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Abstract
We prove a minimal modularity lifting theorem for Galois representations (con-
jecturally) associated to Siegel modular forms of genus 2 which are holomorphic
limits of discrete series at infinity.
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1. Introduction
In this article, we prove a minimal modularity lifting theorem for Galois representa-
tions (conjecturally) associated to Siegel modular forms � for the group GSp.4/=Q
such that �1 is a holomorphic limit of discrete series. An example of what we can
prove with these methods is the following.
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THEOREM 1.1
Let r W GQ ! GSp4.Qp/ be a continuous irreducible representation satisfying the
following conditions:
(1) The restriction r jGQp is ordinary with Hodge–Tate weights Œ0; 0; j �1; j �1�

for some integer j satisfying p � 1 > j � 4.
(2) If ˛ and ˇ are the unit root eigenvalues of Frobenius on Dcris.V /, then

.˛2 � 1/.ˇ2 � 1/.˛ � ˇ/.˛2ˇ2 � 1/ 6� 0 mod p:

(3) The image of r jGQ.�p/ contains Sp4.Fp/.
(4) For a prime x ¤ p, the image of inertia at x is unipotent, and the image of

any generator of tame inertia has the same number of Jordan blocks mod p as
it does in characteristic 0.

(5) The representation r is modular of level N.r/ and weight .j; 2/.
Then r is modular, that is, there exists a cuspidal Siegel modular Hecke eigenform F

of weight .j; 2/ such that

L.r; s/DL.F; s/;

where L.F; s/ is the spinor L-function of F .

We deduce Theorem 1.1 from our main result, which we now state. (We refer
to Sections 4 and 6.4 for precise details concerning ramification behavior, level sub-
groups, and the exact definition of minimal deformations.) Let � denote the p-adic
cyclotomic character. Let O be the ring of integers of a finite extension K of Qp .
Let r WGQ!GSp4.k/ be a continuous irreducible representation whose similitude
character �.r/ on inertia at p is the mod-p reduction of �1�j . Suppose that r j GQp

contains an unramified subspace of dimension 2 on which Frobp acts by the scalars
˛ and ˇ, respectively, where

.˛2 � 1/.ˇ2 � 1/.˛ � ˇ/.˛2ˇ2 � 1/¤ 0:

Suppose further that r has big image (explicitly, satisfies Assumption 4.1) and that
r jGQx for a prime x ¤ p is either unramified or is one of the types listed in Assump-
tion 4.3. Let Y1.N / denote the (open) Siegel modular variety of level N DN.r/ over
Spec.O/, where N is determined by r as in Section 5, and let !.j; 2/ denote the
coherent sheaf on Y1.N / whose complex sections define Siegel modular forms of
weight .j; 2/ for some integer p � 1 > j � 4. Let T denote the subring of endomor-
phisms of

eH 0
�
Y1.N /;!.j; 2/˝K=O

�
' lim
!
eH 0

�
Y1.N /;!.j; 2/˝O=$n

�



MINIMAL MODULARITY LIFTING 3

(where eD e˛;ˇ is a certain ordinary projection; see Section 6.4) generated by Hecke
operators at primes not dividing Np. Let Rmin denote the universal minimal deforma-
tion ring of r (see Definition 4.6 for more details).

THEOREM 1.2
Suppose that there exist both a maximal ideal m of T and a corresponding representa-
tion rm WGQ!GSp4.k/ which is isomorphic to r . LetRmin denote the universal min-
imal ordinary deformation ring of r . Suppose that p�1 > j � 4. Then there is an iso-
morphismRmin �! Tm, and moreover, the Tm-module eH 0.Y1.N /;!.j; 2/˝K=O/

_
m

is free as a Tm-module.

The proof follows the strategy of [16]. The main ingredients are showing that
there exists a map from Rmin to Tm (see Theorem 6.17) and proving that the coho-
mology of the subcanonical extension !.j; 2/sub of !.j; 2/ to a smooth toroidal com-
pactificationX1.N / of Y1.N / vanishes outside degrees 0 and 1 (see Theorem 5.1—in
the case of classical modular curves this step was trivial).

As an application of the results of the present paper, we establish in Theorem
A.1 of the Appendix some cases of the Bloch–Kato conjecture for adjoint motives of
modular abelian surfaces.

1.1. Comparison with previous methods
The first modularity theorems which applied to nonregular motives were the results
of Buzzard and Taylor (see [14], [15]) on 2-dimensional odd Artin representations V .
The idea of these papers can roughly be described as follows. Using known cases
of Serre’s conjecture, one deduces that � is modular, where � is the representation
associated to some p-adic realization of V for some p. Using modularity theorems
in regular weight, one then proves that a big Hecke algebra is modular. Specializ-
ing to weight 1, one deduces the existence of an overconvergent eigenform f cor-
responding to V . Under a nondegeneracy assumption on V (� is p-distinguished),
one constructs (using companion forms) a second Hida family which specializes to a
second eigenform g. Using the geometric properties of U , one shows that f and g
converge deeply into the supersingular locus. The Fourier coefficients an of f and g
for .n;p/D 1 are determined by V . One then constructs a suitable linear combination
hD . f̨ � ˇg/=.˛ � ˇ/ which converges over the entire modular curve, and is thus
classical by rigid GAGA. The formal rigid geometry employed by these papers has
been generalized by various authors, in particular by Kassaei [44]. One may well ask
whether this approach can be applied to Siegel modular forms of weight .2; 2/—work
of Tilouine and his collaborators has made great progress in this direction. The mod-
ularity lifting result for (regular weight) Hida families has been established in many
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cases by Genestier and Tilouine [31] (see also Pilloni [56]). Significant progress has
also been made in the theory of canonical subgroups and the geometry of Siegel mod-
ular varieties. One difficulty, however, is that the Fourier expansions of Siegel modular
forms are not determined by the Hecke eigenvalues. This is a difficulty which must be
overcome in such an approach. (Various classicality results for overconvergent forms
can be established without using q-expansions—see, for example, [44] and [59]—but
these results only apply to forms of sufficiently noncritical slope.) The difficulty of
dealing with q-expansions manifests itself for our approach also—we are forced to
prove (“by hand”) various properties of Fourier expansions of Hecke eigenforms in
Section 8.2.

1.2. Abelian surfaces
It would be desirable to weaken the assumption j � 4 in Theorem 1.2 to j � 2, since
the case j D 2 includes the representations associated to the Tate modules of abelian
surfaces. The only point in our arguments in which we use the fact that j � 4 is
to deduce that H 2.X1.N /;!.j; 2/

sub/D 0 for the subcanonical extension !.j; 2/sub

of !.j; 2/ to a smooth toroidal compactification X1.N / of Y1.N /. If this vanishing
holds for j D 2, then our theorem would also apply to these cases. On the other hand,
one does not expect vanishing here, because one expects that singular Siegel modular
forms should contribute cohomology in these degrees. However, we need only the
weaker result that the image of H 2.X1.N /;!.j; 2/

can/ in H 2.X1.N /;!.j; 2/
sub/ is

zero after localization at a sufficiently non-Eisenstein maximal ideal m. We expect this
to always be true for j D 2, although we were not able to prove it. On the other hand,
using the ideas of Khare and Thorne in [46], one can dispense with proving this under
the very strong supplementary hypothesis that there exists a characteristic 0 form of
weight N DN.r/ which gives rise to r . In particular, by using the arguments of the
proof of [46, Theorem 6.29], one should be able to prove the analogue of Theorem 1.1
in weight .2; 2/ assuming the existence of an auxiliary Siegel modular form G of the
same level also of weight .2; 2/ with rG D r .

1.3. Recent developments
As of January 2019, there have been a number of developments related to the main
theme of this paper, in particular in the preprints [13] and [58], the latter of which
establishes the potential modularity of abelian surfaces over totally real fields. The
introduction to [13] explains a number of innovations which made those results pos-
sible, so we confine ourselves here to only a few salient remarks. The first is that
the vanishing conjecture for H 2 localized at m mentioned in Section 1.2 remains
unresolved, and the methods of [13] blend the techniques of this paper (and [16])
with arguments from [58]. A second point is that the paper [58] develops a concep-
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tual method to define (normalized) Hecke operators at p, and in particular establishes
the action of these operators on higher cohomology (which is essential for the main
results of [58] and [13]). In this paper, it suffices to construct the action of these Hecke
operators onH 0 which is significantly easier. The methods we use in Section 8.4 to do
this are admittedly disagreeable, relying as they do on arguments using q-expansions.
Thus the reader is encouraged to consult [58, Section 7] and [13, Section 4.5] for
a more geometric construction of these operators. An analysis of the normalization
factors for Hecke operators required in [58] also sheds some light on another phe-
nomenological feature of this paper which readers may find surprising. On the Galois
side, there is essentially no difference (in the ordinary setting) between working in
the (irregular) weight .j; 2/ for j > 2 and working in the (irregular) weight .2; 2/.
On the other hand, the Hecke operators at p (particularly Tp;2) behave quite differ-
ently in weight .2; 2/. In our context, this arises most noticeably in Section 8.5 (via
Lemma 8.12), which one should compare to [58, Section 11.1] (warning: the con-
vention of that paper is that Pilloni’s Tp;1 is our Tp;2 and vice versa, and the spher-
ical version of the operator T in [58] is equal in weight .2; 2/ up to translation by a
multiple of Tp;0 to the operator we call Q2). Lastly, the paper [13] develops a geo-
metric version of the doubling argument (see [13, Section 5]). This provides a much
more robust explanation (in a slightly different setting) for what in this paper occu-
pies most of Section 8 and consists of a sequence of tricky and not entirely intuitive
series of manipulations with q-expansions. (Note that the geometric doubling argu-
ment of [13] is only written for weight .2; 2/ but the method applies in principle to
the weights .j; 2/ which we consider in this paper.) Finally, the very observant reader
will notice that the doubling argument of [13] applies in weight .2; 2/ to the space
of ordinary forms at Klingen level, whereas in this paper we essentially prove (in the
same weight) a tripling result at spherical level. Neither of these results immediately
imply the other. The “extra” copy of the space of forms can be interpreted as giving
rise to a space of nonordinary forms of weight .pC 1;pC 1/. See Remark 8.18 for
further discussion on this point, which we also discuss in a different context below.

It is natural to ask whether one should expect any genuine difficulties in modi-
fying the geometric doubling argument of [13] to the setting of this paper. We now
offer some speculative remarks to address this point (using notation from [13]). Let
�p be a smooth admissible irreducible unramified representation of GL2.Qp/ (over
C) which is not trivial. (For example, �p could be the local constituent of an automor-
phic representation � associated to a classical modular form.) Let SphD GL2.Zp/,
and let Iw denote the Iwahori subgroup of Sph. The classical theory of oldforms is a
reflection of the fact that

dim� Iw
p D 2D 2 � dim�Sph

p
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and the characteristic 0 version of doubling is the statement that the span of the spher-
ical vector v under the operator Up is all of � Iw

p . The integral version of this statement
is false in general. For example, given a classical ordinary modular eigenform f of
weight k � 2, the span of f mod p under Up is simply f because Tp D Up mod p
in these weights. However, some version of this result does hold in weight k D 1, and
it is this property which is leveraged to prove local-global compatibility results in
[16]. Let us now replace GL2.Qp/ by GSp4.Qp/, and let Kli and Iw denote the Klin-
gen and Iwahori subgroups, respectively, of SphD GSp4.Zp/ (denoted elsewhere in
this paper by … and I , respectively). Now (for the …p of interest) we will have

dim…Iw
p D 8D 2 � 4D 2dim…Kli

p D 8dim…Sph
p :

The factor 8 here may be interpreted as the order of the Weyl group of GSp.4/. More
prosaically, the oldforms in …Iw

p correspond to a choice of eigenvalues ˛ and ˛ˇ for
the Hecke operators UIw.p/;1 and UIw.p/;2, respectively, whereas the oldforms in …Kli

p

correspond to a choice of eigenvalues ˛Cˇ and ˛ˇ for the Hecke operators UKli.p/;1

and UKli.p/;2 D UIw.p/;2. When one passes from �
Sph
p to � Iw

p for weight 1 modular
forms or from …Kli

p to …Iw
p for weight .2; 2/ Siegel modular forms, the property of

being ordinary turns out to be automatically preserved on the corresponding space of
oldforms. However, this is not a priori true when passing from …

Sph
p to …Iw

p , and so
one would have to see in any geometric version of this argument a way of dealing
with the nonordinary forms.

1.4. Results of Arthur
In Section 7.2, we make use of the results of [3], which sketches how the results of
[4] on orthogonal and symplectic groups can be extended to the general symplectic
group GSp4. At the time of the initial submission of this paper, these results of Arthur
are conditional on the stabilization of the twisted trace formula. (We direct the reader
to [30] for the most up-to-date status of these results for GSp4.)

2. Notation
We fix a prime p and let O be the ring of integers of a finite extension K of Qp

with residue field k. We let CO denote the category of complete local Noetherian
O-algebras R with residue field isomorphic to k (via the structural homomorphism
O!R).

We let

� WGQ! Z�p

denote the cyclotomic character. The Hodge–Tate weight of � jGQp is �1.
If L is a finite extension of Ql for some prime l , then we let ArtL W L�!W ab

L

denote the Artin map, normalized so that uniformizers correspond to geometric Frobe-
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nius elements. If � is an element of some ring R, then we define the character

�.�/ WGL �!R�

to be the unramified character which takes the geometric Frobenius element FrobL to
� , when this character is well defined.

2.1. The group GSp4
Let G DGSp4 D ¹M 2GL4 WM tJM D � � J for some � 2GL1º, where

J WD

0BB@
0 0 0 1

0 0 1 0

0 �1 0 0

�1 0 0 0

1CCA :
The group Sp4 is the subgroup consisting of elements with � D 1. We let B �G be
the Borel subgroup consisting of upper triangular matrices. The Lie algebras of G
and B are denoted g and b, while those of Sp4 and B \ Sp4 are denoted g0 and b0.
Let P �G denote the Siegel parabolic, that is, the stabilizer of the plane spanned by
the first two standard basis vectors. Let …�G denote the Klingen parabolic, which
is the stabilizer of the line spanned by the first standard basis vector. We denote the
Levi subgroup of P (resp., …) by M DMP (resp., M…). We have M ŠGL2 �GL1.

Let T denote the diagonal torus in GSp4, and let X�.T / denote its character
group. We identify X�.T / with the lattice Z3 by associating to .a; bI c/ the character

diag.t1; t2; �t
�1
2 ; �t�11 / 7! ta1 t

a
2 �

c :

We identify the cocharacter group X�.T / with Z3 by associating the triple .˛;ˇI�/
with the cocharacter

t 7! diag.t˛; tˇ ; t��ˇ ; t��˛/:

The natural pairing on X�.T /�X�.T / is then h.a; bI c/; .˛;ˇ; �/i 7! a˛C bˇC c� .
The positive roots of G with respect to the Borel B are given by ˛1 WD .1;�1I0/,

˛2 WD .0; 2I�1/, ˛3 D .1; 1I�1/, and ˛4 D .2; 0I�1/. Of these, ˛1 and ˛2 are the
simple roots. We let � D .2; 1I�3=2/ denote the half-sum of the positive roots. The
coroots are ˛_1 D .1;�1I0/, ˛

_
2 D .0; 1I0/, ˛

_
3 D .1; 1I0/, and ˛_4 D .1; 0I0/. The

intersection B \M is a Borel subgroup of M . The corresponding positive root is ˛1.

Definition 2.1
We define the set X�.T /CG to be the set ¹� 2 X�.T / W h�;˛_i i � 0 8iº of weights
which are dominant with respect to B . Explicitly,

X�.T /CG D
®
.a; bI c/ 2X�.T / W a � b � 0

¯
:



8 CALEGARI and GERAGHTY

Similarly, we define the set of weights X�.T /CM WD ¹.a; bI c/ 2X
�.T / W h�;˛_1 i � 0º

which are dominant with respect to B \M . Explicitly, this is

X�.T /CM D
®
.a; bI c/ 2X�.T / W a � b

¯
:

Note that the natural action of M on the plane spanned by the first two (resp.,
the last two) standard basis vectors is the irreducible representation of highest weight
.1; 0I0/ (resp., .0;�1I1/).

We let WG D NG.T /=T denote the Weyl group of G, and we define WM and
WM… similarly. Let s0, s1 denote the generators for the Weyl group WG given in
[41, Section 2]. We fix a set of Kostant representatives WM D ¹ew0;ew1;ew2;ew3º for
WMnWG by setting ew0 D 1, ew1 D s1, ew2 D s1s0, and ew3 D s1s0s1. Note that eachewi has length i . We let w 2 WG act on X�.T / by .w�/.t/D �.w�1tw/. Then we
have

ew1.a; bI c/D .a;�bIbC c/;ew2.a; bI c/D .b;�aIaC c/;ew3.a; bI c/D .�b;�aIaC bC c/:
The longest element of WG which we denote by w0 acts via w0.a; bI c/D .b; aI c/.

Note that the collection of representatives WM is precisely the set of w 2 WG
such that w.X�.T /CG/�X

�.T /CM . We let C0 �X�.T /R WDX�.T /˝Z R denote the
closed dominant Weyl chamber. In other words, C0 D ¹.a; bI c/ 2 R3 W a � b � 0º.
For i D 1; 2; 3, we define the chambers Ci WD ewi .C0/.
2.2. The group GSp4.R/
Let

h W ResC=R.Gm/.R/DC�!G.R/DGSp4.R/

be the homomorphism sending xC iy to the matrix�
xI2 yS

�yS xI2

�
;

where

S WD

�
0 1

1 0

�
:

Let Kh denote the centralizer of h in G.R/ (acting by conjugation). Then since
h.i/D J , we see that Kh DR�K1, where K1 is the maximal compact subgroup of
G.R/ given by the fixed points of the Cartan involution g 7! .gt /�1. The similitude
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character restricts to a surjective map � W K1 ! ¹˙1º and the kernel K1;1 is the
connected component of the identity. Then we have explicitly,

K1;1 D

²�
SAS SB

�BS A

�
2G.R/ WAtACB tB D I2;AtB DB tA

³
:

The map

K1;1 �!GL2.C/;�
SAS SB

�BS A

�
7�!AC iB

induces an isomorphism between K1;1 and U.2/. We let H1 � K1;1 denote the
preimage of the diagonal compact torus in U.2/ and let H WD R�>0H1 � K

h. Let
hD LieH , let kh D LieKh, and so on. Then we have

hD

8̂̂<̂
:̂h.t1; t2I z/ WD

0BB@
z 0 0 t1

0 z t2 0

0 �t2 z 0

�t1 0 0 z

1CCA W t1; t2; z 2R

9>>=>>; :
We use subscripts to denote complexifications of Lie algebras and Lie groups;
thus HC and hC denote the complexifications of H and h. Then hC D LieHC D

¹h.t1; t2I t / W t1; t2; z 2Cº and the surjective map exp W hC!HC sends h.t1; t2I z/ to

exp.z/

0BB@
cos t1 0 0 sin t1
0 cos t2 sin t2 0

0 � sin t2 cos t2 0

� sin t1 0 0 cos t1

1CCA :
Thus its kernel is ¹h.t1; t2I z/ W t1; t2 2 2�Z; z 2 2�iZº. We define the lattice
X�.HC/ � h�C to be the subspace consisting of differentials of (complex analytic)
characters of HC. Equivalently, X�.HC/ is the subset of X�.C� � H1;C/ D ¹� 2
h�C W �.ker.exp W hC ! HC// � 2�iZº consisting of differentials of characters of
C� �K1;C which factor through the multiplication map C� �H1;C!HC. We fix an
isomorphism ®

.a; bI c/ 2 Z3 W aC b � c mod 2
¯ �
!X�.HC/

by letting .a; bI c/ correspond to the linear form

h.t1; t2I z/ 7! at1i C bt2i C cz

on hC. This extends by linearity to an isomorphism C3! h�C.
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Let V ˙ �C4 be the subspace where h.i/ acts via˙i . Then each V ˙ is isotropic
and we have an orthogonal direct sum C4 D V � ˚ V C. Let Q� �G.C/ denote the
stabilizer of V �. Consider the Hodge decomposition

gC D g0;0˚ g�1;1˚ g1;�1;

where gp;q is the subspace on which h.z/ acts via z�pz�q . Then we have g0;0 D khC
and we let pC D g�1;1, p� D g1;�1. We also let P˙ denote the subgroup of G.C/
generated by exp.p˙/. Then we have

Q� DKhCP
� and LieQ� D khC˚ p�:

Moreover, KhC is the Levi component of Q� and P� is its unipotent radical. Let

f1 D

0BB@
1

0

0

�i

1CCA ; f2 D

0BB@
0

1

�i

0

1CCA ; f3 D

0BB@
0

�i

1

0

1CCA ; f4 D

0BB@
�i

0

0

1

1CCA 2C4:

Then f1, f2 are a basis of V � and f3, f4 are a basis of V C. With respect to the basis
f1; : : : ; f4 of C4, an element

k D

�
SAS SB

�BS A

�
2K1;1

acts via

C�1kC D

�
SAS � iSBS 0

0 AC iB

�
where C WD

�
I2 �iS

�iS I2

�
:

Note that the Cayley transform C conjugates the Siegel parabolic P.C/ to Q�. Let
ˆ�X�.HC/ denote the root system defined by the adjoint action of HC on gC. The
compact rootsˆc are those appearing in khC, while the noncompact rootsˆn are those
appearing in pC˚p�. We choose a system of positive rootsˆC in such a way that the
set of positive noncompact roots ˆCn Dˆ

C\ˆn coincides with the roots in pC. (We
do this in order to be consistent with the conventions of [9, Section 2.4].) We are then
forced to take ˆC to be the set of roots appearing in C.LieB/C�1, where B �G is
the Borel subgroup of lower triangular matrices. With respect to the identification of
X�.HC/ as a subset of Z3 given above, we then have

ˆCc D
®
.1;�1I0/

¯
;

ˆCn D
®
.0; 2I0/; .1; 1I0/; .2; 0I0/

¯
:

This can be seen easily from the fact thatC�1h.t1; t2I0/C D diag.�i t1;�i t2; i t2; i t1/.
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Definition 2.2
We let X�.HC/

C

KhC
denote the set of weights which are dominant with respect to the

system of positive roots ˆCc . In other words, X�.HC/
C

KhC
D ¹.a; bI c/ 2 X�.HC/ W

a � bº.
This set parameterizes the irreducible complex analytic representations of KhC.

For 	 2 X�.HC/
C

KhC
, we let V� denote the corresponding irreducible representation

of highest weight 	.

We note that the natural representation of KhC on V � (resp., V C) is the irre-
ducible representation of highest weight .0;�1I1/ (resp., .1; 0I1/). Note also that the
similitude character � WHC!C� has weight .0; 0I2/.

3. Some commutative algebra
We recall here some formalism from [16] for proving modularity lifting results in
contexts where the Hecke algebra has “codimension 1” over the ring of diamond
operators. The notion of “balanced” below plays the role of “codimension 1” for the
nonregular group rings SN WDOŒ.Z=pNZ/q�.

3.1. Balanced modules
Let S be a Noetherian local ring with residue field k, and letM be a finitely generated
S -module.

Definition 3.1
We define the defect dS .M/ of M to be

dS .M/D dimk Tor0S .M;k/� dimk Tor1S .M;k/

D dimkM=mSM � dimk Tor1S .M;k/:

Let

� � � ! Pi ! � � � ! P1! P0!M ! 0

be a (possibly infinite) resolution of M by finite free S -modules. Assume that the
image of Pi in Pi�1 is contained in mSPi�1 for each i � 1. (Such resolutions always
exist and are often called minimal.) Let ri denote the rank of Pi . Tensoring the
resolution over S with k we see that Pi=mSPi Š ToriS .M;k/ and hence that ri D
dimk ToriS .M;k/.

Definition 3.2
We say that M is balanced if dS .M/� 0.
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If M is balanced, then we see that it admits a presentation

Sd ! Sd !M ! 0

with d D dimkM=mSM .

3.2. Patching
We recall the abstract Taylor–Wiles style patching result from [16].

PROPOSITION 3.3
Suppose that
(1) R is an object of CO and that H is a finite R-module which is also finite

over O,
(2) q � 1 is an integer, and for each integer N � 1, SN WDOŒ.Z=pNZ/q�,
(3) R1 WDOŒŒx1; : : : ; xq�1��,
(4) for each N � 1, 
N W R1� R is a surjection in CO and HN is an R1 ˝O

SN -module,
and suppose that for each N � 1 the following conditions are satisfied:
(a) the image of SN in EndO.HN / is contained in the image ofR1, and moreover,

the image of the augmentation ideal of SN in EndO.HN / is contained in the
image of ker.
N /;

(b) there is an isomorphism  N W .HN /�N
�
!H of R1-modules, whereR1 acts

on H via 
N and �N D .Z=pNZ/q;
(c) HN is finite and balanced over SN (see Definition 3.2).
Then H is a free R-module.

