is to note that is seems possible to remove either of these conditions and
to wonder whether both can be removed simultaneously.

Suppose the second condition fails. One may enlarge the ordinary Hecke algebra
T to include the operator Uy, call the resulting ring T. After appropriate localiza-
tions, this is different from T exactly when p(Frob,) is a scalar. On the Galois side,
let R, denote the universal (framed) deformation ring. Then, for any lift of Frobe-
nius, one can define the quadratic extension Ep = R,[a] where « is an eigenvalue of
Frobenius. Fix a weight & > 2. If Rgrd denotes the ordinary deformation ring, then
there is a corresponding quotient ﬁgrd of ﬁp which records ordinary deformations
together with the action of Frobenius on the unramified quotient. The Qp—points
of these local deformation rings are the same (since k > 2). The usual Taylor—
Wiles-Kisin method produces an isomorphism of the type ﬁ[l /p] = ’i‘[l /p], where
R is the global deformation ring which takes into account the extra data at p. This
isomorphism holds for all weights k > 2, which is enough to get an isomorphism on
the corresponding ordinary families.

If p(Frob,) has distinct eigenvalues, one may now deduce Buzzard-Taylor (by
the same argument as BT). If p(Frob,) is scalar, then one has to make a slight
adjustment. To see what to do, note that if f(7) is the desired weight one form,
then the old space f(7), f(pr) can no longer be diagonalized with respect to U,.
Instead, it should give rise to a surjective map v : T — Ole]/€? such that the image
of T is O. Conversely, if there is such a map v, this produces the ordinary old forms
necessary to recover f (both forms have the same Hecke eigenvalues away from p,
so one can determine the g-expansions). From the modularity result, it suffices to
construct such a map on the Galois side. Yet this exists precisely because p comes
with two distinct unramified quotients.

David Geraghty and I used these these flavours of deformations rings for a some-
what different purpose (although we required more precise integral information
concerning Egrd coming out of a very nice paper of Snowden | ). On the other
hand, as far as the argument above goes, it was apparently known to Richard many
years ago (as I learnt by chatting with Toby Gee whilst drinking an $8 can of
Boddingtons in Toronto).

Suppose one assumes instead that p is reducible. Recall that one has maps RP® —
R and RP® — T for a suitable pseudo-deformation ring RP®. In higher weights,
Skinner-Wiles essentially prove that R[1/p]**d = T[1/p], which should be sufficient
to construct the required overconvergent forms f, and fsz in weight one. While
chatting with Patrick Allen over espresso today, it also seems reasonable that (using
appropriate framings, as above) one may generalize this to the case where p is no
longer p-distinguished, as long as the characteristic zero eigenvalues o and (3 are
distinct. The problem, however, with the o = 3 case is that one needs to promote a
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non-reduced quotient R — Ole]/e? to a map from T, and the methods of Skinner-
Wiles in the reducible case only give information about the reduced quotients of
R. Is there any way around this? This seems (pretty close) to the only remaining
obstruction for a complete solution to the weight one odd case of Fontaine-Mazur.

—_— e C D ————————

6. JACOBI BY PURE THOUGHT

Fri, 26 Oct 2012

Joél Bellaiche asks here whether there is a conceptual proof of Jacobi’s formula:
A=q[[a-gm*
n=1

Here (to me) the best proof is one that requires the least calculation, not necessarily
the “easiest.” Here is my attempt. We use the following property of A, which follows
from its moduli theoretic definition: the only zero of A is a simple zero at the cusp,
moreover, the evaluation of A on the Tate curve is normalized so that the leading
coefficient is q. Let p be prime. I claim that

A(T)p“ii:[:gi _ A(pT)ﬁA (T i z) .

i=0 p

Observe that both these expressions are modular forms of level one and weight
(p+ 1) times the weight of A. One can prove this “by hand,” but also by noting
that the RHS is equal to the norm of A(pr) on Xo(p) down to X(1). On the
other hand, the RHS also has a zero of order p+ 1 at ¢ = 0, from which the result
immediately follows, since the ratio will be holomorphic of weight zero. If one defines
Hecke operators on g-expansions in the usual way, it also immediately follows that
the logarithmic derivative gd/dglog(A) is (as a g-expansion) an eigenform for T,
of weight two with eigenvalue p + 1 for all primes p. In fact, the same argument
as above (with X((p) replaced by Xo(n)) implies that this derivative is also an
eigenform for T, with eigenvalue o1(n) = Z d. This is almost enough to determine

d|n
the g-expansion uniquely: in particular, it implies that

d [ee]
q- d—qlog(A) =1 +m'n§1al(n)q”

for some integer m, from which it follows that
a=qJ[0 -
n=1

To finish the argument, it suffices to check that m = 24, or that 7(2) = —24. One
way to do this is to note (by uniqueness) that A is a Hecke eigenform, and then use
the equation 7(2)7(3) = 7(6) which implies that m € {0, 1,2, 3,24}; the cases m =
1,2, 3 are then ruled out by the equations 7(2)7(7) = 7(14) and 7(2)7(13) = 7(26),
and m = 0 is ruled out by the fact that ¢ is not a modular form. Curiously enough,
this determines A without ever using the fact that it has weight 12. Another (more
traditional way) is to show that 1728A = E$ — E2 = ¢ —24¢> + .. .. Is there a way
to do this final step by pure thought?


http://mathoverflow.net/questions/108552/a-conceptual-proof-of-jacobis-product-formula-for-delta
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Comment 6.1 (Emmanuel Kowalski). This argument is very similar to one by
Kohnen | |

Do I
7. THERE ARE NO UNRAMIFIED ABELIAN EXTENSIONS OF Q (ALMOST)

Tue, 27 Nov 2012

In my class on modularity, I decided to explain what Wiles’ argument (in the
minimal case) would look like for GL(1)/F'. There are two ways one can go with
this. On the one hand, one can try to prove (say) Kronecker-Weber using Selmer
groups, but avoiding any kind of circularity (by not assuming class field theory).
On the other hand, one can allow oneself to be completely circular in an effort to
concentrate on the technical details of Wiles’ arguments. This post concerns the
latter, and we “prove” the following:

Theorem 7.1. Let F' be a number field which does not contain (,. Then the Galois
group of the maximal abelian extension of F' unramified everywhere is isomorphic
to the p-part of the class group.

To prove this, we will (only) assume the following:

(1) Local class field theory.

(2) For any ray class group of F', there exists a corresponding abelian ray class
field whose Galois group is the ray class group (this is half of global class
field theory).

(3) The abelian extensions coming from the ray class group are compatible
with local class field theory (this is local-global compatibility).

(4) The Wiles-Greenberg Selmer group formula.

The first three assumptions for F' = Q are equivalent to giving oneself the
cyclotomic extensions and understanding their ramification properties. The last
assumption, of course, contains every part of global class field theory (making the
argument circular).

Let 'y denote the Galois group of the maximal pro-p abelian unramified exten-
sion of F. Let I'g, denote the corresponding group where ramification is allowed
at some set of primes Qv not containing p, where one also insists that the order of
inertia at primes in Qy is at most p”¥. Formally, we have the universal deformation
rings

Ry =Zp[[Tyll,  Rqy =Zp[[Tox]l,
and we also have the universal “modular” deformation rings
Ty = Z,[[(F\AL/U)], Toy = Z[[(F\AL/Uq)"]].

