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MODULARITY THEOREMS FOR ABELIAN SURFACES

GEORGE BOXER, FRANK CALEGARI, TOBY GEE, AND VINCENT PILLONI

ABsTrRACT. We prove the modularity of a positive proportion of abelian sur-
faces over Q. More precisely, we prove the modularity of abelian surfaces which
are ordinary at 3 and are 3-distinguished, subject to some assumptions on the
3-torsion representation (a “big image” hypothesis, and a technical hypothesis
on the action of a decomposition group at 2). We employ a 2-3 switch and a
new classicality theorem (in the style of Lue Pan) for ordinary p-adic Siegel
modular forms.

CONTENTS
[L_Introductiod 2
[L.1. The main theoremd 2
[[2 The 2.3 switcH 4
(-4 —peadic Pichler Shimu theor] :
11.5. _An outline of the papgﬂ 6
[L6._The work of Arthul 7
[L.7._Acknowledgments 8
[L8. Notation and conventiond 8
[2._Lie algebra homologyl 18
2.1 TIntroductiod 18
[2.2. Solid functional analysis and representationd 18
2.3 Lie algebra cohomology and homology 25
[2.4. Algebraic local cohomology and twisted Verma modules 30
[2.5._Some SLo-computationd 35
[2.6. TIntertwining mapd 36
2.7 Topalogy] 37
2.8. Proof of Theorem m 39
[3.__Equivariant sheaves on the flag variety and localization 40
B2 Introductiod 40
[3.2__ Equivariant sheaves on partial flag varietied 41
3.3. Equivariant sheaves on Bruhat celld 50
B —Alechysic and locally analytic represeatationd 52
13.5. _Localization on the partial flag 1a1;j§1;;] 56
[3.6. Localization and higher Coleman sheaves at singular weighf 62
4. p-adic Eichler Shimura theory 67
LT lureduction 67
4.2, Perfectoid Shimura varietied 70
4.3, Smooth and locally analytic vectors of the structure sheaf 71
l4.4. Completed cohomologyl 71

G.B. was supported by a Royal Society University Research Fellowship. F.C. was supported in
part by NSF Grant DMS-2001097. T.G. was supported in part by an ERC Advanced grant and
by the Simons Collaboration on Perfection in Algebra, Geometry, and Topology. This project has
received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No. 884596). V.P was supported in
part by the ERC-2018-COG-818856-HiCoShiVa.

1


http://arxiv.org/abs/2502.20645v1

2 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

4.10. _Sen and OOIiEE'H
L. Tho Eichlor_Shi Tt 1 simolicial

5.6 jocal deformation prohlemCl

A Tic f lofin - ]
. Notation aud defutiond -
62 Ordi of - |

6.4 Subgroups of GSp,(Fs)

F._ Multiplic i I

[f 1 TaylorWiles primed

9.5.  Proof of Theorems [Al and E

[10. Complementd
[l0.1. Exampled

: 0.3.  Residual modularity theorems (modulo 2
[Referenced

1. INTRODUCTION

1.1. The main theorems. Our main theorem is as follows (see §0.9)).
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Theorem A. Let A/Q be an abelian surface with a polarization of degree prime

to 3. Suppose the following holds:
(1) The mod 3 representation:

Pas: Gal(Q/Q) — GSp,(F3)

18 surjective.
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(2) Paslcq, is unramified, and the characteristic polynomial of p4 3(Frobg) is
not (2 4+ x + 2)2.

(8) A has good ordinary reduction at 3 and the characteristic polynomial of
Frobenius at 3 does not have repeated roots.

Then A is modular. More precisely, there exists a cuspidal automorphic repre-
sentation 7 for GLs /Q (the transfer of a cuspidal automorphic representation
of GSp, /Q of weight 2) such that L(s, H'(A)) = L(s, ), and hence L(s, H'(A))
has a holomorphic continuation to C satisfying the expected functional equation.