Proof
This is [16, Proposition 2.3].

4. Deformations of Galois representations
Let

r WGQ!GSp4.k/

be a continuous, odd, absolutely irreducible Galois representation with similitude
character of the form �.r/D ��.a�1/, where a � 2. Let us suppose that there exist ˛
and ˇ in k such that

r jGp �

0BB@
�.˛/ 0 	 	

0 �.ˇ/ 	 	

0 0 �.r/ � �.ˇ�1/ 0

0 0 0 �.r/ � �.˛�1/

1CCA ;



MINIMAL MODULARITY LIFTING 13

and moreover .˛2 � 1/.ˇ2 � 1/.˛2ˇ2 � 1/.˛ � ˇ/¤ 0. Let S.r/ denote the set of
primes of Q away from p at which r is ramified.

The group GSp4 admits an 11-dimensional adjoint representation on its Lie alge-
bra g. Let ad.r/ denote the composition of r with this representation. For p > 2,
the representation ad.r/ admits a decomposition ad.r/D ad0.r/˚ �, where � is the
similitude character of r .

We make the following further assumptions on r .

Assumption 4.1 (Big image)
The restriction of r toGQ.�p/ satisfies the following conditions (cf. [56, Section 5.7]):
H1: The field Q.ad0.r// does not contain �p .
H2: For anym, there exists an element 
 2GQ.�pm / such that r.
/ has four distinct

eigenvalues and such that the action of 
 on each irreducible representation of
ad0.r/ over GQ.�pm / contains 1 as an eigenvalue.

H3: Neither the image � of ad0.r/ nor the image of ad0.r/.1/ admits a quotient of
degree p.

If this assumption holds, we say that r has big image, although condition (H1)
depends on more than the group-theoretic image of r or even r jGQ.�p/

.

Assumption 4.2 (Neatness)
There exists a 
 2 GQ with �.
/ D q 6� 1 mod p such that the ratio of any two
eigenvalues of r.
/ is not equal to q mod p.

This condition is imposed to avoid dealing with stacks. If p � 5, then any sur-
jective representation r WGQ!GSp4.Fp/ whose similitude character is a power of �
will be neat. By assumption, the image contains an element r.
/ which is scalar with
eigenvalue � ¤ ˙1. If q D �.
/ � 1 mod p, then the similitude character would
also equal 1. But the similitude character of the scalar matrix � is �2 6� 1 mod p.

Assumption 4.3 (Ramification)
If x 2 S.r/, then r jGx is one of the following types:
(1) U3: r j Ix has unipotent image, and r j Ix is conjugate to the group generated

by exp.N3/, where

N3 D

0BB@
0 1 0 0

0 0 1 0

0 0 0 �1

0 0 0 0

1CCA :
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(2) U2: r j Ix has unipotent image, and r j Ix is conjugate to the group generated
by exp.N2/, where

N2 D

0BB@
0 1 0 0

0 0 0 0

0 0 0 �1

0 0 0 0

1CCA :
(3) U1: r j Ix has unipotent image, and r j Ix is conjugate to the group generated

by exp.N1/, where

N1 D

0BB@
0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 0

1CCA :
(4) P: r jGx is a direct sum of characters, and r j Ix has the form0BB@

1 0 0 0

0 1 0 0

0 0 �x 0

0 0 0 �x

1CCA
for some nontrivial character �x of Ix . Both the plane of invariants under Ix
and the plane on which Ix acts by �x are isotropic. Moreover, x � 1 is prime
to p.

(5) H: r j Ix is absolutely irreducible, and x4 � 1 is prime to p.

Remark 4.4
Since we are assuming that the similitude character of r is a power of the cyclotomic
character, it turns out that r j Ix can never be of type P. We expect that our arguments
can also be adapted to deal with representations r with more general (odd) similitude
characters, but we made this assumption to simplify some of the arguments involving
q-expansions (in particular, to avoid various Nebentypus characters).

Note that nontrivial unipotent representations are not direct sums, so a prime
x 2 S.r/ is either of type U, P, or H, but never simultaneously any two of these types.
Moreover, x is of type U2 or U3 if and only if r.Ix/ is generated by an element
exp.N /, where N is nilpotent of rank 2 or 3, respectively.

Let Q denote a finite set of primes of Q disjoint from S.r/ [ ¹pº. We assume
that for each x 2Q the following hold:
� x � 1 mod p,
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� r jGx is a direct sum of four pairwise distinct characters; label these charac-
ters as �.˛x/, �.ˇx/, �.�x/, and �.ıx/ such that the planes �.˛x/˚ �.ˇx/
and �.�x/˚ �.ıx/ are isotropic and ˛xıx D ˇx�x D �.r/.Frobx/.

(By abuse of notation, we sometimes use Q to denote the product of primes in
Q.) For objects R in CO , a deformation of r to R is a ker.GSp4.R/! GSp4.k//-
conjugacy class of continuous lifts r WGQ!GSp4.R/ of r . We will often refer to the
deformation containing a lift r simply by r .

Remark 4.5
When deforming Galois representations over Q, we could work either with a fixed or
varying similitude character—both give rise to deformation problems with l0 D 1. We
make the (somewhat arbitrary) choice to work with deformations with fixed similitude
character in this paper, because it is the “correct” approach for general totally real
fields—for totally real fields other than Q, the invariant l0 increases (by ŒF WQ�� 1)
when deforming the similitude character.

Definition 4.6
We say that a deformation r WGQ!GSp4.R/ of r is minimal outside Q if it satisfies
the following properties:
(1) The similitude character �.r/ is equal to ��.a�1/.
(2) If x …Q[ S.r/[ ¹pº is a prime of Q, then r jGx is unramified.
(3) If x 2 S.r/ is of type U1, U2, or U3, then r j Ix has unipotent image and its

image is topologically generated by an element exp.N / where N is nilpotent
of rank 1, 2, or 3, respectively.

(4) If x 2 S.r/ is of type P, then r.Ix/
�
! r.Ix/.

(5) If x 2Q, then r j Gx Š V1 ˚ V2 where each Vi is an isotropic plane in R4

and V1 lifts �.˛x/˚ �.ˇx/ while V2 lifts �.�x/˚ �.ıx/. Moreover, Ix acts
by scalars (via some character) on V1 and by scalars via the inverse of this
character on V2.

(6) The representation r has the following shape at p:

r jGp �

0BBB@
�˛ 

�1 0 	 	

0 �ˇ 
�1 	 	

0 0 ��.a�1/��1
ˇ
 0

0 0 0 ��.a�1/��1˛  

1CCCA ;
where �˛ and �ˇ are unramified characters lifting �.˛/ and �.ˇ/, respectively,
and  is an unramified character which is trivial modulo the maximal ideal.

If Q is empty, then we will refer to such deformations simply as being minimal. If r
satisfies conditions (2)–(4), then we say that r is weakly minimal outside Q.
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Remark 4.7
The local condition at p is equivalent to asking that r is ordinary (of fixed weight).
When a D 2 it is also equivalent to being finite flat. This is because, for unramified
characters  1 and  2, the group Ext1. 1; 2/ in this category is trivial, and the group
Ext1.� 1; 2/ is the same whether it is computed in the category of finite flat group
schemes or as Gp-modules, as long as  1 2�1 6� 1 mod p. The latter condition
follows (for all the relevant extensions) from the assumption .˛ˇ � 1/.˛2 � 1/.ˇ2 �
1/.˛ � ˇ/¤ 0.

The functor that associates to each object R of CO the set of deformations of
r to R which are minimal outside Q is represented by a complete Noetherian local
O-algebra RQ. This follows from the proof of [21, Theorem 2.41]. If QD;, we will
sometimes denote RQ by Rmin.

Let H 1
Q.Q; ad0.r// denote the Selmer group defined as the kernel of the map

H 1
�
Q; ad0.r/

�
�!

M
x

H 1
�
Qx ; ad0.r/

�
=LQ;x ;

where x runs over all primes of Q and the following conditions are satisfied:
� If x …Q[ p, then LQ;x DH 1.Gx=Ix; .ad0.r//Ix /.
� If x 2Q, then H 1.Gx; ad0.r// is isomorphic to the subspace of

H 1
�
Gx ; ad�.˛x/

�
˚H 1

�
Gx; ad�.ˇx/

�
˚H 1

�
Gx; ad�.ˇx/

�1
�

˚H 1
�
Gx; ad�.˛x/

�1
�

consisting of elements .c1; c2; d2; d1/ with c1Cd1 D c2Cd2. (Note that each
summand is a copy of Homcts.Gx; k/.) We let LQ;x denote the subspace cor-
responding to elements .c1; c2; d2; d1/ with c1 � c2 and d1 � d2 and c1 C d1
(equivalently, c2C d2) unramified.

� If x D p, then we define LQ;p D Lp as follows: let u � b0 be the subspace
of matrices whose nonzero entries appear in the upper right 2 � 2 block.
We define L0p D ker.H 1.Gp;b

0/ ! H 1.Ip;b
0=u// and Lp D LQ;p D

Im.L0p!H 1.Gp;g
0//.

Let H 1
Q.Q; ad0.r.1/// denote the corresponding dual Selmer group.

LEMMA 4.8
We have dimk Lp � dimkH

0.Gp; ad0.r//D 3.

Proof
The subspace L0p �H

1.Gp;b
0/ is precisely a set of elements mapping to the sub-

spaceH 1.Gp=Ip; .b
0=u/Ip /�H 1.Gp;b

0=u/. We have b0=uŠ 1˚1˚�.ˇ/�.˛/�1
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as a kŒGp�-module and hence H 1.Gp=Ip; .b
0=u/Ip / is 2-dimensional since ˛ ¤ ˇ.

The condition .˛2�1/.ˇ2�1/.˛2ˇ2�1/.˛�ˇ/¤ 0 implies that h2.Gp;u/D 0 and
hence H 1.Gp;b

0/ � H 1.Gp;b
0=u/. It follows that dimk L

0
p D 2 C h

1.Gp;b
0/ �

h1.Gp;b
0=u/. Thus,

dimk L
0
p � h

0.Gp;b
0/D 2C h1.Gp;u/� h

0.Gp;b
0=u/� h0.Gp;u/:

We have h0.Gp;u/ D 0 and h0.Gp;b0=u/ D 2. The Euler characteristic formula
implies that h1.Gp;u/D 3. Thus,

dimk L
0
p � h

0.Gp;b
0/D 2C 3� 2� 0D 3:

Finally, the condition on ˛ and ˇ implies that h0.Gp;g0=b0/ D 0. It follows that

h0.Gp;b
0/D h0.Gp;g

0/ and L0p
�
!Lp . This concludes the proof.

PROPOSITION 4.9
The reduced tangent space Hom.RQ=mO; kŒ��=�

2/ of RQ has dimension

dimkH
1
Q

�
Q; ad0

�
r.1/

��
� 1C #Q:

Proof
The argument is very similar to that of [21, Corollary 2.43]. The reduced tangent
space has dimension dimkH

1
Q.Q; ad0.r//. By [21, Theorem 2.18], this is equal to

dimkH
1
Q

�
Q; ad0

�
r.1/

��
C dimkH

0
�
Q; ad0.r/

�
� dimkH

0
�
Q; ad0

�
r.1/

��
C
X
x

�
dimk LQ;x � dimkH

0
�
Qx ; ad0.r/

��
� dimkH

0
�
G1; ad0.r/

�
;

where x runs over all finite places of Q. The second term is equal to zero and the third
term vanishes (by the absolute irreducibility of r and the fact that r � r ˝ �). Now,
we have
� dimk LQ;x � dimkH

0.Qx; ad0.r//D 0 for x …Q[ ¹pº,
� dimk LQ;x � dimkH

0.Qx; ad0.r//D 3 for x D p,
� dimk LQ;x�dimkH

0.Qx ; ad0.r//D 1 forx 2Q (by[31,Proposition10.4.1]),
and

� dimkH
0.G1; ad0.r//D 4.

This concludes the proof.

The next result (on the existence of Taylor–Wiles primes) follows from the pre-
vious proposition and the proof of [56, Proposition 5.6].
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PROPOSITION 4.10
Let q D dimkH

1
; .Q; ad0.r.1///, and recall that we are supposing r satisfies Assump-

tion 4.1. Then q � 1 and for any integer N � 1 we can find a set QN of primes of Q
such that
(1) #QN D q,
(2) x � 1 mod pN for each x 2QN ,
(3) for each x 2QN , r is unramified at x and r.Frobx/ has four pairwise distinct

eigenvalues, and
(4) H 1

QN
.Q; ad.r.1///D .0/.

In particular, the reduced tangent space of RQN has dimension q � 1 and RQN is a
quotient of a power series ring over O in q � 1 variables.

Example 4.11 (Examples of representations with big image)
Suppose that p � 5.
(1) Let K=Q be an imaginary quadratic field not contained in Q.�p/. Let

� WGK!GL2.Fp/

be a representation with determinant �1�k for some integer k such that the
images of � and �c for any complex conjugation c 2 Gal.Q=Q/ both contain
SL2.Fp/ and have totally disjoint fixed fields over K.�p/. Then the represen-
tation

r D IndQ
K �

preserves a symplectic form and has big image.
(2) Suppose that the image of r is GSp4.Fp/. Then r has big image.

Proof
The second claim follows immediately for p � 5 by [56, Proposition 5.8]. For the
first claim, it is an easy consequence of the fact that SL2.Fp/ is perfect for p � 5 that
H3 holds, and similarly, assuming that K 6�Q.�p/, that H1 holds. Hence it suffices
to find an element in the image with distinct eigenvalues and with 1 as an eigen-
value for every irreducible constituent of ad0.r/. We first compute the representation
ad0.r/. Note that the dual of � and �c can be identified with �� �k�1 and �c ˝ �k�1,
respectively. Over K , we have an identification

ad0.r/jGK D .�˝ �
c/˝ �k�1˚ ad0.�/˚ ad0.�c/;

and over Q, we have an identification

ad0.r/DAs.�/˝ �k�1˚ IndQ
K ad0.�/;
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where As is the Asai representation. Over Q.�pm/ for any m, the character �k�1

is trivial, and hence the image of r jGQ.�pm/
under our assumptions is the group

SL2.Fp/2 � Z=2Z. Since 1 and �1 are always eigenvalues of any element acting
on IndQ

K ad0.�/, it suffices to find an element 
 2 SL2.Fp/2 � Z=2Z which has
distinct eigenvalues under r and has an eigenvalue 1 in As.�/. To be more pre-
cise, since we have not been careful about distinguishing the Asai representation
from its quadratic twist, we will find an element with eigenvalues both 1 and �1.
One can explicitly realize the Asai representation as follows. Let V be the stan-
dard representation of SL2.Fp/ over Fp , and let V ˝ V be the representation of
the exterior product SL2.Fp/ � SL2.Fp/. The element .g; h/ acts on v ˝ w via
.g; h/.v ˝w/D .gv ˝ hw/. The Asai representation is determined uniquely by the
action of a fixed lift of complex conjugation c 2Gal.Q=Q/, which acts on V ˝ V by
the formula c.v˝w/Dw˝ v.

Consider the elements g;h 2 SL2.Fp/ such that, with respect to some chosen
basis V D ¹u;vº,

gD

�
x 0

0 x�1

�
; hD

�
y 0

0 y�1

�
:

Then c � .g; h/ acts on r via the matrix0BB@
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1CCA
0BB@
x 0 0 0

0 x�1 0 0

0 0 y 0

0 0 0 y�1

1CCA
with eigenvalues ˙.xy/1=2 and ˙.xy/�1=2. On the other hand, the action of this
element via the Asai representation (and basis u˝ u, v˝ v, u˝ v, v˝ u) is0BB@

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1CCA
0BB@
xy 0 0 0

0 .xy/�1 0 0

0 0 .x=y/ 0

0 0 0 .x=y/�1

1CCA
with eigenvalues xy, .xy/�1, and ˙1. The four eigenvalues are distinct as long as
˙.xy/1=2 ¤˙.xy/�1=2, or equivalently, if .xy/2 ¤ 1. One can now choose x D 2
and y D 1 in F�p .

Remark 4.12
Suppose that K is an imaginary quadratic field, and suppose that E=K is an elliptic
curve which neither has CM nor is isogenous (over K) to its Galois conjugate Ec=K .
We claim that Example 4.11 applies to the mod p representations � WGK!GL2.Fp/
associated to the dual of EŒp� for sufficiently large p. The representations r in this
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case are the duals of the representations AŒp� associated to the abelian surface AD
ResQ

K.E/. By [61], the Galois representations �p; �
c
p W GK ! GL2.Fp/ associated

to the duals of EŒp� and Ec Œp� have images GL2.Fp/ and determinants �1�2 for
all sufficiently large p � 5. Let F=K and F c denote the corresponding extensions,
so Gal.F=K/ and Gal.F c=K/ are both isomorphic to GL2.Fp/, and Gal.F=K.�p//
and Gal.F c=K.�p// are both isomorphic to SL2.Fp/. By the simplicity of PSL2.Fp/
for p � 5, the only nontrivial quotients of SL2.Fp/ are PSL2.Fp/ and SL2.Fp/.
This implies that if H WD F \ F c 
K.�p/ is strictly larger than K.�p/, then either
Gal.H=K/DGL2.Fp/ or Gal.H=K/DGL2.Fp/=˙I . In either case, the projective
representations associated to �p and �cp both factor through Gal.H=K/. Since all
automorphisms of PGL2.Fp/ are inner, this implies that projective representations of
�p and �cp are isomorphic, and hence �p ' �

c
p˝�p for some character �p which (by

comparing determinants) is at most quadratic. Assume that p is sufficiently large so
that E has good reduction at all primes above p and, moreover, that p is unramified
in K . Then �p and �cp are both finite flat at v j p, which forces �p to be unramified at
all primes above p. But this implies that �p is unramified outside primes dividing the
conductor N and N c of E and Ec , respectively. There are only finitely many such
quadratic characters by class field theory. Hence, if there are infinitely many primes
p for which the assumptions of Example 4.11 do not occur, then there exists a fixed
character � with �2 D 1 and isomorphisms �p ' �

c
p ˝ � for infinitely many p. Such

an isomorphism (for a single p) implies that av D �.v/avc mod p for all pairs of
conjugate primes v and vc of good reduction for E , and hence, given infinitely many
such p, one deduces the equality av D �.v/avc . If L=K is the (at most) quadratic
extension in which � splits, this implies (by Chebotarev) that the Tate modules (for
any fixed prime) of E and Ec are isomorphic, and hence (by Faltings [25]) that E
and Ec are isogenous over L.

5. Siegel 3-folds

5.1. Level structure
Recall that there are two conjugacy classes of maximal parabolic subgroups of GSp.4/
represented by the Siegel parabolic P which is block upper triangular with Levi

M DMP WD

²�
A

�B

�
W � 2GL1;A 2GL2;B D S

tA�1S;S D

�
1

1

�³
;

and the Klingen parabolic … which is block upper triangular with Levi

M… WD

8<:
0@� A

��1 det.A/

1A W � 2GL1;A 2GL2

9=; :
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These both contain the Borel subgroup B . For each prime x, these give rise to para-
horic subgroups P.x/, ….x/, and I.x/ of GSp4.Zx/, namely, the inverse image of
the corresponding parabolic subgroups over Fx . (The group I.x/ is called the Iwa-
hori subgroup.) The Klingen parahoric subgroup contains a normal subgroup ….x/C

with ….x/=….x/C ' .Z=xZ/� (via projection onto � mod x). For each prime x,
we also have the paramodular group K.x/, which is the stabilizer in GSp4.Qx/ of
Zx ˚Zx ˚Zx ˚ xZx , and is the intersection0BB@

	 	 	 	=x

	 	 	 	=x

	 	 	 	=x

x	 x	 x	 x

1CCA\GSp4.Qx/

for values 	 2 Zx .

5.2. Cohomology of Siegel 3-folds
Let S andQ be finite sets of primes of Q which are disjoint from each other and do not
contain p. By a slight abuse of notation, we will sometimes denote the product of the
primes in Q by the same symbol Q. For each x 2 S , let Kx � GSp4.Zx/ equal one
of S.x/, ….x/, K.x/, ….x/C, I.x/ or the full congruence subgroup of level x. For
x … S , we let Kx D GSp4.Zx/ and define K WD

Q
xKx � GSp4.A

1/. For x 2Q,
we let Kx;0 D….x/ and Kx;1 D…C.x/. Let Ki .Q/D

Q
x…QKx �

Q
x2QKx;i for

i D 0; 1.
We assume that the subgroup K is neat. (This will be the case if S contains

a prime x � 3 where Kx is the full congruence subgroup of level x.) We let YK !
Spec.O/ (resp., YKi .Q/! Spec.O/) denote the Siegel moduli space of levelK (resp.,
Ki .Q/). This scheme classifies principally polarized abelian varieties together with a
K-level structure (resp., Ki .Q/-level structure). (See [57, Section 4.1].) In each case
we denote the universal abelian variety by A.

If Y denotes one of the above spaces, then we can choose a toroidal compacti-
fication X ! Spec.O/ of Y . The abelian scheme A then extends to a semi-abelian
scheme � W A! X , and the sheaf E WD ���

1
A=X

is a locally free OX -module of

rank 2. For integers a � b, we let !.a; b/ WD Syma�bE ˝ detb E . We also denote
det E by !, so, for example, !.a;a/ D !a is a line bundle. If M is an O-module,
then we will let !.a; b/M denote the sheaf !.a; b/˝OM . The coherent cohomology
groups H i .X;!.a; b/M / are independent of the choice of toroidal compactification
X (see [51, Lemma 7.1.1.4] and the proof of [51, Lemma 7.1.1.5]). The Koecher
principle states that there is an isomorphism

H 0
�
Y;!.a; b/M

�
'H 0

�
X;!.a; b/M

�
:
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We may therefore pass freely between the open variety Y and the (any) smooth pro-
jective toroidal compactification X without comment when dealing with H 0.

We choose toroidal compactifications XK and XK0.Q/ so that the natural map
YK0.Q/! YK extends to a map XK0.Q/!XK . As explained in [57, Section 4.1.2],
the universal subgroup H �AŒQ� over YK0.Q/ extends to XK0.Q/. We then define
the toroidal compactification XK1.Q/ D IsomXK0 .Q/

.Z=Q;H/. The resulting map
XK1.Q/!XK0.Q/ is then finite étale with Galois group �Q WD .Z=Q/�.

5.3. Vanishing results
Let X denote one of the toroidal compactifications defined in Section 5.2. We first
record some consequences of a vanishing theorem of Lan and Suh.

THEOREM 5.1
(1) Suppose that a � 3 and 2� a� b � p � 2. Then

H i
�
X;!.a; b/.�1/k

�
D 0

for i > 2.
(2) Suppose that aC b � 6 and 2� a� b � p � 2. Then

H i
�
X;!.a; b/.�1/k

�
D 0

for i > 1.
(3) Suppose that b � 4 and 0� a� b � p � 4. Then

H i
�
X;!.a; b/.�1/k

�
D 0

for i > 0.

Proof
This follows from [53, Corollary 7.24] after unwinding definitions. We take the group
scheme G1=R1 (in the notation of [53]) to be our G=O. The groups M1 � P1 �
G1 correspond to the Siegel Levi and parabolic: M � P � G. The set of dominant
weights XCG1 (resp., XCM1 ) is our X�.T /CG (resp., X�.T /CM ) from Definition 2.1.