Here M¥T denotes the biggest finite quotient of M, U is the obvious maximal open
compact, and Ug is the variant of U such that U, = O} is replaced by Ugy . =
OUX?”N for v € Qn. The half of global class field theory we are assuming gives us
a compatible diagram of maps Rq, — Tqg, and Ry — Ty. The Wiles-Greenberg
formula gives us an equality:

dim |Hy (F,Fp)| — dim |Hj. (F,F,(1))| = —(r1 + 2 — 1),
where for this computation we use that {, ¢ F. In order to annihilate the dual

Selmer group, we need to annihilate classes in H'(F, u,,), which come from ex-
tensions F((,, /). We can do this in the usual way, but we have to assume
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(again) that (, ¢ F', since otherwise one cannot annihilate the class defined over
F(¢p2) = F((p, %/Cp) using a prime ¢ =1 mod p?. We see that we can annihilate
the dual Selmer group with ¢ := |Qn| = dim Hy + (r1 4+ r2 — 1) primes. What are
the auxiliary rings Sy here? As rings, they are

Sy = Z,((Z/p" Z)"]

the action on Rg, is via the inertia group at the auxiliary primes. To make this
work, one needs local class field theory; this shows that inertia at ¢ is acting via
(’)qx/(’)qXpN. The action of Sy on T, is given by the structure of T, as a module
over Z,[U/Ugq] ~ Sn. The compatibility of these actions is given by the compat-
ibility of local and global class field theory. Moreover, if ay is the augmentation
ideal of Sy, then Rg, /any = Ry by definition, and Tq, /ay = Ty by construction.
Thus, in the usual way, one ends up with a map R,, — T, where:

(1) Reo is a quotient of a power series ring with ¢ — (11 + 72 — 1) variables.

(2) S is a power series ring in ¢ variables.

The final thing to understand is the structure of T, as a module over S..
At level Qn, the annihilator in Sy ~ Z,[U/Ug] of Tq, is given by the image of
the global units. By Dirichlet’s Theorem, this is generated by at most r; + 7o — 1
generators (assuming again that ¢, ¢ F'). By patching, it follows (in the limit) that
T has co-dimension at most r; + 72 — 1, and thus (from dimension considerations)
that Too = Reo, and then (after taking the quotient by a,) that Ry ~ Ty, which
proves that Ty is the p-part of the class group. Note that (as expected) when
gluing, we need to take into account all the (finitely many) possible R/m”, T /m",
the possible maps from the global units to Sy, etc. etc.

In order to see the “circularity” more clearly, one may compute the Selmer groups
directly. The group Hy (F,F,) is equal to I'y /p, by definition. On the other hand, the
group Hé* (F, pp) by the Kummer sequence is equal to O JO*?@Pic?(Spec(Or))[p],
and thus the Greenberg-Wiles formula is equivalent to the equality:

[Pic”(Spec(Or))[pl| = |To/pTo]
or equivalently the claim that the maximal exponent p-quotient of the class group

captures all exponent p-unramified extensions. I guess this is very very slightly
weaker than 'y ® Z,, ~ Pic’(Spec(OF)) @ Z,.

e

8. HILBERT MODULAR FORMS OF PARTIAL WEIGHT ONE, PART II

Sat, 08 Dec 2012

Anyone who spends any time thinking about Hilbert modular forms of partial
weight one — see § 3 — should, at some point, wonder whether there actually exist
any examples, besides the “trivial” examples arising as inductions of Grossenchar-
acters. Fred Diamond asked me this very question at Fontaine’s birthday conference
in March of 2010. There are various reasons why one should not expect to prove this
by pure thought, including the possibility that (for certain levels) there may exist
no such forms, and that at any level there may exist only finitely many such forms
(more on these heuristics another time). Thus the only way I can really imagine
showing that such a beast exists is by explicitly finding an example.

As of today, my students Richard Moy and Joel Specter have found such
a form! Here is (roughly) the strategy they use. As with computing weight one
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classical modular forms, one starts by computing a basis of g-expansions in some
regular weight, divides by some Eisenstein series, takes the intersection of that
space with its Hecke translates, and hopes that the resulting space has bigger di-
mension than the space of CM forms (which one can compute in advance). There
are a few hiccoughs which occur along the way, of course. How does one compute g¢-
expansions of Hilbert modular forms? Since computing uniformizations of surfaces
is not realistic, they use the fact that (fortunately!) the g-expansion of a Hilbert
modular form can be recovered from its Hecke eigenvalues. On the other hand, by
Jacquet—Langlands, a Hilbert modular eigenform over (say) a real quadratic field
corresponds to an eigenform on the arithmetic manifold associated to a quaternion
algebra which is ramified at all infinite places, which then allows one to pass from
the Hilbert modular variety to an adelic quotient which is now a finite set. Lassina
Demebele wrote a magma programme which computes the eigenvalues for Hilbert
modular eigenforms by this method, although for some reason the programme re-
quires the level to be squarefree, and the character to be trivial. Using Atkin-Lehner
theory, one can construct the entire space of forms by this method.

In practice, Richard and Joel worked with F' = Q(+/5), computed the forms of
level T'o(N) (with N squarefree) and weight [4,2], then divided by an Eisenstein
Series of weight [1,1] level I';(N) and character x~!, then computed the Hecke
operator T5 on this space and intersected away. Many (many) bugs later, and various
annoying steps overcome (to take a random example, magma can compute the L-
values of Hecke characters necessary to find constant terms of Eisenstein series
[nice] but only as a complex number, not as an algebraic number [not so nice| so
“L-value recognition” had to be coded in), the progams finally worked, and after
much grinding away (for all squarefree N of norm less than 500) they didn’t find
anything at all (or at least, anything besides CM forms).

So they started working in weight [6, 2], computed away, and eventually found a
form 7 of weight [5, 1], level I";(14), and character y, where x has conductor 7 and
is of order 6. The coefficient field of the eigenform is, I believe, Q(v/5, v/—3,v/—19)
(note that it must contain the base field as well as the field of the character). Note
that this automorphic form w is Steinberg at 2! In particular, it is not CM, and one
doesn’t know whether local-global compatibility holds for the corresponding p-adic
Galois representations even restricted to 2.

I should say that finding the form actually turned out to be easier than proving
the form exists rigorously. Theoretically, the proof should be easy: one has found
a form F/FE for some cuspform F and some Eisenstein series E which looks like
it is holomorphic. All one needs to do is square it (so it becomes regular), find a
candidate form G of weight [10,2] such that GE? — F? = 0 (which one can prove
since the spaces are finite dimension), and then E/F has no poles and is thus
holomorphic. The problem is that the form [10,2] has non-trivial character, and
Lassima’s program only works with trivial character. One can take the 6th power
and work with a form of weight [30,6], but this is way beyond what magma can
cope with. In the end, Richard and Joel had to come up with a few tricks to do
this (which took about three months!), but the final computations are in, and the
existence has now been proven.

Comment 8.1 (Akshay Venkatesh). That’s a very nice computation indeed. Did
they look mod p? Is there really an obstruction to using Hecke action to verify that
they have no poles (as in Schaeffer’s thesis), or it just seemed annoying to prove?
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Comment 8.2 (Persiflage). Dear AV, Some good questions. First, they did not
compute anything mod p, and one reason is that it is not clear whether one can
compute the integral structure of the module of Hilbert modular forms in regular
weight (at least not obviously); the only thing one can compute are the eigenvalues
of eigenforms, and this only tells you about the rational structure.

As for Schaeffer’s approach, it’s not obvious how to prove that TF = AF in
practice (even for a fixed T') since this runs in to the same computational issues
related to the fact that magma only computes spaces without character. There also
does seem to be a genuine issue with applying Schaeffer’s ideas for operators T
dividing the level; we thought about this for a while, but couldn’t quite make it
work.