In our previous paper [BCGP2I|, we proved the potential modularity of all
abelian surfaces over totally real fields. (We refer the reader to the introduction
to [BCGP21] for a history of the modularity conjecture for abelian surfaces.) As
a consequence, the main result of [BCGP21] implies that L(s, H!(A)) has a mero-
morphic continuation to all of C, but it does not suffice to prove the conjectured
holomorphicity, for essentially the same reason that Brauer [Brad7] was able to
prove the meromorphic continuation of Artin L-functions but their holomorphicity
remains conjectural. The results of [BCGP2I] also allowed one to establish the
modularity of an abelian surface under extremely restrictive conditions, and in par-
ticular to produce [BCGP21, Thm 10.2.6] infinite (thin) sets of modular abelian
surfaces A/Q (up to twist) with End(Ag) = Z. These sets, however, account for
0% of all abelian surfaces over Q counted in any reasonable way. Indeed, even
producing any explicit examples where our modularity theorems applied was some-
what of a challenge [CCG20]. In contrast, we expect that Theorem [Al applies to a
positive proportion of all abelian surfaces over Q counted in any reasonable wayEl
For example, conditions ([I)-@B) can be guaranteed by imposing congruence condi-
tions at finitely many primes (including 2 and 3). See Section [I0.1] for some more
precise heuristics and examples; in particular we show that Theorem [A] applies to
the Jacobians of precisely 11743 of the 66158 genus two curves in [LMEF24, BSST16].

The hypothesis ([Il) (which comes from the Taylor-Wiles method) on the resid-
ual image can be weakened; the allowable subgroups are precisely those listed in
Lemma (they are all absolutely irreducible).

Although there is some scope for marginal improvement on the local condi-
tions ([2) and @) (as a direct consequence of the modularity theorems proved in
this paper), our expectation is that the best way to relax the local assumptions is
to make use of base change by generalizing our main results to totally real fields,
which we hope to return in the future. While some of our arguments will gener-
alize straightforwardly, the proof of the main classicality theorem will require new
ideas. In [BCGP21], we were able to work over totally real fields F' in which p splits
completely, and additionally there was considerable freedom to choose the prime p.
In contrast, in the current paper, we are often forced to take p = 3 or p = 2, and
in order to relax (2)) and (@) it will be necessary to allow these primes to behave
arbitrarily in the totally real field F.

We also note the following easy to formulate corollary of Theorem [A] (again,

see §9.5]).
Theorem B. Let X : y? = f(z) with deg(f(z)) =5 be a genus two curve over Q.
Suppose that: -

(1) pxs:Gal(Q/Q) — GSpy(F3) is surjective.

11t is very hard to say anything rigorous (even for elliptic curves) if one orders by conductor.
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2) X has good ordinary reduction at 2.
g )

3) X has good ordinary reduction at 3.
g )

Then X is modular.

1.2. The 2-3 switch. The starting point of this paper is an analogue of the 3-
5 switch used by Wiles [Wil95] to prove residual modularity, which exploited the
rationality of certain twists of the modular curve X (5)/Q. In our case, we use
a rational moduli space of abelian surfaces to carry out a 2-3 switch. This space
was defined in [BCGP2]] as follows: given an abelian surface A with a prime to 3
polarization, one may consider the moduli space P(A[3]) of genus two curves X
equipped with a symplectic isomorphism Jac(X)[3] ~ A[3] and a fixed rational
Weierstrass point. By forgetting the Weierstrass point, the variety P(A[3]) admits
a degree 6 map to a twist of the Siegel 3-fold of full level three, which is rational
over C but almost never over Q [CC22]. However, P(A[3]) is always rational
by [BCGP21, Thm 10.2.1]. In particular, we may find another abelian surface B/Q
with B[3] ~ A[3] and such that the map

PB2 Gq = GSpy(F2) ~ S¢

has image isomorphic to S5 (because of the rational Weierstrass point). Condi-
tion (@) of Theorem [A] ensures that we can find such a B with good ordinary
reduction at 2. After restricting to a quadratic extension F*/Q (which we can
arrange to be totally real), we may assume that ﬁB,2|GF , is absolutely irreducible
with image As in GSp,(F2). Known cases of the Artin conjecture in dimension
two [PS16D, [Sas19] allow us to identify this representation with the mod 2 re-
duction of the symmetric cube of the 2-adic Galois representation associated to a
Hilbert modular form of parallel weight 2, and thus (via known functorialities) to
the mod 2 representation associated to a Hilbert—Siegel eigenform (see also [TY22,
Thm. 4.7]). The goal is now to use modularity lifting theorems to go from the mod-
ularity of B[2] to the modularity of B and thus to the modularity of A[3] ~ B3],
and finally to the modularity of A.

One difficulty that we encounter is that we need to prove modularity lifting the-
orems which apply when p = 2 and the residual image is rather small. However by
far the most serious difficulty compared to our previous work is that the argument
above gives modularity of the residual representation pg , in regular weight, but
the representation pp o has irregular weight. The main innovation in our earlier
work [BCGP21] was to prove a modularity lifting theorem in irregular weight; how-
ever, this theorem crucially depended on having residual modularity in irregular
weight as an input.

