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Counting Perron numbers by absolute value

Frank Calegari and Zili Huang

Abstract

We count various classes of algebraic integers of fixed degree by their largest absolute value.
The classes of integers considered include all algebraic integers, Perron numbers, totally real
integers, and totally complex integers. We give qualitative and quantitative results concerning the
distribution of Perron numbers, answering in part a question of Thurston [‘Entropy in dimension
one’, to appear in the Proceedings of the Banff Conference on Frontiers in Complex Dynamics].

1. Introduction

The goal of this paper is to address several questions concerning Perron numbers suggested
by a recent preprint of Thurston [12]. An algebraic integer α is a Perron number if it has
larger absolute value than any of its Galois conjugates. How many Perron numbers are there?
Although there are numerous ways to order and count algebraic integers, in this context it
seems most natural to count (in fixed degree) by absolute value, and this is what we do. As
well as counting Perron algebraic integers, we count all algebraic integers. Let AN denote the
set of algebraic integers of degree N . For α ∈ AN , let α — the house of α — denote the largest
absolute value of any conjugate σα of α. An argument of Kronecker shows that there are only
finitely many elements of AN with house at most X. Specifically, any algebraic integer of degree
N all of whose conjugates’ absolute values is bounded by X is the root of a polynomial whose
coefficients are bounded strictly in terms of X and N , and hence there are only finitely many
such α. Let A+

N ⊂ AN denote the subset of totally real algebraic integers of degree N . Let
A−

N ⊂ AN denote the subset of algebraic integers of degree N which are totally complex (this
is empty unless N is even). Let AP

N ⊂ AN denote the algebraic integers of degree N which are
Galois conjugates to a Perron number. Our first result gives an estimate for the sizes of these
sets.

Theorem 1.1. As X → ∞,

|A∗
N (X)| = XN(N+1)/2D∗

N

(
1 + O

(
1
X

))
,

where ∗ is either unadorned, P , +, or − when N is even, and the constants D∗
N are given as

follows:

DN =
m−1∏
k=0

(
k!222k+1

(2k + 1)!

)2

, N = 2m; DN =
(
m!222m+1

(2m + 1)!

)m−1∏
k=0

(
k!222k+1

(2k + 1)!

)2

, N = 2m + 1,

DP
N =

DN

N + 1
, N = 2m; DP

N =
DN

N
,N = 2m + 1,

D+
N =

N−1∏
k=0

2k+1k!2

(2k + 1)!
, D−

2N =
22N(N−1)(2N)!

N !2
D+

2N .
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Figure 1. A plot from [12] showing the normalized roots σα/α of the minimal polynomials for
5932 degree 21 Perron numbers α, obtained by sampling 20 000 monic degree 21 polynomials with
integer coefficients in [−5, 5] and keeping those that have a root of absolute value at most 5 which
is larger than all other roots.

For example, given a ‘random’ algebraic integer, the probability that α is (conjugate to) a
Perron algebraic integer is 1/N if N is odd and 1/(N + 1) if N is even. Note that the last answer
with the ratio D−

2N/D+
2N proves Conjecture 5.2 in [1]. This theorem reduces to understanding

various integrals over the region ΩN in RN which parameterize monic polynomials all of whose
roots have absolute value at most 1. If one imposes conditions on the signature, then one
obtains corresponding regions ΩR,S ⊂ ΩN with N = R + 2S, the constants D+

N and D−
2N are

then the volumes of ΩN,0 and Ω0,N , respectively. There is a natural decomposition

ΩN =
∐

R+2S=N

ΩR,S .

Beyond counting algebraic integers in these classes, it is also of interest to try to understand
what a ‘typical’ such element is, under the constraint that the house of α is bounded by a fixed
constant X, which leads us toward our next result.

1.1. A question of Thurston

Thurston asked [12] whether one could understand the distribution of Perron numbers subject
to the constraint that their absolute values are bounded by a fixed real number X. Recall
that a Perron algebraic integer is a real algebraic integer α with |α| = α whose absolute is
strictly larger than all its Galois conjugates. We say that a polynomial with coefficients in R
is Perron if it has a unique (necessarily real) largest (in terms of absolute value) root. Usually
one insists that a Perron number is a positive real number, but with our definition α is Perron
if and only if −α is also Perron. (The only change to the asymptotics is a factor of 2.) We
explain in Section 1.8 how to count Perron algebraic integers. In one experiment, Thurston
attempted to model random polynomials whose largest root is � 5 by taking polynomials of
degree 21 all of whose coefficients lie in the interval [−5, 5]. The corresponding roots showed
a tendency to cluster the ratio of their absolute values to the largest root away from |z| = 1;
we include his figure here as Figure 1. However, we shall explain why this picture is not an
accurate representation of the entire space of Perron polynomials. As a point of comparison,
Thurston sampled polynomials over a space with 1121 lattice points and volume 1021. On the
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Figure 2 (colour online). The first graph consists of the roots of Perron polynomials with largest
root � 5 and integral coefficients in [−5, 5] as in [12], except no longer normalizing by the largest
(necessarily real) root α. The second graph consists of roots of random Perron polynomials in ΩP

21

scaled to have a maximal root of absolute value � 5 as generated by a random walk Metropolis–
Hastings algorithm. The second graph is in accordance with Theorem 1.2.

other hand, let ΩP
21 ⊂ Ω21 be the region consisting of polynomials with a unique largest root,

and consider the scaled version of this space where the roots are allowed to have absolute value
at most 5. Then this region has volume

5210 ·DP
21 =

21895198

3247101111139175193
∼ 8.308 × 10143.