Notes 8.3. The corresponding paper is | |. One frustrating aspect of this
example was that the base field was strictly bigger than the field generated by F'
and the value of the character; it would have been nice to find a non-CM form
defined over F'. However, my student Abhijit Mudigonda pointed out to me that
the classical argument that any modular form of odd weight and coefficients in Q
also applies here to show that there are no such forms (more precisely, forms in
weight [1,2k + 1] defined over F' must be CM).

e

9. THE TWO CULTURES OF MATHEMATICS: A REBUTTAL

Wed, 12 Dec 2012

Gowers writes thoughtfully about combinatorics here, in an essay which refer-
ences Snow’s famous lectures (or famous amongst mathematicians — I’ve never
met anyone else who has ever heard of them). The trouble, however, starts (as it
often does) with the invocation of the word “obvious”

It is equally obvious that different branches of mathematics require
different aptitudes.

I do not think that this claim stands up to scrutiny. By “aptitude,” Gowers
specifically distinguishes the following two abilities: problem-solving and theory-
building. Here algebraic number theory is singled out as area which is firmly tilted
towards theory-builders. Yet the vision of algebraic number theory as a rising sea
with progress signaled by the application of (to quote Gowers) deep theorems of
great gemerality is not, in my opinion, an accurate reflection on reality.

A good lemma is worth a thousand theorems. Gowers describes various principles
of combinatorics which (he suggests) play the role of (a direct quotation again)
precisely stated (general) theorems. Yet examples similar to his are readily available
in algebraic number theory. Consider, for example, the following Lemma of Ribet
(modified from its original formulation):

If a reducible representation U @ V of a group G deforms contin-
uously into an irreducible representation of G, then either there
exists a non-trivial extension of U by V, or an extension of V' by

U.

As a mathematical result, this is not particularly deep. For example, if G is finite,
it relates two well known facts: there are no extensions between irreducible repre-
sentations (Maschke’s theorem), and representations of finite groups are defined


https://www.dpmms.cam.ac.uk/~wtg10/2cultures.pdf
http://www.math.rutgers.edu/~zeilberg/Opinion82.html
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over number fields (and so do not deform). Yet this lemma is a crucial ingredient
behind many key results (Ribet’s construction of unramified extensions, the proof
of the main conjecture of Iwasawa Theory by Mazur—Wiles, the non-triviality of
the Selmer group of an ordinary Elliptic curve with L(E,1) = 0 by Skinner—Urban,
and many more). It seems to me (as in the examples Gowers discusses) that the
value of this lemma is not in its difficulty, but in the principle it encapsulates: in
order to construct extensions of U by V, try to deform U & V.

It is a common graduate student error to imagine that mathematics consists
merely of judicious applications of highly technical machinery. But I am not ac-
cusing Gowers of making this mistake; I would expect him to argue that algebraic
number theory is not ezclusively the domain of theory-builders, but rather only
strongly slanted in that direction, and to that end, he might point to Grothendieck.
A fascinating essay on Grothendieck may be found here. Grothendieck contrasts his
own way of thinking with that of Serre, whom he describes as using the hammer
and chisel approach, which might loosely be considered synonymous to “problem-
solver” (and I would count Serre as someone who has worked in algebraic number
theory). Note that, despite the merits of Grothendieck’s work, he famously failed
to prove the Weil conjectures (by “failing” to prove the standard conjectures) and
it required Deligne’s use of the tensor power trick (a problem solving technique
par excellence) to finish the argument. Thus, while Grothendieck’s role in modern
number theory is significant, it would be an error to imagine that it constitutes the
whole subject.

Perhaps Gowers would instead argue that what set combinatorics apart from
(say) algebraic number theory is not that it requires problem solvers while the
latter field does not, but that (in contrast) it is the exzclusive domain of problem
solvers. There’s a hint of this opinion in the following quote:

One will not get anywhere in graph theory by sitting in an armchair
and trying to understand graphs better.

Why is this claim any more convincing than the same statement with the word
“sraphs” replaced by the word “rings”” I don’t see any a priori reasons why there
cannot be a Grothendieck of graphs. If the history of mathematics teaches us any-
thing, it is that the nature of a subject can change quite radically over a relatively
short period of time (say 30 years). I am not claiming that there is no difference
between combinatorics an algebraic number theory. There may well be a difference
in the overall structure of the field, the level of background, the need to understand
ideas in a broader conjectural framework, etc. And I might also consider agreeing
to the claim that these fields, as they are currently constituted, may well be better
suited to different personalities. But it is my opinion that the divide between the
type of mathematics required for either subject is not as great as Gowers claims it
is.

Gowers main point is that a significant part of the mathematical establishment
looks down on combinatorics as not being “deep”, and that this attitude is both
harmful and ignorant. On this point, I think that Gowers criticisms are fair, ac-
curate, and valuable. It’s undeniably true that there are many graduate students
who fall in love with formalism to the detriment of content, and milder forms of
this predujice are pervasive throughout mathematics. To this end, I think Gowers’
essay is timely and relevant. However, I can’t help but sense a little that, perhaps
after having spent a career defending combinatorics against ignorant snobs, Gowers


http://www.math.jussieu.fr/~leila/grothendieckcircle/mclarty1.pdf
http://www.tricki.org/article/The_tensor_power_trick

16 F. CALEGARI

suffers from the opposite prejudice, where “theory-builders” are a short distance
away from empty formalists, sitting comfortably in their armchairs thinking deep
thoughts, studying questions so self referential that they no longer have any appli-
cation to the original questions which motivated them (this sense also comes from
reading some of the remarks on the Langlands programme here).

O 0
10. NUMBER THEORY AND 3-MANIFOLDS

Sun, 13 Jan 2013

It used to be the case that the Langlands programme could be used to say
something interesting about arithmetic 3-manifolds qua hyperbolic manifolds. Now,
after the work of Agol, Wise, and others (see | ]) has blown the subject to
smithereens, this gravy train appears to be over. It seems to me, however, that
the great advance in our knowledge of hyperbolic 3-manifolds has precious little
to say about arithmetic 3-manifolds qua lattices in semi-simple groups. As a basic
example, suppose that X is a maximal compact arithmetic three orbifold associated
to a quaternion algebra Q/F for some field F' (with the appropriate behavior at
the infinite primes). Then one may ask whether X has positive Betti number after
some finite congruence cover X — X. Let’s call this the virtual congruence positive
Betti number conjecture. (This conjecture should be true — it is a consequence of
Langland’s conjectural base change for SL(2), which everyone believes but is prob-
ably very difficult.) AFAIK, there’s not really much one can say about this problem
from the geometric group theory/RAAG/LERF /etc perspective, where the arith-
metic structure of the tautological SL(2)-representation does not seem to play so
much of a role. A related question is the extent to which arithmetic 3-manifolds
are intrinsically different from their non-arithmetic hyperbolic brethren. Is the vir-
tual congruence Betti number conjecture (for arithmetic manifolds) something that
could plausibly answered using geometric group theory?

Notes 10.1. I think the short answer is that it seems unlikely.

om0 _
11. N'T SEMINAR: A HARUSPICY

Fri, 18 Jan 2013

Following Jordan Ellenberg’s advice, I will blog on something that I know abso-
lutely nothing about. Apologies in advance for mathematical errors!