Deducing residual modularity in irregular weight from regular weight would be
a higher dimensional analogue of showing (for modular forms) that a residual mod-
ular representation p : Gq — GLa(F,) which is unramified at p arises from a Katz
modular form of weight one [Gro90, [CV92], and we do not know how to do this.
Instead we use modularity lifting theorems to prove the existence of a p-adic Siegel
modular form associated to the p-adic Tate module of our abelian surface, and
we then prove a classicality theorem for ordinary p-adic Siegel forms in irregular
weight. Such p-adic modular forms are not necessarily classical; indeed their as-
sociated Galois representations need not be de Rham. However, we prove (under
mild technical hypotheses, see Theorem [L.12.4) that if the Galois representation
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is (ordinary and) de Rham, then the form is indeed classical. (Condition (@) in
Theorem [A] guarantees that we can apply Theorem EI2.4] to pa 3.)

1.3. Classicality for ordinary p-adic Siegel modular forms. Our classicality
theorem follows the strategy introduced by Lue Pan in his paper [Pan22a), as
reinterpreted in [Pil24]. Both of these papers (and Pan’s sequel [Pan22b]) are
in the setting of the modular curve. While Pan gives a complete treatment of
arbitrary de Rham representations, we restrict to the ordinary setting, which is
considerably simpler; but there are still many additional complications for higher-
dimensional Shimura varieties. We prove our classicality theorem in the case of the
Siegel threefold (the Shimura variety for GSp, /Q) and it asserts that if an ordinary
p-adic modular eigenform of weight 2 has an associated Galois representation which
is irreducible and de Rham (and satisfies a few more technical hypothesis), then
it is classical (see Theorem EI2Z4). The strategy for proving this theorem is to
realize the Galois representation in the completed cohomology of the Siegel threefold
(it does not contribute to the classical étale cohomology because its Hodge—Tate
weights are singular) and to relate the Sen operator of this Galois representation
to a Cousin map which measures the obstruction for a p-adic modular form to be
a classical modular form. In our ordinary case, the de Rhamness is equivalent to
the semi-simplicity of the Sen operator which translates into the vanishing of the
Cousin map and therefore implies the classicality of the p-adic modular form.

We now give a more precise account of our strategy. Let Sh}?; x» be a toroidal
compactification of the Siegel threefold of level KP K, over Spa(C,,Oc,), and let
Shig, = limg, Sh}?;)Kp be the perfectoid Siegel threefold over Spa(C,,Oc,), of

prime-to-p level KP. Let w%p be the sheaf of weight 2 Siegel modular forms over

tor 2,sm __ . 2 . tor
Shi gr and let w = colimg, w %, viewed as a sheaf over Shy’,, whose coho-

mology is colimg, RI‘(ShtKO: Kp,w%p). Thus, an element of the degree 0 cohomology

of w?™™ is a weight 2 Siegel modular form of level K?K,, for some K.

The ordinary part RI‘(ShtKoi,oJQ’Sm)Ord is computed by the following complex
(more precisely, this is only true for cuspidal cohomology but we ignore this subtlety
in the introduction) in degrees 0 and 1:

[H?d(Sh}?;’szm)ord Cﬂ;s Hllw(Sh}?Z, w2,sm)0rd] (131)

where the module in degree 0 in the complex is the space of ordinary p-adic modular
forms of weight 2, and the module in degree 1 is a space of ordinary higher p-adic
modular forms (studied in higher Coleman theory). The differential is the Cousin
map.

Let RI'(Sh%:,Q,) denote the complex of completed cohomology. We prove
(under technical assumptions, Theorem [£.0.9) that the ordinary part of the b-
cohomology

R Homy (A, RT(Shi2;, Q,))erd (1.3.2)

of locally analytic vectors in completed cohomology is concentrated in degree 3.
Here X is a non-dominant character of the torus of GSp, where we expect to see (by
interpolation from what happens for dominant characters) the Galois representation
of weight 2 modular forms.

After we tensor (L32)) with C,, by the p-adic Eichler—Shimura theory developed
in this paper, the cohomology admits a 4 step filtration and the graded pieces are
given by the various relevant higher Coleman theories. If we denote by V this
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degree 3 cohomology group, we prove that Vg, has a decreasing filtration with
GV, = HY,(Shih, w?™)°d and Gr'Ve, = Hi, (Shigh, w?*™)° . We use this
to verify that the Galois representation of our p-adic modular eigenform of weight
2 is realized in completed cohomology.