Hence Thurston’s samples are taken from a region which represents less than one 10123th of
the entire space of Perron polynomials. As another illustration, the average value of |a21| over
the correct region is

521 · 88179
524288

=
3 · 521 · 7 · 13 · 17 · 19

219
∼ 8.020 × 1013,

which is not anywhere close to being in [−5, 5]. Indeed, this value might a priori be considered
surprisingly large, given that the absolute maximum of the constant term |a21| is 521 ∼ 4.768 ×
1014. We should make clear that Thurston made no claims that his experiment produced a
faithful representation of ΩP

21, and he explicitly mentions the coefficients of a typical member
of ΩP

21 appears to be ‘much larger’ than 5. Indeed, one of the problems he posed is to formulate
a good method for sampling ‘randomly’ in this space. A natural approach to the latter question
is to use a random walk Metropolis–Hastings algorithm. Figure 2, produced via such a random
walk algorithm, is in agreement with our theoretical results, such as Theorem 1.2 below. The
‘ring’ structure evident in Thurston’s picture (of radius approximately 1/5) is a consequence
of the fact that polynomials with (suitably) small coefficients have roots which tend to cluster
uniformly around the disc of radius one. This follows in the radial direction by a theorem of
Erdös and Turán [6], and for the absolute values from [8]. In contrast, the reality is that the
conjugates of Perron polynomials will cluster around the boundary, which is our second result:

Theorem 1.2. As N → ∞, the roots of a random polynomial in ΩN or ΩP
N are distributed

uniformly about the unit circle.
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1.2. Asymptotics

It is easy to give asymptotics for any product formula using Stirling’s formula and its variants.
For example, we have the following:

Lemma 1.3. The probability that a polynomial P (x) ∈ ΩN has only real roots is

D+
N

DN
∼ C ·N1/8

2N2/2
.

The probability that a polynomial P (x) ∈ Ω2N has no real roots, equivalently, that P (x) > 0
for all x, is

D−
2N

D2N
∼ 2C√

2π · (2N)3/8

for the same constant C as above.

Remark 1.4. With a little extra care, one can also identify the constant C above as

C = 2−1/24e−3/2·ζ′(−1) = 1.24514 . . . .

Remark 1.5. A polynomial P (x) ∈ Ω2N is positive everywhere if and only if it is positive
on [−1, 1]. On the other hand, for many classes of random models of polynomials, it is a theorem
of Dembo, Poonen, Shao, and Zeitouni [5] that a random polynomial whose coefficients are
chosen with (say) identical normal distributions with zero mean is positive in [−∞,∞] with
probability N−b+o(1) and positive in [−1, 1] with probability N−b/2+o(1) for some universal
constant b/2, which they estimate be 0.38 ± 0.015. On the other hand, the exponent occurring
above is 3/8 = 0.375. Is there any direct relationship between these theorems? For example,
does this suggest that b = 3/4?

1.3. The limit N → ∞
As N → ∞, we are still able to say something about the geometric spaces ΩN , but the
direct connection with algebraic integers becomes more tenuous. Given a fixed region Ω with
appropriate properties, it is quite reasonable to be able to count lattice points in the large X
limit as Ω is scaled appropriately. However, the error in any such estimate will depend highly on
Ω, so this does not allow one to understand the lattice points in a sequence ΩN of regions simply
in terms of the volume. There are some known global constraints. For example, Kronecker
proved that the only elements of AN with house in [0, 1] are roots of unity, and the only elements
of A+

N with house in [−2, 2] are of the form ζ + ζ−1 for a root of unity ζ. This is consistent
with our volume computations; the smallest value of X for which Vol(ΩN )XN(N+1)/2 is � 1
is

1 +
logN
N

+ O

(
1
N

)
,

whereas the corresponding value for Vol(ΩN,0)XN(N+1)/2 is

2 +
2 logN

N
+ O

(
1
N

)
.

(In practice, there exist algebraic integers which are not roots of unity of house at least as
small as 21/N ∼ 1 + log 2/N .)
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1.4. Configuration spaces

A natural way to understand the spaces ΩR,S is to consider the spaces defined by the roots.
In this way, one can relate integrals over ΩR,S to integrals over nicer spaces at the expense of
including the factor coming from the Jacobian. For example, consider the case of ΩN,0. There
is a natural map:

[−1, 1]N → RN ,

given by

φ : (x1, . . . , xN ) → (s1, . . . , sN ),

where sm is the mth symmetric polynomial in the xis. Suppose that

sm,k :=
∂

∂xk
sm.

Then sm,k is the (m− 1)th symmetric polynomial in the variables xi with xk omitted, and
the Jacobian matrix is given by J(φ∗) = [sm,k]. If xi = xj then sm,i = sm,j and the Jacobian
vanishes. By comparing degrees, it follows that |J(φ∗)| is the absolute value of the Vandermonde
determinant. Since φ is generically N ! to 1, it follows that∫

ΩN,0

dV =
1
N !

∫
[−1,1]N

∏
|xi − xj |dx1 . . . dxN = D+

N .

Yet the latter integral can be computed exactly because it is a special case of the integrals
considered by [10]. This is enough to prove the corresponding claim in Theorem 1.1 in this
case. Similar parameterizations allow us to write

∫
ΩR,S

as a multiple integral, but not all the
integrals which arise have such nice product expressions.

1.5. Selberg integrals

We now consider all monic polynomials with real coefficients whose roots have absolute value
at most one. We assume that the polynomial has degree N , and that the polynomial has R
real roots and S pairs of complex roots. Let B(1) be the unit ball in C. There is a map

B(1)S × [−1, 1]R → ΩR,S ⊂ RN ,

given by

φ : (z1, . . . , zS , x1, . . . , xR) → (z1, . . . , zS , z1, . . . , zS , x1, . . . , xR) → (s1, . . . , sN ),

where the si are symmetric in the N variables. The following is elementary:

Lemma 1.6. The absolute value of the determinant |J(φ∗)| is the absolute value of

2S
S∏

i=1

(zi − zi)
∏
i �=j

(zi − zj)(zi − zj)
∏
i�=j

(xi − xj)
∏
i,j

(xi − zj)(xi − zj).

The mapping from B(1)S × [−1, 1]R to ΩR,S is not 1 to 1. Rather, there is a generically
faithful transitive action of the group Z/2Z 	 Ss × Sr on the fibers. Hence∫

ΩR,S

dV :=
1

R!S!