Simon Marshall gave a number theory seminar this week about the first Betti
number of I'(n) — as n varies — for certain lattices in SU(2,1). In particular, he
proved an upper bound of the form:

dim H'(T'(n), Q) < [T : T(n)]?/8+,

which turns out (in certain cases) to be essentially the best possible estimate. As
was known to Rogawski, the forms contributing to H' all arise via endoscopy.
In particular, if T is simple in the sense of Kottwitz, then the first cohomology
vanishes (this also is due to Rogawski). So assume we are not in that case. The
argument proceeds mostly as one would expect: Rogawski classifies the endoscopic
forms which contribute to cohomology — they come from certain representations
& x p for U(2) x U(1). Here I think the choice of Grossencharacter p is almost


http://gowers.wordpress.com/2010/08/21/icm2010-ngo-laudatio/
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determined by &, so I will drop it from the notation below. The possible packets
can be described as follows:

(1) Singletons for the split primes.

(2) Aset {J*, D~} for the interesting infinite prime, where J* contributes (via
(g, K) cohomology) to H' and another representation D~ which doesn’t
(although it contributes to H?, I think).

(3) A set {m,,mp} consisting of a supercuspidal representation and another
representation at the inert primes.

(4) Something similar to 3. for the ramified primes.

Using Matsushima’s formula, in order to count the contribution to cohomology
one has to deal with the following:

(1) The global multiplicity: this is either 1 or 0 depending on certain signs
related to epsilon factors. As one varies n this should vanish half the time,
but one can ignore it as far as an upper bound goes.

(2) Suppose that p divides n, and let K be a hyperspecial maximal compact at
p. Then one has to bound the trace of the characteristic function of K (p*)
on the representations 7, and ).

Let f be such a characteristic function. One would like to write down a corre-
sponding transfer function f¥ on the endoscopic group such that:

Te(ms, f) + Te(me, f) = Te (€, f7)

By the Fundamental Lemma, if f is the characteristic function of the hyperspe-
cial K itself, then f¥ turns out to be the characteristic function on the maximal
compact of U(2). SML shows that (using some of the same computations required
for the fundamental lemma for U(3)) the same identity holds for the correspond-
ing characteristic function for K (p"), that is, the transfer f¥ is the characteristic
function of U(2)(p™). Is this true for any deeper reason? More generally, to what
extent do characteristic functions transfer to characteristic functions?

Notes 11.1. Simon’s paper is | |; see | | for more recent developments.

e

12. RANDOM p-ADIC MATRICES

Wed, 23 Jan 2013

Does anyone know if the problem of random matrices over (say) Z, have been
studied? Here I mean something quite specific. One could do the following, namely,
since Z, is compact with a natural measure, look at random elements in My (Zp)
and then ask about the distribution of several obvious quantities as N goes to
oo. For example, one can consider the rank of M mod p, which translates into
an elementary counting problem over F,. However, I don’t mean this, that would
just be rubbish for my purposes. What I am looking for is something that models
a random compact operator, and then I want to understand the behavior of the
normalized eigenvectors as the eigenvalue A — 0. To be concrete, let B = Q,(T)
be the Tate algebra corresponding to the open unit ball. Then consider a “random”
compact operator U acting on B. What does random mean? This is a good question,
to which I do not know the answer. But let me give several properties that it should
satisfy. Because the ball B is a disk, it is “dimension 2 as a real manifold”, and so



18 F. CALEGARI

— imagining that our compact operator is a p-adic avatar of e~V for the Laplacian
V — the eigenvalues of U should satisfy Weyl’s Law:

N(T) = (A —o) <7y~ YA g

Here v(A) denotes the valuation of A € Qp. Ignoring the volume factor, this just
means that the Fredholm determinant det(1 — UT) has a Newton Polygon with
certain quadratic growth. I'm not sure exactly what ensembles one can come up with
to define such operators, which is one of my questions. Let us also assume, although
this may not be necessary, that U is semi-simple and admits nice convergent spectral
expansions. We can’t quite insist that U is a self-adjoint operator, because one
doesn’t have p-adic Hilbert spaces. For such an operator, what behavior should one
expect of the normalized eigenvalues ¢; of U? For example, suppose one knows that
the number of zeros of ¢; goes to infinity. What limit distribution should the zeros
of ¢; satisfy when A — 0?7 (Somewhat troubling here is that the eigenvalues will lie
in Qp in general and ép has compactness issues. .. )

As you might guess, this is related to p-adic arithmetic quantum CHAOS, a
group of subjects which gets sexier every time an extra adjective is added, and will
form part of my student project at the Arizona Winter School (see here).

—_— e D ee————

13. SMALL CYCLOTOMIC INTEGERS

Sat, 26 Jan 2013

Julia Robinson is a famous mathematician responsible for fundamental work in
logic and in particular on Hilbert’s Tenth problem. Less well known nowadays is that
her husband, Raphael Robinson, was a number theorist at Berkeley. One question
R.Robinson asked (see | |) concerned small cyclotomic integers. Namely, let o
be a cyclotomic integer, and suppose that every conjugate of « has absolute value at
most R. Then what can one say about a? If R < 1, then Kronecker’s theorem says
that « is a root of unity (this statement only requires that « is an algebraic integer).
Robinson studied the problem of what happens when R < 2 and also R < /5. He
made five conjectures concerning these questions, four of which were solved in the
60’s by Jones, Cassels, and Schinzel. Five decades later, Frederick Robinson (no
relation!) and Michael Wurtz proved the last of these conjectures (while working
with me as summer students), and their paper paper has just been accepted by
Acta Arithmetica (see | |). In particular, they answer the following problem:
if o is an algebraic integer the largest of whose absolute values is R < /5, then
what are the possible values of R? Two such families of such numbers are those of
the form

CH¢h ik eH !

for a root of unity (. These give all R of the form

2cos(m/N), V14 4cos?(n/N).
Note that these sets have limit points at V4 and V5 respectively. It turns out that
there exactly two further exceptions, as follows:

V3T 5++13

2 ’ 2


http://www.math.uchicago.edu/~fcale/papers/AWS.pdf
http://arxiv.org/abs/1206.3598
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The first element is totally real and cyclotomic, and so manifestly occurs as such
an R. The second turns out to be the absolute value of 1+ (13 + (f3. The proof by
Robinson and Wurtz actually applies to slightly larger values of R, and after the
limit point v/5 there is another gap, and the next smallest possible R is

1+ Cro + G0+ (&) ~ V/5.017655 . ..

The first two exceptional numbers turn up in relation to subfactors. How about the
last example?

Notes 13.1. Kiran Kedlaya has pointed out to me that one of Robinson’s five
problems remains open, but should also be solvable by the methods of the Robinson—
Wurtz paper | |. (It relates to the difference between finding all possible values

of [a] and finding all 8 with [3] = [a].)

O ———
14. TORSION IN THE COHOMOLOGY OF CO-COMPACT ARITHMETIC LATTICES

Wed, 06 Feb 2013

Various authors (including Bergeron and Venkatesh) have shown that the coho-
mology of certain arithmetic groups have a lot of torsion. For example, if T is a
co-compact arithmetic lattice in SLo(C), and £ is an acyclic local system, then

log |H*(D(N), £)| > [[ : T(N)].

The proof relies on the fact that the difference Iy in ranks of SLo(C) and SU5(C)
is one. As the invariant [y grows, one expects there to be less torsion. How much
torsion should one expect in general? I'm not sure I have an answer, but the point of
this post is that Poincare duality gives a non-trivial bound, at least if one restricts
to covers up a p-adic tower. Let G be a semi-simple group over Q, Let G = G(R),
let K be a maximal compact, let H* = @ H™, let T be a co-compact lattice, and
let £ be an acyclic local system. Suppose that n = dim(G) and d = dim(G/K).
Then, for a fixed prime p (for which G(Q,) is split) and varying m, I claim that
one has the inequality

log |[H*(D(p™), £)] > [ : T(p™)]'~ 5.