The Sen operator respects the filtration and acts by the scalars 1,1,0,0 on the
respective graded pieces, but possibly acts non semi-simply on Vg, . Looking at the
generalized 0 eigenspace for the Sen operator, we get an induced map

Sen : Gr'Vig, = H{y(Shigh, w*s™)° 4 — H (Shig,, w* ™) = Gr'Ve, (1.3.3)

measuring the failure of semi-simplicity of the Sen operator.

The main result from which we deduce our classicality theorem is the property
that the Cousin map (31 and the Sen map ([L33) agree up to a non-zero scalar
(Theorem AT0.12). The key idea behind the proof is that the Sen operator which
acts on the cohomology arises from an operator defined on the complex of sheaves
RHomb()\,(’)ﬁ]%) on the perfectoid Shimura varieties whose cohomology is the
b-cohomology of locally analytic vectors in completed cohomology. The complex
RHomb()\,(’)lsah%) is closely related to twisted D-modules on the flag variety (a

form of the Beilinson-Bernstein localization of the Verma module of weight ),
and the Sen operator to a certain horizontal Cartan action. It turns out that the
relation between the Sen and Cousin maps can already be studied and established
at this more “explicit” geometric representation level (Theorem [3.6.9).

1.4. p-adic Eichler—Shimura theory. A substantial part of this paper is ded-
icated to p-adic Eichler—-Shimura theory. In this part of the work, we are able
to work in the generality of Hodge type Shimura varieties. Let us recall first the
classical Hodge-Tate decomposition of modular curves. Let G = GLs, and let
K C G(Ay) be a compact open subgroup. Let Shi be the modular curve over
C, of level K, with compactification Sh'". Let E — Shx be the universal elliptic
curve. In [Fal87], Faltings proved the following Hodge-Tate decomposition for the
étale cohomology of modular curves:

H'(Shg,Sym"T,E) ®z, C, = H°(Shi",w"™?)(—k — 1) ® H'(ShY",w™*) (1.4.1)

This isomorphism is equivariant for the Hecke action and the local Galois action,
and (—k — 1) indicates a Tate twist. This kind of statement has been generalized
to all Shimura varieties (see for example [LLZ23]).

Both sides of (L4I]) are classical instances of bigger p-adic objects. On the left
hand side we may consider completed cohomology, and on the right hand side we can
consider higher Coleman theory [BP21]. The main goal of p-adic Eichler—Shimura
theory (as taken up in §4)) is to express some relation between both big p-adic spaces,
generalizing Faltings’s theory to non-classical cohomologies. We note that p-adic
Eichler—Shimura theory was initiated in [AIS15] and completely transformed after
the work of Pan [Pan22a] followed by that of Rodriguez Camargo [RC22, [RC23]. In
order to state our main results, we need to introduce a certain amount of notation
as well as recall a number of facts from higher Coleman theory. For this reason, we
defer any further discussion to the more technical introduction given in §4.11

1.5. An outline of the paper. Here is a brief synopsis of the sections in our
paper; see also the introductions to the individual sections for more details.
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§2] is concerned with Lie algebras. We consider the enveloping algebra U(g)
of a finite dimensional Lie algebra g and its Fréchet completion U(g), as well as
modules over them. Our main result (of independent interest) is Theorem
which compares the Lie algebra cohomology of a unipotent radical of a parabolic
of g of certain algebraic U(g)-modules and of their completions.

§3lis about equivariant twisted D-modules on flag varieties. We develop a some-
what ad hoc language to describe them. One of the main difficulties is to keep track
of the various topologies and finiteness conditions we want to impose. We use the
language of condensed mathematics to deal with functional analysis. We introduce
a version of Beilinson—Bernstein localization and describe it using the results of
Section

§4] contains our main classicality result. We also give some complements on
higher Coleman theory and establish the p-adic Eichler-Shimura theory.

§8l proves an R = T theorem in regular weight when p = 2 under a suitable
oddness hypothesis, following [Thol7]. For technical reasons (due to the small
residual image of our representations), we need to work with unitary groups rather
than symplectic groups.