∫
[−1,1]R

∫
B(1)S

S∏
i=1

|zi − zi|
∏
i>j

|(zi − zj)(zi − zj)|2
∏
i>j

|xi − xj |
∏
i,j

|x− zj |2dV.

We shall discuss various integrals which are analogues of certain Selberg integrals. These
correspond to the contexts in which the roots are totally real, totally imaginary, or without
any restriction.
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Definition 1.7. Let CN (α, T ) denote the integral∫
ΩN

|aN |α−1P (T )dV.

Theorem 1.8. There are equalities as follows. If N = 2m + 1, then

CN (α, T ) = DN

(
m∏

k=0

1 + 2k
α + 2k

)
·

m∑
i=0

2i + 1
2m + 1

m!2

(2m)!

(
2i
i

)(
2m− 2i
m− i

)
T 2i+1.

If N = 2m, then

CN (α, T ) = DN ·
(

m−1∏
k=0

1 + 2k
α + 2k

)
·

m∑
i=0

2i + α

2m + α

m!2

(2m)!

(
2i
i

)(
2m− 2i
m− i

)
T 2i.

This theorem is proved in § 3. By considering the leading term of the polynomial, this integral
formula implies that∫

ΩN

|aN |α−1dV = DN

(
m∏

k=0

1 + 2k
α + 2k

)
= DN

(1/2)m+1

(α/2)m+1
,

where N = 2m or 2m + 1. Specializing further to α = 1, we deduce that
∫
ΩN

dV = DN . This
latter integral was also computed by Fam [7], the evaluation of CN (α, T ) above is similar.

1.6. Comparison with classical Selberg integrals

In § 1.9, we define integrals C+
N and C−

N which are similar to CN (α, T ) except the integral takes
place over ΩN,0 or Ω0,N respectively. The integral CN (α, T ) is in some sense both the most
natural (in that they are integrals over the entire space ΩN ) and unnatural, in that they are
most naturally written as a sum of multiple integrals, not each of which obviously admits an
exact formula. The real Selberg integrals are closest to the classical Selberg integrals, but even
in this case they are not obvious specializations of known integrals. To explain this further,
recall that Selberg’s integral is a generalization of the β-integral, which we write as∫ 1

−1

(1 + t)α−1(1 − t)β−1dt =
2α+β−1Γ(α)Γ(β)

Γ(α + β)
.

Selberg’s integral
∫
[0,1]N

∏
tα−1
i (1 − ti)β−1

∏ |ti − tj |2γdt1 . . . dtN can be written (up to easy
factors) as ∫

ΩN,0

P (1)α−1P (−1)β−1|ΔP |2γ−1,

where we integrate over the configuration space of monic polynomials P of degree N with real
roots in [−1, 1], and ΔP is the discriminant of the corresponding polynomial. On the other
hand, when one writes down similar integrals over ΩN , the corresponding integrals do not have
nice product expressions. To take a simple example, one finds that

1
3!

∫
[−1,1]3

∏
(xi − xj)2dx1 dx2 dx3 +

∫ 2π

0

∫ 1

0

∫ 1

−1

4r3 sin2(θ)(x2 − 2xr cos(θ) + r2)2 dx dr dθ

=
∫

Ω3

|ΔP | =
32
135

+
41π
15

.
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The range of suitable integrals which have nice expressions over ΩN seems to be fairly limited.
Curiously enough, however, the integrals we do define do not even specialize to the β-integral
over Ω1,0 = [−1, 1], but rather to ∫ 1

−1

|t|α−1dt =
2
α
,

and mild variants thereof. Moreover, there does not seem to be any flexibility in varying the
power of the discriminant, as evidenced by the example over Ω3 above. On the other hand, one
does have the following integral over ΩN , (Theorem 3.1), which is the direct generalization of
Selberg’s integral when γ = 1/2:

SN (α, β) =
∫

ΩN

P (1)α−1|P (−1)|β−1

=
2m∏
k=1

2α+β+k−2

Γ(α + β + k − 1)

m∏
k=1

Γ(α + β + k − 1)Γ(k)

×
m∏

k=1

Γ(α + k + 1)Γ(β + k − 1), N = 2m even,

2m+1∏
k=1

2α+ β + k− 2

Γ(α+β + k− 1)

m∏
k=1

Γ(α+β + k− 1)Γ(k)

×
m+1∏
k=1

Γ(α+ k+ 1)Γ(β + k− 1), N = 2m + 1odd.

1.7. Moments

The integral CN (α) =
∫
ΩN

|aN |α−1dV allows a precise description of the moments of |P (0)| =
|aN | on ΩN , namely

E(ΩN , |aN |α−1) =

∫
ΩN

|aN |α−1dV∫
ΩN

dV

=
�(N−1)/2�∏

k=0

1 + 2k
α + 2k

.

Denote this function by MN (α). Suppose that μN = HN (x)dx is the distribution on [0, 1] of
|aN | over ΩN . Then we know

MN (α) :=
∫ 1

0

xα−1HN (x)dx =
∫ ∞

0

e−αtHN (e−t)dt.

It follows that HN (e−t) is the inverse Laplace transform of M(α). Write m = 
(N − 1)/2�.

Lemma 1.9. The measure μN = HN (x)dx is given on [0, 1] by

(1 − x2)m(∫ 1

0

(1 − x2)mdx

) dx =
2√
π
· Γ(m + 3/2)

Γ(m + 1)
(1 − x2)mdx.
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By taking the logarithmic derivative with respect to α and then sending α to 1, we also find
that, with the same m,

E(ΩN , log |aN |) = −
(

1 +
1
3

+
1
5

+ · · · + 1
2m + 1

)
= −1

2
(log 2N + γ) + O

(
1
N

)
,

and hence, for any root β,

E(ΩN , log |β|) = − logN
2N

+ O

(
1
N

)
.