An elementary exercise shows that £/pL is trivial as a local system for I'(p™) and
large enough m. The inequality above can then be reduced to the following claim:
there is an inequality:

dim H, (1—\(pm)7 Fp) > pm(n—d).

Assume otherwise. The main point is as follows: taking the inverse limit over all m,
we obtain modules H; over the Iwasawa algebra A. This algebra, by results of Lazard
and Venjakob | , |, is essentially a regular local ring, in particular, it
makes sense to talk about the dimension of modules over that ring. If the inequality
above does not hold, then these modules will have small dimension, explicitly, co-
dimension greater than d. This is so small that Poincare duality will, Ouroboros
like — swallow itself completely and collapse into nothingness. However, the only
way that could happen is if there was nothing to start with, which is nonsense.
More mathematically, consider the completed homology groups

H, =1lim H (T(p™),Fy)
—
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The homology groups may be computed by a complex of free A-modules obtain by
lifting an initial triangulation on the base. (Here one thinks of group cohomology as
the cohomology of the associated arithmetic quotients, of course.) Poincare duality
then explains what happens when one takes the dual of this sequence and considers
the corresponding homology groups, namely, there is a spectral sequence:

EXti(ij, A) = ﬁd_i_j.

This spectral sequence might be more familiar to some readers if one imagines A to
be a field, in which case the zeroth Ext group is a Hom and the higher Exts vanish,
and one obtains the duality isomorphisms between homology and cohomology over
a field. Or, if A was the integers, then then zeroth Ext group is a Hom, the first
Ext group is torsion, the higher Ext groups vanish, and one obtains the usual short
exact sequence comparing the dual of homology to cohomology up to a torsion
error term.) The dimension assumption we made implies that the limits are small
as A-modules, in particular that Exti(ﬁj,A) = 0 for all ¢ < d. The key here
is a Theorem of Ardakov and Brown relating the size of the cohomology growth
under towers to the codimension of the module. Yet putting this assumption into
the spectral sequence shows that all terms with i 4+ j < d vanish, and hence that
Hy= Hy_4 =0. Yet it is easy to see that
Hy=TF,,

and thus we have a contradiction.

In fact, this is the same argument that Matthew Emerton and I used to give
lower bounds on torsion for p-adic analytic covers of 3-manifolds. There is some
slack where the argument can be improved — since one only needs vanishing for
a triangular portion of the spectral sequence, you are in good shape if you have
extra information about the lower rows. Of course, the real answer to the amount
of mod p torsion in these towers (which is a different question to the original one
of torsion over the integers) should be:

dim H,(T(p™), F,) ~ pm(n=to),
where [y was defined above.

In a previous version of this post, I confused the roles of dim(K) and d =
dim(G/K). For complex groups one has n = 2d, and this is asymptotically the
correct estimate for simple real groups. In general, one has n > (3/2)d, with the
worse case, ironically, corresponding to (any number of copies of) SLa(R). So you
get a bound of the form:

log |[H*(T'(N), £)| > [T : T(N)]Y/3.

D0

15. GALOIS REPRESENTATIONS FOR NON SELF-DUAL FORMS, PART I

Tue, 26 Mar 2013

This is the first of a series of posts discussing the recent work of Harris, Lan,
Taylor, and Thorne | | on constructing Galois representations associated
to regular algebraic automorphic forms for GL(n) over a CM field F/F™. T will
dispense with any niceties about why one should care, and try simply to decipher
the scribbles I made during a talk Richard gave at the Drinfeld seminar. I should
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warn the reader of two difficulties: this paper does not exist as a public manuscript,
and it also involves technical details which I generally prefer not to avoid thinking
about. So caveat emptor.

First, some simplifying assumptions. Let’s assume that:

(1) moo has trivial infinitesimal character.
(2) mp, is unramified.
(3) F is an imaginary quadratic field in which p splits.

For examples, I will generally consider the case n = 1 and n = 2. The goal will
be to construct a Galois representation

Ry(m) = rp(m) & 5172”7"1)(”&\/)

If one can do this for 7w and for 7 ® x for enough characters y, then one can recover
rp(m). Naturally enough, R,(7) will be associated to an automorphic form II for
a bigger group. Now 7 B ! 27"V is automorphic for GL(2n)/F; it is, moreover,
an essentially conjugate self-dual (RAESD) although no longer cuspidal. It does,
however, come from a smaller group, namely, the unitary similitude group G which
is ubiquitous in the papers of of Harris and Taylor. Over the complex numbers,
G looks like GL(2n) x GL(1), but over the real numbers I think it must look like
GU(n,n). Although it’s true that the natural — i.e. occurring in cohomology of
X (G) — Galois representations associated to RAESDC forms w for G will actually
be nth exterior powers, I don’t think that matters so much, since once one has
congruences between w and II one gets Galois representations of the right degree
for II.

OK. Now associated to G and an open compact U of G(Af) one has three
natural objects: a smooth quasi-projective Shimura variety Y = Y7, a (typically
non-smooth) normal minimal compactification X = Xy, and a (family of) smooth
toroidal compactifications W = Wy;. The complement of Y in W is SNCD (smooth
normal crossing divisor). I'm using somewhat non-standard terminology as far as
the letters go because I don’t want too many subscripts. If n = 1, then Y is an open
modular curve, X = W is a smooth compactification, and the complement of Y in
W is a finite number of points (cusps). If n = 2, then Y has complex dimension 4.
More on that example later.

As usual, one has the Hodge bundle E = 7'('*934 v from which one may build
automorphic bundles &, in the usual way for suitable algebraic representations p of
what I guess amounts to the levi of G(C). In my notes I have written:

gst =st; & St/T/

Here st means the standard n-dimensional representation of GL,,, and st’ denotes
the complex conjugate representation. One must have has E = &g, where the
decomposition into a direct sum of two rank n-modules comes from the action of
the auxiliary ring on the tangent space to the universal abelian variety (built into
the definition of G which I have omitted). I also have written:

KS = st, ®st’'

This presumably relates to the Kodaira—Spencer isomorphism. It’s certainly con-

sistent with a surjection:
2
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Now it turns out that &, extends to W in two natural ways, there is the canoni-
cal extension {;*" and the sub-canonical extension {Zub; they differ by the divisor
corresponding to the boundary. Just as in the case n = 1, the bundle £ should
be though of as having log-poles at the boundary. Last but not least, for the one
dimensional representation A2"(st, ©st’,+), one has the line bundle w on Y. Denote
the canonical extension of w to W by w. Then it turns out that w is the pull-back
of an ample line bundle w on X. Of course, if n = 1, then w is what you think it is
— well, almost, since we are using GU(1,1) Shimura varieties rather than GL(2).
However, for general n, things are a little trickier. For example, w is ample on X,
but not (in general) on W.

If U is maximal at p, then the previous constructions also work over a finite field
k of characteristic p and the appropriate smoothness claims are still true. One has
the Hasse invariant H, which is a section of wP~! over X/k. Since w is ample on
X, the complement of the zero divisor of H is affine, it is of course the ordinary
locus. In particular, one has Galois representations of the correct flavor associated
to forms in the infinite dimensional space

HO (Xord’ gp)

This follows in the “usual” way; Richard sketched an argument, it goes as expected,
although I think the Kocher principle must have slipped in at some point.

So far, I haven’t really said anything related to the actual argument, but I think
I will stop here for now. The next step is to connect II in any way to classes in the
p-adic modular forms arising in the cohomology group above.