§6] proves an R = T theorem in regular weight for p > 2 for symplectic repre-
sentations. Curiously enough, when p = 3 and the image of 7 is GSp,(F3) (the
main case of interest), technical reasons now mandate that we work with symplectic
groups rather than unitary groups; see Remark

§7 proves a multiplicity one result for certain Hida families, which (once again)
for technical reasons is necessary for our classicality argument. This is where the
main modularity theorems Proposition[[.5.10]and Theorem [[.5. 11l are proved, using
the classicality result Theorem 4124

§8 beings by recalling the basic theory of 2-torsion points on an abelian surface,
and then establishes some basic but necessary facts concerning the modular rep-
resentation theory of As. This section also addresses the residual modularity of
mod-2 representations with image As using known cases of the Artin conjecture
for n = 2.

§studies the representations p : Gq, — GSp,(F3) such that p" ~ Jac(X)[3] for
a genus two curve X/Q, with good ordinary reduction and a rational Weierstrass
point when p = 2 or 3. We also study the related question of when p¥ ~ A[3]
where A/Q), is an abelian surface with good ordinary reduction and a rational
odd theta characteristic, as well as variants in which ordinary semistable reduction
is allowed — note that even when A = Jac(X), it is possible that A has good
reduction even when X does not. This analysis is then used in §9.4] to carry out
the 2-3 switch and then in §9.5] to complete the proofs of our main modularity
theorems (Theorem [A] and [B]).

§10 gives some examples and complements to our main theorem, proving a resid-
ual modularity theorem for mod 2 representations with image Ag or Sg, and proving
the automorphy of any abelian surface A/Q which neither has End(Aa) = Z nor
satisfies End(Ax) ® R = End(4g) ® R = R @ R for some quadratic field K (this
excluded case includes the restriction of scalars of a general elliptic curve over K).
We also explain why the full modularity theorem for all abelian surfaces over Q
would follow from a version of Serre’s conjecture for GSp,(F)) in regular weight.

1.6. The work of Arthur. It should be noted that this paper, as with the pa-
per [BCGP2I] (see [BCGP21] 1.4.1]), relies on results stated by Arthur in [Art04]
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which ultimately rely on references [A24], [A25], [A26], and [A27] which have not
(still) yet appeared, as well as cases of the twisted weighed fundamental lemma
announced in [CL10]. However, the situation has improved remarkably in recent
times. As a result of the recent preprint JAGI™| of Atobe, Gan, Ichino, Kaletha,
Minguez, and Shin, a complete proof of all the missing ingredients from Arthur’s
papers is now available, and thus the only result we use for which a proof is not yet
available is the twisted weighted fundamental lemma.

1.7. Acknowledgments. We would like to thank Jack Thorne for several help-
ful conversations about his paper [Thol7], and about 2-adic automorphy lifting
theorems in general. We would also like to thank Shiva Chidambaram, Lue Pan,
Dave Roberts, Juan Esteban Rodriguez Camargo, Travis Scrimshaw, and Andrew
Sutherland for helpful conversations. Several of the ideas of this paper were dis-
covered when all four authors were visiting the DFG-funded Hausdorff Research
Institute for Mathematics as part of the trimester program “The Arithmetic of the
Langlands Program” in 2023.

1.8. Notation and conventions.

1.8.1. Assorted notation. We write Z7, C Z" for the subset of tuples (Ai,...,Ay)
with Ay > Ao > -+ > \,. If L/Q, is a finite extension, we write Leyel := L({peo)
for the cyclotomic extension.

1.8.2. Coefficients. We let E be a finite extension of Q, with ring of integers O,
uniformizer w and residue field k. We will always assume that E is chosen to be
large enough such that all irreducible components of all deformation rings that we
consider, and all irreducible components of their special fibres, are geometrically
irreducible. (We are always free to enlarge E in all of the arguments that we make,
so this is not a serious assumption.) Given a complete Noetherian local O-algebra A
with residue field k, we let CNL, denote the category of complete Noetherian local
A-algebras with residue field k. We refer to an object in CNL, as a CNL-algebra.
If G is a group functor on CNL, then we write G for the group functor on CNLy
given by G(R) := ker(G(R) — G(k)).

1.8.3. Galois representations and p-adic Hodge theory. We assume without further
comment that all Galois representations are continuous with respect to the natural
topologies. We normalize Hodge—Tate weights so that the cyclotomic character has
Hodge-Tate weight —1, and the Sen operator acts via 1 on the Sen module of Q,(1),
so that the (generalized) Hodge-Tate weights are the negatives of the eigenvalues
of the Sen operator. We write ¢ for the p-adic cyclotomic character.