Since |x| − 1 � log |x| for x ∈ B(1), we obtain the estimate:

E(ΩN , |β|) � 1 − logN
2N

.

It follows that the expected number of roots with absolute value less than 1 − ε/2 is less than
log |N |ε; in particular, it follows that almost all roots have absolute value within 1/N δ of 1 for
any fixed δ < 1 as N → ∞.

1.8. Perron algebraic integers

If α is a Perron algebraic integer, then necessarily α is real, since otherwise |α| = |σα|. The
converse is not true, however (take α = 21/4). The natural model for Perron numbers is
polynomials whose largest root is real. (The subspace of polynomials with more than one
non-conjugate largest root has zero measure.) Let ΩP

N and ΩP
R,S denote the corresponding

spaces. Then there is a natural map:

ΩN−1 × [−1, 1] → ΩP
N

given by sending P (x) to tN−1P (x/t)(x− t). The effect on the variables is

bk = tk(ak − ak−1).

The Jacobian of this matrix is (−1)N · t(N−1)(N+2)/2P (1), and so, if N = R + 2S,∫
ΩP

R,S

dV =
∫ 1

−1

|t|(N−1)(N+2)/2

∫
ΩR−1,S

|P (1)|dV =
4

N(N + 1)

∫
ΩR−1,S

P (1)dV.

(Note, by assumption, that P (1) � 0, because all the (real) roots have absolute value � 1, and
the leading coefficient is positive.) When S = 0, we see that∫

ΩP
N,0

dV =
4

N(N + 1)

∫
ΩN−1,0

P (1)dV

=
1

N(N + 1)
1

(N − 1)!

∫
[−1,1]N

∏
(1 − xi)

∏
|xi − xj |dx1 . . . dxN−1.

The latter is another Selberg integral; in fact, by a special case of result of Aomoto [2],

4
N + 1

∫
[−1,1]N−1

∏
(1 − xi)

∏
|xi − xj |dx1 . . . dxN−1 =

∫
[−1,1]N

∏
|xi − xj |dx1 . . . dxN ,

and hence ∫
ΩP

N,0

dV =
1
N !

∫
[−1,1]N

∏
|xi − xj |dx1 . . . dxN =

∫
ΩN,0

dV.

Of course, this is as expected, because a Perron polynomial with real roots is simply a
polynomial with real roots. Let DP

R,S =
∫
ΩP

R,S
dV . Using the evaluation of our Selberg integral

in Theorem 1.8, we can compute the volume of ΩP
N . Namely, we have:
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Lemma 1.10. There is an equality

Vol(ΩP
N ) =

4
N(N + 1)

CN−1(1, 1) =
{
DN/N, N odd,
DN/(N + 1), N even.

Proof. The first equality follows from the computation above, the second is an elementary
manipulation with products of factorials. �

We can do a similar analysis of expectation of |aN |α−1 on ΩP
N as we did with ΩN . Namely∫

ΩP
N

|aN |α−1dV =
∫ 1

−1

∫
ΩN−1

|t|(N−1)(N+2)/2|t|(α−1)N |aN−1|α−1P (1) dV dt

=
∫ 1

−1

|t|(N−1)(N+2)/2+(α−1)Ndt

∫
ΩN−1

|aN−1|α−1P (1) dV

=
4CN−1(α, 1)

N(N + 2α− 1)

and hence

E
(
ΩP

N , |aN |α−1
)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m∏
k=0

1 + 2k
α + 2k

, N = 2m + 1 odd,

N + 1
N + 2α− 1

m−1∏
k=0

1 + 2k
α + 2k

, N = 2m even.
.

For example, E(ΩP
21, |a21|) = 88179

524288 , as mentioned earlier.

Remark 1.11. One could equally do this calculation insisting that Perron numbers be
positive, one simply replaces the integral over [−1, 1] by an integral over [0, 1]. This makes no
difference to the proof of Theorem 1.2.

1.9. Selberg integrals on subspaces

Let us consider the complex Selberg integral

C−
N (α) =

∫
Ω0,N

|a2N |α−1.

Recall that (a)k = a(a + 1) · · · (a + k − 1) = Γ(a+k)
Γ(a) . We have:

Theorem 1.12. Let KN =
∏N−1

k=1
k!3(k+1)!24k+1

(2k+1)!2 . Then

C−
N (α)=

∫
Ω0,N

|a2N |α−1 =KN ·
(

2N
N

)
· (4N + 2α)(N +α+ 1/2)N

(N +α)1+N

N∏
k=1

(α + k)2N+1−2k

(α− 1/2 + k)2N+2−2k
,

and C−
N (1) =

∫
Ω0,N

dV = D−
2N .

We prove this theorem in § 3.1. It is possible to give explicit expressions for the integral
C−

N (α, T ) =
∫
Ω0,N

|a2N |α−1P (T ) and C+
N (α, T ) =

∫
ΩN,0

|aN |α−1P (T ) as explicit polynomials
whose coefficients are various products of Pochhammer symbols. However, since we have no
use for them and the details are somewhat complicated, we omit them here.
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1.10. The expected number of real roots

The expected number rN of real roots of a random polynomial in ΩN is given, for small N , as
follows:

0, 1,
2
3
,
17
15

,
32
35

,
43
35

,
1226
1155

,
1303
1001

,
10496
9009

,
208433
153153

,
402
323

,
1367
969

, . . .

There is a map:

ψ : ΩN−1 × [−1, 1] → ΩN

given by sending P (x) to P (x)(x− T ). The Jacobian of this map is equal to |P (T )|.
This map is not 1 to 1, rather, the image in ΩR,S has multiplicity R. We exploit this fact as

follows. Let Z(P ) denote the number of real roots of P . Then pulling back the measure under
ψ∗, we deduce that ∫

ΩN

Z(P ) =
∫ 1

−1

∫
ΩN−1

|P (T )|dV.