———————————0 D) O

16. GALOIS REPRESENTATIONS FOR NON SELF-DUAL FORMS, PART II

Sun, 21 Apr 2013

Let’s recap from part I. We have a Shimura variety Y, a minimal projective
compactification X, and a (family of) smooth toroidal compactifications W. We
also have Galois representations of the correct shape associated to eigenclasses in

HO<X0rd7 gp)

So at this point (well, not only at this point) there is some confusion. In the con-
struction above, I am imagining that we are working with the rigid analytic space
corresponding to the ordinary locus. But now there are some remarks in my notes
about dagger spaces. Here is what I am imagining is going on. For any sufficiently
small radius, we may consider the rigid analytic space Y[v] which corresponds (on
the moduli level) to the appropriate abelian varieties A (with polarization and level
structure and enomorphisms, blah blah) together with a canonical subgroup which
(under some measure) is close to being ordinary. Then there is a “dagger space”
YT which is the limit of all such spaces. The issue (for me) is that I don’t really
know anything about dagger spaces, but since this is probably not the main point,
I will (again) elide the issue here. Of course, the goal is to realize the eigenvalues
of the Eisenstein series II inside this cohomology. Let’s assume that II actually
has good reduction at p. Then it is probably going to be true that IT actually has
finite slope, and so it lives inside the cohomology of some overconvergent neighbour-
hood of X°™. So there’s some flexibility with exactly what spaces one is working
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with. Perhaps working with finite slope eigenforms might help to get local-global
compatibility at p.

(It’s most natural to work with the dagger spaces (whose cohomology is as de-
scribed above) since that most naturally corresponds to the rigid cohomology groups
occurring below.)

OK, so, we may take the direct limit over all compact subgroups U of the coho-
mology above, and we want to realize the Eisenstein series II as a p-adic cusp form
inside this space.

To this end, one introduces the following cohomology groups:

2o(X°) = HY (W, QY s (log 00) @ L)

OK. So this is just a definition, it isn’t supposed to obviously be functorial: we are
taking the special fibre, lifting to characteristic zero, taking a toroidal compacti-
fication, then looking at the hypercohomology of the de Rham complex with log
poles at the boundary. Well I guess one can do whatever one wants, I suppose.

So what is this? The hycohomology of the de Rham complex of a smooth variety
M with log poles along some divisor D with normal crossings should just be the
Betti cohomology of the complement of D in M. The factor £ is the difference
between the sub-canonical and canonical extensions, not entirely sure why it is
there, presumably for some fundamentally important reason. So morally, I think
the RHS should be computing something like the Betti cohomology of Y4, with
the proviso that these are dagger spaces, not smooth complex varieties. So one
should think of the LHS is some type of algebraic Betti cohomology of the ordinary
locus.

Update: the remark about the Betti cohomology of the complement of D is cor-
rect, but the presence of the boundary divisor £ is exactly what, in the classical
sense, changes the answer from the cohomology of the open variety to the inte-
rior cohomology. So the cohomology is somehow compactly supported towards the
boundary of W, but not the “other” part of the boundary (that is, the difference
between W and W4, Let’s write down a spectral sequence:

H (W, Q3 0na (log 00) © £) = HH (X,
The existence of this spectral sequence must be a formal consequence of the defini-
tion and properties of hypercohomology. Note that the Q{/de (log o0) are canonical
automorphic sheaves of the standard type, so with the boundary piece £ the LHS
consists of terms of the form H*(W°d, £54P). To compute these terms, one can push
foward via the map 7 : W — X from the toroidal compactification to the minimal
one. Then one notes that:

(1) The higher direct images R'm.&"P vanish.
(2) Since X°™ is affinoid, its higher cohomology also vanishes.

The second point seems reasonable, I have no idea why the first is true. It is
probably a really key point, which I might talk about in part III (note: Richard said
nothing about this and there is no pre-print, so I have no idea how to prove this at
the moment). Apparently it is important that one uses the subcanonical extension
here. This implies that every class which occurs in the RHS in this new cohomology
actually occurs in an H term on the LHS. Now one has Galois representations of
terms of the form HO(W°rd ¢5b) by the first construction - here it must be OK to
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pass between W and X using the Kocher principle. So we are reduced to showing
that II contributes to this new cohomology H? 5(X ord),

Update: here is some more about higher direct images. Let’s say a little bit about
what the toroidal compactifications look like. Let’s even imagine we are working
with A and are looking at a cusp where one has purely toric reduction. For the
purposes of computing the higher direct images all that matters is the formal com-
pletion of W, which at the boundary looks something like Z/T for some toric variety
Z which is not of finite type. One shows that H*(Z,Oz) = 0 using Cech cohomol-
ogy for ¢ > 0, which allows one to think of Z as contractible. Then one would
like to say that H*(Z/T',0z) is also zero, which comes down to understanding the
action of I' on H°(Z, Oz). Roughly one would like to say that I' acts with no fixed
points and and use Shapiro’s Lemma. Back to the specific example, one finds that
H(Z,0yz) corresponds to positive semi-definite 2 x 2 matrices, and I a finite index
subgroup of GLy(Z). Here one should be reminded of the g-expansions of Siegel
modular forms at the cusp — recall that g-expansions are given in terms of such
matrices whose coefficients are invariant under M +— XM X7, This action is free as
long as det(X) # 0; at the level of g-expansions this corresponds exactly to working
with cusp forms; this is why working with the sub-canonical extension allows one
to restrict the positive definite forms on which the action is indeed free. In the
degenerate case when n = 1, then I' is trivial, and so it even acts freely on the
non-cusp form 1, which is why it doesn’t matter in that case.

Note: the spectral sequences above is, like the Hodge-de Rham spectral sequence,
a 1-st page spectral sequence. Thus the vanishing above does mot imply that it
degenerates. Moreover, it certainly won’t degenerate, since the RHS will turn out
to consist of finite dimensional vector spaces, whereas the terms on the LHS are
certainly not (as they are spaces of p-adic or overconvergent forms). (Note to self:
compare to work of Coleman.)

The next point is the following. Suppose one now simply replaces X°'4 by X.
Then the cohomology theory H? ; is probably literally computing the Betti coho-
mology of Y. The Betti cohomology of Y does indeed see the classes coming from
the boundary that we would like to find.

Recall that W \ 'Y is a normal crossings divisor. Let Jy denote the variety, 0;
the (disjoint) union of the irreducible components of the boundary divisor, 95 the
union of the intersection of these components, and so on. One now writes down
another 1st page spectral sequence as follows:

HY (0;, QY ora (log 00)) = H_ 5 (X°™).

This is supposed to be an example of the following: in a nice geometric situation
(normal crossings divisor) one may compute cohomology with compact supports in
terms of the cohomology of the boundary strata. (I'm still a little confused why Hy
is cohomology with compact supports rather than the cohomology of the interior,
but anyway...(update: this is explained above: the presence of £ means it has
compact supports in the direction of W .Y, but not W ~. W°r)). Moreover, a key
point is that the LHS can be interpreted as the rigid cohomology of 9;. This allows
one to use results of Berthelot and Chiarellotto to deduce that the terms of the
LHS are given in terms of the rigid cohomology of (open) varieties. In particular:

(1) They admit a theory of weights,
(2) H’ is mixed of weight at least j.
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(3) They are finite dimensional.

We deduce that RHS is also mixed of weight at least i+ j and finite dimensional.
We want our II to occur in the RHS, so it certainly suffices to show it actually
occurs in HY. But then by weights it suffices to show that it is coming from the
HO-terms in the LHS. These are simply given by component groups, and so the
computation reduces to a problem concerning the combinatorics of the boundary,
on which we shall say more in part III.