Let K/Q; be a finite extension for some [ (possibly equal to p). As in [BCGP21],
§2.8] we say that a representation Gx — GLH(GP) is pure if the corresponding
Weil-Deligne representation is pure; in the case I = p, this presupposes that the

representation is de Rham. We say that a representation Gx — GSp,(Q,,) is pure

if the corresponding representation G — GL4(Q,,) is pure. If F' is a number field

then we say that a representation Gr — GL,(Q,) (or Gr — GSp,(Q,)) if it is
pure at all finite places of F.
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1.8.4. Notation for reductive groups. We consider a split reductive group G over
Spec E, with Borel B and torus 7. We denote by g, b, b their Lie algebras. We
write B for the opposite Borel of B and write b for its Lie algebra. We let ®
be the set of roots of G, with positive roots ®* and negative roots &~ = —®T.
For a € ® choose standard basis elements X, so that (X4, X_q, H) is an sly-triple,
where H,, := [X,, X_o]. We write A for the set of simple roots. We let W be the
Weyl group of G, with length function ¢ : W — Z>¢, and write wq for the longest
element of W. The Weyl group acts on the left on the character group X*(T') via
(wA)(t) := Mw~ w). Tt also acts on the left on X, (T), and the natural pairing (,)
between X*(T') and X, (T') is W-equivariant.

Let P O B be a standard parabolic with Levi quotient M. We let p be its Lie
algebra, with unipotent radical u, and Levi m, and we write 3, for the centre of m.
We have a Borel b, = mnb C m. We write u for the unipotent radical of b and u,, for
the unipotent radical of p. Let @L be the subset of ®* which lie in the Lie algebra
of M, and set @M := &+ &7 ; and write @y, :== —0F,, M := —dTM_ We let
Wi be the Weyl group of M, with longest element wg_ps, and we let W C W be
the set of Kostant representatives of Wy \W (i.e. those w € W with @1, C wd*;
this is a set of coset representatives of minimal length). There is an involution
of MW given by w — wo pwwo, and we have [(wo prwwo) + l(w) = |@FM|. In
particular the Kostant representative of maximal length is wi! := wq, prwo.

We let p be half the sum of the positive roots, and write p = p™ + pp; where p™
is half the sum of the roots in ®™ and pj; is half the sum of the roots in @;\r/[.

We define the “dot action” of W on X*(T') by w- X := w(A+ p) — p. We say that
A € X*(T) is regular if the stabilizer of A for the dot action is trivial, and otherwise
we say that A\ is singular or irregular.

Let w € W. Then we let P, := w™!Pw, with Lie algebra p,, := w™lpw, and
similarly we define u,, , m,, and so on.

1.8.5. Notations for a p-adic torus. Let T'— Spec Q, be a torus. We let T be its
maximal split subtorus. The group T(Q),) has a unique maximal compact subgroup
that we denote (abusing notation) by T'(Z,). We have an exact sequence
02 -Q, 5Q—0

given by the p-adic valuation, normalized by v(p) = 1. Tensoring this sequence by
X.(T) and taking invariants under the Galois group Gal(ﬁp /Qp) yields an exact
sequence

0 T(Z,) = T(Qy) > X.(TH ®Q (1.8.6)
where the image of v is a lattice.

Let x : T(Qp) — Q; be a character. We can compose it with the p-adic valuation
and get a map v(x) : T(Q,) — Q, which factors as T(Q,) = X.(T%) ® Q — Q.
We can therefore think of v(x) as an element of X*(T%)q.

If T is a maximal torus contained in a Borel of a quasi-split reductive group G
defined over Q,, and if ® = @+ U @~ is the set of absolute roots, we let T1(Q,) =
{t e T(Qp),v(a(t)) > 0Va € @} and TTH(Q,) = {t € T(Qp), v(a(t)) > 0 Vo €
ot}

1.8.7. Notations in the symplectic case. We will often consider the case where G =
GSp,, and P is the Siegel parabolic. In this case we make some more explicit
choices. The group G has a natural model over Spec Z, namely we realize G as the
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subgroup of GLy, acting on the free Z-modules of rank 2g, with basis e1,--- , eaq
and preserving up to a similitude factor the symplectic form with matrix

7= (5% )

where S is the g x g anti-diagonal matrix with only 1’s on the anti-diagonal. We
denote by v : GSpy, — Gy, the similitude factor.