For |T | < 1, the inner integral strictly differs from CN−1(1, T ), so we cannot use our evaluation
of CN (1, T ) to compute this integral. On the other hand, if we compute a signed integral, then
we are computing the probability that the number of real roots is odd. We thus deduce, as
expected, that

1
DN+1

∫ 1

−1

CN (1, T ) =
{

1, N even,
0, N odd.

There is, however, the following conjectural formula for the integral of |P (T )|:

Conjecture 1. If N = 2m, then, for T ∈ [−1, 1],

1
DN

∫
ΩN

|P (T )| =
1

22m
(
2m
m

) ( m∑
k=0

2m− 2k + 1
2m + 1

(
2m− 2k
m− k

)(
2k
k

)
T 2k

)

×
(

m∑
k=0

(
2m− 2k
m− k

)(
2k
k

)
T 2k

)
.

If N = 2m + 1, then, for T ∈ [−1, 1],

1
DN

∫
ΩN

|P (T )| =
1

22m+2
(
2m
m

) ( m∑
k=0

2m− 2k + 1
2m + 1

(
2m− 2k
m− k

)(
2k
k

)
T 2k

)

×
(

m+1∑
k=0

(
2m + 2 − 2k
m + 1 − k

)(
2k
k

)
T 2k

)
.

Using this, we can say quite a bit about the explicit expectations rN appearing above. There
does not seem to be a closed form for rN , but there is a nice relation between r2N+1 and r2N ,
which comes down to an identity which may be proved using Zeilberger’s algorithm.

Lemma 1.13. Assume Conjecture 1. There is an equality:

(2N + 1 − r2N+1) =
4N + 3
4N + 1

(2N − r2N ),

or

r2N+1 =
(

3 + 4N
1 + 4N

)
r2N +

1
4N + 1

.
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We now turn to asymptotic estimates of rN . The exact arguments depend on the parity, but
they are basically the same in either case (they are also equivalent by Lemma 1.13 above). Let
us assume that N − 1 = 2m. Then

rN =
1

DN

∫
ΩN

Z(P ) =
DN−1

DN

∑∑ 1
22m

(
2m
m

) 2(2i + 1)
(2m + 1)(4m− 2i− 2j + 1)

×
(

2i
i

)(
2j
j

)(
2m− 2i
m− i

)(
2m− 2j
m− j

)
,

which we can write as

(2m + 1)!(2m)!
24m+1m!4

∑∑ 2(2i + 1)
(2m + 1)(4m− 2i− 2j + 1)

(
2i
i

)(
2j
j

)(
2m−2i
m−i

)(
2m−2j
m−j

)
(
2m
m

)2 .

Asymptotically,

(2m + 1)!(2m)!
24m+1m!4

=
1
π

+
m−1

4π
+ · · ·

Without this term, we can write the rest of the sum as:

sN :=
∑∑ 2(2m− 2i + 1)

2m + 1
1

2i + 2j + 1

(
2i
i

)(
2j
j

)
2−2i−2j

m∏
k=m−i+1

×
(

1 +
1

2k − 1

) m∏
k=m−j+1

(
1 +

1
2k − 1

)
.

Let us estimate the contribution to this sum coming from terms where i + j < A and A = ε ·m.
This will constitute the main term. For a lower bound, note that the final product is clearly at
least one, and that i is at most A. Hence the sum is certainly bounded below by∑

k<A

∑
i+j=k

2
(

1 − 2A
2m + 1

)
1

2k + 1

(
2i
i

)(
2j
j

)
2−2i−2j .

Since ∑
i+j=k

(
2i
i

)(
2j
j

)
2−2i−2j = 1,

the lower bound is at least∑
k<A

2
(

1 − 2A
2m + 1

)
1

2k + 1
� (1 − ε) (log(m) + log(ε)) + O(1).

The O(1) factor depends on ε, and should be thought of as an estimate as m → ∞ with ε fixed.
On the other hand, we have an upper bound for the sum given by noting that

m∑
k=m−A+1

log
(

1 +
1

2k − 1

)
�

m∑
k=m−A+1

1
2k − 1

= −1
2

log(1 − ε) + o(1),

leading to an upper bound for the sum above of the form:∑
k<A

2
2k + 1

· 1
1 − ε

�
(

log(m) + log(ε)
1 − ε

)
+ O(1).
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We now give an upper bound for the remaining sum. The initial factor is certainly at most 2,
and (2i + 2j + 1)−1 � (2A + 1)−1 � 1/(2A). Hence an upper bound is given by

∑
k�A

∑
i+j=k

1
A

(
2i
i

)(
2j
j

)
2−2i−2j

m∏
k=m−i+1

(
1 +

1
2k − 1

) m∏
k=m−j+1

(
1 +

1
2k − 1

)
.

Note that we include terms in this sum with k < A — this only increases the sum, but restores
some symmetry. In particular, the sum is symmetric in i �→ m− i and j �→ m− j, so after
introducing a factor of 4, we may assume that i and j are both at most m/2. In this range, we
have the upper estimate

m∑
k=m−i+1

log
(

1 +
1

2k − 1

)
�

m∑
k=m−m

2 +1

1
2k − 1

� log(2)
2

+ o(1).

Hence our remaining sum is bounded above by∑
k

∑
i+j=k

4
A

(
2i
i

)(
2j
j

)
2−2i−2j · 2 � 8m

A
=

8
ε
.

Combining our two estimates, we find that, for ε fixed and m → ∞,

1 − ε + o(1) � sN
logm

� 1
1 − ε

+ o(1),

and thus sN ∼ logm ∼ logN . Note that in order to obtain a better estimate (the second term,
for example), we would have to be more careful about the dependence of the error terms
on ε. The analysis for N = 2m + 1 is very similar. Hence, since rN ∼ (1/π) · sN , we deduce the
following:

Theorem 1.14. Assume Conjecture 1. If rN denotes the expected number of real zeros of
a polynomial in ΩN , then, as N → ∞,

rN ∼ 1
π

logN.