In this paragraph, we show that the subset XC;<rep
G1

� XCG1 as defined in [52,
Definition 6.3] corresponds to the set of those 	D .a; bI c/ 2X�.T /CG such that aC
b < p � 3. As an intermediate step, we first show that XC;<rep

G1
corresponds to those

	D .a; bI c/ 2X�.T /CG such that
� h	C �;˙˛_i i � p for i D 1; : : : ; 4,
� aC bC 3 < p.
To see this, we note the following: to lie in XC;<rep

G1
, by definition, the element 	

must satisfy j	jL C d < p and must also lie in XC;<Wp
G1

. The definition of j	jL in
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[52, Definition 3.2] boils down to j	jL D aC b (the set ‡ in our case consists of the
single embedding Z ,!O and the norm j	j D aC b is defined near the beginning of
Section 2.5). The dimension d is defined in [52, Definition 3.9] to be dimO.X/ which
is 3 in our case. Next, the set XC;<Wp

G1
is defined in [52, Definition 3.2] to consist

of those 	 2 XC;<pG1
for which j	jL < p. Finally, the set XC;<pG1

is defined in [52,
Definition 2.29] to consist of all dominant 	 2 XCG1 which satisfy the first condition
above. This establishes the intermediate step. Now, if 	 2 X�.T /CG , then the largest
of the h	C �;˙˛_i i is h	C �;˛_3 i D aC b C 3. Thus, we see that 	 2 XC;<rep

G1
if

and only if a � b � 0 and aC b < p � 3.
The set XC;<pM1

, by [52, Definition 2.29], is ¹	 2X�.T /CM W h	C �;˛
_
1 i � pº D

¹.a; bI c/ 2X�.T /CM W .aC2/� .bC1/� pº. By Lemma 7.2, Definition 7.14 (which
is vacuous in our case), and Proposition 7.15 of [52], a weight 	D .a; bI c/ lies in
X
C;<p
M1

and is positive parallel if and only if aD b > 0.
If 	D .a; bI c/ 2X�.T /CM , then a pair of vector bundles W��, for 	 2 ¹can; subº

is defined in [53]. Indeed 	 determines an algebraic representation of M Š GL2 �
GL1 over O with highest weight .a; bI c/ (namely .Syma�bS2 ˝ detb S2/ ˝ S

˝c
1 ,

where Si is the standard representation of GLi ) and the corresponding bundles are
then defined by [53, Definition 4.12]. We claim that

W can
� D !.a; b/:

(We note that the parameter c does not change the underlying vector bundle, but
does change the Hecke action on cohomology by a power of the similitude char-
acter.) Let 	 D .0;�1I1/, let L denote the standard representation of G, and let
L_0 .1/ � L be the subspace spanned by the first two standard basis vectors. Then
L_0 .1/ is the standard representation of the GL2-factor of M and is the represen-
tation of M corresponding to .1; 0I0/. The representation L0 D .L_0 .1//

_.1/ thus
corresponds to 	 D .0;�1I1/. By [52, Example 1.22], we have (in the notation of
that paper) EM1.L0/ D LieA=Y . However, W� D EM1.L0/ by definition, and we
have LieA=Y D E_ D !.0;�1/. It follows that W can

.0;�1I1/
Š !.0;�1/. We deduce that

!.a; b/D .Syma�b ˝ det b/.!.1; 0//DW.a;bI�a�b/, as required.
With these preliminaries out of the way, we now apply [53, Corollary 7.24]. We

take 	 D .˛;ˇI�/ 2 XC;<rep
G1

. (The condition that max.2; r� / < p when � D � ı c
boils down to 2 < p in our case.) We take � D .t; t I0/ a positive parallel weight. We
therefore have t > 0, ˛ � ˇ � 0 and ˛C ˇ < p � 3.

We now apply part 2 of [53, Corollary 7.24] successively with w 2WM1 taken to
equal each of the elements ew1, ew2, ew3 from Section 2. Note that each ewi has length i .
If we take wD ew1, then (ignoring the third component)

ew1 �	� � D ew1.˛C 2;ˇC 1/� .2; 1/� .t; t/D .˛ � t;�ˇ � 2� t /:
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Thus .W_ew1����/sub D !.ˇC 2C t;�˛C t /.�1/. Then [53, Corollary 7.24] implies
that

H i
�
X;!.ˇC 2C t;�˛C t /.�1/k

�
D 0

for each i > 2. Taking a D ˇ C 2 C t and b D �˛ C t gives the first part of our
proposition.

Similarly, if wD ew2, then

ew2 �	� � D ew2.˛C 2;ˇC 1/� .2; 1/� .t; t/D .ˇ � 1� t;�˛ � 3� t /:
Hence

H i
�
X;!.˛C 3C t; 1� ˇC t /.�1/k

�
D 0

for i > 1. This gives the second part of the proposition.
Finally, we take wD ew3. Then

ew3 �	� � D ew3.˛C 2;ˇC 1/� .2; 1/� .t; t/D .�ˇ � 3� t;�˛ � 3� t /:
Hence

H i
�
X;!.˛C 3C t; ˇC 3C t /.�1/k

�
D 0

for i > 0. This gives the last part of the proposition.

It is interesting to compare the above vanishing result in characteristic p with
the following characteristic 0 vanishing results due (in part) to Blasius, Harris, and
Ramakrishnan [9]. We have an identification

Y.C/DG.Q/n
�
G.R/=Kh �G.A1/=U

�
;

where U � G.A1/ is the open compact subgroup used to define Y and Kh is the
compact-mod-center subgroup defined in Section 2.2. To any finite-dimensional C-
representation .
;V� / of KhC, there is an associated vector bundle V� on Y.C/ which
is defined in [9, Definition 1.3.2]. This bundle has extensions V sub

� � V can
� to X.C/.

In [9], the bundle V can
� is denoted eV� . We have V sub

� D V can
� .�1/. For each i � 0,

we define

H
i�
X.C/;V�

�
WD Im

�
H i
�
X.C/;V sub

�

�
!H i

�
X.C/;V can

�

��
:

Let eH i .V sub
� / and eH.V can

� // denote the direct limit ofH i .X.C/;V sub
� / andH i .X.C/;

V can
� //, respectively, over all levels K . Let H

i
.X.C/;V� / denote the corresponding
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limit of H
i
.X.C/;V� / (including both an overline and a tilde in the notation was too

cumbersome; hopefully no confusion will result).
Let A.2/.G/ denote the space of automorphic forms on G.Q/nG.A/ which are

square-integrable modulo the center ZG.A/. Let A0.G/�A.2/.G/ denote the space
of cusp forms. For .
;V� / a representation of KhC as above and i � 0, we define

H i
.2/;� DH

i
�
LieQ�;KhIA.2/.G/˝ V�

�
;

H i
cusp;� DH

i
�
LieQ�;KhIA0.G/˝ V�

�
:

Then we have the following result of Harris.

THEOREM 5.2
There are canonical maps, forming a commutative diagram

H i
cusp;� H i

.2/;�

eH i .V sub
� / eH i .V can

� /

Moreover:
(1) The composition H i

cusp;� !H
i
.V� / is injective for all i , and is an isomor-

phism for i D 0; 3.

(2) The image of H i
.2/;�

in eH i .V can
� / contains H

i
.V� /.

Proof
This follows from [37, Theorem 2.7, Proposition 3.2.2].

For 	 2 ¹cusp; .2/º, we then define eH i .V can
� /� to be the image of the space H i

�;�

in eH i .V can
� /. Thus, we have

H i
cusp;� Š

eH i .V can
� /cusp �H

i
.V� /� eH i .V can

� /.2/:

For 	 2 ¹cusp; .2/º, the space A�.G/ is semisimple as aG.A/-representation and
we decompose

A�.G/D
M
	

m�.�/�
1˝ �1:

We let A�.G/temp denote the subspaceM
m�.�/�

1˝ �1;
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where the sum is over all those � such that �1 is essentially tempered. We define
H i
�;�;temp �H i

�;� by replacing A�.G/ with A�.G/temp in the definition of H i
�;� . We

then define

eH i .V can
� /�;temp � eH i .V can

� /�

to be the image of H i
�;�;temp!

eH i .V can
� /. We may also define analogous spaces

H i
�
X.C/;V can

�

�
�;temp �H

i
�
X.C/;V can

�

�
�

by applying K-invariants to the constructions above, where K is the level of X.C/.
Suppose now that .
;V� / is the irreducible representation of KhC of highest

weight 	D .a; bI c/ 2X�.HC/, with respect to the system of positive weights fixed
in Section 2. We first of all observe that the bundle V� does not depend on c. Indeed,
let .�;V� / be the irreducible representation of highest weight .a; bI c C 2/. Consider
the G.Q/-equivariant bundles V_� D G.C/ �Q� V� and V_� D G.C/ �Q� V� on
G.C/=Q� defined in [9, Section 1.3]. (The superscripted _’s do not refer to dual
bundles here.) Then by the definition of V� , it suffices to show that V_�

�
! V_� as

G.Q/-equivariant bundles. We have that � D 
 ˝ �, so we may take the underlying
space of � to be V� D V� and the action to be �.g/ D �.g/
.g/ 2 End.V� / for all
g 2KhC. Then the map

G.C/�Q� V� �!G.C/�Q� V� ;

.g;w/ 7�!
�
g; �.g/�1w

�
gives the required isomorphism V_�

�
! V_� . (Note, however, that the Hecke action

on the cohomology of V� will depend on c; changing the value of c introduces a
corresponding twist by a power of the similitude character in the Hecke action.)

For 	 2X�.HC/
C

KhC
a dominant weight, we let V� denote the vector bundle asso-

ciated to the irreducibleKhC-representationW�. We would like to compare these bun-
dles to the bundles introduced in the proof of Theorem 5.1.

Definition 5.3
Let 	D .a; bI c/ 2X�.T /CM . We let W� denote the canonical extension W can

� in the
notation of the proof of Theorem 5.1, and we let W sub

� DW�.�1/.

We saw above that, as vector bundles over X , we have

W� Š !.a; b/;

though the Hecke action on the cohomology of W� will depend on c.
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LEMMA 5.4
Let 	D .a; bI c/ 2X�.T /CM . Then, over X.C/, we have

W.a;bIc/ Š V.�b;�aIaCbC2c/;

compatibly with Hecke actions on cohomology.

Proof
It suffices to prove the isomorphism over Y . Consider the short exact sequence

0�! Lie_A_=Y �!H dR
1 .A=Y /�! LieA=Y �! 0

and the Poincaré duality pairing (see [52, Section 1.2])

h ; i WH dR
1 .A=Y /˝H

dR
1 .A=Y /�!OY .1/:

Expressed in terms of the functor W� of Lan and Suh, the short exact sequence
becomes

0�!W.1;0I0/ �!H dR
1 .A=Y /�!W.0;�1I1/ �! 0

and the bundle OY .1/ becomes W.0;0I1/. (See [52, Example 1.22].)
Similarly, over Y.C/, the short exact sequence becomes

0�! V.0;�1I1/ �!H dR
1 .A=Y /�! V.1;0I1/ �! 0

and OY .1/ is identified with V.0;0I2/. This follows from [54, Example III.2.4]. If we
take the point o 2 LX to be h.i/D J in the notation of Section 2.2, then the isotropic
subspace corresponds to V � and V=W corresponds to V C. As remarked at the end
of Section 2.2, we have V � DW.0;�1I1/, V C DW.1;0I1/ and the similitude character
corresponds toW.0;0I2/. Note also that the notation HdR.A/ of [54, Section I.3] refers
to de Rham homology.

It follows that, over Y.C/, we have W.0;0I1/ D V.0;0I2/ and W.1;0I0/ D V.0;�1I1/.
Thus,

W.a;bIc/ D .Syma�b ˝ det b/.W.1;0I0//˝W.0;0Ic/

D .Syma�b ˝ det b/.V.0;�1I1//˝V.0;0I2c/

D V.�b;�aIaCbC2c/:

This is compatible with Hecke action on cohomology since all isomorphisms respect
the equivariant constructions.
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The Weyl chambers C0; : : : ;C4 �X�.T /˝Z RŠR3 are defined in Section 2.1.
We have

C0 D
®
.a; bI c/ 2R3 W a � b � 0

¯
;

C1 D
®
.a; bI c/ 2R3 W a ��b � 0

¯
;

C2 D
®
.a; bI c/ 2R3 W �b � a � 0

¯
;

C3 D
®
.a; bI c/ 2R3 W �b ��a � 0

¯
:

THEOREM 5.5
Let 	D .a; bI c/ 2X�.T /CM . Then

H i
�
X.C/;W�

�
.2/;temp D 0

for all 0� i � 3 such that

	D .a� 1; b � 2I c/ … Ci :

Proof
In Section 2.2, we identified X�.HC/ with Z3. Under the resulting identification of
X�.HC/˝Z R with R3, the chambers Ci for X�.T /CM ˝Z R above correspond to
Weyl chambers in X�.HC/ ˝Z R. Let 
 D .�b;�aIa C b C 2c/, regarded as an
element of X�.HC/. Then we have seen above that

V� ŠW�:

Suppose that

H i
�
X.C/;W�

�
.2/;temp DH

i
�
X.C/;V�

�
.2/;temp ¤ 0:

Then, by Theorem 5.2, there is some � D �1˝ �1 in A.2/.G/temp such that

H i .LieP�;KhI�1˝ V� //¤ 0:

By [37, Theorem 3.5], �1 is a discrete series or limit of discrete series. Hence,
using the Harish-Chandra parameterization, we may write �1 D �.�;C /� D

�.�w0.�/;�w0.C // for some Weyl chamber C 2 ¹C0; : : : ;C3º and a weight
� 2 C \ .X�.HC/C �/. By [9, Theorem 3.2.1], it follows that

�D
�
.
 C �/jSp4.R/I�a� b � 2c

�
D .2� b; 1� aI�a� b � 2c/

and

i D #
�
ˆ.C/C \ˆCn

�
;
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where ˆ.C/C is the system of positive roots determined by the chamber C . For
j D 0; : : : ; 3, we have #.ˆ.Cj /C \ ˆCn / D 3 � j . Hence we must have C D C3�i
and � 2 C3�i . However, C3�i D�w0.Ci /, so �w0.�/ 2 Ci . We have then

�w0.�/D�w0
�
�bC 2;�aC 1I�.aC bC 2c/

�
D .a� 1; b � 2IaC bC 2c/:

Thus we deduce that�w0.�/D .a�1; b�2IaCbC2c/ lies in Ci . This is equivalent
to the condition in the statement of the theorem.

We also record the following.

THEOREM 5.6
Let 	 D .a; bI c/ 2 X�.T /CM , let w D �.a C b C 2c/, and let 
 D .�b;�aIa C
b C 2c/ D .�b;�aI�w/, regarded as an element of X�.HC/. Suppose that � D
�1˝ �1 in A.2/.G/ contributes to H i .X.C/;W�/.2/ ŠH

i .X.C/;V� /.2/.
(1) The infinitesimal character of �1 is given under the Harish-Chandra isomor-

phism by

�..���
/jSp4.R/I�w/
D �.a�1;b�2I�w/:

(2) Lete�1 denote the transfer of �1 to GL4.R/. Then the infinitesimal character
of e�1 is given under the Harish-Chandra isomorphism by �� where

� D
�aC b � 3�w

2
;
a� bC 1�w

2
;
�aC b � 1�w

2
;
�a� bC 3�w

2

�
:

(3) If, furthermore, �1 is tempered, then �1 is a discrete series or limit of dis-
crete series representation, and is given under the Harish-Chandra parame-
terization by

�1 Š �
�
.a� 1; b � 2I�w/;Ci

�
:

Proof
For the first part, we have that

H i .LieP�;KhI�1˝ V� /¤ 0:

It follows from [9, Theorem 3.2.1] that the infinitesimal character of �1 is equal to
�..���
/jSp4.R/I�w/

. The second part can be inferred from [64, Section 2.1.2]. The last
part was established in the proof of Theorem 5.5.
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Definition 5.7
A weight 	D .a; bI c/ 2X�.T /CM such that .a � 1; b � 2I c/ lies in the interior of a
unique Weyl chamber Ci is said to be a discrete series weight or a regular weight. If
	 �w0.�/ lies in the intersection of exactly two of Weyl chambers Ci , then we say
that it is a limit of discrete series weight or a nonregular weight.

From the explicit description of the Weyl chambers Ci above, we see that the
limit of discrete series weights thus come in three families:

	D .a; 2I c/ with a 2 Z�2;

	D .a; 3� aI c/ with a 2 Z�2;

	D .1; bI c/ with b 2 Z	1:

Note that for the corresponding families of vector bundles W� D !.a; b/, the first and
third are interchanged under the Serre duality map !.a; b/ 7! !.a; b/_ ˝ det�1X Š
!.3� b; 3� a/.�1/, while the second family is stable under this operation. (Up to
interchanging the canonical and subcanonical extensions, of course.) The preceding
theorem implies that for all a � 2, we have

H i
�
X.C/;!.a; 2/

�
.2/;temp D 0 for i D 2; 3;

H i
�
X.C/;!.a; 3� a/

�
.2/;temp D 0 for i D 0; 3:

(Technically, we should normalize the Hecke action on the cohomology of !.a; b/
before we adjoin the subscripts .2/ or temp; see Section 5.5 below.) From the result
of Lan and Suh, we deduce the following characteristic p analogue of these vanishing
results for limit of discrete series weights.

COROLLARY 5.8
(1) For 4� a � p, we have

H i
�
X;!.a; 2/.�1/k

�
D 0

for i D 2; 3.
(2) For 3� a � .pC 1/=2, we have

H 0
�
X;!.a; 3� a/k

�
DH 3

�
X;!.a; 3� a/.�1/k

�
D 0:

Proof
The vanishing results for the subcanonical extensions !.	;	/.�1/ follow directly
from Theorem 5.1. The fact that
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H 0
�
X;!.a; 3� a/k

�
D 0

in the second part then follows from Serre duality since

!.a; 3� a/_˝ det�1X=O D !.a� 3;�a/˝!.3; 3/.�1/

D !.a; 3� a/.�1/:

5.4. Torsion classes
It seems natural to ask whether one can (explicitly or otherwise) construct classes in
H 0.X;!.2; 2// which do not lift to characteristic 0. Let us recall what happens for
classical modular forms of weight 1.

Suppose that X1.N / denotes (for this paragraph) the classical modular curve.
A non-Eisenstein Hecke eigenclass in H 0.X1.N /;!k/ gives rise to an irreducible
Galois representation r W GQ ! GL2.k/. Suppose that the image of � contains
SL2.k0/ for some #k0 > 5. Such a representation cannot be the mod-p reduction
of a representation with image isomorphic to some subgroup of GL2.C/, and thus
by [23], the corresponding mod-p class does not lift to characteristic 0. (Explicit
examples were first found by Mestre for #k D 8 and N D 1429.) A slightly different
example can be given as follows. Suppose that � D �1.N / \ �0.x/. Consider a
non-Eisenstein Hecke eigenclass in H 1.X.�/;!k/ which is new of level x. Then the
restriction of r to Ix is rank 2 unipotent. Such a class cannot lift to characteristic 0
at minimal level, because otherwise (by [23] again) the corresponding representation
� would simultaneously have finite image and yet � j Ix would be unipotent and
hence infinite. Note that (unlike in the first example) it may well be possible to lift
� to characteristic 0 at some nonminimal level. Examples of the second kind have a
natural analogue in the Siegel context.

Suppose that r has type U3 at x. If r is any minimal lift of r , then the image
of Ix under r will be rank 3 unipotent. This will also be true for the restriction of r
to any finite extension of Qx . Yet, by a theorem of Grothendieck ([36, Exposé 9]),
the image of inertia of a semistable abelian variety is rank 2 unipotent; that is, it
satisfies .
 � 1/2 D 0. If follows that r cannot contribute to a motive associated to
an abelian variety. Conjecturally, Siegel modular eigenforms of weight .2; 2/ should
be associated to abelian varieties M=Q of dimension 2n equipped with an injection
E! EndQ.M/˝Q for some totally real field E of degree n. This suggests that such
representations r do not admit minimal lifts to characteristic 0 when 
 D .2; 2/. It
would be interesting to produce an explicit example of such a modular representa-
tion. Recall that there is an exceptional isomorphism S6 ' GSp4.F2/ coming from
identifying the Galois group of A2Œ2� over A2 with either the symmetries of the
2-torsion points on the universal abelian surface or the action of S6 on the (generi-
cally) six Weierstrass points (see [8]). The unipotent element 
 2GSp4.F2/ such that
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.
 � 1/2 ¤ 0 has conjugacy class .1; 2; 3; 4/.5; 6/ 2 S6 (this class is preserved by the
exotic automorphism of S6). In particular, if K=Q is a sextic field with Galois clo-
sure G � S6 containing .1; 2; 3; 4/.5; 6/ and acting irreducibly on F42, and p is an odd
prime such that p D p4q2, then r W Gal.K=Q/' GSp4.F2/ should give rise to such
a representation. Here is an explicit example coming from a slight variation of this
argument. Suppose that A is the abelian surface corresponding to the Jacobian of the
curve

y2 D x5 � 2x4C 6x3 � 8x2C 4x � 4;

which has good reduction outside 3 � 5 � 19. The representation r W GQ! GSp4.F2/
has image S5 � S6, and the image of inertia at 5 is conjugate to .1; 2; 3; 4/.5; 6/.
Hence r should give rise to a mod-2 torsion class with trivial level structure outside
3 � 5 � 19, and the following level structure at these primes:
(1) Iwahori level structure at pD 5,
(2) paramodular level structure at pD 3 and 19.
Note that this conjectural torsion class does conjecturally lift to characteristic 0 at
some level since one expects that A is modular. (The conductor of A is 3 � 53 � 19.)

Common to both examples is the nonexistence of automorphic representations
� (associated to either classical modular forms of weight 1 or Siegel modular forms
of weight .2; 2/) such that �x is the Steinberg representation. For classical modular
forms, the nonexistence of such � follows from a consideration of the correspond-
ing Galois representations, an argument which does not obviously generalize to the
Siegel case (since one does not know how to attach an abelian variety to such a form).
However, the following argument (due to Kevin Buzzard) generalizes nicely

THEOREM 5.9
If � is a cuspidal automorphic representation associated to a Siegel modular form of
weight .2; 2/, then �x is not the Steinberg representation for any p.

Proof
In weights .j; k/ with j � k � 2, the corresponding Frobenius eigenvalues of the
Weil–Deligne representation associated to a Steinberg representation �x are

¹x.wC3/=2; x.wC1/=2; x.w�1/=2; x.w�3/=2º;

where w D j C k � 3. Moreover, the corresponding eigenvalue of Ux;1 is x.w�3/=2.
In particular, if j D k D 2, then w D 1 and the corresponding eigenvalue of Ux;1 is
x�1, contradicting the integrality of Hecke eigenvalues (which is a consequence of
the integrality of the q-expansion).
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5.5. Hecke operators
For simplicity, we denote the schemes XK and XKi .Q/ of Section 5.2 by X and
Xi .Q/, respectively. Let M denote an O-module.

Let x be a rational prime. We define matrices

ˇx;0 D

0BB@
x 0 0 0

0 x 0 0

0 0 x 0

0 0 0 x

1CCA ; ˇx;1 D

0BB@
1 0 0 0

0 1 0 0

0 0 x 0

0 0 0 x

1CCA ;

ˇx;2 D

0BB@
1 0 0 0

0 x 0 0

0 0 x 0

0 0 0 x2

1CCA
and regard them as elements of GSp4.Qx/. If x … S (resp., x … S [Q), then we will
consider the Hecke operators Tx;i D ŒKˇx;iK� (resp., Tx;i D ŒKi .Q/ˇx;iKi .Q/�)
acting on each of the spaces

Hn
�
X;!.a; b/M

� �
resp.;Hn

�
Xi .Q/;!.a; b/M

��
as in [63, Section 1.1.6] or [68, Section 8]. We also denote Tx;0 by Sx . The definition
of Hecke operators given in [63] or [68] applies when x ¤ p or when p is invertible
on M . The remaining cases when x D p require more care. In Lemma 8.8 below
we show that Tp;1 and Qp;2 WD .pTp;2 C .p C p

3/Sp/p
2�b exist as operators in

cohomological degree nD 0 over M DK=O.
Similarly, if x 2 Q, then we have operators Ux;i D ŒKi .Q/ˇx;iKi .Q/� on

Hn.Xi .Q/;!.a; b/M /. As in Section 5.2, the map X1.Q/ ! X0.Q/ is Galois
with Galois group �Q WD

Q
x2Q.Z=x/

�. This gives rise to an action of �Q on
Hn.X1.Q/;!.a; b/M /. For each u 2�Q, we denote the corresponding operator on
Hn.X1.Q/;!.a; b/M / by hui.

Finally, we will also exploit Hecke operators of a slightly different flavor, which
we denote by Up;1 and Up;2, respectively. In the context of this paper, they may
be considered formal operators on q-expansions. (They can also be interpreted more
classically as Hecke operators with level structure at p.) Their key property is that
the operators Tp;1 and Tp;2=pkCj�6 act by Up;1 and Up;2 for large enough weights,
including .j; k/ plus any nontrivial multiple of .p � 1;p � 1/ for j � k � 2. Their
explicit definition is given in Lemmas 8.3 and 8.4.

Remark 5.10
We note that our definition of the Hecke action is the “natural” one twisted by ��3 (see
[63, Section 1.1.6(a)]). We saw in the proof of Theorem 5.1 that, for the natural action,
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there is an isomorphism !.a; b/ŠW.a;bI�a�b/, and hence over C, an isomorphism
!.a; b/ Š V.�b;�aI�a�b/. Under our normalization of the Hecke action on !.a; b/,
we therefore have !.a; b/ŠW� and, over C, !.a; b/Š V� where we take

	D .a; bI3� a� b/ and 
 D .�b;�aI6� a� b/:

Remark 5.11
In view of the previous remark, we will identify the set Z2;C WD ¹.a; b/ 2 Z2 W a � bº
with the subset .a; bI3 � a � b/ of X�.T /CM . Thus it makes sense to speak of 	D
.a; b/ 2X�.T /CM .