00—

17. INVERSE (GALOIS PROBLEMS I

Wed, 24 Apr 2013

My favourite group as far as the inverse Galois problem goes is G = SLa(F,).
This is not known to be a Galois group over Q for any p > 13, the difficulty of
course being that is must correspond to an even Galois representation. A more
tractable case is G = PSLy(F,), and this was recently answered by David Zywina
here (see | |). Here is a more elementary version of that construction. Suppose
that 7 is a classical modular form of weight three with coefficients in Z[/—1] and
quadratic Nebentypus character y. Note that there is an isomorphism 7°¢ := 7 ~
7 @ || - ||*x. For all primes v in Q(i), one obtains a representation:

0=p®el:Gal(Q/Q) — CLy(F,).

with determinant . There are two cases, depending on whether v|p is split or not.
If p=1 mod 4 splits, then, assuming 7 is not CM, the image of o restricted to the
kernel of x is SLo(F),) for sufficiently large p which can be explicitly determined
in any specific case. Thus the image of p is SLa2(F)) plus the image of complex

conjugation:
1 0
0 —-1)°

Since p = 1 mod 4, there exists an element o € F,, of square —1, and hence an
element in SLy(F),) equal to
a 0
G )

Hence the image of ¢ contains a scalar element of determinant —1, and thus it has
projective image PSLy(F,,).

If p = —1 mod 4, then, from the isomorphism 7¢ ~ 7V @ || - ||?x, there is
an isomorphism ¢ ~ ¢ ® x, where p¢ is the Galois conjugate induced by complex
conjugation. It follows that the projective image of ¢ lands in PGL2(F,,). The image
of p is thus, for sufficiently large p, a subgroup of F;z GLs(F,) with projective image
containing PSLy(F,,). We first observe that this implies that g contains SLy(F),). It
suffices to show that it contains all the transvections; yet the lift of any transvection
in PSLy(F,) is a transvection of order p times a scalar of order prime to p, which
one can remove by taking an appropriate power. Since the determinant of g is Y,
this leaves only the following three possibilities for the image of o:

(1) The subgroup of GLy(F),) of matrices with determinant +1.

(2) The previous subgroup together with the the scalar element I with I? = —1.
(3) The group SLy(F),) together with I.
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The third group does not have a non-scalar element of order 2 correponding to
complex conjugation, and the first has traces which do not generate Fj>. Hence the
image must be the second, which has projective image PSLo(F).

To conclude the argument, it suffices to show that there exists such a 7. Con-
sulting William Stein’s tables, one may take

f=q+4i-¢+2-¢°—8i ¢ +...e 53(T1(32), ),

for a quadratic y where i> = —1. Since as,as,ay # 0, this form does not have

CM by Q(v/—1) or Q(v/—2), so PSLy(F,) is a Galois group for sufficiently large p,
which one could compute exactly if one wanted. My impression from the notation
in William Stein’s tables is that the fixed field of the kernel of  is Q(v/—1), so this
is presumably the same family of examples that arises in Zywina. Other examples
(in the range of William’s tables) are as follows:

g=q+2i-¢>—4-¢"+(3—4i)-¢° +... € S3(I'1(20)),
h=q+3i-¢>—=5-¢* —3i-¢° +... € S3(T'1(27))
Note that this argument requires slightly more than pure thought; it was key that
there existed a non-CM form with coefficient field Q(v/—1), and there is no a priori
reason why there should exist any such form. For example, suppose one wanted
to generalize this argument to to PSp,(F,). Then one would want to look for a
non-endoscopic Siegel cusp form of weight (a,b) where (edit) 2a + b is odd with

Hecke eigenvalues in Q(v/—1) and quadratic Nebentypus character. Possibly such
things exist but perhaps they don’t!

Comment 17.1 (David Zywina). Yes, your cusp form of weight 3 and level 32 gives
rise to exactly the same representations as in my paper! (I found this post when
doing a literature search for a note I am finishing up.) Amusingly, your cusp form
of weight 3 and level 27 shows up at the end of Serre’s 1987 Duke paper | ]. He
shows that the mod 7 representation attached to it produces PSLy(F7) as a Galois
group over Q (unsurprisingly, the key is that the image contains a scalar matrix
with determinant —1). Serre was actually giving an example of his conjecture (he
started with the PSLy(F7)-extension and then found the form), so he overlooked
that this cusp form also produces PSLy(F,,)-extensions for all p > 5!

Comment 17.2 (Persiflage). Concerning (from some anonymous comment): could
you please elaborate on the line “If p = —1 mod 4, then, from the isomorphism
¢ ~ 7V @ || - ||*x, there is an isomorphism ¢ ~ ¢ ® x, where o¢ is the Galois
conjugate induced by complex conjugation. It follows that the projective image of
o0 lands in PGLy(F,,)” Could you explain how the existence of an “inner twist” by ¢
implies that the projective image lands in PGLo(F,)? Where does the congruence
class of p mod 4 play a role?

The assumption that p = —1 mod 4 means that the residue field of the coef-
ficient ring is F,(i) = F,2 (the case when p = 1 mod 4 is easier and was dealt
with previously). Moreover, if p = 1 mod 4, then there are two primes above p
in Z[v/—1], and so there is no Galois action on the coefficient field. When p = —1
mod 4, complex conjugation on the coefficients induces the automorphism c of Fp2.
Two representations V' and W correspond to the same projective representation if
and only if V ~ W ® x for some character y. The representation ¢ a priori lands
in GL2(F)2), and the projective representation lands in PGLy(F,2). The condition
that V actually arises from a GL2(F),) representation is that V' ~ V°. The condition
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that the projective representation lands in PGLy(F),) is that V' ~ V¢ ® x for some
character x.

Notes 17.3. See § 67 for some updates.
—_— e D ee——————

18. GALOIS REPRESENTATIONS FOR NON-SELF DUAL FORMS, PART III

Sat, 27 Apr 2013

Here are some complements to the previous remarks on | |, following on
from §§ 15-16.

First, in order to deal with non-zero weights, one has to replace the Shimura
varieties Y, X, W by Kuga-Satake varieties over these spaces. This “only” adds
technical difficulties.

Second, in order to work over the most general bases F', one seems to require
good minimal models and compactifications X7, Wy in characteristic p, for a prime
p which may be very ramified in F'. This is a genuine problem. The way to avoid
this problem is amusing. It turns out that one only needs a good model of X°™d
and W°™, In other words, one only has to understand integral models and toroidal
compactifications at the ordinary cusps. However, the ordinariness is exactly what
allows one to give appropriate models at these cusps, without having to deal with
the more complicated cusps except in some fairly superficial way (say by taking nor-
malizations over an integral model of a universal moduli space of abelian varieties).
This seems quite clever.

Third, I was going to talk in more detail about n = 2, but having written
down the argument it seems a little pointless now, since it is not going to simplify
things very much. The only thing that is (perhaps) easier is to understand why the
higher direct images of the pushforward of the subcanonical bundle to the minimal
compactification vanishes; yet the example of As in the previous post gives the
idea, I think. I was also going to talk about the combinatorics of the boundary and
their relationship to the cohomology of GL(n), but on second thoughts I'm not.

—ord

Fourth, how close is H 5(X ) to Hp.;(X), the compactly supported Betti
cohomology of the Shimura variety? It’s not so clear.

Fifth, the argument really only uses the ordinary locus in a fairly loose way,
namely, it is (in the minimal compactification) affinoid, and it is compatible with
Hecke correspondences. On the other hand, at finite level, this is pretty much the
only possible such choice. However, perhaps at infinite level there may be other

possible choices (in a perfect|-oid| world, as it were...).