Remark 1.15. Note that, in the Kac model of random polynomials (where the coefficients
are independent normal variables with mean 0), the expected number of zeros of a polynomial
of degree N is 2/π logN , and the expected number in the interval [−1, 1] is 1/π logN [9]

Note that, for any [a, b] ⊂ [−1, 1], the integral

1
DN

∫ b

a

∫
ΩN

|P (T )|

gives the expected number of zeros in the interval [a, b]. When [a, b] does not contain either 1
or −1, the answer is particularly simple as N → ∞.

Theorem 1.16. Assume Conjecture 1. For a fixed interval [a, b] with −1 < a < b < 1, the
expected number of zeros in [a, b] of a polynomial in ΩN equals, as N → ∞,

1
π

∫ b

a

1
1 − T 2

=
1
2π

log
∣∣∣∣ (1 − a)(1 + b)
(1 + a)(1 − b)

∣∣∣∣ .
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Proof. The argument is similar (but easier) to the asymptotic computation of rN above.
We consider the case N − 1 = 2m, the other case is similar. In some fixed interval [a, b] not
containing ±1, the integrand converges uniformly to

1
π

( ∞∑
k=0

1
4k

(
2k
k

)
T 2k

)2

=
1
π

(
1√

1 − T 2

)2

,

from which the result follows. �

It is interesting to note that this is exactly the density function of real zeros for random power
series [11]. This is also the limit density for Kac polynomials, which converge to random power
series. This suggests that random polynomials in ΩN might, in some sense to be made precise,
approximate random power series for large N . This lends some credence to the speculations
in 1.5.

2. Counting polynomials

Once we have formulas for volumes, the corresponding count of polynomials is fairly elementary.

Lemma 2.1. Let Ω ⊂ RN be a closed compact region such that ∂Ω is contained in a finite
union of algebraic varieties of codimension 1. Let Ω(X) ⊂ RN denote image of Ω under the
stretch [X,X2, . . . , XN ]. Then the number of lattice points in the interior Ω(X) is

Vol(Ω)XN(N+1)/2

(
1 + O

(
1
X

))
.

Proof. This essentially follows from ‘Davenport’s lemma’ in [3] and [4]. With its condi-
tions being met by our hypothesis, Davenport’s result tells us that the main term is the
volume of Ω(X), or Vol(Ω)XN(N+1)/2. The error term should be O(max{Vd(Ω(X))}), where
max{Vd(Ω(X))} denotes the greatest d-dimensional volume of any of its projections onto a d-
dimensional coordinate hyperplane, ∀d ∈ {1, 2, . . . , n− 1}. In our case, as X is large, this largest
projection is clearly the one onto the last N − 1 coordinates, which has volume proportional
to X2 ·X3 · · ·XN . Therefore the error term is O(XN(N+1)/2−1). �

From this, it is easy to deduce:

Lemma 2.2. The number of irreducible polynomials of signature (R,S) all of whose roots
have absolute value at most X is

Vol(ΩR,S)XN(N+1)/2

(
1 + O

(
1
X

))
.

The number of irreducible Perron polynomials of signature (R,S) all of whose roots have
absolute value at most X is

Vol(ΩP
R,S)XN(N+1)/2

(
1 + O

(
1
X

))
.

Proof. The first claim without the assumption of irreducibility follows from the previous
lemma. If a polynomial is reducible, however, then it factors as a product of two polynomials
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each of which is monic (by Gauss) and has roots less than X by assumption. Hence the number
of reducible factors is

�
A,B>0∑
A+B=N

Vol(ΩA)Vol(ΩB)XA(A−1)/2+B(B−1)/2 = O
(
XN(N+1)/2−(N−1)

)
.

The argument for Perron polynomials is the same. �

Combining this with the four relevant integrals (that for DN coming from the remarks
following Theorem 1.8, for DP

N from Lemma 1.10, for D+
N by the remarks in § 1.4, and for D−

2N

from Theorem 1.12), this proves Theorem 1.1.

3. Evaluating integrals

We begin by evaluating the integral in Theorem 1.8. The integral DN =
∫
ΩN

dV was first
computed by Fam in [7]. His method also allows one to easily compute CN (α, T ). Let ΩN (aN )
denote the intersection of ΩN with the hyperplane where the last coefficient is fixed. Then Fam
shows that ΩN (aN ) maps to ΩN−1 under a very explicit linear transformation. Explicitly,

ΩN (aN ) = TN−1ΩN−1,

where TN−1 is the following matrix:

TN−1 = IN−1 + aN ÎN−1,

for the identity matrix IN−1 and the anti-diagonal matrix (1s on the anti-diagonal and 0s
elsewhere) ÎN−1. Explicitly, this takes the polynomial Q(T ) ∈ ΩN−1 to the polynomial

P (T ) = TQ(T ) + aNQ(1/T )TN−1 ∈ ΩN (aN ).

Recall that

CN (α, T ) =
∫

ΩN

|aN |α−1P (T )dV.

Then we have

CN (α, T ) =
∫ 1

−1

∫
ΩN (aN )

|aN |α−1P (T )dV daN .

Applying the change of coordinates above, we deduce that

CN (α, T ) =
∫ 1

−1

∫
ΩN−1

|aN |α−1(TQ(T ) + aNQ(1/T )TN−1)|det(TN−1)|dV daN .

By exchanging the order of integration and computing the determinant of TN−1, it follows
that

CN (α, T ) = TANCN−1(1, T ) + TN−1BNCN−1(1, 1/T ),

where

AN =
∫ 1

−1

|t|α−1(1 − t2)(N−1)/2dt, N odd,
∫ 1

−1

|t|α−1(1 − t2)(N−2)/2)(1 + t)dt, N even,

and

BN =
∫ 1

−1

|t|α−1t(1 − t2)(N−1)/2dt, N odd,
∫ 1

−1

|t|α−1t(1 − t2)(N−2)/2)(1 + t)dt, N even.
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Both of these integrals are special cases of Euler’s beta integral and may be evaluated explicitly.
Theorem 1.8 follows easily by induction. The evaluation of the integral

SN (α, β) :=
∫

ΩN

P (1)α−1P (−1)β−1

is similar. The key point is that, under the substitution above with

P (T ) = TQ(T ) + aNQ(1/T )TN−1,

we have

P (1) = Q(1) + aNQ(1), P (−1) = −Q(−1) + (−1)N−1aNQ(−1).