Remark 5.12
Let 	D .a; b/ 2X�.T /CM , and let wD aC b� 6. For x 2 Z, we can similarly define
a Hecke operator associated to ŒK diag.x; x; x; x/K� on the cohomology of !.a; b/:
this operator acts as xw D xaCb�6. Now, suppose that � D �1 ˝ �1 in A.2/.G/

contributes to

H i
�
X.C/;!.a; b/

�
.2/
ŠH i

�
X.C/;W�

�
.2/
ŠH i

�
X.C/;V�

�
.2/
;

where 
 D .�b;�aI�w/. It follows that the central character of �1 is given by

x 7! x�w :

Furthermore, by Proposition 5.6, the transfer of �1 to GL4.R/ has infinitesimal char-
acter �� , where

� D
�
0;�.b � 2/;�.a� 1/;�.aC b � 3/

�
C 3=2.1; 1; 1; 1/:

We now introduce some Hecke algebras. We note that in the following definition,
we work over K=O rather than O.

Definition 5.13
Let 	D .a; b/ 2X�.T /CM with a � b � 2.
(1) The anemic Hecke algebra

Tan
� .Q/� EndO

�
H 0

�
X1.Q/;!.a; b/.�1/K=O

��
is the O-algebra generated by the operators Tx;i for x … S [Q[ ¹pº.

(2) Similarly, we let T�.Q/ be the algebra generated over Tan
� .Q/ by the operators

Ux;i for x 2Q and hui for u 2�Q. When QD ;, we have Tan
� .;/D T�.;/

and we denote this algebra by T�.
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(3) Finally, eT�.Q/ denotes the T�.Q/-algebra generated by the operators Tp;1
and Qp;2 D .pTp;2C .pCp

3/Sp/p
2�b . (The existence of these operators is

established in Lemma 8.8.) If QD;, then we denoteeT�.;/ by eT�.

Note that the algebras Tan
� .Q/� T�.Q/�eT�.Q/ preserve the subspace

H 0
�
X0.Q/;!.a; b/.�1/K=O

�
�H 0

�
X1.Q/;!.a; b/.�1/K=O

�
:

We will also need to consider ordinary Hecke algebras. Let eD lim
�!n

.Tp;1Qp;2/
nŠ

denote the ordinary idempotent associated to the Hecke operators Tp;1 andQp;2. (We
will only consider this operator in contexts where the direct limit makes sense.) We
define

H 0
�
X0.Q/;!.a; b/.�1/M

�ord
D eH 0

�
X0.Q/;!.a; b/.�1/M

�
for M DO;O=$m or M DK=O. We thus have

H 0
�
X0.Q/;!.a; b/.�1/M

�
DH 0

�
X0.Q/;!.a; b/.�1/M

�ord
˚ .1� e/H 0

�
X0.Q/;!.a; b/.�1/M

�
for such M .

Definition 5.14
Let 	 D .a; b/ with a � b � 2. We define the ordinary Hecke algebras Tan

� .Q/
ord

(resp., T�.Q/ord,eT�.Q/ord) to be the image of Tan
� .Q/ (resp., T�.Q/,eT�.Q/) in

EndO
�
H 0

�
X0.Q/;!.a; b/.�1/K=O

�ord�
:

6. Galois representations associated to modular forms
As in Section 5.2, let S and Q be finite sets of primes of Q which are disjoint and
do not contain p. We allow the possibility that Q D ;. We let K and Ki .Q/ be
open compact subgroups of GSp4.A

1/ as in Section 5.2, and we let X D XK and
Xi .Q/DXKi .Q/ be the corresponding Siegel 3-folds, defined over O.

6.1. The Hasse invariant
We begin with a definition.

Definition 6.1
Let h 2H 0.X;!

p�1

k
/ be the Hasse invariant, and let A 2H 0.X;!r.p�1// be a lift of

hr , for some r > 0 which we fix for the rest of this section.
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The existence of such a lift A follows from the Koecher principle and the ample-
ness of ! on the minimal compactification of X .

LEMMA 6.2
Let 	D .a; b/ 2X�.T /CM with a � b � 2. Then
(1) multiplication by h defines an injection

h WH 0
�
X1.Q/;!.a; b/k

�
,!H 0

�
X1.Q/;!

�
aC .p � 1/; bC .p � 1/

�
k

�
which is equivariant for the Hecke operators Tx;i for each x … S [Q [ ¹pº
and the operators Ux;i for x 2Q, and

(2) if b � 3, then this map is also equivariant for the operators Tp;1 and Qp;2.

Proof
It is well known that multiplication by h is injective and commutes with Hecke opera-
tors away from p. We may thus assume that b � 3. It is shown in [57, Section A.3] and
[68, Lemme 8.7] that multiplication by h commutes with the operators Up;1 and Up;2.
Since b � 3, [68, Lemme 8.5] implies that Tp;1 �Up;1 mod p and p3�bTp;2 �Up;2
mod p. It follows that Tp;1 and Qp;2 D p

3�bTp;2C .1C p
2/p3�bSp also commute

with h.

Suppose that 	 D .a; b/ 2 X�.T /CM with a � b � 2. By the proof of [57,
Théorème 6.2], there exists an integer N.	/ as in the following definition.

Definition 6.3
Let N.	/ be an integer such that for all t � N.	/, i > 0, and Z 2 ¹X;X0.Q/;
X1.Q/º, the cohomology group

H i
�
Z;!.aC t; bC t /.�1/k

�
vanishes.

Note that for such t �N.	/, the maps

H 0
�
X;!.aC t; bC t /.�1/

�
!H 0

�
X;!.aC t; bC t /.�1/k

�
;

H 0
�
X;!.aC t; bC t /.�1/K

�
!H 0

�
X;!.aC t; bC t /.�1/K=O

�
are both surjective. The same is true over X0.Q/ and X1.Q/.

LEMMA 6.4
Let 	D .a; b/ 2X�.T /CM with a � b � 2 and letm> 0. There exists an integer s > 0
such that, if we set t D rs.p � 1/, then
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(1) t �N.	/, and
(2) multiplication by As defines an injection

H 0
�
X1.Q/;!.a; b/O=$m

�
,!H 0

�
X1.Q/;!.aC t; bC t /O=$m

�
which is equivariant for the Hecke operators Tx;i for each x … S [Q [ ¹pº
and the operators Ux;i for each x 2Q.

Proof
The second property holds as long as pm�1 j s (see [32, Theorem 6.2.1]), so it suffices
to take s equal to any integer greater than N.	/=r.p�1/ and divisible by pm�1.

Let 	D .a; b/ 2X�.T /CM with a � b � 2. Recall that the Hecke algebras

Tan
� .Q/� T�.Q/�eT�.Q/� EndO

�
H 0

�
X1.Q/;!.a; b/.�1/K=O

��
were defined in Definition 5.13.

Remark 6.5
For 	D .a; b/ with a � b � 2 and each m> 0, we have

H 0
�
X1.Q/;!.a; b/.�1/O=$m

�
ŠH 0

�
X1.Q/;!.a; b/.�1/K=O

�
Œ$m�:

Let I�;m (resp., eI�;m) denote the annihilator of the former space in T�.Q/ (resp.,eT�.Q/). If s and t are as in Lemma 6.4, then multiplication byAs induces a surjective
map

T�0.Q/� T�.Q/=I�;m;

where 	0 D 	C .t; t/. In particular, any maximal ideal m of T�.Q/ pulls back under
this map to a maximal ideal of T�0.Q/ which we will also denote by m.

Similarly, Lemma 6.2 induces a map

T�0.Q/� T�.Q/=I�;1

where 	0 D 	C .p � 1;p � 1/ and, if b � 3, this extends to a map

eT�0.Q/�eT�.Q/=eI�;1:
6.2. Preliminaries on Galois representations
We now turn our attention to Galois representations.
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PROPOSITION 6.6
Let 	D .a; b/ 2X�.T /CM , and let wD aC b � 6. There is a continuous character

�� WGQ! Tan
� .Q/

�

such that
(1) �� jGQp is crystalline with Hodge–Tate weight w,
(2) for all x … S [Q[ ¹pº, �� is unramified at x and ��.Frobx/D Sx;
in particular,

�� D ��;0�
�w

for some finite-order character ��;0 WGQ!eT�.Q/�.

Proof
This follows from the proof of [65, Proposition 4], noting that we have twisted the
Hecke action by ��3 (see Remark 5.12).

Definition 6.7
For a prime x, we introduce the Hecke polynomial

Qx.T /DX
4 � Tx;1X

3C
�
xTx;2C .x

3C x/Sx
�
X2 � x3SxTx;1X C x

6S2x :

If a modular form f is an eigenform for a collection of Hecke operators T , we
denote by �f the map such that Tf D �f .T /f for each T . In particular, if f is an
eigenform for the operators Tx;i at x, then we can specialize the polynomial Qx.T /
at f to get �f .Qx.T //.

PROPOSITION 6.8
Let 	D .a; b/ 2X�.T /CM with a � b � 3. Let w D aC b � 6, and let wDwC 3D
aC b � 3. Let

f 2H 0
�
X1.Q/;!.a; b/.�1/

�
be a cuspidal eigenform for the operators Tx;i for all x …Q[S and i D 0; 1; 2. Then
there is a continuous semisimple representation

rf WGQ!GSp4.K
0/

defined over a finite extension K 0=K such that:
(1) The similitude character � ı rf is given by

� ı rf D �f ı ���
�3 D �f ı ��;0�

�w:
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(2) The representation rf is unramified at primes x …Q [ S [ ¹pº, and at such
primes, the characteristic polynomial of rf .Frobx/ is given by

det
�
X � rf .Frobx/

�
D �f

�
Qx.X/

�
:

(3) The restriction rf j GQp is crystalline with Hodge–Tate weights w, .a � 1/,
.b� 2/, 0. If, in addition, f is an eigenvalue of the Hecke operators at p, then
the characteristic polynomial of ˆ on Dcris.rf jGQp / is �f .Qp.X//.

(4) Suppose that f is ordinary in the sense that it is an eigenform for Tp;1 and
Qp;2 with eigenvalues being p-adic units. Then Qp.X/ has distinct eigenval-
ues ˛p , ˇp , �p , ıp with p-adic valuations 0, b � 2, a � 1, w, respectively.
Furthermore, rf j GQp is conjugate in GSp4.K

0/ to a representation of the
form0B@�.˛p/ � � �

0 ��.b�2/ ��.p�.b�2/ˇp/ � �

0 0 ��.a�1/ ��.p�.a�1/�p/ �

0 0 0 ��w ��.p�wıp/

1CA :
(5) If rf is absolutely irreducible, then it satisfies local-global compatibility at all

primes.

Proof
The existence of rf follows from the work of Taylor, Laumon, and Weissauer.
Some of the finer properties are due to Urban, Genestier, Tilouine, Gan, Takeda,
Sorensen, and Mok. Fix an embedding { W K ,! C, and let � be an cuspidal
automorphic representation of GSp4.AQ/ which contributes to the f -part of
H 0.X1.Q/;!.a; b/.�1/C/ under the isomorphism of Theorem 5.2(1) (with

 D .�b;�aI6� a� b/, as in Remark 5.10).

We take rf W GQ! GL4.K/ to be the representation Rp of [55, Theorem 3.5]
associated to � . When � is simple, generic in the terminology of [55], the represen-
tation can be conjugated to take values in GSp4.K/, by the main theorem of [6]. In
the remaining cases, the representation Rp is reducible and can easily be seen to be
symplectic. The usual Baire category argument implies that rf can be defined over
a finite extension of K . Thus in all cases, we may take rf W GQ! GSp4.K

0/. Parts
(1)–(5) follow from the statement of [55, Theorem 3.5].

LEMMA 6.9
Let 	D .a; b/ 2X�.T /CM with a � b � 2, and let m be a maximal ideal of Tan

� .Q/.
Then there is a continuous semisimple representation

rm WGQ!GL4
�
Tan
� .Q/=m

�
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such that for each x … S [ Q [ ¹pº, the restriction rm j GQx is unramified and
rm.Frobx/ has characteristic polynomial Qx.X/.

If rm is absolutely irreducible, then the representation rm preserves a symplectic
pairing and hence, after conjugation, we have a representation

rm WGQ!GSp4
�
Tan
� .Q/=m

�
:

Proof
Choose an integer s as in Lemma 6.4 with m taken to equal 1, and let t D rs.p � 1/.
Let f 2H 0.X1.Q/;!.aC t; bC t /.�1//˝K be an eigenform for eT�0.Q/m. Let
rf be the Galois representation associated to f by Proposition 6.8, and take rm to be
the semisimplification of a reduction of rf to characteristic p. The resulting represen-
tation is defined over the algebraic closure of Tan

� .Q/=m, but by the argument of [20,
Proposition 3.4.2], we see that after conjugation, it may be defined over Tan

� .Q/=m.
For the last part, let � be the transfer to GL4 (given by [3]) of the automorphic

representation generated by f . Then � descends to an automorphic representation …
of a unitary group over Q. The family of `-adic Galois representations associated to
… is the same as that associated to f . Thus, [7, Theorem 1.2] and the fact that rm is
absolutely irreducible imply that rf is symplectic. The same is then true of rm (by
absolute irreducibility).

Remark 6.10
By the same argument, the previous result holds if we replace Tan

� .Q/ by T�.Q/ oreT�.Q/.
Definition 6.11
We say that m is non-Eisenstein if the representation rm is absolutely irreducible.

6.3. Galois representations in cohomological weights
Let r W GQ! GSp4.k/ be a representation as in Section 4. By Assumption 4.2 and
Chebotarev, there exist infinitely many primes q such that no pair of eigenvalues of
r.Frobq/ have ratio q mod p and q 6� 1 mod p. Choose any such q which is disjoint
to p and all primes of bad reduction of r . We take S D S.r/[ ¹qº and Q a possibly
empty set of primes disjoint from S [ ¹pº. We define a compact open subgroup K DQ
xKx of GSp4.A

1/ as follows:
(1) If x D p or r is unramified at x and x ¤ q, then Kx DGSp4.Zx/.
(2) If x is of type U3, then Kx D I.x/, where I.x/ is the Iwahori subgroup.
(3) If x is of type U2, then Kx D….x/, where ….x/ is the Klingen parahoric.
(4) If x is of type U1, then Kx D K.x/, where K.x/ is the paramodular group

at x.
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(5) If x is of type P, then Kx D….x/C (and x � 1 is prime to p).
(6) If x is of type H, then Kx is the full congruence subgroup of level x.
(7) If x D q, then Kx is the full congruence subgroup of level x.
We then let X DXK and Xi .Q/DXKi .Q/ as in Section 5.2.

Let 	D .a; b/ 2 X�.T /CM with a � b � 3 be a regular weight, and let m; be a
maximal ideal of Tord

� (the ordinary Hecke algebra with QD ;) with residue field k.
Then m; pulls back to an ideal of Tan

� .Q/
ord which in turn pushes forward to an ideal

of T�.Q/ord. We denote both of these ideals by m;, in a slight abuse of notation. The
ideal m; � Tan

� .Q/
ord is maximal, but m; � T�.Q/ord need not be maximal—there

may be multiple maximal ideals m of T�.Q/ord that contain it. We make the following
assumption.

Assumption 6.12
Let r , 	, and m; be as above. Then:
(1) We have rm; Š r . In particular, since r is absolutely irreducible, m; is non-

Eisenstein.
(2) For each x 2Q, x � 1 mod p and r j Gx is a direct sum of four pairwise

distinct characters with Frobenius eigenvalues ˛x , ˇx , �x , ıx . We assume that
the eigenvalues have been labeled so that the plane �.˛x/˚�.ˇx/ is isotropic,
and hence ˛xıx D ˇx�x .

We let m� T�.Q/ord be any maximal ideal which contains m;. The representa-
tions rm, rm; , and r are all isomorphic.

We now turn to the prime p. Let ˛;ˇ 2 k� be the elements associated to r jGQp

at the beginning of Section 4. For M DO;O=$m or K=O, we define
� H 0.X1.Q/;!.a; b/.�1/M /

ˇ to be the subspace of H 0.X1.Q/;!.a;

b/.�1/M / given by the image of the idempotent eˇ D lim
�!n

..Tp;1 �

Q̌/.Qp;2 � Q̨ Q̌//
nŠ, where Q̨ and Q̌ are lifts of ˛ and ˇ to O;

� Tan
� .Q/

ˇ (resp., T�.Q/ˇ ,eT�.Q/ˇ ) to be the image of Tan
� .Q/ (resp., T�.Q/,eT�.Q/) in

EndO
�
H 0

�
X1.Q/;!.a; b/.�1/M

�ˇ �
:

We also make the analogous definitions with ˛ and ˇ swapping roles.

THEOREM 6.13
Let 	 D .a; b/, m;, and m be as above, and suppose that Assumption 6.12 holds.
Let w D a C b � 6 and w D w C 3 D a C b � 3. Then there exists a continuous
representation
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r D rˇ�;m WGQ!GSp4
�
T�.Q/ˇm

�
lifting rm D r and such that:
(1) The similitude character � ı r is given by

� ı r D ���
�3 D ��;0�

�w;

where ��;0 is a finite-order character unramified at p which is trivial mod-
ulo m.

(2) For each prime x … S [ Q [ ¹pº, r is unramified at x and r.Frobx/ has
characteristic polynomial Qx.X/.

(3) There are units dp;1; : : : ; dp;4 2 T�.Q/
ˇ
m satisfying

Qp.X/D .X � dp;1/.X � p
b�2dp;2/.X � p

a�1dp;3/.X � p
wdp;4/

2 T�.Q/ˇmŒX�;

and such that
(a) we have dp;1 mod mD ˇ and dp;2 mod mD ˛;
(b) r jGQp is conjugate in GSp4 to a representation of the form:0BB@

�.dp;1/ 	 	 	

0 ��.b�2/ � �.dp;2/ 	 	

0 0 ��.a�1/ � �.dp;3/ 	

0 0 0 ��w � �.dp;4/

1CCA :
(4) After twisting by the unique square-root of ��;0 which is trivial modulo m, the

deformation r of r satisfies properties (2)–(5) of Definition 4.6.

Remark 6.14
We expect that, under the given assumptions, the Hecke rings in question are torsion-
free. However, we avoid having to prove this by passing to sufficiently high weight.

Proof
As in Remark 6.5, I�;m denotes the annihilator of H 0.X1.Q/;!.a; b/.�1/O=$m/

in T�.Q/. Since T�.Q/m D lim
 �m

T�.Q/m=I�;m, it suffices to construct, for each

m > 0, a representation rm W GQ! GSp4.T�.Q/
ˇ
m=I�;m/ satisfying the conditions

of the theorem. We thus fix an m> 0. Choose an integer s > 0 as in Lemma 6.4, and
let t D rs.p� 1/. By Lemma 6.4 and Lemma 6.2(2), multiplication by As restricts to
a map:

H 0
�
X1.Q/;!.a; b/.�1/O=$m

�ˇ
m
,!H 0

�
X1.Q/;!.aC t; bC t /.�1/O=$m

�ˇ
m
:
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This in turns gives rise to a surjective map T�0.Q/
ˇ
m � T�.Q/

ˇ
m=I�;m. Thus it suf-

fices to prove the result in weight 	0 WD .a0; b0/ WD .aC t; bC t /.
Since t �N.	/, we have that

H 0
�
X1.Q/;!.a

0; b0/.�1/K=O
�
ŠH 0

�
X1.Q/;!.a

0; b0/.�1/
�
˝K=O

and hence we may regard T�0.Q/ as acting faithfully on both

H 0
�
X1.Q/;!.a

0; b0/.�1/
�

and H 0
�
X1.Q/;!.a

0; b0/.�1/K
�
:

Thus we have

T�0.Q/ˇm ,!
Y
i

OKi ;

where the Ki ’s are a finite collection of finite extensions of K , one for each mini-
mal prime }i of T�0.Q/

ˇ
m. Each such minimal prime corresponds to an eigenform fi

for T�0.Q/
ˇ
m. The eigenform fi has an associated Galois representation rfi WGQ!

GSp4.OK0i / for some finite extension K 0i=Ki , by Proposition 6.8. After conjugation,
we may assume that each rfi reduces to r . By the argument of the proof of [20, Propo-
sition 3.4.4], using [29, Lemma 7.1.1] in place of [20, Lemma 2.1.12], we see that the
representation

Q
i rfi descends to a representation r WGQ!GSp4.T�0.Q/

ˇ
m/. It fol-

lows from Proposition 6.8 that r satisfies properties (1)–(3) of the theorem. For part
(3), note that Qp.X/ 2 T�0.Q/

ˇ
m factors as

.X � dp;1/.X � p
b�2dp;2/.X � p

a�1dp;1/.X � p
wdp;4/

for units dp;i 2 T�0.Q/
ˇ
m. We also have Tp;1 � ˇ mod m and Qp;2 � ˛ˇ mod m

in T�0.Q/
ˇ
m (by definition of the idempotent eˇ ). Since Qp.X/D X

4 � Tp;1X
3 C

pb�2Qp;2X
2 � � � � , we deduce that dp;1 � ˇ mod m and dp;2 � ˛ mod m.

To show that r satisfies properties (2)–(5) of Definition 4.6, it suffices to show
that each rfi does so. In fact, property (2) has already been established with the
exception of the prime x D q. If x D q, then (by our assumptions) ad0.r/.1/ as a
GQq -module contains no subquotient isomorphic to k, and so H 2.Qq; ad0.r// '
H 0.Qq; ad0.r/.1//� D 0. Since q ¤ p, it follows that H 1.Qq; ad0.r// consists
entirely of unramified classes. In particular, all lifts of r are automatically unram-
ified at q. Since m is non-Eisenstein, it follows from Proposition 6.8(5) that rfi
satisfies local-global compatibility at all primes. Thus we may apply the results of
[64, Section 4.5]. We now turn to property (3) of Definition 4.6. If x 2 S.r/ is of
type U3, then r.Ix/ is unipotent and generated by a conjugate of exp.N3/. Since
Kx D I.x/, [64, Corollary 1] implies that rfi .Ix/ is topologically generated by a
conjugate of exp.N3/, exp.N2/, or exp.N1/. The latter two cases are incompatible
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with the residual representation being of nilpotent rank 3. Similarly, if x 2 S.r/ is of
type U2, then Kx D….x/ and [64, Corollary 1] implies that rfi .Ix/ is topologically
generated by a conjugate of exp.N2/ or exp.N1/. The latter case is incompatible with
the residual representation being of nilpotent rank 2. Finally, if x 2 S.r/ is of type
U1, then Kx D K.x/. It then suffices to note, following [64, Section 4.5], that the
corresponding representation �x is paraspherical, that is, has a nonzero fixed vector
by a nonspecial maximal compact subgroup, namely, K.x/ itself. This establishes
property (3). For property (4), suppose that x 2 S.r/ is of type P. ThenKx D….x/C.
It follows from [64, Corollary 1] that ….x/ has no invariants on the automorphic rep-
resentation generated by fi (as otherwise rfi j Ix would be unipotent, contradicting
the assumption on r at x). Thus ….x/=….x/C acts through a nontrivial character on
the space of ….x/C invariants. By [64, Corollary 3] all such characters have to lift
the character � ı r j Ix . However, since x � 1 is prime to p, there is a unique such
character, and the result follows from [64, Corollary 3].

Finally, we turn to Definition 4.6(5). Let x 2Q, and recall thatKx D….x/C. Let
� be the automorphic representation generated by fi . Consider first the case where
�x has nontrivial ….x/-invariants. Then �x is a subquotient of an unramified prin-
cipal series. By Assumption 6.12(2) and [31, Proposition 3.2.3], we see that �x is
unramified. In this case, Definition 4.6(5) certainly holds for rfi . In the remaining
case, where �x has no nontrivial ….x/-invariants, we see that ….x/=…C.x/ acts

through a nontrivial character on �….x/
C

x , and the required property holds by [64,
Corollary 3].

6.4. Galois representations in low weights
We let r WGQ! GSp4.k/, S D S.r/, Q, and K � GSp4.A

1/ be as in the previous
section. Recall that in Section 4, we fixed two units ˛;ˇ 2 k� associated to r jGQp .
We now let 
 D .a; 2/ 2X�.T /CM with a � 2 denote a nonregular weight.

Definition 6.15
We say that r is Katz modular of weight 
 if there exists a maximal ideal m; of T�
such that
(1) we have rm; Š r , and
(2) there exists a form � 2H 0.X;!.a; 2/K=O/Œm;� such that

Tp;1.�/D .˛C ˇ/�;

Qp;2.�/D .˛ˇ/�:

We now make the following assumption.
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Assumption 6.16 (Residual modularity)
We assume the following.
(1) The representation r is Katz modular of weight 
 with associated maximal

ideal m; and eigenform �.
(2) For each x 2Q, x � 1 mod p and r j Gx is a direct sum of four pairwise

distinct characters with Frobenius eigenvalues ˛x , ˇx , �x , ıx . We assume that
the eigenvalues have been labeled so that the plane �.˛x/˚�.ˇx/ is isotropic,
and hence ˛xıx D ˇx�x .