We let P be the stabilizer of (eg41,---,e24). We choose B C P to be upper
triangular on each diagonal block. We let T' be the diagonal torus. An element of T’
is labelled t = diag(zt1, - -, 2tg, zt;l, -+, 2zt 1), Characters X*(T) of T are tuples:

k= (ki, - kgw) € Z9 x Z with w = 3" k; (mod 2), and k(t) = 2 [[L_, tF. A
character is M-dominant if k&1 > --- > k4. The set of M-dominant characters is
denoted by X*(T)M:*. A character is G-dominant if 0 > k; > --- > kq. The set of

G-dominant characters is denoted by X*(T)%+.

1.8.8. GSp,. We now specialize further to the case G = GSp,. We continue to take
P to be the (“block lower-triangular”) Siegel parabolic stabilizing es, 4, and B the
Borel inside it which is upper-triangular in each of the diagonal 2 x 2 blocks. We
let @ be the Klingen parabolic containing B (this is the other maximal parabolic
in GSp,) with Levi M.

Let £ = (k1,k2;w) € X*(T)" be a dominant weight for GSp,, so that 0 >
k1 > ko. Given our choice of Borel, the positive roots ® are a = (1,-1;0),8 =
(—2,0;0),y=a+8 = (—1,-1;0),6 = 2a+8 = (0, —2;0). We have p = (-1, —-2;0).

The Weyl group W is generated by s, and sg where sqo(k1, ko; w) = (k2, k1;w)
and sg(k1, ko;w) = (—ki1,ko;w), so that wy = saSsasp, and wo(ki, ke;w) =
(—k1, —k2;w). We have Wy = {1d, sa} and Wiy, = {Id, sg}. The elements of MW
areId, sg, sgsa, Sgsass. We label them %w, 'w, 2w, 3w; they respectively have length
0,1,2,3. In particular, >w = w)! is the length three element. We use the pairing
between characters and cocharacters coming from the standard pairing on Q3.
Thus, we label cocharacters X, (T) as triples (a,b;c) € %Z3, with a +¢,b+c € Z.
To (a,b;c) we attach the cocharacter ¢ ~ diag(te+e, tP+e t=b+e ¢—ate) We let
w=(-1/2,-1/2;1/2) € X, (T). We sometimes view p as an element of 3, (the
centre of the Lie algebra m).

We let (TSE be the dual group of GSp4 Our choice of Borel B and torus T
in GSp, gives a Borel B and torus T in GSp4 We use the spin representation
to identify 58?4, the Borel B and torus 7' with the group GSp,, its usual up-
per triangular Borel and diagonal torus. In particular, this fixes an isomorphism
X*(T) = X,(T) ~ X,(T), given by

—A1—Aatw A1 —Aa+w A1 +Aotw A1 +Hdo+w

(A1, Ag; w) — [t — diag(t 2 ATzt 2 gtz )]

Dually, there is an isomorphism X, (T) = X*(T) ~ X*(T) for which y corresponds
to the dominant character (1,0;1) of X*(T). When we work on the dual side
(typically when we consider Galois representations), we will also denote by B the

upper triangular Borel in GSp, ~ @E. This should not cause any confusion.

1.8.9. Ordinary Galois representations.
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Definition 1.8.10. Let K/Q, be a finite extension, and let p : Gx — GSp,(Q,,)
be a representation with similitude factor e~*. We say that p is ordinary if there
are characters x1, x2 : Gg — Q: with

X1k * *
~ | 0 xe * *
=10 o 5_1x2_1 *
0 0 0 eIyt

We say that the ordered pair (x1,x2) is a p-stabilization of p. We say that p is
p-distinguished if the 4 characters x1, x2, 5_1X§17 5_1xf1 are pairwise distinct. We
say that p is semistable of weight 2 if the subrepresentation

(v 2)
0 X2
is unramified. (Such a representation is automatically semistable in the usual sense.)
In this case we will sometimes denote the p-stabilization (x1,x2) by (o, ) with
a = x1(Frobg), 8 = x2(Frobg). B

Similarly, we say that a representation p : Gx — GSp,(Fp) with similitude

factor € is ordinary if there are characters X, X, : Gk — F; with

Yl * * *
—~ 10 X2 * *
P=1o0 0 eix! %

0 0 0 e Ixt

We say that the ordered pair (X;,Xs) is a p-stabilization of p. We say that p is
residually p-distinguished if the 4 characters X;,Xo,€ ‘X5 ;€ 'X; = are pairwise

distinct. We say that 7 is of weight 2 if the subrepresentation

(5 <)
0 X

is unramified; in particular the characters X;,%, are unramified. (Conversely,
if X1, X5 are distinct and unramified, then p is of weight 2.) If b is of weight 2, then
we will usually denote the p-stabilization (%;,%,) by (@, 3), where @ = ¥, (Frobg),
ﬁ = Y2 (Fl"ObK) N