Recall that∫ 1

−1

(1 − t)a−1(1 + t)b−1dt = 2a+b−1

∫ 1

0

(1 − x)a−1xb−1dx = 2a+b−1 Γ(a)Γ(b)
Γ(a + b)

.

Suppose that N = 2m is even. Then∫ 1

−1

(1 + t)α−1(1 + (−1)N t)β−1|det(TN−1)|dt =
∫ 1

−1

(1 + t)α−1(1 + t)β−1(1 + t)(1 − t2)m−1dt

=
∫ 1

−1

(1 + t)α+β+m−2(1 − t)m−1dt = 2α+β+2m−2 Γ(α + β + m− 1)Γ(m)
Γ(α + β + 2m− 1)

.

Suppose that N = 2m + 1 is odd. Then∫ 1

−1

(1 + t)α−1(1 + (−1)N t)β−1|det(TN−1)|dt =
∫ 1

−1

(1 + t)α−1(1 − t)β−1(1 − t2)mdt

=
∫ 1

−1

(1 + t)α+m−1(1 − t)β+m−1dt = 2α+β+2m−1 Γ(α + m)Γ(β + m)
Γ(α + β + 2m)

.

By induction, we deduce the following:

Theorem 3.1. There is an equality:

SN (α, β) =
∏

2k�N

2α+β+2k−2 Γ(α + β + k − 1)Γ(k)
Γ(α + β + 2k − 1)

∏
2k+1�N

2α+β+2k−1 Γ(α + k)Γ(β + k)
Γ(α + β + 2k)

=
N∏

k=1

2α+β+k−2

Γ(α+β + k− 1)

∏
2k�N

Γ(α+β + k− 1)Γ(k)
∏

2k−1�N

Γ(α+ k− 1)Γ(β + k− 1).

3.1. The integral C−
N (α)

Lemma 3.2. For non-negative integers pi and qi, we have∫
B(1)S

S∏
i=1

|zi|2(α−1)zpi−1
i zqi−1

i sign(im(zi))

= (
√−1)S ·

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S∏

i=1

4
2α + pi + qi − 2

· 1
pi − qi

, pi − qi all odd,

0, else.
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Proof. The complex integral decomposes as a product over each B(1). Changing to polar
coordinates, we have∫

B(1)

z(α−1)+(p−1)z(α−1)+(q−1)sign(im(z)) =
(∫ π

0

−
∫ 2π

π

)∫ 1

0

r2α+p+q−3ei(p−q)θ dr dθ

=
4

2α + p + q − 2
·
√−1
p− q

,

if p− q is odd and is trivial otherwise, from which the result follows. �

For a complex number z, note that |z − z| =
√−1 · sign(im(z))(z − z). Thus the absolute

value of the Vandermonde of signature (R,S) has the following expansion:∏
i>j

|xi − xj |
∏

(xi − zj)(xi − zj)
∏
i>j

|zi − zj |2|zi − zj |2
∏

|zi − zi|

= (
√−1)S

∑
SN

sign(σ)
R∏
i=1

x
σ(i)−1
i

S∏
j=1

z
σ(R+2j−1)−1
j z

σ(R+2j)−1
j sign(im(zj)).

Expanding out the integrand for C−
N (α) term by term and integrating using Lemma 3.2 and

then combining the two powers of (
√−1)N , we find

C−
N (α) =

1
N !

∫
Ω0,N

|aN |α−1 dV

=
(−1)N

N !

∑
S2N

sign(σ)
N∏
j=1

4
(2α + σ(2j − 1) + σ(2j) − 2)

1
σ(2j − 1) − σ(2j)

.

Here the sum is over permutations σ such that σ(2j) and σ(2j − 1) are neither both odd nor
even. Given any such σ, swapping the values of σ(2j) and σ(2j − 1) changes the sign both
sign(σ) and σ(2j − 1) − σ(2j), and leaves everything else unchanged. Hence we may sum only
over σ such that σ(2j) is even, after including an extra factor of 2N (the order of the stabilizer
of the set of N unordered pairs). The set of permutations such that σ(2j) is even is simply
SN × SN . The ‘diagonal’ copy of this group permutes the factors of the product. Hence we are
reduced to the sum

2NN !(−1)N

N !

∑
SN×1

sign(σ)
N∏
j=1

4
(2α + σ(2j − 1) + σ(2j) − 2)

1
σ(2j − 1) − σ(2j)

,

where now σ fixes the odd integers. Absorbing the 2N and (−1)N factors into the product, we
arrive at the sum

∑
SN×1

sign(σ)
N∏
j=1

8
(2α + 2j − 1 + σ(2j) − 2)

1
σ(2j) − 2j + 1

.

Yet this we may recognize as simply the Leibnitz expansion of the determinant of the following
matrix:

MN =
[

8
(2α + 2i + 2j − 3)(2i− 2j + 1)

]
.
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Hence C−
N (α) = detMN . This determinant is simply a Cauchy determinant. Let us write xi

for 2i = 2, . . . , 2N and yj for 2j − 1 = 1, . . . , 2N − 1, so then

MN =
[

8
(2α + xi + yj − 2)(xi − yj)

]
=

[
1

Xi − Yj

]
,

where

Xi =
x2
i + 2αxi − 2xi

8
, Yj =

y2
j + 2αyj − 2yj

8
.

Note that Xi −Xj and Yi − Yj factor into linear factors. By Cauchy’s determinant formula,
we may compute this determinant as a product of linear forms, and specializing as above
we recover our formula for C−

N (α) (after a certain amount of simplification with products of
factorials).