We let m be any maximal ideal of T� .Q/ containing m;.
Let e˛;ˇ be the idempotent

lim
�!
n

�
.Tp;1 � Q̨ � Q̌/.Qp;2 � Q̨ Q̌/

�nŠ
;

where Q̨ and Q̌ are lifts of ˛ and ˇ to O, and define

H 0
�
X1.Q/;!.a; 2/.�1/K=O

�˛;ˇ
D e˛;ˇH

0
�
X1.Q/;!.a; 2/.�1/K=O

�
:

The assumption that r is Katz modular implies that this space is nonzero after local-
ization at m. We let T� .Q/˛;ˇ denote the image of T� .Q/ in

EndO
�
H 0

�
X1.Q/;!.a; 2/.�1/K=O

�˛;ˇ �
:

Our main result in this section is the following.

THEOREM 6.17
Let r , 
 D .a; 2/ with p�1 > a and m be as above, and suppose that Assumption 6.16
holds. In addition, suppose that

.˛2 � 1/.ˇ2 � 1/.˛ � ˇ/.˛2ˇ2 � 1/¤ 0:

Then there exists a representation

rQ WGQ!GSp4
�
T� .Q/˛;ˇm

�
which is a minimal deformation of r outside Q.

Proof
As in the proof of Theorem 6.13, it suffices to prove the existence of an appropriate
representation rm W GQ ! GSp4.T� .Q/

˛;ˇ
m =I�;m/ for each m > 0. We thus fix an

m > 0. By Theorem 8.13 below, there exists a power As of A such that we have
injections
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H0
�
X1.Q/;!.a; 2/.�1/O=$m

�˛;ˇ
m

eˇıA
s

,! H0
�
X1.Q/;!.aC t; bC t /.�1/O=$m

�ˇ
m
;

H0
�
X1.Q/;!.a; 2/.�1/O=$m

�˛;ˇ
m

e˛ıA
s

,! H0
�
X1.Q/;!.aC t; bC t /.�1/O=$m

�˛
m
;

where t D rpm�1.p � 1/. These in turns give rise to surjections

T�0.Q/ˇm � T�.Q/˛;ˇm =I�;m;

T�0.Q/˛m � T�.Q/˛;ˇm =I�;m;

where 	0 D 	 C .t; t/. The first of these surjections together with Theorem 6.13
implies the existence of a representation r 0m satisfying all of the required properties,
except for conditions (1) and (6) of Definition 4.6. However, we deduce from the exis-
tence of both surjections that the representation rm jGp contains two distinct rank 1
unramified submodules (spanned by basis vectors), with one having Frobenius eigen-
value lifting ˛ and the other having Frobenius eigenvalue lifting ˇ. By Nakayama’s
lemma, we deduce that r 0m contains an unramified rank 2 submodule of the form
required by Definition 4.6(6). In order to obtain a representation that also satisfies
Definition 4.6(1), we note that �.r 0m/D ��

�.a�1/�Q, where �Q is a finite-order char-
acter of p-power order which is unramified outside Q. Since p is odd, we can find
a square root of �Q and twist r 0m by the inverse of this square root. The resulting
representation rm now satisfies all required properties.

7. Properties of cohomology groups
As in Section 5.2, let S and Q be finite sets of primes of Q which are disjoint and
do not contain p. We allow the possibility that Q D ;. We let K and Ki .Q/ be
open compact subgroups of GSp4.A

1/ as in Section 5.2, and we let X D XK and
Xi .Q/D XKi .Q/ be the corresponding Siegel 3-folds. The goal of this section is to
prove Theorems 7.2 and 7.11 below.

7.1. Taylor–Wiles primes
Fix 	 D .a; b/ 2 X�.T /CM with a � b � 2. Let m; be a non-Eisenstein maximal
ideal of T�. The ideal m; gives rise to ideals of Tan

� .Q/ and T�.Q/ which we also
denote by m; (see Section 6.3). We will need the following assumption (cf. Assump-
tions 6.12, 6.16).

Assumption 7.1
For each x 2Q, we have x � 1 mod p, and rm; jGx is a direct sum of four pairwise
distinct characters with Frobenius eigenvalues ˛x , ˇx , �x , ıx . We assume that the
eigenvalues have been labeled so that the plane �.˛x/˚�.ˇx/ is isotropic, and hence
˛xıx D ˇx�x .
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For x 2Q, we let ˛0x ; ˇ
0
x; �
0
x; ı
0
x 2 O� be elements lifting ˛x , ˇx , �x ; ıx 2 k�.

The point of the above assumption is to rule out the possibility of newforms at level
K0.Q/.

THEOREM 7.2
Let 	 and m; be as above, and suppose that Assumption 7.1 holds. Let m denote
the ideal of T�.Q/ containing m; together with the elements xUx;2 � ˛0xˇ

0
x and

Ux;1 � ˛
0
x � ˇ

0
x for each x 2Q. Then m is maximal and there is an isomorphism

prQ ı i WH
0
�
X;!.a; b/.�1/K=O

�
m;

�
�!H 0

�
X0.Q/;!.a; b/.�1/K=O

�
m

which is equivariant for the operators Tx;i for each x … S [Q [ ¹pº as well as for
the operators Tp;1 and Qp;2.

Here i is the natural inclusion and prQ is defined as follows. For x 2Q, let Rx
denote the Hecke operator

Rx D .xUx;2 � ˛
0
x�
0
x/.xUx;2 � ˇ

0
xı
0
x/.xUx;2 � �

0
xı
0
x/ 2 T�.Q/;

and let prx denote the idempotent

prx D lim
n!1

.R0x/
nŠ:

Then the prx’s commute with one another and prQ denotes their product.

For compactness, we will make use of the alternative notation W� D !.a; b/ and
W sub
� D !.a; b/.�1/. In sufficiently high weight, Theorem 7.2 is due to Genestier

and Tilouine.

THEOREM 7.3
Suppose that 	D .a; b/ is such that H i .X;W sub

�;k
/ and H i .X0.Q/;W

sub
�;k
/ are zero

for all i > 0. Then the map

prQ ı i WH
0.X;W sub

�;K=O/m;
�
�!H 0

�
X0.Q/;W

sub
�;K=O

�
m

is an isomorphism. An explicit inverse is given by the composition

H 0
�
X0.Q/;W

sub
�;K=O

�
m
,!H 0

�
X0.Q/;W

sub
�;K=O

�
m;

d�1
Q

tr
! H 0.X;W sub

�;K=O/m; ;

where dQ D
Q
x2QŒGSp4.Zx/ W….x/� (which is prime to p) and tr is the trace map

associated to X0.Q/!X .

Proof
By the assumption of cohomology vanishing, it suffices to prove both statements with
K=O replaced by K . Indeed, if the map over K is surjective, then so too is the
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map over K=O. Furthermore, if d�1Q tr is an inverse over K , then the fact that it is
defined over O implies immediately that it also gives an inverse overK=O. The proof
of the corresponding result over K follows exactly as in the proof of [31, Proposi-
tion 11.1.2].

Using this result and the Hasse invariant h 2H 0.X;!
p�1

k
/, we can now establish

Theorem 7.2 at the level of $ -torsion. (Recall that cohomology in degree 0 over k
can be identified with $ -torsion in degree 0 cohomology over K=O.) Note that, for
any weight 	, the cohomology vanishing assumption of the previous theorem holds
in weight 	C .t; t/ as long as t �N.	/ (where N.	/ is defined in Definition 6.3).

LEMMA 7.4
Let 	D .a; b/ with a � b � 2. Choose an integer t such that .p � 1/t � N.	/. Let
	0 D .a0; b0/ D .a C t .p � 1/; b C t .p � 1//. Then the following diagrams are co-
Cartesian:

H 0.X0.Q/;W
sub
�;k
/m H 0.X0.Q/;W

sub
�0;k

/m

H 0.X;W sub
�;k
/m; H 0.X;W sub

�0;k
/m;

prQ ı i

ht

ht

prQ ı i Š

H 0.X0.Q/;W
sub
�;k
/m H 0.X0.Q/;W

sub
�0;k

/m

H 0.X;W sub
�;k
/m; H 0.X;W sub

�0;k
/m;

d�1
Q

tr

ht

ht

d�1
Q

tr Š

In particular, the left-hand vertical maps are mutually inverse isomorphisms.

Proof
Note that the right-hand vertical maps are mutually inverse isomorphisms by The-
orem 7.3 and the choice of t . The diagrams are commutative because h com-
mutes with all Hecke operators at the primes in Q (see Lemma 6.2). Now, let
f 2H 0.X;W sub

�0;k
/m; , and let F D prQ.f / 2H

0.X0.Q/;W
sub
�0;k

/m. Note that f can

be recovered from F via the formula f D d�1Q tr.F /. We need to show that f is
divisible by ht if and only if F is divisible by ht . But this follows immediately by
the commutativity of the diagrams above: if f D htg, then F D htprQ.g/, and if
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F D htg, then f D htd�1Q tr.g/. (Note that since X0.Q/ and X are smooth (and in
particular irreducible) over k, multiplication by h is injective on H 0.)

We will need the analogous result for forms on the nonordinary locus. Let S
(resp., S0.Q/) denote the nonordinary locus of Xk (resp., X0.Q/k).

LEMMA 7.5
Let 	D .a; b/ with a � b � 2. Then the map

prQ ı i WH
0.S;W sub

�;k/m;
�
�!H 0

�
S0.Q/;W

sub
�;k

�
m

is an isomorphism with inverse d�1Q tr.

Proof
We first show that the result is true in sufficiently high weight. More precisely: let
t �N.	/C 1. We let 	0 D .aC .t � 1/.p � 1/; bC .t � 1/.p � 1// and 	00 D .aC
t .p � 1/; bC t .p � 1//. We have a commutative diagram:

H0.X0.Q/;W
sub
�0;k

/m H0.X0.Q/;W
sub
�00;k

/m H0.S0.Q/;W
sub
�00;k

/m 0

H0.X;W sub
�0;k

/m; H0.X;W sub
�00;k

/m; H0.S;W sub
�00;k

/m; 0

prQ Š

h

h

prQ Š prQ

The choice of t guarantees that the rows are short exact sequences. From the previous
lemma, we deduce that the right-hand vertical map is an isomorphism with inverse
d�1Q tr.

Now we imitate the proof of the previous lemma to deduce the result in smaller
weights. For this we use the existence of the Hasse invariant

Qh 2H 0
�
S;!.p2 � 1;p2 � 1/k

�
:

Such a form was constructed in unpublished work of the second author with Goldring,
but is also constructed in greater generality in [12] and [33]. In [12, Theorem B.2] (see
also [12, Theorem 6.2.3]), it is shown that Qh extends to the boundary (by the normality
of the p-rank 1 locus) and that multiplication by Qh is Hecke equivariant away from p

(see [12, Theorem 4.5.4(3)]). (It is also true, but not relevant here, that Qh vanishes on
the 1-dimensional Ekedahl–Oort stratum of S to precise order 2; see the references in
the proof of Theorem 8.10 below for more discussion on this point.)

We choose an integer s such that t WD s.pC1/�N.	/C1. Let 	00 D 	Cs.p2�
1;p2 � 1/D 	C t .p � 1;p � 1/. Then we have a commutative diagram:
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H 0.S0.Q/;W
sub
�;k
/m H 0.S0.Q/;W

sub
�00;k

/m

H 0.S;W sub
�;k
/m; H 0.S;W sub

�00;k
/m;

prQ ı i

Qhs

Qhs

prQ ı i Š

The right-hand vertical map is an isomorphism with inverse d�1Q tr by the first para-
graph. The lemma now follows by the same argument as Lemma 7.4.

We will also need the following analogous result for first degree cohomology
over k.

LEMMA 7.6
Suppose that 	D .a; b/ where a � b � 2. Then the map

prQ ı i WH
1.X;W sub

�;k/m;
�
�!H 1

�
X0.Q/;W

sub
�;k

�
m

is an isomorphism with inverse d�1Q tr.

Proof
If N.	/D 0, then both sides of the map are zero, so we may assume that N.	/ > 0.
Let t �N.	/, and let 	0 D .aC .t � 1/.p � 1/; bC .t � 1/.p � 1// and 	00 D .aC
t .p � 1/; bC t .p � 1//. Consider the diagram with exact rows:

H0.X0.Q/;W
sub
�0 ;k /m H0.X0.Q/;W

sub
�00 ;k /m H0.S0.Q/;W

sub
�00 ;k /m H1.X0.Q/;W

sub
�0 ;k /m 0

H0.X;W sub
�0 ;k /m; H0.X;W sub

�00 ;k /m; H0.S;W sub
�00 ;k /m; H1.X;W sub

�0 ;k /m; 0

prQ Š

h

h

prQ Š prQ Š prQ

The first three vertical maps are isomorphisms with inverse d�1Q tr by Lemmas 7.4 and
7.5. We deduce that the rightmost vertical map above is an isomorphism with inverse
d�1Q tr. This proves the lemma in weight 	0. The general case then follows by a similar
argument using a reverse induction on t .

We are finally in a position to prove Theorem 7.2 in the general case.

Proof of Theorem 7.2
For each n� 1, let On WDO=$n. We have a commutative diagram:
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H0.X0.Q/;W
sub
�;k/m H0.X0.Q/;W

sub
�;On

/m H0.X0.Q/;W
sub
�;On�1

/m H1.X0.Q/;W
sub
�;k/m

H0.X;W sub
�;k/m; H0.X;W sub

�;On
/m; H0.X;W sub

�;On�1
/m; H1.X;W sub

�;k/m;

prQ Š prQ prQ prQ Š

$

$

The vertical maps on the ends are isomorphisms by Lemmas 7.4 and 7.6. By induction
on n and the five lemma, we deduce that the map

prQ ı i WH
0.X;W sub

�;On
/m;!H 0

�
X0.Q/;W

sub
�;On

�
m

is an isomorphism for all n. This shows that the map of Theorem 7.2 is an isomor-
phism after passing to $n-torsion, for any n. The result follows.

7.2. The balanced property
In this section we assume that 	D .a; 2/ is a limit of discrete series weight, where
p > a � 2. Let � be a quotient of �Q WD

Q
x2Q.Z=x/

�, and let X�.Q/! X0.Q/

denote the corresponding subcover of X1.Q/! X0.Q/. If L is a vector bundle on
X�.Q/, then we define

Hi
�
X�.Q/;L

�
WDH i

�
X�.Q/;

�
!3˝L_.�1/

�
K=O

�_
for all i . Note that !3.�1/ is the dualizing sheaf on X�.Q/.

We now take LD !.1; 3� a/, so that !3˝L_.�1/Š !.a; 2/.�1/. Here we
use our bound p > a� 2 to deduce that there is an equality .Syma�2/_ ' Syma�2˝

det2�a as O-modules. Thus, T�.Q/ acts on H0.X�.Q/;!.1; 3� a//. We fix a non-
Eisenstein maximal ideal m of T�.Q/. We will need the following assumption.

Assumption 7.7
The space H 2.X�.Q/;!.a; 2/.�1/k/m is trivial.

There is a slight abuse of notation here in that T�.Q/ does not act onH 2.X�.Q/;

!.a; 2/k/. The localization at m refers to the localization at the corresponding maxi-
mal ideal of the polynomial ring over O generated by the Hecke operators.

Remark 7.8
We note that if p � a � 4, then the assumption above holds, even before localization
at m, by Theorem 5.1.

LEMMA 7.9
Suppose that Assumption 7.7 holds. ThenH1.X�.Q/;!.1; 3�a//m is p-torsion free.
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Proof
The claim is equivalent to the divisibility of H 1.X�.Q/;!.a; 2/.�1/K=O/m. Since
X�.Q/ is flat over O, there is an exact sequence

0! !.a; 2/.�1/k! !.a; 2/.�1/K=O
$
! !.a; 2/.�1/K=O! 0:

Taking cohomology, this reduces to the claim thatH 2.X�.Q/;!.a; 2/.�1/k/m van-
ishes.

The following lemma uses only the assumption that m is non-Eisenstein: it holds
in all weights and in all prime-to-p levels. We just state it in the case we need.

LEMMA 7.10
The map

H i
�
X0.Q/;!.a; 2/.�1/

�
m
˝K �!H i

�
X0.Q/;!.a; 2/

�
m
˝K

is an isomorphism for all i .

Proof
Let @X denote the boundary of X0.Q/. It suffices to show that the boundary coho-
mology

H i
�
@X;!.a; 2/

�
m
˝K

vanishes for all i . However, over C the cohomology of the boundary is computed by
the nerve spectral sequence (see [40, (3.2.4)])

E
r;s
1 D

M
r.R/DrC1

E
r;s
1 .R/ H) H rCs

�
@X;!.a; 2/C

�
:

Here R is a Q-parabolic of G and r.R/ is its parabolic rank. By [40, Corollary 3.2.9],
and freely using the notation of this article, the space E1.R/r;s is the space of K-
invariants in

IndG.A
1/

R.A1/

M
i�0;w2WR;p

IR
� eH s�i�`.w/

�
X.Gh;R/;V�.h;w/

�
˝H i

�
X.G`;R/;eV�.`;w/��:

If R D… is the Klingen parabolic, then Gh;R D GSp2 D GL2 and G`;R D GL1. If
R is the Siegel parabolic or the Borel subgroup, then Gh;R is trivial and G`;R D LR
is the Levi component of R (and hence is either GL2 � GL1 or GL31). In all cases,
V�.h;w/ is the canonical extension of an automorphic vector bundle on the Shimura
variety X.Gh/ and eV�.`;w/ is a local system on X.G`/ associated to an algebraic
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representation of G`. See [39, (3.6.1)] for the highest weight formulas. The functor
IR is an intermediate induction defined in [40, (3.2.8)].

Since each of the groups Gh and G` are products of copies of GL2 and GL1,
we see that to any Hecke eigenclass in any H i .@X;!.a; 2/C/, we can associate a
compatible system of reducible GSp4-valued l-adic representations of GQ. Since the
ideal m is non-Eisenstein, it follows thatH i .@X;!.a; 2//m˝K D 0, as required.

We come to the main result of this section.

THEOREM 7.11
Let � be a quotient of �Q which is of p-power order. As above, let 	D .a; 2/ with
p�2 > a, and let m be a non-Eisenstein ideal of T�.Q/. Suppose that Assumption 7.7
holds. Then the OŒ��-module

H0
�
X�.Q/;!.1; 3� a/

�
m
DH 0

�
X�.Q/;!.a; 2/.�1/K=O

�_
m

is balanced in the sense of Definition 3.2.

Proof
The argument proceeds exactly as in the proof of [16, Proposition 3.8]. If we let
M DH0.X�.Q/;!.1; 3� a//m and S DOŒ��, then the defect dS .M/ is given by

dS .M/D r � dimk TorS1 .M;O/=$;

where r is the O-rank of M�. Thus we need to show that r � dimk TorS1 .M;O/=$ .
Let LD !.1; 3� a/. Applying Pontryagin duality to the Hochschild–Serre spec-

tral sequence, we get a spectral sequence

TorSi
�
Hj
�
X�.Q/;L

�
m
;O
�
H) HiCj

�
X0.Q/;L

�
m
:

This spectral sequence tells us that
(1) M�

�
!H0.X0.Q/;L/m, and

(2) we have a short exact sequence�
H1
�
X�.Q/;L

�
m

�
�
�!H1

�
X0.Q/;L

�
m
�! TorS1 .M;O/�! 0:

To prove that dS .M/� 0, it follows from the second point that it is sufficient to show
that H1.X0.Q/;L/m is free of rank at most r over O. Lemma 7.9 tells us that this
space is p-torsion free. Passing to characteristic 0 and using the first point, we are
therefore reduced to establishing the inequality

dimKH1
�
X0.Q/;L

�
m
˝K � dimKH0

�
X0.Q/;L

�
m
˝K:



54 CALEGARI and GERAGHTY

In other words, we need to show that

dimKH
1
�
X0.Q/;!.a; 2/.�1/

�
m
˝K

� dimKH
0
�
X0.Q/;!.a; 2/.�1/

�
m
˝K:

By Lemma 7.10, we are reduced to showing that

dimKH
1�
X0.Q/;!.a; 2/

�
m
˝K � dimKH

0�
X0.Q/;!.a; 2/

�
m
˝K;

where H
i

denotes the interior cohomology (the image of H i .!.a; b/.�1// in
H i .!.a; b//).

As recalled in Theorem 5.2, the interior cohomology can be computed in terms
of square-integrable automorphic forms on G. By Remark 5.10, the cohomology of
!.a; b/ agrees with that of W� Š V� , where 	D .a; bI3�a� b/D .a; 2I1�a/ and

 D .�2;�aI4� a/. Theorem 5.2 then implies that

H
i�
X0.Q/;!.a; 2/C

�
�

M
	2A.2/.G/

�
.�1/K0.Q/˝H i .LieP�;KhI�1˝ V� /

�˚m.2/.	/;
where m.2/.�/ denotes the multiplicity of � in A.2/.G/. Fix a degree i 2 ¹0; 1º,
and let � 2A.2/.G/ be such that � contributes to H i .X0.Q/;!.a; 2//m ˝C under
the above inclusion (for some embedding K ,!C). Let e� denote the transfer of � to
GL4.A/ under the Classification Theorem of [3]. Then, by Remark 5.12, the infinites-
imal character of e�1 is �.0;0�.a�1/;�.a�1//C3=2.1;1;1;1/. Let �	 denote the central
character of � .

The representation e� falls into one of six classes (a)–(f ) given in [3, Section 5].
We show now that we can rule out all classes other than class (a). In cases (e) and
(f ), e� is an isobaric sum of idèle class characters. In case (d), e� is of the form
�j � j1=2 � �j � j�1=2 � 	 where � is an idèle class character and 	 is a cuspidal
automorphic representation of GL2.A/ such that its central character �� satisfies
�� D �

2 D �	 . Considering the infinitesimal character of e�1, we see that we must
have a D 2 and 	 must correspond to a classical modular eigenform of weight 2.
In case (c), there is a cuspidal automorphic representation 	 of orthogonal type of
GL2.A/ such that e� D 	j � j1=2�	j � j�1=2. Being of orthogonal type means that 	 is
induced from a quadratic extension of Q. In case (b), e� D 	1 � 	2, where the 	i ’s
are distinct cuspidal automorphic representations of GL2.A/ with ��1 D ��2 D �	 .
Considering the infinitesimal character of e�1 and the fact that the 	i ’s have the
same central character, it follows that the 	i ’s are both associated to classical modu-
lar eigenforms of weight a. Thus, in all cases (b)–(f ), we can associate a compatible



MINIMAL MODULARITY LIFTING 55

family of reducible l -adic Galois representations to e� . This contradicts the fact that
m is non-Eisenstein.

The only remaining case is case (a) where e� is a cuspidal automorphic repre-
sentation of GL4.A/ that is �	 -self dual. By Clozel’s purity lemma (see [19, Lemme
4.9]), e�1 is essentially tempered. (We thank Olivier Taïbi for pointing this out to us.)
It follows that �1 is also essentially tempered, since its L-parameter is essentially
bounded. Then by Theorem 5.6(3), �1 is the limit of discrete series representation
�.�;Ci /, where �D .a� 1; 0I4� a/. Furthermore, by Wallach [55, Theorem 2.3], it
follows that � is cuspidal.

By Theorem 5.2(1), the cuspidal cohomology H i
cusp;� maps injectively to the

interior cohomology

H
i�
X0.Q/;!.a; 2/C

�
cusp

Š
M

	2A0.G/

�
.�1/K0.Q/˝H i .LieP�;KhI�1˝ V� /

�˚m0.	/;
where m0.�/ is the multiplicity of � in A0.G/. Thus, at this point, we can prove that
the dimensions

dimKH
j �
X0.Q/;!.a; 2/

�
m
˝K

are equal for j D 0; 1 if we can establish that
(1) the spacesH j .LieP�;KhI�.�;Cj /˝V� / have the same dimension for j D

0; 1;
(2) the representation � 0 D �1˝ �.�;C1�i / also lies in A.2/.G/;
(3) the multiplicities m0.�/, m.2/.�/, m0.� 0/, and m.2/.� 0/ are all equal.
The first point follows from [37, Theorem 3.4] which says that both spaces are 1-
dimensional. The second point follows from [3]. Indeed, since �.�;Ci / is essentially
tempered, the local packet… 1 (where  De��1, in the notation of [3]) is in fact an
L-packet by [55, Theorem 2.1]. Furthermore, it consists of the pair of representations
¹�.�;C0/;�.�;C1/º (see [55, Section 3.1]). Since the group S is trivial in Case
(a) of [3], it then follows from part (ii) of [3, Classification Theorem] that � 0 is also
automorphic. Finally, for the third point, the theorem of Wallach quoted above implies
that � and � 0 are both cuspidal. Part (iii) of [3, Classification Theorem] then implies
that each of the multiplicities in point (3) is 1. We have thus shown that

dimKH
1
�
X0.Q/;!.a; 2/.�1/

�
m
˝K

D dimKH
0
�
X0.Q/;!.a; 2/.�1/

�
m
˝K;

as required.
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8. q-expansions of Siegel modular forms
As in Section 5.2, let S and Q be finite sets of primes of Q which are disjoint and
do not contain p. We allow the possibility that Q D ;. We let K and Ki .Q/ be
open compact subgroups of GSp4.A

1/ as in Section 5.2, and we let X D XK and
Xi .Q/ D XKi .Q/ be the corresponding Siegel 3-folds, with open subspaces Y and
Yi .Q/, all defined over O.