————————-0 D) O

19. CATALAN’S CONSTANT AND PERIODS

Sat, 04 May 2013

There is a 60th birthday conference in honour of Frits Beukers in Utrech in July;
I’'m hoping to swing by there on the way to Oberwolfach. Thinking about matters
Beukers made me reconsider an question that I’ve had for while.

There is a fairly well known explanation of why ((3) should be irrational (and
linearly independent of 72) in terms of Motives. There is also a fairly good proof
that ¢(3) # 0 in terms of the non-vanishinjg of Borel’s regulator map on K5(Z). (I


http://www.staff.science.uu.nl/~corne102/beukers60/Conference.html
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guess there are also more elementary proofs of this fact.) A problem I would love to
solve, however, is to show that, for all primes p, the Kubota-Leopoldt p-adic zeta
function (,(3) is non-zero. Indeed, this is equivalent to the injectivity of Soule’s
regulator map
K5(Z) ® Zy, — K5(Zy).

(Both these groups have rank one, and the cokernel is (at least for p > 5) equal to
Z,/¢»(3)Z, by the main conjecture of Iwasawa theory.) It is somewhat of a scandal
that we can’t prove that (,(3) is zero or not; it rather makes a mockery out of the
idea that the “main conjecture” allows us to “compute” eigenspaces of class groups,
since one can’t even determine if there exists an unramified non-split extension

0-Q,3)—-V—=>Q,—0

or not. Well, this post is about something related to this but a little different.
Namely, it is about the vaguely formed following problem:

Problem 19.1. What is the relationship between a real period and its p-adic
analogue?

Since one number is (presumably) in R \ Q and the other in Q, \ Q, it’s not
entirely clear what is meant by this. So let me give an example of what I would like
to understand. One could probably do this example with (3), but I would prefer
to consider the “simpler” example of Catalan’s constant. Here

o111
Gt —L(w?2eER
T RTR e (x,2) € R,

is the real Catalan’s constant, and
Ga = La(x4,2) € Q2

is the 2-adic analogue. (There actual definition of the Kubota-Leopoldt zeta func-
tion involves an unnatural twist so that one could conceivably say that La(x4,2) =
and that the non-zero number is (2(2), but this is morally wrong, as the examples
below will hopefully demonstrate. Morally, of course, they both relate to the motive
Q(2)(xa).)

So what do I mean is the “relation” between G and G. Let me give two relations.
The first is as follows. Consider the recurrence relation (think Apéry/Beukers):

n*uy, = (4 —32(n — 1)?)up_1 — 256(n — 2)%u, _o.

It has two linearly independent solutions with a1 = 1 and as = —3, and b; =
—2 and by = 14. One fact concerning these solutions is that b, € Z, and a, -
ged(1,2,3,...,n)? € Z. Moreover one has that:

lim 2% = Gy € Q.

n—oo by,
The convergence is very fast, indeed fast enough to show that G2 ¢ Q (see | D-
What about convergence in R, does it converge to the real Catalan constant? Well,
a numerical test is not very promising; for example, when n = 40000 one gets
0.625269. . ., which isn’t anything like G = 0.915966 .. .; for contrast, for this value
of n one has a,, /b, — G = O(23199%%) which is pretty small. There are, however,
two linearly independent solutions over R given analytically by

(<16)" (5 1 903 1 136565 1 665221271 1
n3/2 256 n2 ’

262144 nt + 67108864 n6 274877906944 n® e
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(—16)" - logn 5 1 32261 1 136565 1 665221271 1
n3/2 ( 25672 7864320 n1 | 67108864 76 274877906044 )
(—16)" 1 1 32261 1 30056525 1 1778169492137 1 ’
n3/2 <768n2 7864320 nt 8455716864 n° | 346346162749440 n® )

from which one can see that a, /b, must converge very slowly, and indeed, one
has (caveat: I have some idea on how to prove this but I'm not sure if it works or
not):
an, 1

om_G—
by (0.2580122754655 . . .) - log n + 0.7059470639 . . .

So one has a naturally occurring sequence which converges to G in R and G2 in
Q2. So that is some sort of “relationship” alluded to in the original question. Here’s
another connection. Wadim Zudilin pointed out to me the following equality of
Ramanujan:

1 o0
=52 <R
k=0 (2k + 1)2
k
This sum also converges 2-adically. So, one can naturally ask whether

o0 k

2150 (2k +1)? .

(It seems to be so to very high precision.) These are not random sums at all. Indeed,

they are equal to
1 1,1,1/2
2'F< 3/2,3/2 Z)

at z = 1. Presumably, both of these connections between G and Gy must be the
same, and must be related to the Picard—Fuchs equation/Gauss-Manin connection
for X(4). This reminds me of another result of Beukers in which one compares
values of hypergeometric functions related to Gauss-Manin connections and elliptic
curves, and finds that they converge in R and Q,, for various p to algebraic (although
sometimes different!) values. Of course, things are a little different here, since the
values are (presumably) both transcendental. Yet it would be nice to understand
this better, and see to what extent there is a geometric interpretation of (say)
the non-vanishing of L,(x,2) for some odd quadratic character x. Of course, one
always has to be careful not to accidentally prove Leopoldt’s conjecture in these
circumstances.

Notes 19.2. The claims here are provable but the general question remains vague
and mysterious. This post is also related to forthcoming work with Vesselin Dimitrov
and Yunqing Tang and will be updated later.

——- 0 D O

20. EXERCISE CONCERNING QUATERNION ALGEBRAS

Sat, 11 May 2013

Here’s a fun problem that came up in a talk by Jacob Tsimerman on Monday
concerning some joint work with Andrew Snowden:
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Problem: Let D/Q(t) be a quaternion algebra such that the specialization D;
splits for almost all t. Then show that D itself is split.

As a comparison, if you replace Q by Q, then although the condition that D,
splits becomes empty, the conclusion is still true, by Tsen’s theorem.

This definitely feels like the type of question which should have a slick solution;
can you find one?

0 —
21. EQUIDISTRIBUTION OF HEEGNER POINTS

Wed, 15 May 2013

I saw a nice talk by Matt Young recently (joint work with Sheng-Chi Liu and
Riad Masri, see | |) on the following problem. For a fundamental discriminant
|D| of an imaginary quadratic field F', one has hp points in X((1)(C) with complex
multiplication by the ring of integers of F'. Choose a prime ¢ which splits in F' =
Q(+/—|D|). One obtains a set of 2hp points in X((q)(C), given explicitly as follows:

C/a+ C/ag™*

for a in the class group and q one of the two primes above ¢ in F. The complex
points Xo(q)(C) can be thought of as being tiled by ¢+ 1 copies of the fundamental
domain 2 in the upper half plane.

Problem 21.1. How large does D have to be to guarantee that every one of the
q + 1 copies of €2 contains one of the 2hx CM points by Op?

This is the question that Young and his collaborators answer. Namely, one gets
an upper bound of the shape |D| < O(¢™"€) (with some explicit m, possibly 20),
the point being that this is a polynomial bound. Note that this proof is not effective,
since it trivially gives a lower bound on the order of the class group which is a power
bound in the discriminant, and no such effective bounds are known.

I idly wondered during the talk about the following mod-p version of this prob-
lem. To be concrete, suppose that p = 2 (the general case will be similar). We
now suppose that D is chosen so that 2 is inert in F'. Then all the hx points in
Xo(1)(F2) are supersingular, which means that they all reduce to the same curve
FEy with j-invariant 1728. Now, as above, choose a prime ¢ which splits in F'. The
pre-image of j = 1728 in X((q)(F2) consists of exactly ¢ + 1 points.

Problem 21.2. How large does | D| have to be to ensure that these points all come
from the reduction of one of the 2hx CM points by Op as above?

Since Ej is supersingular,