3.2. The distribution of roots in ΩN

In this section, we prove that the roots of almost all polynomials in ΩN distribute nicely around
the unit circle. We have already shown that the absolute values are close to one in Section 1.7,
so to establish the radial symmetry we could apply the results of Erdös and Turán [6]. In fact,
it is most convenient to prove both radial and absolute value distribution simultaneously using
the nice formulation of [8]. The main point of that paper is to show that the quantity

FN = log

(
N∑
i=0

|ai|
)

− 1
2

log |a0| − 1
2

log |aN |

governs the behavior in both cases, and that it suffices to show that FN is o(N). In fact, we
shall be able to obtain a much more precise estimate (logarithmic in N) which could be used to
give quite refined qualitative bounds if so desired. Since log |a0| = 0 and log |aN | was estimated
in Section 1.7, the main task is to obtain bounds on the ai. It is most natural to estimate
integrals of the quantities |ai|2 over ΩN , and this is what we do. We begin with a preliminary
lemma.

Lemma 3.3. If N is even, then

DN−1

DN

∫ 1

−1

aN |det(TN−1)|daN =
DN−1

DN

∫ 1

−1

a2
N |det(TN−1)|daN =

1
N + 1

.

If N is odd, then

DN−1

DN

∫ 1

−1

aN |det(TN−1)|daN = 0,
DN−1

DN

∫ 1

−1

a2
N |det(TN−1)|daN =

1
N + 2

.

Let

AN (i) =
1

DN

∫
ΩN

aidV.

Note that AN (i) = 0 unless i is even. On the other hand, AN (i) is determined exactly by the
coefficients of CN (1, T ), namely, if N = 2m + 1, or N = 2m, then

AN (2m− 2i) =
2i + 1
2m + 1

m!2

(2m)!

(
2i
i

)(
2m− 2i
m− i

)
.

In either case, one has the (easy) inequality |AN (i)| � 1. We now consider the integrals:

AN (i, j) =
1

DN

∫
ΩN

aiajdV.
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If i, j < N , then:

DN ·AN (i, j) =
∫

ΩN−1

∫ 1

−1

(ai + aN−iaN )(aj + aN−jaN )|det(TN−1)|daN dV

=
∫

ΩN−1

aiajdV

∫ 1

−1

|det(TN−1)|daN

+
∫

ΩN−1

(aiaN−j + ajaN−i)dV
∫ 1

−1

aN |det(TN−1)|daN

+
∫

ΩN−1

aN−iaN−jdV

∫ 1

−1

a2
N |det(TN−1)|daN .

If i < N and j = N , then:

DN ·AN (i,N) =
∫

ΩN−1

∫ 1

−1

(ai + aN−iaN )aN |det(TN−1)|daN dV

=
∫

ΩN−1

aidV

∫ 1

−1

aN |det(TN−1)|daN

+
∫

ΩN−1

aN−idV

∫ 1

−1

a2
N |det(TN−1)|daN .

If i = j = N , then AN (i, j) is 1/(N + 1) if N is even and 1/(N + 2) if N is odd.

Lemma 3.4. The inequality |AN (i, j)| � N3 holds for all i, j,N .

Proof. The result is certainly true for N = 1. We proceed by induction. Assume that
neither i nor j is equal to N . By the recurrence relation above, the triangle inequality, and
Lemma 3.3, we deduce that

|AN (i, j)| � |AN−1(i, j)| + 1
N + 1

(|AN−1(i,N − j)| + |AN−1(j,N − i)|)

+
1

N + 1
|AN−1(N − i,N − j)| � (N − 1)3

(
1 +

3
N + 1

)
< N3.

Something similar (but easier) occurs when either i or j is N (using the inequality |AN (i)| � 1
noted above). �

Remark 3.5. It seems from some light calculation that the inequality |AN (i, j)| � 2 (or at
least O(1)) may hold for all N , although we have not tried very hard to prove this, because
the inequality above completely suffices for our purposes — indeed all that matters is that the
bound is sub-exponential.

Lemma 3.6. The following inequality holds for all N :

1
DN

∫
ΩN

N∑
i=0

|ai| � (N + 1)2N3.
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Proof. By Cauchy–Schwartz,

N∑
i=0

|ai| � (N + 1)

√√√√ N∑
i=0

|ai|2 � (N + 1)
N∑
i=0

|ai|2,

where we use the fact that
√
x � x if x � 1 (note that a0 = 1). It follows that

1
DN

∫
ΩN

N∑
i=0

|ai| � (N + 1)
N∑
i=0

|AN (i, i)|,

and the result follows from Lemma 3.4. �

We now prove Theorem 1.2, which we restate now:

Theorem 3.7. As N → ∞, the roots of a random polynomial in ΩN or ΩP
N are distributed

uniformly about the unit circle.

Proof. We first consider ΩN . Following [8], consider the quantity

FN = log

(
N∑
i=0

|ai|
)

− 1
2

log |a0| − 1
2

log |aN |.

Note that a0 = 1, so log |a0| = 0. This also implies that the first term in this sum is non-
negative. On the other hand, certainly |aN | � 1, so the last term is also non-negative, and
FN � 0 for every point of ΩN . We have already computed that

−E(ΩN , log |aN |) = 1
2 logN + O(1);

a similar result holds for ΩP
N by the computation at the end of § 1.8. Let ΩN (100) denote the

region where the first term in the above expression for FN has absolute value at least 100 logN .
(The constant 100 is somewhat arbitrary, it is relevant only that 100 > 5 + 1.) By Lemma 3.6
we have

(N + 1)2N3 � 1
DN

∫
ΩN

N∑
i=0

|ai| � 1
DN

∫
ΩN (100)

N100 =
Vol(ΩN (100))

Vol(ΩN )
N100.

It follows that the part of ΩN where FN is not between 0 and 100 log |N | is a vanishingly small
part of ΩN for N large (by a large power of N). The same is true for ΩP

N , because the volume
of this latter space is (roughly) 1/N times the volume of ΩN . The result then follows from
[8, Theorem 1]. �
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