8.1. q-expansions of Siegel modular forms
(For more background and details on the results quoted in this section, see [67, Sec-
tion 3.1].) Recall that Y1.Q/ has good reduction at p. Let R be an O-module (we
will exclusively be interested in the case when either R D O=$n for some n, or
when R D K=O). Let 
 D .j; k/ 2 X�.T /CM be a weight, and associate to 
 the
representation

U D
�
Symj�k.O2/˝O det.O2/˝k

�
˝O R

of GL2 over R. Associated to 
 , we also have the vector bundle W� D !.j; k/. There
is a q-expansion map

H 0
�
Y1.Q/;!.j; k/R

�
!RŒŒq; q0; ���Œ��1�˝R U:

THEOREM 8.1
The q-expansion map is injective.

Proof
This is a standard fact (see, e.g., [67, Proposition 3.2]).

8.2. Explicit formulas
Let L be the product of the primes in S and Q, so that X1.Q/ has good reduc-
tion outside L. Let R be a Zp-module and thus a ZŒ1=L�-algebra. Any F 2

H 0.X1.Q/;W�;R/ has a “q-expansion”

F D
X
X

a.F;Q/qQ;

where X denotes the 2 � 2 positive semidefinite matrices which take on ZŒ1=L�-
integral arguments for integral vectors, or equivalently,

X D

�
m 1

2
r

1
2
r n

�
; m;n; r 2 ZŒ1=L�:

The set X is naturally a subset of M2.Q/. The group GL2.Q/ acts on M2.Q/ by the
formula
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M:Q WD .detM/�1MQM T ;

where the right-hand side is multiplication. We may naturally extend the definition
of a.F;Q/ for Q 2M2.Q/ by setting a.F;Q/ D 0 for all Q not in X. In any q-
expansion, the coefficients a.F;Q/ will also vanish unless the denominators occur-
ring in Q are bounded by some fixed power of L which depends only on the level
structure. (Since our arguments in this section are all p-adic, there is little harm in
imagining that LD 1.) Let V DO2 be the standard representation of SL2.Z/ over O.
The elements a.F;Q/ are elements of the representation U , where, if 
 has weight
.j; k/, then

U D Symj�k.V /˝R:

Let � W SL2.Z/! GL.U / denote the corresponding representation. The representa-
tion � extends to a homomorphism from M2.Z/ to End.U / over R which we denote
by �, where once more � depends only on j � k and (more relevantly) preserves
integrality. We may write the q-expansion of a form F as

F D
X
n;m�0

r2�4mn	0

aF .n; r;m/q
n�rq0

m
;

where aF .n; r;m/D a.F;Q/ satisfies, for M 2 � � SL2.Z/, the equality

a.F;M:Q/D �.M/a.F;Q/:

Here � is the congruence subgroup of SL2.Z/ defined in [67, p. 807]; since we are
working at spherical level at p, the group � has level prime to p. (It will do the reader
little harm to pretend that � is just SL2.Z/.)

Remark 8.2
We will assume that either j � 4 or j D k D 2. Since we are most interested in
representations with similitude character � equal to �jCk�3, the oddness condition
forces the congruence j � k mod 2, and so if j > k � 2, then j � 4. In cases (com-
ing from Taylor–Wiles primes) where there is nontrivial Nebentypus character at the
auxiliary primes q j Q, we may twist (at the cost of increasing the level at Q) to
force the Nebentypus character to be trivial. The only change this has is to make the
q-expansions below less unpleasant—the addition of a Nebentypus character only
introduces a notational difficulty. We note, however, that with nontrivial Nebentypus
character the case of weight .j; k/D .3; 2/ is possible, but our arguments would not
cover this case.
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8.3. Hecke operators at p
Since we will exclusively be interested in Hecke operators at p, we drop the subscript
p from the notation. Similarly, we drop the subscript 1, and so Tp;1 and Up;1 are
denoted T and U , whereas Tp;2 and Up;2 are denoted T2 and U2, respectively. One
has the following explicit description of the Hecke operator T .

LEMMA 8.3
In weight 
 D .j; k/ there is an identity of formal operators T D U C pk�2Z C
pkCj�3V , where U , Z, and V preserve formal integral q-expansions, and such that
the following identities hold:

a.UF;Q/D a.F;pQ/;

a.ZF;Q/D
X
S

�.M/a.F;M�1:Q/:

Here S denotes (any) set of representatives in M2.Z/ for the left coset decomposition
of

�

�
p 0

0 1

�
�:

Moreover, a.F;S�1Q/D 0 unless S�1Q is a p-integral binary quadratic form.

Note that the coset decomposition of �
�
p 0
0 1

�
� for a congruence subgroup �

prime to p is essentially the same as the coset decomposition of SL2.Z/
�
p 0
0 1

�
SL2.Z/.

These formulas are well known (see, e.g., [18, Proposition 10.2]). To compare our
formula with [18], note that we have normalized the matrices in S to be integral of
determinant p, and absorbed the action of the determinant into the coefficient (since
we are concerned here with issues of p-integrality). We have a similar description of
T2 which can be obtained by a laborious computation (following the arguments of [2,
Sections 3.2 and 3.3]).

LEMMA 8.4
In weight 
 D .j; k/ there is an identity of formal operators T2 D pkCj�6U2 C
pk�3Z2Cp

2kCj�6V2, where U2,Z2, and V2 preserve formal integral q-expansions,
and the following identities hold:

a.Z2F;Q/D
X
S

�.M/a.F;M�1:pQ/;

where S is as in the description of Z in Lemma 8.3. If Q 6� 0 mod p, then
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a.U2F;Q/D
�
�1C p

�det.Q/

p

��
a.Q/

D
�
�1C p

�r2 � 4mn
p

��
a.Q/:

If Q� 0 mod p, then

a.U2F;Q/D .�1C p
2/a.Q/:

For those wanting a more explicit description, note that in weight .k; k/ we have
the possibly more familiar identities

a.ZF;n; r;m/D a.pn; r;m=p/C
X

0	˛<p

a
�
.nC ˛r C ˛2m/=p; r C 2m˛;pm

�
;

a.Z2F;n; r;m/D a.p
2n;pr;m/C

X
0	˛<p

a
�
.nC ˛r C ˛2m/;p.r C 2m˛/;p2m

�
:

Note also that there is a formal identity Z2 DUZ.

Definition 8.5
Let X2 denote the formal operator on q-expansions such that

U2 D�1C p �X2:

Explicitly, if Q 6� 0 mod p, then a.X2F;Q/D a.F;Q/ times .D=p/, where D is
the determinant of the quadratic form associated to Q, and .D=p/ is the Legendre
symbol. If Q � 0 mod p, then a.X2F;Q/ D pa.F;Q/. In all cases, we see that
a.X2F;Q/D .D=p/a.F;Q/ mod p.

LEMMA 8.6
Over k DO=$ , we have Z2X2 D 0.

Proof
We have a.X2F;Q/D 0 if det.Q/� 0 mod p, but a.Z2F;Q/ is a sum over terms
of the form a.F;R/ with det.R/D 0.

Definition 8.7
A binary quadratic form Q is p-primitive if it is not of the form pR for a p-integral
form R.

8.4. Hecke operators on forms in characteristic p
Let Q2 D .p � T2C .pC p

3/S/p2�k .
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LEMMA 8.8
There is an action of T and Q2 on H 0.X1.Q/;!.j; k/K=O/ which commutes with
the other Hecke operators and acts on q-expansions via the above formula.

Proof
The argument is very similar to [35, Proposition 4.1]. It suffices to prove the result
with coefficients in O=$m. The natural approach to defining these operators is using
correspondences, as for modular curves. There are two issues which arise. The first is
that the projection maps from the Siegel modular varieties with appropriate parahoric
level structures are not finite overX . The second is that the definition involving corre-
spondences is some power of p times the actual Hecke operator of interest. A general
approach to resolving these questions has been recently found by Pilloni [56], who
constructs all the operators used in this paper. More importantly, his method also
allows one to give an action of these operators on higher coherent cohomology as
well. We use a more pedestrian approach. We can resolve the normalization issue by
using the q-expansion principle. The first issue is more subtle. The geometric maps
involved are certainly proper; the failure of finiteness is thus a failure of quasifinite-
ness. The source of quasifiniteness arises from the fact that the kernel of Frobenius of
an abelian surface A could (for example) equal ˛p � ˛p , which contains “too many”
subgroup schemes of type ˛p . On the other hand, this issue does not arise over the
ordinary locus nor over the larger almost ordinary locus consisting of abelian surfaces
(those with p rank at least 1) where subgroup schemes such as ˛p �˛p cannot occur.
This shows how to resolve the issue by the following ad hoc method. By Hartogs’s
lemma, it suffices to construct T over the global sections of a subvariety X 0 � X
whose complement has codimension at least 2. In particular, we may replaceX by the
moduli space of almost ordinary abelian surfaces for which the corresponding maps
are indeed finite. Implicit in this argument is a verification that the formulas above
(in Lemmas 8.3 and 8.4) preserve integrality—for Q2 this is verified in Lemma 8.12
below.

Note that this argument is not sufficient to construct these operators on

H 1
�
X1.Q/;!.j; k/K=O

�
I

however, we have no need to the consider the action of Hecke operators at p on these
spaces.

We also need to use various properties of theta operators. We begin by recalling
their basic properties.
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PROPOSITION 8.9
Let p > 3, let j � 2� k � 2, and let p � 2 > j � k.
(1) There is a map

‚ WH 0
�
X1.Q/;!.k; k/O=$m

�
!H 0

�
X1.Q/;!.kC pC 1; kC pC 1/O=$m

�
whose action on q-expansions is given by

‚
X

aQq
Q D

X
det.Q/aQq

Q:

(2) There is a map

�1 WH
0
�
X1.Q/;!.j; k/O=$m

�
!H 0

�
X1.Q/;!.j C p � 1; kC pC 1/O=$m

�
whose action on q-expansions is given by

�1
X

aQq
Q D

X
det.Q/con.aQ ˝Q/q

Q;

where con W Symj�k˝Sym2! Symj�k�2 is the natural SL2.Z/-equivariant
projection.

Proof
The operator ‚ is defined in [75, Proposition 3.9], and the operator �1 is defined in
[75, Proposition 3.12].

(Some of these maps were also considered in [27]). The main results we need
concerning these operators are given by the next two theorems.

THEOREM 8.10
Let p > 3, let pC 1� k, and assume that p � k.2k � 1/—so in particular k D 2 and
k D pC 1 are admissible values of k. Then the map

‚ WH 0
�
X1.Q/;!.k; k/O=$m

�
!H 0

�
X1.Q/;!.kC pC 1; kC pC 1/O=$m

�
is injective. In particular, if ‚F D 0, then we must have F D 0.

Proof
We may immediately reduce to the case m D 1 and O=$ D k. Suppose that F
lies in the kernel, so ‚F D 0. After possibly replacing .k; k/ by .k � .p � 1/;



62 CALEGARI and GERAGHTY

k � .p � 1//, we may assume that F is not divisible by the Hasse invariant. Fol-
lowing [75, Theorem 4.7], it suffices to show that F is not zero on the superspecial
locus if it is not divisible by the Hasse invariant. Hence F has nontrivial specializa-
tion to the p-rank 1 strata. The supersingular locus on this strata is a Cartier divisor
cut out by a section of !.p

2�1/=2 for p > 2, so since 2k < p2 � 1 (for p > 3), the
restriction of F is nonzero on the supersingular locus. (That the supersingular locus
is a Cartier divisor inside the p-rank 1 locus when p > 2 was proved by Koblitz [50,
p. 193]. The exact order of vanishing can also be found in [70, Theorem 2.4].) Finally,
each irreducible component of the supersingular locus is a copy of P1 with p2 C 1
superspecial points on it. Moreover, the line bundle ! restricts to O.p � 1/ on each
of these P1’s. Hence the restriction to the superspecial points is injective as long has
k.p � 1/� p2C 1, which holds for k � pC 1.

We also require a related result for nonparallel weight.

THEOREM 8.11
Let p � 1 > j � 4. The map

�1 WH
0
�
X1.Q/;!.j; 2/O=$m

�
!H 0

�
X1.Q/;!.j C p � 1;pC 3/O=$m

�
is injective.

Proof
It suffices to work over k D O=$ . Suppose that �1F D 0, and suppose that F is
nonzero after restriction to the superspecial locus. Then the result follows directly
from [75, Theorem 3.20]. As stated, the result does not apply in weight .6; 2/,
although the same argument works in this weight, provided that one may assume (in
the notation of [75, Theorem 3.20]) that F2jX ¤ 0, which can be achieved under the
action of � � SL2.Z/ for j < p � 1, since the level of � is prime to p and so sur-
jects onto SL2.Fp/. The corresponding representation of SL2.Fp/ is irreducible, and
thus there exists an element which applied to F has Fi jX ¤ 0 for any fixed choice
of i . Hence it remains to show that the restriction of F to the superspecial locus
is nonzero. Let X D X1.Q/, and denote the rank 1 strata (resp., the supersingular
locus, the superspecial locus) by Y , Z, and S , respectively. We are assuming that the
restriction of F to Y is nonzero. Suppose that the restriction of F to Z is zero. There
is an exact sequence

0!H 0
�
Y;!.j; 2/k ˝!

�m
�
!H 0

�
Y;!.j; 2/k

�
!H 0

�
Z;!.j; 2/k

�
;

where mD .p2 � 1/=2. If F restricts to zero, then we obtain a nonzero class in the
first group. Yet there is also a sequence
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H 0
�
X;!.j; 2/k ˝!

�m
�

!H 0
�
Y;!.j; 2/k ˝!

�m
�
!H 1

�
X;!.j; 2/k ˝!

�m�.p�1/
�
:

The first term vanishes. To see that the final term vanishes, we use the fact that Serre
duality shows that the last term is dual to

H 2
�
X;!.mC p;mC pC 2� j /k.�1/

�
;

which vanishes by Theorem 5.1. We now have to establish nonvanishing fromZ to S .
The restriction of the Hodge bundle to any P1 onZ is O.�1/˚O.p/. Hence we need
to show that no class in

H 0
�
P1;Symj�2

�
O.�1/˚O.p/

�
˝O

�
2.p � 1/

��
can vanish at p2C 1 points. This is valid as long as

jp � 2D .j � 2/pC 2.p � 1/� p2C 1;

which holds provided that j � p.

8.5. Relationship between Hecke eigenvalues and crystalline Frobenius
Suppose that F is a cuspidal eigenform of weight 
 D .j; k/ of level prime to p,
and let r W GQ ! GSp4.Qp/ be the associated Galois representation. One expects
(and knows in regular weights; see Theorem 6.13) that r is crystalline at p and that
crystalline Frobenius has eigenvalues which are the roots of the polynomial

X4 � �X3C
�
p	C .p3C p/pkCj�6

�
X2 � �pkCj�3X C p2kC2j�6;

where � is the eigenvalue of T and 	 is the eigenvalue of T2. We may write the
eigenvalues of this polynomial as

˛;ˇpk�2; ˇ�1pj�1; ˛�1pkCj�3;

where ˛ and ˇ have nonnegative p-adic valuation. That means that the coefficient of
crystalline Frobenius should have characteristic polynomial

X4 � .˛C � � � /C
�
˛ˇpk�2CO.pk�1/

�
X2C � � � :

On the other hand, we know that the coefficient of X2 should be

pk�2Q2 WD p � T2C .pC p
3/S;

where the operatorQ2 is defined by this formula. In particular, the eigenvalues of this
operator (Q2) should all be integral.
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LEMMA 8.12
Let 
 D .j; k/ with j � k � 2. If .j; k/¤ .2; 2/, then there is a congruence of opera-
tors on formal q-expansions

Q2 D
�
p � T2C .pC p

3/S
�
p2�k �Z2 mod p:

In particular, if F is an ordinary form of regular weight 
 with crystalline eigenvalues
as above, the eigenvalue ofZ2 is ˛ˇ mod p. If 
 D .2; 2/, then there is a congruence

Q2 D
�
p � T2C .pC p

3/S
�
p2�k �Z2CX2 mod p:

Proof
The operator S acts by a scalar which is equal to pjCk�6. Note that

p3 � pjCk�6 � p2�k � 0 mod p:

Thus we can ignore the p3S term above. We have�
p � T2C .pC p

3/S
�
p2�k

D p3�k.pjCk�6U2C p
k�3Z2C p

jC2k�6V2/C p
j�3 mod p

D pj�3U2CZ2C p
jCk�3V2C p

j�3 mod p

D�pj�3C pj�2X2CZ2C p
jCk�3V2C p

j�3 mod p

D pj�2X2CZ2 mod p;

and we are done.

8.6. The main theorem on q-expansions
Our main theorem is as follows (we use the notation of Section 6.4).

THEOREM 8.13
Let 
 D .j; 2/ for some p � 1 > j � 2. Assume that r is as in Assumption 6.16.
Assume, moreover, that

˛ˇ.˛2 � 1/.ˇ2 � 1/.˛ � ˇ/.˛2ˇ2 � 1/¤ 0:

Let m denote the corresponding ideal of the Hecke algebra away from p. LetA denote
a nontrivial power of the Hasse invariant of weight k. Then the composite map
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H 0.X1.Q/;!.j; 2/O=$m/
˛;ˇ
m

A

H 0.X1.Q/;!.j C k; 2C k/O=$m/m

	ˇ

H 0.X1.Q/;!.j C k; 2C k/O=$m/
ˇ
m

is injective, where �ˇ denotes the projection onto the summand where U � ˇ and
Q2 � ˛ˇ (equivalently, Z2 � ˛ˇ) are nilpotent.

Note that, by symmetry, the same result holds with ˇ replaced by ˛. Before begin-
ning the proof of this theorem, we first prove a much easier analogue for GL.2/.

LEMMA 8.14
LetX1.N / denote the modular curve, and let � WGQ!GL2.Fp/ be a modular repre-
sentation of level N and weight 1 over Fp such that �.Frobp/ has eigenvalues ˛ and
ˇ. Let m denote the corresponding ideal of the Hecke algebra away from p. Assume
that

˛ � ˇ¤ 0:

If A denotes a suitable power of the Hasse invariant of weight k, then the composite
map

H 0.X1.N /;!O=$m/m
A

H 0.X1.N /;!
kC1
O=$m

/m

	ˇ

H 0.X1.N /;!
kC1
O=$m

/
ˇ
m

is injective, where �ˇ denotes the projection onto the quotient of homology where
U � ˇ is nilpotent.

In both results, all of the corresponding maps are equivariant with respect to
Hecke operators away from p. It suffices to show that the image of the T-socle maps
injectively, and hence we may work with coefficients over a finite field k DO=$ of
characteristic p.

Proof of Lemma 8.14
Let M D H 0.X1.N /;!O=$m/m, and let N D H 0.X1.N /;!

kC1
O=$m

/m. The map
M !N is certainly injective, as can be seen by the q-expansion principle (the map
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is the identity on q-expansions). Let U denote the action of T on N . Then U satisfies
the polynomial U 2 � T U C hpi D 0 on the image of M , and so M lies inside the
ordinary subspace of N , and so inside N˛ ˚ Nˇ , where N� is the factor of N on
which .U � �/ is nilpotent. We have operators U and V defined by the formulas

U
�X

anq
n
�
D
X

anpq
n; V

�X
anq

n
�
D
X

anq
np;

and T D U C hpiV in weight 1, whereas T D U in higher weight. The projection
operator

�ˇ WN˛ ˚Nˇ !Nˇ

is given by �ˇ D .U � ˛/m for some integer m. Suppose that F 2 M satisfies
�ˇ .F / D 0. We have the identity UVF D F , and we may reduce to the case that
hpiF D ˛ˇF . We are assuming that F D F˛ 2N˛ . Let us write

.U � ˛/F˛ DG˛ H)UF˛ D ˛F˛ CG˛ H) ˛U�1F˛ D F˛ �U
�1G˛:

Note that U is invertible on N˛ . Since TF also lies in N˛ ˚Nˇ , we deduce that VF
lies in N˛ ˚ Nˇ . Yet UVF D F 2 Nˇ , and so VF 2 N˛ , and moreover hpiVF D
˛ˇU�1F˛ . It follows that

.T � ˛ � ˇ/F D .U � ˛/F˛ C
�
hpiV � ˇ

�
F˛

D .U � ˛/F˛ C ˛ˇU
�1F˛ � ˇF˛

D G˛ C ˇF˛ � ˇU
�1G˛ � ˇF˛

D G˛ � ˇU
�1G˛:

If G˛ ¤ 0, then the latter expression is nonzero, since applying U gives UG˛ � ˇG˛
and ˇ¤ ˛. On the other hand, G˛ is deeper in the filtration of N˛ given by

N˛ � .U � ˛/N˛ � .U � ˛/
2N˛ � � �

and hence, replacing F by .T � ˛ � ˇ/F sufficiently many times, we may assume
that G˛ D 0, that UF˛ D ˛F˛ , and that .T � ˛ � ˇ/F˛ D 0. We are thus left with a
form F such that

TF D .˛C ˇ/F; UF D ˛F; VF D ˇF:

We may now achieve a contradiction based purely on a computation with formal q-
expansions. For example, the identity VF D ˇF is impossible as soon as either ˇ¤ 1
or F is a cusp form, simply by considering the exponent of the smallest coefficient.
Alternatively, a nonformal argument using properties of modular forms would be to
note that �VF D 0, and then use the fact that � has no kernel in low weight (by
[45]).
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A different proof of this theorem is given in [16]; the point is that the proof
given here avoids any geometry. The proof below is somewhat in this spirit—using
some elementary reductions, we arrive, given an element of ker.�ˇ /, at a form F

which is simultaneously acted upon by a collection of formal operators in a very
constrained way. The identities we get are not quite enough to deduce that F D 0 as
formal q-expansions; however, they are enough to produce forms of low weight inside
the kernel of various theta operators, which will be enough to produce a contraction
by Theorems 8.11 and 8.10. No doubt (see Section 1.3) there will be better geometric
replacements for this argument, so we apologize in advance for the somewhat messy
approach that we present here.

As in the proof above, let use write

M DH 0
�
X1.Q/;!.j; 2/k

�
m
;

N DH 0
�
X1.Q/;!.j C k; 2C k/k

�
m
:

The map M !N is certainly injective, as can be seen by the q-expansion principle
(the map is the identity on q-expansions). By abuse of notation, we view M � N

under this map. Since ˛ˇ ¤ 0, the operator Q2 acts invertibly on M . Depending on
the weight 
 , the operator Q2 acts on M either as Z2 or as Z2CX2.

LEMMA 8.15
Assume that ˛ and ˇ are as in Theorem 8.13. Suppose that 
 D .j; 2/ with j > 2.
Then M DQ2M DZ2M , and M is a subspace of the submodule of N on which U
is invertible. If 
 D .2; 2/, then Z2 acts on N , the map M !Z2M is injective, and
Z2M �N is a subspace of the submodule of N on which U is invertible.

Proof
In the first case, by assumption we know thatQ2�˛ˇ is nilpotent, and soQ2 induces
an isomorphism ofM . On the other hand, the operatorQ2 acts via the formal operator
Z2. In weight � D .j C k; 2C k/, the corresponding operator Q2 also acts via Z2,
and so we deduce that Q2 � ˛ˇ acts on M � N and acts nilpotently. Yet Q2 only
acts invertibly on the ordinary part of N , as can be seen by lifting to characteristic 0.
Now let us consider the case of weight 
 D .2; 2/. We have

M DQ2M D .Z2CX2/M:

NowQ2 acts in weight N by Z2, so certainly Z2M �N . SinceQ2 acts by Z2CX2
on M , there is a commutative diagram
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M Z2M

Q2M Z2.Z2CX2/M DZ
2
2M

where (by Lemma 8.6) we use the fact that Z2X2 D 0. Since the left-hand side is
an isomorphism, it follows that Z22M DZ2M , and hence that Z2 acts invertibly on
Z2M , and as in the previous argument it follows that Z2 and hence U is invertible
on this space.

Hence it suffices to show that Z2F ¤ 0 for any F 2M . Suppose that Z2F D 0.
Then Q2F D Z2F C X2F D X2F . Since Q2F 2 M , we have X2F 2 M . Yet
then (again by Lemma 8.6) we have Q2

2F D .Z2 C X2/X2F D X
2
2F , and then

Q3
2F DX

3
2F DX2F , and so Q2F DX2F ¤ 0 is an eigenvector of Q2 with eigen-

value � satisfying �2 D 1. Yet the only generalized eigenvalue of Q2 is ˛ˇ, and by
assumption .˛ˇ/2 ¤ 1.

(Note that this is the point in this paper which uses the assumption .˛ˇ/2 ¤ 1
rather than the weaker claim ˛ˇ ¤ 1 which is sufficient for arguments on the Galois
side.)

LEMMA 8.16
The operator U.U � ˛/.U � ˇ/ acts nilpotently on N .

Proof
This follows by lifting to characteristic 0 and noting that the only possible unit crys-
talline eigenvalues of Frobenius of a lift of r are ˛ or ˇ modulo m.

LEMMA 8.17
Suppose that the composite �ˇ WZ2M !Nˇ is not injective.
(1) If .
/D .j; 2/ with j > 2, then there exists a nonzero form F D F˛ 2M \N˛

such that

UF D ˛F; TF D .˛C ˇ/F; ZF D ˇF:

(2) If .
/D .2; 2/, then there exists a nonzero form F D F˛ C F0 with F˛ 2N˛
and F0 2N0 such that

UF˛ D ˛F˛; TF D .˛C ˇ/F; X2F D ˛ˇF0:
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Proof
First note that TF D .U C Z/F 2 M , and that UF 2 N , so ZF 2 N . Assume
that 
 D .j; 2/ with j > 2. Note that Z2 commutes with U . Hence, after replacing
F 2 ker.�ˇ / by .Z2 � ˛ˇ/mF D .Q2 � ˛ˇ/mF for sufficiently large m, we may
assume that Z2F D ˛ˇF . The assumption �ˇ .F / D 0 implies that F D F˛ 2 N˛ .
Clearly UF 2 N˛ also, and so ZF D TF � UF 2 N˛ ˚Nˇ . Yet Z2 D UZ, so we
have

UZF D ˛ˇF˛)ZF D ˛ˇU�1F˛ 2N˛:

(There can be no component in Nˇ because U is invertible on that space.) Write
.U � ˛/F˛ DG˛ , so UF˛ �G˛ D ˛F˛ , or

˛U�1F˛ D F˛ �U
�1G˛:

We infer that

.T � ˛ � ˇ/F D .U CZ � ˛ � ˇ/F˛

D .U � ˛/F˛ C .Z � ˇ/F˛

D G˛ C ˇF˛ � ˇU
�1G˛ � ˇF˛

D G˛ � ˇU
�1G˛:

We claim that if G˛ ¤ 0, then the last expression is nonzero. This is because U acts
invertibly on N˛ , and applying U we get

U.G˛ � ˇU
�1G˛/D .U � ˛/G˛ C .˛ � ˇ/G˛;

where .U � ˛/G˛ has a smaller nilpotence level than G˛ , and .˛ � ˇ/ ¤ 0. In
particular, replacing F by .T � ˛ � ˇ/F , we may find more elements in M

which also lie in the kernel of �ˇ , and reduce to the case where UF˛ D ˛F˛

and Z2F˛ D UZF˛ D ˛ˇF˛ . However, in this case, we also see that ZF˛ D ˇF˛ ,
and the required equalities follow.

Now suppose that 
 D .2; 2/. Let us write �ˇ W Z2M � N˛ ˚ Nˇ ! Nˇ as
.U � ˛/m, and so .U � ˛/mZ2F D 0 for some F ¤ 0. Since Z2 formally commutes
with U , we also get

.U � ˛/m.Z22/F DZ2.U � ˛/
mZ2F D 0;

so Z2 preserves the property of Z2F lying in the kernel of �ˇ . But

Z2.Z2CX2/F DZ
2
2F;
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because Z2X2 D 0. Hence, if Z2F lies in the kernel of �ˇ , then so does

Z2Q2F DZ2.Z2CX2/F:

Hence we may repeatedly replace F by .Q2 � ˛ˇ/F D .Z2CX2 � ˛ˇ/F , and thus
replace F by a form such that Q2F D ˛ˇF and Z2F 2N˛ . Now, as above, we may
write

F D F˛ CF0 D .F˛; 0;F0/ 2N˛ ˚Nˇ ˚N0:

We are assuming that Q2F D ˛ˇF , and so

Q2F D .˛ˇF˛; 0; ˛ˇF0/:

Thus we deduce that X2F D .0; 0; ˛ˇF0/ and Z2F D .˛ˇF˛; 0; 0/. We once more
would like to use that T D U C Z implies that ZF 2 N . However, we no longer
know (or expect) that ZF is ordinary. However, since Z2 D UZ and ZF 2 N , we
certainly deduce that

ZF D .U�1˛ˇF˛; 0;G0/;

for some G0 in the kernel of U . Our arguments are similar to those used above. We
write .U � ˛/F˛ DG˛ , so UF˛ �G˛ D ˛F˛ , or

˛U�1F˛ D F˛ �U
�1G˛:

This implies that

G WD .T � ˛ � ˇ/F

D .U CZ � ˛ � ˇ/.F˛; 0;F0/

D .˛F˛ CG˛; 0; 0/C .ˇF˛ � ˇU
�1G˛; 0;G0/� .˛C ˇ/F

D
�
G˛ � ˇU

�1G˛; 0;G0 � .˛C ˇ/F0
�
:

The first term lies in a space where .U �˛/ is nilpotent, but it has a smaller nilpotence
level than F˛ by construction. Moreover, if it is equal to zero, then

0D U.G˛ � ˇU
�1G˛/D ˛G˛ CH˛ � ˇG˛;

where .U � ˛/G˛ D H˛ has yet a higher level of nilpotence. In particular, this
can equal zero only if either ˛ D ˇ or G˛ D 0. Since we are explicitly forbidding
the former, we may assume, by induction, that F˛ ¤ 0 is a U -eigenvector, and
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so

.T � ˛ � ˇ/F D
�
0; 0;G0 � .˛C ˇ/F0

�
:

This implies that Z2.T � ˛ � ˇ/F D 0, and thus (from the injectivity of Z2 in
Lemma 8.15) that .T � ˛�ˇ/F D 0, or that F is a T -eigenform. The required iden-
tities follow immediately upon writing F D F˛ C F0, where F is a T -eigenform,
UF˛ D ˛F˛ , and X2F D ˛ˇF0.

At this point, to prove Theorem 8.13, it suffices to show that there are no Siegel
modular forms which satisfy the above identities. For example, in weights 
 D .j; 2/
with j > 2, we would like to show that there is no form F which is an eigenform for
both T and U . We now examine what constraints these identities place on the Fourier
coefficients of F .

Remark 8.18 (Tripling)
A theme of [16], following previous work of Wiese [72], was to prove that certain
Galois representations were ordinary in two different ways by doubling, that is, map-
ping the form of low weight to forms of high weight in two different ways. This is
also our argument in weights .j; 2/ for j � 4. However, in weight .2; 2/, we see some
new phenomena. When we pass to weight .p C 1;p C 1/, we find that the image
of the space of low-weight forms generates (under the action of Hecke operators) a
space whose dimension has not only doubled, but has rather tripled. Moreover, this
space of oldforms contains nonzero elements in the kernel of Z2. What this must
mean is that, in weight .p C 1;p C 1/, any ordinary Galois representation coming
from weight .2; 2/ should have a nonordinary lift in weight .p C 1;p C 1/. This
phenomena does not happen for GL.2/, since forms of weight p which are ordinary
modulo p are ordinary in characteristic 0 by (boundary cases of ) Fontaine–Laffaille
theory. For GSp.4/, however, the Hodge–Tate weights in weight .p C 1;p C 1/
are Œ0;p � 1;p; 2p � 1�, which are well beyond the Fontaine–Laffaille range. One
might also ask what the exact relationship is between the tripling argument here
in weight .2; 2/ and the doubling version of [13] at Klingen level. For our pur-
poses, this would require proving that there exists a (Hecke equivariant away from
p) injection from our space of forms M at spherical level to a space of ordinary
forms (with respect to the operator denoted UKli;2 in [13]) at Klingen level also in
weight .2; 2/. While this should certainly be true, we have not attempted to prove
it.



72 CALEGARI and GERAGHTY

8.7. Binary quadratic forms

Definition 8.19
We define a set with multiplicities F .Q/ of equivalence classes of p-integral binary
quadratic forms as follows. For eachM 2 S (with S as defined in Lemma 8.3), we add
ŒP � to F .Q/ if and only if there exists a P 2 ŒP � such that QDM:P . In particular,
M contributes a class ŒP � if and only if ŒM�1:Q� is p-integral.

An easy lemma shows that F .Q/ depends only on ŒQ�. A binary quadratic form
defines a section of O.2/ on P1.Fp/, the latter of which is in natural bijection to S

(recall that S is the coset space of diag.1;p/ in � � SL2.Z/). We see that M�1:Q
is p-integral if and only if the corresponding quadratic form has a zero at the corre-
sponding point in P1.Fp/. In particular, F .Q/ is empty if Q does not represent zero.
Moreover, the cardinality of F .Q/ is given by the number of zeros of Q, and is thus
equal to 0, 1, or 2 if Q is p-primitive. (If Q is not p-primitive, then Q� 0 mod p
and F .Q/ has cardinality pC 1.)

The definition of F .Q/ is motivated by the following observation. There is an
identity

a.ZF;Q/D
X

ŒP 
2F .Q/

�.MP /a.F;P /;

where P 2 ŒP � is some (any) element in ŒP � such that MP :P DQ for MP 2 S .

LEMMA 8.20
If ŒP � 2 F .ŒQ�/, then ŒQ� 2 F .ŒP �/.

Proof
Replacing Q by g:Q for some g 2 � � SL2.Z/, we may assume that Q DM:P
where

M D

�
1 0

0 p

�
:

Yet then pM�1:QDM�1:QD P , and pM�1 2 S .

Let d.Q/ denote the discriminant of Q.

LEMMA 8.21
Suppose that Q is p-primitive. Let D D d.Q/. Then either
(1) .D=p/D�1, and F .ŒQ�/ is empty,
(2) .D=p/D 0, and F .ŒQ�/ has exactly one element, or
(3) .D=p/DC1, and F .ŒQ�/ has exactly two elements.
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Proof
This follows from the fact that a p-primitive form Q has exactly 0, 1, or 2 solutions
in P.Fp/, depending on whether .D=p/ is �1, 0, or 1, respectively. Note that (in the
final case) F .ŒQ�/ may consist of the same class with multiplicity 2. This happens,
for example, if .D=p/D 1 and the class number of D is 1.

In light of Lemma 8.17, to prove Theorem 8.13, it suffices to prove the following.

THEOREM 8.22
Suppose that F D

P
a.F;Q/qQ is a Siegel modular q-expansion of weight 
 D

.j; 2/ in characteristic p, where p � 1 > j .
(1) Let 
 D .j; 2/ with j � 4, and suppose that UF D ˛F and ZF D ˇF for

some ˛, ˇ with ˛ˇ.ˇ2 � 1/¤ 0. Then F D 0.
(2) Let 
 D .2; 2/, and suppose that F D F˛ C F0, where UF˛ D ˛F˛ , X2F D

˛ˇF0, and ZF D ˇF C ˛F0 for some ˛, ˇ with ˛ˇ.ˇ2 � 1/.˛2ˇ2 � 1/¤ 0.
Then F D 0.

Proof
We first prove that there exists a Q with det.Q/ 6� 0 mod p. In particular, in weight
.2; 2/, we may also assume that F0 D .˛ˇ/�1X2F D 0, and thus have the equalities

UF D ˛F; ZF D ˇF:

In fact, we may assume that these equalities hold in both cases, since we are assuming
that such an equality holds in the case of nonparallel weight. If a.F;pP /¤ 0, then,
since a.F;pP /D a.UF;P /D ˛ � a.F;P /, we have a.F;P /¤ 0. Hence, if F ¤ 0,
then there exists a p-primitive form Q with a.F;Q/¤ 0. Without loss of generality,
assume that Q is a p-primitive form of minimal discriminant with a.F;Q/¤ 0. By
Lemma 8.21, F .Q/ consists of a single class ŒP �. It follows that

a.F;P /D �.MQ/a.ZF;Q/D ˇ � �.MQ/a.F;Q/:

If P is not p-primitive, then P D pR for some R, and then a.F;R/¤ 0, contradict-
ing the minimality of Q (note that P and Q have the same discriminant). Hence P is
also p-primitive. Yet then F .P / consists of a single element, which must be ŒQ� by
Lemma 8.20. Yet then it follows that

ˇ2a.F;Q/D a.Z2F;Q/

D �.MP /a.ZF;P /
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D �.MQ/�.MP /a.F;Q/

D

´
0 j > 2;

a.F;Q/ j D 2:

Here we use that P DMQ:QDMQ:MP :P , and thus �.MQ:MP /D �.p � I / is the
identity in weight .2; 2/ and zero in higher weight. If j > 2, we are done, and if

 D .2; 2/, we are done since ˇ2 � 1¤ 0.

Remark 8.23
As an alternative to this argument, one could use an analogue of Theorem 8.10 to
show that the kernel of ‚ is trivial in low weight (but this would require formulating
and then proving such a theorem for nonparallel weight).

We may therefore assume that a.F;Q/¤ 0 for someQ of discriminantD prime
to p.

8.8. The case 
 D .2; 2/
Let us now assume that 
 D .2; 2/. The coefficient a.X2F;Q/ is equal to
.D=p/a.F;R/, where D D DQ is the discriminant of Q. Hence, since ZF D
ˇF C ˇ�1X2F , we deduce that, if .D=p/D�1, then

0D a.ZF;Q/D ˇa.F;Q/� ˇ�1a.F;Q/D .ˇ � ˇ�1/a.F;Q/:

Assuming that ˇ2 ¤ 1, we deduce that a.F;Q/D 0. It follows that the only Q with
a.F;Q/¤ 0 has D D det.Q/ satisfying .D=p/D 0; 1. In particular, the form

F �X2F 2M

lies in the kernel of ‚. Yet this implies that F �X2F is trivial by Theorem 8.10. But
this implies that Z2F D Z2X2F D 0, contradicting the injectivity of Z2 WM ! N

in Lemma 8.15.

8.9. The case 
 D .j; 2/ with j � 4
We may assume that a.F;Q/¤ 0, whereQ is p-primitive andD D d.Q/ is nonzero.
If .D=p/D�1, then a.ZF;Q/D 0, contradicting the nonvanishing of a.F;Q/ and
the identity ZF D ˇZ. Hence we may assume that .D=p/D 1. The action of � �
SL2.Z/ on binary quadratic forms of discriminant D has a finite orbit which may be
identified with a ray class group. The assumption onD implies thatQ has exactly two
zeros in P1.Fp/. For either of the zeros (say �), we may consider the corresponding
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quadratic form

P DM:Q WDMQM T � det.M/�1;

where M is a representative of an element in S corresponding to � . The class of P in
the class group does not depend on the choice of representative of M . The quadratic
form P also has two roots. We claim that, for one of those roots, there is a choice of
representative N for the element in S such that

N:P WDNPN T � det.N /�1 DQ; MN D

�
p 0

0 p

�
:

Indeed, if N D pM�1, then the corresponding identity is trivially satisfied. We may
view the process of applying Z dynamically as follows. The coefficient correspond-
ing to a quadratic form Q of discriminant D with .D=p/DC1 of ZF is given by
a sum �.MP /a.F;P /C �.MR/a.F;R/ for a pair of quadratic forms P and R also
of the same discriminant. The ray class group corresponding to Q is partitioned by
this process Q! ¹P;Rº into a finite number of cyclic orbits, on which this opera-
tion takes a binary quadratic form to its two nearest neighbors (if the orbit has fewer
than two elements, this pair of neighbors may have multiplicity). Let us now consider
the coefficient a.Z2F;Q/. This consists of two pairs of two terms coming from the
neighboring quadratic forms P and R, respectively. From the above, for each neigh-
bor P , there will be a term of the form

�.M/�.N /a.F;Q/D �.MN/a.F;Q/D 0;

where the identity �.MN/D 0 requires the assumption that j > k. Hence a.Z2F;Q/
will also be a sum of two terms coming from the quadratic forms of distance 2 away
from Q inside its cyclic orbit. Let us consider one orbit of size s. Then, we also see,
modifying Ms by an element of � if necessary, that

QDMsMs�1 : : :M1:QDAQA
t � det.A/�1;

where A DMsMs�1 : : :M1 2M2.Z/ has det.A/ D ps . Cycling the other way, we
deduce the following.

LEMMA 8.24
Suppose that F is a formal Siegel modular form of weight .j; 2/ which is an eigenform
of Z with eigenvalue ˇ. Suppose that Q has discriminant D with .D=p/D 1. Then
there exists an integer s > 0 such that

ˇsa.F;Q/D �.A/a.F;Q/C �.B/a.F;Q/

D Symj�2ŒA�a.F;Q/C Symj�2ŒB�a.F;Q/;
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where

AQAt D psQ; BQB t D psQ:

To briefly recap, at the beginning of the proof of Theorem 8.22, we proved that
we could assume that F had a nonzero coefficient a.F;Q/ where Q has nonzero
discriminant modulo p. If .D=p/D�1, then a.ZF;Q/D 0, which (withZF D ˇF )
would imply that F D 0. Hence we may assume that there is a nonzero coefficient
with .D=p/ D C1 (which we exploit below) and use the following proposition to
reach the final contradiction.

PROPOSITION 8.25
Suppose that F is a formal Siegel modular form of weight .j; 2/ modulo p which
is an eigenform of Z with eigenvalue ˇ such that ˇ ¤ 0, and suppose that p >
j � 2. Suppose that F has a nonzero coefficient a.F;Q/ where .D=p/ D 1. Then
�1F D 0.

Proof
The map �1 is induced from the contraction map

con W Symj�2˝ Sym2! Symj�4˝ det

(this is well defined integrally as long as p > j �2). In particular, we have the identity

a.�1Z
sF;Q/D con

�
Symj�2ŒA�a.F;Q/˝Q_

�
C con

�
Symj�2ŒB�a.F;Q/˝Q_

�
;

where con denotes the contraction map. We claim that con.Symj�2ŒA�x ˝Q_/ D

0 for any x 2 Symj�2V , where V D k2. Once we have this, we deduce that
ˇsa.�1F;Q/ D a.�1Z

sF;Q/ D 0, and since ˇ ¤ 0, we have a.�1F;Q/ D 0 and
�1F D 0.

While there is probably an easy coordinate-free way to prove the required claim,
it is also simple enough to do the computation explicitly by writing everything out in
terms of bases. Let us write down a standard basis ¹f1; f2º for V and a standard basis
¹e1; e2º for V _. To be explicit, we choose bases such that a form

QD

�
m 1

2
r

1
2
r n

�
gives rise to the element mf 21 C rf1f2 C nf

2
2 , and Q_ gives rise to me21 C re1e2 C

ne22 . With respect to this choice, the contraction map on Sym2˝ Sym2 (up to scalar)
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corresponds to sending e21f
2
2 and e22f

2
1 to �2 and e1f1e2f2 to 1, and sending all

other monomials to zero. As a consistency check, note that

con.Q˝Q_/D r2 � 4mnD�4det.Q/:

Similarly, the contraction mapping on Symj�2˝ Sym2 for p > j � 2 satisfies

con.f i1 f
j�2�i
2 ek1 e

2�k
2 /D 0 unless 2� i C k � j � 4:

The formula QDAQAt det.A/�1 continues to hold if we replace Q by M:QD
MQM t and A by MAM�1 for some invertibleM . In particular, we may replace A by
any integral conjugate. We consider two cases.
(1) A has a nonzero eigenvalue mod p. In this case (by Hensel’s lemma), the

matrix A has an eigenvalue over Zp , and a second eigenvalue which has valu-
ation s. In particular, after a change of basis, we may write

AD

�
u 0

0 0

�
mod ps;

Q D

�
m 1

2
r

1
2
r n

�
:

The conditions AQAt D det.A/Q and det.A/D ps imply that n� 0 mod ps

(multiply out and consider the bottom right entry), and thus thatQ_ Dme21C
re1e2 mod p. But now the image of A on k is generated by f1, and so the
image of Symj�2ŒA�x is given by f j�21 . But this forces the contraction after
tensoring with Q_ to be zero over k, because the only monomial which f j�21

contracts nontrivially with is e22 .
(2) A is nilpotent modulo p. If A is trivial modulo p, then there is nothing to

prove. On the other hand, if

A�

�
0 1

0 0

�
mod p;

then once again the image ofA is generated by f , and the conditionsAQAt D
det.A/Q and det.A/D ps imply once more that n� 0 mod p (multiply out
as above but now consider the top left entry), and the proof proceeds as in the
previous case.

This completes the proof of the proposition.

Combining Proposition 8.25 with Lemma 8.17 and Theorem 8.11, we obtain a
contradiction, and this completes the proof of Theorem 8.13.
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9. Modularity lifting
The following theorem is the main result of this paper.

THEOREM 9.1
Let r WGQ!GSp4.k/ be a continuous, odd, absolutely irreducible Galois represen-
tation. Suppose that �.r/D ��.a�1/, where p�1 > a � 2. Suppose that the following
hold:
(1) There exist units ˛ and ˇ in k such that

r jGp �

0BB@
�.˛/ 0 	 	

0 �.ˇ/ 	 	

0 0 �.r/ � �.ˇ�1/ 0

0 0 0 �.r/ � �.˛�1/

1CCA ;
and moreover .˛2 � 1/.ˇ2 � 1/.˛2ˇ2 � 1/.˛ � ˇ/¤ 0.

(2) Let S.r/ denote the set of primes of Q away from p at which r is ramified.
Then for each x 2 S.r/, the restriction r j Gx falls into one of the cases of
Assumption 4.3.

(3) .Big image/ The restriction r jGQ.�p/ has big image in the sense of Assump-
tion 4.1.

(4) The representation r is Katz modular of weight 
 WD .a; 2/ 2X�.T /CM in the
sense of Definition 6.15.

(5) (Neatness) The representation r satisfies Assumption 4.2.
We now introduce some notation. let K �GSp4.A

1/ be the compact open subgroup
defined as in the beginning of Section 6.3. Let X D XK , and for any set of primes
Q disjoint from S.r/ [ ¹pº, let Xi .Q/ D XKi .Q/. Let the Hecke algebras T� and
Tan
� .Q/ be as in Definition 5.13. The assumption that r is Katz modular implies that

there is a maximal ideal m; of T� associated to r . The pullback of m; to Tan
� .Q/ is

also denoted m;. We further assume the following.
(6) If Q satisfies Assumption 6.12(2), then

H 2
�
Xi .Q/;!.a; 2/.�1/k

�
m;
D ¹0º:

Let Rmin be the universal deformation ring classifying minimal deformations of
r in the sense of Definition 4.6 (with Q taken to be empty). Then the map

Rmin! T˛;ˇ�;m; ;

which classifies the minimal deformation of Theorem 6.17 (withQ taken to be empty),
is an isomorphism. Furthermore, the space
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H 0
�
X;!.a; 2/.�1/K=O

�˛;ˇ;_
m;

is a free T˛;ˇ�;m; -module.

Note that, for p � a � 4, hypothesis (6) holds by Theorem 5.1.

Proof
To prove the theorem, we apply Proposition 3.3 as follows:
(1) Take RDRmin and H DH 0.X;!.a; 2/.�1/K=O/

˛;ˇ;_
m; .

(2) Let q and the sets QN be as in Proposition 4.10.
(3) The ring R1 is the power series ring OŒŒx1; : : : ; xq�1��.
(4) For each N � 1, we define a surjection R1�R as follows. Let RQN denote

the universal deformation ring classifying deformations of r which are mini-
mal outside Q, in the sense of Definition 4.6. Choose any surjection R1 �
RQN (possible by Proposition 4.10), and let R1 � R be the composite of
this surjection with the natural map RQN �Rmin.
We define the moduleHN as follows. Let� be the unique quotient of�QN DQ
x2QN

.Z=x/� which is isomorphic to .Z=pNZ/q , and let X�.QN / !

X0.QN / be as in Section 7.2. Let mN be the ideal m � T� .QN / of Theo-
rem 7.2 when Q is taken to be QN . We then take

HN WDH
0
�
X�.QN /;!.a; 2/.�1/K=O

�˛;ˇ;_
mN

and we regard it as an R1-module via the surjection R1 � RQN chosen
above, and the classifying map RQN � T� .Q/

˛;ˇ
mN associated to the defor-

mation rQN of Theorem 6.17. The SN -module structure on HN is given by
choosing an identification �Š .Z=pNZ/q .

We need to check that, given these definitions, the conditions of Proposition 3.3 hold.
(a) The image of SN in EndO.HN / is contained in the image of R1 because

under the Galois representation rQN of Theorem 6.17, the image of an ele-
ment 
 2 Ix , for x a prime in QN , is conjugate to a matrix of the form
diag.1; 1; hui; hui/ where Artx.u/D 
 . This follows from [64, Corollary 3].

(b) We have

.HN /�N D
��
H 0

�
X�.QN /;!.a; 2/.�1/K=O

�˛;ˇ
mN

��N �_
DH 0

�
X0.QN /;!.a; 2/.�1/K=O

�˛;ˇ;_
mN

:

Combining this with the isomorphism of Theorem 7.2, we obtain an isomor-
phism:

 N W .HN /�N
�
�!H:
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(c) Finally, HN is finite and balanced over SN by Theorem 7.11.
We can thus apply Proposition 3.3, and we deduce that H is a finite free R-module.
Since the action of R on H factors through T˛;ˇ�;m; , the conclusions of Theorem 9.1
follow immediately.

Appendix. Bloch–Kato conjectures for automorphic motives

FRANK CALEGARI, DAVID GERAGHTY, and MICHAEL HARRIS

A.1. Introduction
Assume (for this paragraph only) the standard conjectures, and suppose that M is a
pure irreducible Grothendieck motive over Q with coefficients in (say) a totally real
field E . We make no assumption on the regularity or self-duality of M . According to
conjectures of Hasse–Weil, Langlands, Clozel, and others, one expects that the motive
M is automorphic, and corresponds to an algebraic cuspidal automorphic representa-
tion � for GL.n/=Q such that L.�; s/DL.M; s/. By a result of Jacquet and Shalika
[43, Proposition 3.6], the L-function

L.M �M_; s/DL.� � �_; s/

is meromorphic for Re.s/ > 0 and has a simple pole at s D 1. Let ad0.M/ be the pure
motive of weight 0 with coefficients in E such that ad0.M/˚E DM �M_. Then

L
�
ad0.M/; s

�
D
L.� � �_; s/

�.s/
;

and L.ad0.M/; 1/¤ 0 is finite. According to conjectures of Deligne and Bloch–Kato
[10], for any pure de Rham representation V , there is an equality

dimH 1
f .GQ; V /� dimH 0.GQ; V /D ordsD1L.V

�; s/:

In particular, if we take V D V � D ad0.M/, then we expect that H 1
f
.GQ; ad0.M//

should vanish. This is a special case of the more general fact thatH 1
f
.Q; V / should be

trivial for any p-adic representation V arising from a pure motiveM of weightw � 0.
One also conjectures that the value of L.ad0.M/; 1/, after normalization by some
suitable period should lie in Q�. Moreover, after equatingM with its étale realization
for some prime p, the normalized L-function should have the same valuation as the
order of a corresponding Selmer group H 1

f
.Q; ad0.M/˝Qp=Zp/.

No longer assuming any conjectures, suppose that M D ¹r�º is now a weakly
compatible system of n-dimensional irreducible Galois representations of GQ, and
suppose moreover that M is automorphic, that is, it corresponds to a cuspidal form
� for GL.n/=Q in a manner compatible with the local Langlands correspondence.
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Then, even without the standard conjectures, it makes sense to ask, for a p-adic rep-
resentation r WGQ!GLn.O/ coming fromM (for some finite extensionK=Qp with
ring of integers O), if the Selmer group

H 1
f

�
Q; ad0.r/˝K=O

�
is finite. Theorems of this kind were first proved for nD 2 by Flach [26], and they
are also closely related to modularity lifting theorems as proved by Taylor and Wiles
[66] and Wiles [73] (see in particular [24]). More precisely, the order of this group is
related to the order of a congruence ideal between modular forms. In this paper, we
prove versions of these results for modular abelian surfaces and (conditionally) com-
patible families of n-dimensional representations whose existence was only recently
proved to exist in [38]. The main theorem is the following.

THEOREM A.1
Let A=Q be a semistable modular abelian surface with End.A/D Z. Let p be a prime
such that
(1) p is sufficiently large with respect to some constant depending only on A;
(2) A is ordinary at p, and if ˛, ˇ are the unit root eigenvalues of Dcris.V /, then

.˛2 � 1/.ˇ2 � 1/.˛ � ˇ/.˛2ˇ2 � 1/ 6� 0 mod p:

Then

H 1
f

�
Q; asp0.r/˝Qp=Zp

�
D 0;

where asp0.r/ is the 10-dimensional adjoint representation of PGSp.4/. Moreover,
the set of primes p satisfying these conditions has density 1.

For the families of Galois representations constructed in [38], we prove the fol-
lowing result.

THEOREM A.2
Let � be a weight 0 regular algebraic cuspidal representation for GL.n/=F for a CM
field F and coefficients in E . Let � be a prime of OE dividing p, and let

r D r�.�/ WGF !GLn.O/

be a p-adic representation associated to � with determinant �n.1�n/=2. Assume the
following.
(1) The representation r jF.�p/ has enormous image in the sense of [16, Sec-

tion 9.2].
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(2) Let v¤ p be a prime at which � is ramified.
(a) �v is an unramified twist of the Steinberg representation.
(b) The representations r jGIv and r jGIv are unipotent. For a topologi-

cal generator 
v 2 Iv of tame inertia, r.
/ consists of a single block,
namely:

dim ker
�
r.
/� idn

�
D 1:

(3) We have that p is sufficiently large with respect to some constant depending
only on � .

Assume all of [16, Conjecture B] except assumption (4). Then the Selmer group
H 1
f
.F; ad0.r/˝K=O/ is trivial.

Note that [16, Conjecture B] consists of five parts. The first part concerns local-
global compatibility at v j p, which is still open. The second and third parts concern
local-global compatibility at finite v. Here there is work in characteristic 0 by Varma
[71], although arguments of this nature should also apply to the Galois represen-
tations constructed by Scholze [60], at least for modularity lifting purposes (since
for modularity lifting it is usually sufficient to have local-global compatibility up to
N -semisimplification). The fifth part is essentially addressed in [16], and also (in a
different and arguably superior manner) in [46]. Hence the main remaining issue is
local-global compatibility at `D p.

Unlike the case of Theorem A.1, we do not know whether Theorem A.2 applies
for infinitely many p. One reason is that we do not even know that the representations
r� are irreducible for sufficiently large p. Another is that we do not know whether r
is a minimal deformation of r at ramified primes v for sufficiently large p, although
this is predicted to hold by some generalization of Serre’s conjecture. One example to
which this does apply is to the Galois representations associated to symmetric powers
of non-CM elliptic curves E over F . (The conclusion of the theorem holds for F
if it holds for any extension F 0=F , and any symmetric power of E=F is potentially
modular over some CM extension F=F in this case by [1].) We deduce our theo-
rems from the modularity lifting results of [16], for which we assume familiarity. One
obstruction to directly applying the theorems of [16] is that the modularity results of
[16] require further unproved assumptions, namely, the vanishing of certain cohomol-
ogy groups outside a prescribed range. The main observation here is that vanishing in
these cases may be established for all sufficiently large p.

For automorphic representations for GL.n/, we require the extra assumption of
local-global compatibility at v j p, which is not yet known in full generality. Some
results along this line have very recently been announced in [1], although they are not
strong enough to give a completely unconditional proof of Theorem A.2. One prob-
lem is that [1, Theorem 4.5.1] requires the hypothesis that F contains an imaginary
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quadratic field in which p splits, which has to fail for a set of primes p of positive
density. It may be possible to give an unconditional version of Theorem A.2 under
some such assumption on p, although we do not pursue this here, in part because
we would still be unable to establish for a general � that condition (b) holds for
infinitely many p. (The nilpotent ideal of [60] and [1] would also be an annoying
complication.) Similarly, the assumption (a) that �v is a twist of the Steinberg repre-
sentation can (in principle) be weakened to the weaker assumption that �v is of the
form Spn1.�1/�Spn2.�2/ � � ��Spnk .�k/ for some partition nD

Pk
iD1 ni . The main

reason we do not do this is that it would require a more precise discussion of local-
global compatibility at v � p, and in particular a refinement of [16, Conjecture B].

A.2. Relation with special values of periods
The Bloch–Kato conjecture actually gives a more precise prediction of the exact order
of the Selmer group in terms of the value of the L-function divided by a certain
motivic period. One can think of this as two separate conjectures. The first is to show
that the normalization of L.1/ by a suitable period is indeed rational. The second
is to relate the corresponding p-adic valuation of this ratio to the order of a Selmer
group. Our method naturally relates the order of a Selmer group to a certain tangent
space. On the other hand, for most of the Galois representations we consider, it is not
known whether there exists a corresponding motive, and so it is not clear exactly what
it means to prove rationality. There are some formulations where one can establish
certain forms of rationality (or even integrality) with respect to periods defined in
terms of automorphic integrals (see, e.g., [5], [34], and also [69]). However, it is not
clear to the authors how these results exactly relate to the (sometimes conjectural)
motivic periods. An interesting test case is the following. Suppose that

� WGQ!GL2.C/

is an irreducible odd representation. According to the Artin conjecture (known in
this case; see [14], [15], [47]–[49]), one knows that � is modular of weight 1. If one
chooses a prime p, and supposes that � has a model over O, then the finiteness of the
Selmer groupH 1

f
.Q; ad0.�/˝K=O/ is a consequence of the finiteness of the p-class

group of Q.ker.�//. (The former is a quotient of the latter.) The methods of this paper
(following [16]) show that, at all primes p > 2 such that � is unramified, the Selmer
group H 1

f
.Q; ad0.�/˝K=O/ is detected by congruences between the modular form

f and other Katz modular forms of weight 1 which may not lift to characteristic 0.
In particular, there exist such congruences if and only if H 1

f
.Q; ad0.�/˝K=O/ is

nonzero. However, unlike in the case of higher weight modular forms, there does not
seem to be an a priori way to relate this to a normalization of the adjoint L-function
L.ad0.�/; 1/ (which in this case is an Artin L-function). The issue is that all such
constructions (following Hida [42]) proceed by understanding various pairings on the
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Betti cohomology of arithmetic groups in characteristic 0, whereas weight 1 Katz
modular forms only have an interpretation in terms of coherent cohomology. Even
in cases where one does have access to Betti cohomology, say for regular algebraic
cuspidal automorphic representations for GL.n/=F (even for GL.2/ over imaginary
quadratic fields F ), it is not so clear whether the cohomological pairings one can
define give the “correct” regulators or merely the regulators up to some finite multiple
related to the torsion classes in cohomology. Since we have nothing to say about how
to resolve these issues, we follow Wittgenstein’s dictum in [74, Section 7] and say no
more about them.

A.3. Vanishing theorems
The main idea of this present article is to note that the various vanishing theorems
which are required inputs for the method of [16] may be established at least for p
sufficiently large. This is not so useful for applications to modularity—if p is suf-
ficiently large, then any completion of the appropriate Hecke ring T at a maximal
ideal m of residue characteristic p will be formally smooth of dimension 1, and so
the only characteristic 0 representation that one can prove is modular is the represen-
tation one must assume is modular in the first place. However, with respect to Selmer
groups, this statement does have content—it says that these representations will have
no infinitesimal deformations.

A.3.1. Betti cohomology
Let F be an imaginary CM field of degree 2d . Let

l0 WD d
�
rank

�
SLn.C/

�
� rank

�
SUn.C/

��
D d.n� 1/;

2q0C l0 D d
�
dim

�
SLn.C/

�
� dim

�
SUn.C/

��
D d.n2 � 1/;

q0 D
d.n2 � n/

2
:

Fix a tempered cuspidal automorphic representation � for PGL.n/=F of weight 0
with coefficients in E . Let Y D Y.K/ be the corresponding arithmetic orbifold con-
sidered in [16, Section 9], where K is chosen to be maximal at all unramified primes
for � and Iwahori level Iwv for all ramified primes. Let T denote the (anemic) Hecke
algebra defined as the Z-subalgebra of

End
M
k;m

H k
�
Y.K/;Z=mZ

�
generated by Hecke endomorphisms T˛;i for i � n and ˛ which are units at primes
dividing the level (cf. [16, Definition 9.1]). For a prime v of OE , let

rv WGF !GLn.k/
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be the corresponding semisimple Galois representation, and let m denote the corre-
sponding maximal ideal of T.

LEMMA A.3
For all sufficiently large v, and O D OE;v , we have H i .Y;O=$k/m D 0 unless i 2
Œq0; : : : ; q0C l0�.

Proof
Assume otherwise. Pick a neat finite index subgroup K 0 � K , and a corresponding
Galois cover Y 0 D Y.K 0/! Y D Y.K/ where Y 0 is now a manifold. It follows that
H�.Y 0;Z/ is finitely generated, and thus H�.Y;ZŒ1=M�/ is also finitely generated
where M denotes the product of primes dividing ŒK WK 0�. We now assume that v has
residue characteristic prime to ŒK WK 0�. Since H�.Y;ZŒ1=M�/ is finitely generated,
the groups H�.Y;O/DH�.Y;ZŒ1=M�/˝O are torsion-free and of finite rank over
O for all i when O has sufficiently large residue characteristic. Moreover, there exist
only finitely many systems of eigenvalues which occur in H�.Y;R/. Assuming that
the result is false (and there are infinitely many v), we deduce that there exists an
eigenclass Œc� in H i .Y;OE / with i … Œq0; : : : ; q0 C l0� such that the action of T on
Œc� has support at m for infinitely many primes v of OE . By the Chinese remainder
theorem, the Hecke eigenvalues of Œc� coincide with those of � . We now show that Œc�
corresponds to an automorphic form … which must simultaneously be nontempered
and yet isomorphic to � , giving a contradiction. Eigenclasses in cohomology may
be realized by isobaric automorphic representations (see [28, Theorem 2.3]). Sup-
pose that Œc� corresponds to such an automorphic representation …. Because of the
degree where Œc� occurs, we deduce (from [11, Chapter II, Proposition 3.1] and [19,
Lemme 3.14]) that … is not tempered. Yet by strong multiplicity 1 (see [43]), there is
an isomorphism …' � .

For a more detailed discussion (in a more general setting) relating the cohomol-
ogy of local systems to tempered automorphic representations, see the proof of [1,
Theorem 2.4.9].

THEOREM A.4
Suppose that H i .Y;O=$n/m D 0 unless i 2 Œq0; : : : ; q0 C l0�. Let Q be a finite
collection of primes x such that r.Frobx/ has distinct eigenvalues and N.x/ � 1
mod p. Then

H i
�
Y1.Q/;O=$

n
�
m˛
D 0

for all i … Œq0; : : : ; q0C l0�, where
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(1) ˛D ¹˛xº is a choice of eigenvalues of r.Frobx/ for each x dividing Q;
(2) the localization takes place with respect to the Hecke algebra TQ consisting of

the Hecke operators prime to p and prime to the level together with Ux � ˛x
for all x 2Q.

In particular, the conclusions of this theorem apply for all sufficiently large p.

Proof
We first note that the assumption (of absolute irreducibility) on r ensures that the
cohomology of the boundary vanishes after localization at m. This is because the
cohomology of the boundary may be computed inductively from the cohomology of
Levi subgroups and then of GLni for ni < n (see, e.g., Section 3 and in particular
Proposition 3.3 of [17]), and so the corresponding Galois representations associated
to these classes are reducible.

By Poincaré duality (and the discussion above concerning the vanishing of the
boundary cohomology localized at m), it suffices to prove the result for i < q0. Let i
be the smallest integer for which the inequality is violated. Then, by the Hochschild–
Serre spectral sequence, we deduce that

H i
�
Y0.Q/; k

�
m˛
¤ 0:

As in [16, Section 9.4] (see also [46, Lemma 6.25(4)]), we deduce that H i .Y0.Q/;

k/m˛ 'H
i .Y; k/m. The result then follows by Lemma A.3.

The modularity lifting theorems of [16] are proved by constructing sets of so-
called Taylor–Wiles primes which have the property that imposing local conditions at
these primes annihilates (as much as possible) the dual Selmer group. The assumption
that rvjF.�p/ has enormous image implies that there exist arbitrarily many sets Q of
auxiliary Taylor–Wiles primes satisfying the hypothesis that r.Frobx/ has distinct
eigenvalues. In particular, Theorem A.4 serves as a replacement for Conjecture B(4)
of [16]. (For a different (and somewhat cleaner) treatment of Taylor–Wiles primes
using the enormous image hypothesis, see [46], which is also used in [1].)

A.3.2. Coherent cohomology
Let O denote the ring of integers in some finite extension of Qp . Let X denote a
toroidal compactification of a Siegel 3-fold Y of level prime to p over Spec O, and let
Z denote the minimal compactification. Let � WA! Y denote the universal abelian
variety, let E D ���

1
A=X

, let ! D det E , and, by abuse of notation, also let ! denote
the canonical extension of ! to X or the corresponding ample line bundle on Z. Fix
a cuspidal automorphic representation � for GSp.4/=Q corresponding to a modular
abelian surface A which we assume has endomorphism ring Z over Q, and hence to
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a cuspidal Siegel modular form of scalar weight 2. Let

rp WGQ!GSp4.Fp/

be the corresponding semisimple representation for each prime p. Let m denote the
corresponding maximal ideal of T.

LEMMA A.5
For all sufficiently large p, and any set Q of auxiliary primes, we have

H i .X;!2O=$n/mQ D 0

for i D 2 and 3, where mQ denotes the maximal ideal in the Hecke algebra where
operators at Q and p have been omitted.

Proof
This is a consequence of the proof of Theorem 7.11 above. We give a brief sketch
here of the idea: as in the proof of Lemma A.3, we otherwise deduce that there exists a
characteristic 0 form inH i .X;!2C/ giving rise to infinitely many of these classes. The
representation rp will be irreducible for all sufficiently large p (because EndQ.A/D

Z; see also the proof of Lemma A.7). If follows that the transfer of this form to
GL.4/ must be cuspidal and, moreover (by multiplicity 1), coincide with the transfer
of the representation coming from the holomorphic Siegel modular form. But such a
representation only contributes to cohomology in degrees 0 and 1.

LEMMA A.6
Suppose that H 2.X;!2

O=$n
/mQ D 0 for any set of auxiliary primes Q, as in the

statement of Lemma A.5. Suppose, moreover, that rp is absolutely irreducible. Then,
for i � 2,

H i
�
X1.Q/;!

2
O=$n

�
m˛
DH i

�
X0.Q/;!

2
O=$n

�
m˛
D 0;

whereQ is any collection of primes where r.Frobx/ has distinct eigenvalues,N.x/�
1 mod p, and ˛ D ¹˛xº is any collection of eigenvalues of �.Frobx/ for x dividing
Q. In particular, the conclusions of this theorem apply for all sufficiently large p.

Proof
A somewhat elaborate version of this result is proved in Lemmas 7.4 and 7.5 above.
Here, however, we use instead the modified treatment of Taylor–Wiles primes by
Khare and Thorne (cf. [46, Lemma 6.25]), as adapted for GSp.4/ in [13, Sections 2.4
and 7.9], which leads to a great simplification. By dévissage, we can reduce to the
case where the coefficients are a finite field k. To deduce vanishing for X1.Q/, we
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first use Serre duality to reduce the problem to vanishing of H i .X1.Q/;!.�1//m�˛
for i � 1. (Serre duality is only Hecke equivariant up to a twist by a power of the
cyclotomic character, which is recorded by the star.) Equivalently, it suffices to show
that, if i denotes the smallest integer such that H i .X1.Q/;!.�1//m�˛ is nonzero,
then H i .X;!.�1//mQ is also nonzero. By Hochschild–Serre applied to the map
X1.Q/!X0.Q/, it suffices to show that, if i denotes the smallest integer such that
H i .X0.Q/;!.�1//m�˛ is nonzero, then H i .X;!.�1//m�

Q
is also nonzero. The

result now follows as in the proof of [13, Proposition 7.9.8], which identifies these
groups for all i under the Taylor–Wiles hypothesis using [13, Lemmas 2.4.36 and
2.4.37].

A.4. Proofs
Let R denote the minimal deformation ring of r defined as follows:
(1) Coherent case:R is the minimal ordinary deformation ring denoted byRmin D

R; in [16, Section 4].
(2) Betti case: R is the minimal ordinary deformation ring corresponding to the

following conditions:
(a) If v is a prime of bad reduction (so we are assuming, for a topolog-

ical generator 
 of tame inertia, that r.
/ is unipotent with a single
block), then we take the local deformation ring to be the ringR1v in [16,
Section 8.5.1]. Note that, if r.
/ on An has characteristic polynomial
.X � 1/n, then (given our assumption on r) this deformation prob-
lem coincides with the minimal condition in [20, Definition 2.4.14],
namely, that the map

ker
�
r.
/� idn

�r
˝R k! ker

�
r.
/� idn

�r
is an isomorphism (equivalently, surjection) for all r � n. (One can
see this equivalence by induction—r.
/ has a unique eigenvector over
k, which lifts to a unique eigenvector over A whose mod-p reduction
is nontrivial; now take the representation of An�1 and kn�1 given by
quotienting out by this eigenvector.)

(b) If v j p and p is sufficiently large with respect to n and the primes
which ramify in F , then we take deformations which are Fontaine–
Laffaille of weight Œ0; 1; : : : ; n� 1�.

If one has an isomorphism R ' T for all sufficiently large p satisfying the
required hypothesis, then since one also will have an isomorphism T'O, this would
immediately imply that the tangent space to R along the projection to O is triv-
ial, and hence the corresponding adjoint Selmer groups are trivial. Theorem A.2 is
now a consequence of [16, Theorems 5.16 and 6.4], where we use the fact that the
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corresponding local deformation rings are formally smooth (as follows from [20,
Corollary 2.4.3, Lemma 2.4.19]), and where we use Theorem A.4 as a substitute for
the vanishing assumption required in [16, Conjecture B]. Equally, Theorem A.1 fol-
lows as in Theorem 1.2 above, where the vanishing result of Lemma A.6 replaces
the vanishing results of Lan and Suh [53] for other low-weight local systems. The
modularity argument above requires a large image hypothesis which we assume in
Theorem A.2 and which we are required to prove (for sufficiently large p) for The-
orem A.4. Furthermore, we must justify the claim in Theorem A.4 that the assump-
tions hold for a set of primes p of density 1. Hence it remains to prove the follow-
ing.

LEMMA A.7
Let A be a semistable abelian surface of conductor N with End.A/D Z. Then
(1) for sufficiently large p, the residual representation rp W GQ ! GSp4.Fp/ is

surjective with minimal conductor N ;
(2) for a set of primes p of density 1, we have

˛ˇ.˛2 � 1/.ˇ2 � 1/.˛ � ˇ/.˛2ˇ2 � 1/ 6� 0 mod p:

Proof
Since End.A/D Z, the residual image is surjective for all sufficiently large p by [62,
Corollaire au Théorème 3]. In order to ensure that the conductor of rp at a prime `
dividing N matches that of A, it suffices to take p co-prime to the (finite) order of the
component group ˆA of the Néron model of A_ at `. This proves the first claim.

For the second claim, let the characteristic polynomial of Frobenius (for p not
dividing the discriminant on the étale cohomology V` D H 1.A;Q`/ at any prime
`¤ p) be

X4C apX
3C .2pC bp/X

2C papX C p
2:

Let the roots of this polynomial be ˛, ˇ, ˛�1p and ˇ�1p respectively; by the Rie-
mann hypothesis for curves (Weil bound) they are Weil numbers of absolute value
p
p. Note that 2pC bp is the trace of Frobp on ^2V` for all but finitely many `, and

a2p is the trace of Frobp on V`˝V`. We use the following lemma, which is essentially
an observation of Deligne, Milne, Ogus, and Shih [22, Proposition 2.7(1)].

LEMMA A.8
There is no fixed linear relation between 1, p, bp , ap , and a2p which can hold for a
set p 2 S of positive density.
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Proof
From such an equality, we can build two finite-dimensional representations A` and
B` built out of copies of ^2V`, Qp , Qp.1/, V`, and V`˝V`, respectively, which have
equal trace on Frobp for infinitely many p. There must be at least one quadratic field
with a positive density of inert primes in S ; twisting by this representation we arrive
at a representation W` with a set S of positive density such that Frobp has trace zero
for p 2 S . For sufficiently large `, our assumptions on A imply (see [62]) that the
image of GQ on V` is GSp4.Z`/ if End.A/D Z. By Chebotarev, it follows that the
appropriate identity must also hold on a subset of these groups of positive measure.
Yet the distribution of the appropriate eigenvalues for GSp4.Z`/ does not have any
atomic measure. In particular, writing the eigenvalues in either case as x, y, ı=x, and
ı=y, we would obtain a relation between the polynomials

1; ı; xy C ıx=y C ıy=xC ı2=xy;

xC y C ı=xC ı=y; .xC y C ı=xC ı=y/2

that holds on an open set (and consequently holds everywhere). There are no such
relations by inspection.

Returning to the proof of Lemma A.7, we deduce from the Weil bounds that
japj

2 � 16p and jbpj � 4p. Hence, if we have any linear expression in ap , a2p , bp
and 1 which is congruent to zero modulo p for a set of positive density, then it must
also equal a constant multiple of p for a set of positive density, and we would obtain
a contradiction by Lemma A.8. We show that this holds in each of the possible cases
when our congruence above holds. (We take advantage of the symmetry in ˛ and ˇ
and consider a reduced number of cases.)
(1) Suppose that neither ˇ nor ˇ�1p are units. Then bp � 0 mod p.
(2) Suppose that ˛ˇ� " mod p for some fixed " 2 ¹˙1º. Then bp � " mod p.
(3) Suppose that ˛D " mod p for some fixed " 2 ¹˙1º. Then bp � "ap C 1� 0

mod p.
(4) Suppose that ˛ � ˇ� 0 mod p. Then 4bp � a2p � 0 mod p.
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