We make the same definitions for integral representations p : Gx — GSp,(Z,), in
which case a p-stabilization (x1, x2) induces a p-stabilization (x,Xs) of the mod p
representation p : G — GSp,(F,). Note that if p is semistable of weight 2, then p
is of weight 2. If we regard p as a lift of p, then we say that (x1,x2) is compatible
with (%1, X2). Given two ordinary lifts p1, p2 of p, we say that p-stabilizations of p;
and po respectively are compatible if they induce the same p-stabilization of p.

Remark 1.8.11. We again (see [BCGP21 Rem. 7.3.2]) apologize for the termi-
nology “of weight 27; these definitions are convenient later in the paper when we
wish to appeal to results from [BCGP21]. In particular we caution the reader that
if p is of weight 2 and pure, then it is pure of weight 1 in the usual sense. Since
we will never use the terminology “pure of weight 1” (or “pure of weight 27, for that
matter), we hope that this will not lead to any confusion.
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1.8.12. Galois representations associated to automorphic representations. We for
the most part follow the conventions of our earlier paper [BCGP21], to which we
refer for further details. We begin with some brief recollections from [BCGP21]
§2.3]. If K/Q; is a finite extension for some [, then we let recx be the local
Langlands correspondence of [HT01], which assigns to an irreducible complex ad-
missible representation 7 of GL,,(K) a Frobenius semi-simple Weil-Deligne com-
plex representation reci (m) of the Weil group Wy. We will write rec for reck
when the choice of K is clear. In the case n = 1, reck is obtained from the
Artin map Artx : K* =5 W2 which we normalize to send uniformizers to
geometric Frobenius elements. Similarly, we denote the local Langlands correspon-
dence of [GT11] by recgr; this assigns a GSp,-conjugacy classes of GSp,(C)-valued
Weil-Deligne representation of Wx to each irreducible smooth complex represen-
tation of GSp,(K). If (r, N) is a Weil-Deligne representation of Wk we will write
(r, N)¥= for its Frobenius semi-simplification.

We fix once and for all for each prime p an isomorphism 2 = 7, : C = QP.
We will sometimes omit these isomorphisms from our notation, in order to avoid
clutter. In particular, we will frequently use that 2 determines a square root of p
in Gp (corresponding to the positive square root of p in C). We will often regard

automorphic representations as being defined over Q,, rather than C, by means

p)
of the fixed isomorphism 2 : C & Qp. We write rec, and recgr,, for the local
Langlands correspondences for Qp—representations given by conjugating by .

Suppose that F'* is a totally real field and that 7 is a cuspidal automorphic
representation of GSp, /F'T. We will always assume that such a 7 has central
character | - |2. (We apologize for this assumption, which seemed helpful at some
points when writing [BCGP21], and suffices for applications to abelian surfaces.)
We say that 7 is algebraic if it is C-algebraic, and we say that it is reqular algebraic
if mo is an (essentially) discrete series representation. Suppose that 7 is algebraic.
We say that it has weight (\,)y|cc Where A, € (X*(T)a —p)NX*(T), if m, has
infinitesimal character —\, — p. If 7 is regular algebraic then X\, € X*(T)*, and
we know that 7 ® @), Va, has non-trivial (g, Ko )-cohomology where V), is the
highest weight \,-representation.

We now come to the definition of ordinarity. Assume furthermore that p splits
completely in F'* (this is sufficient to us). Our fixed isomorphism C 2 Qp identifies
{w | p} and {v | oo}. Suppose that w | p. We say that m,, is finite slope if it has
non-trivial Jacquet module. The Jacquet module of 7, is then a direct sum of
characters x, : T(Qp) — Q; We say that m, is ordinary if there is a character
Xw occurring in the Jacquet module such that v(x.,) = —Ay (see Section for
the definition of v(.)). We refer to a choice of such a character as an (ordinary)
p-stabilization of m,,. We say that 7 is ordinary if 7, is ordinary for all w | p. If 7 is
ordinary and regular algebraic, then each m,, has a unique (ordinary) p-stabilization.

Theorem 1.8.13. Suppose that FT is totally real and that p splits completely
in Ft. If wis regular algebraic of weight X = ((ky,1v;2))yjoc, then for each prime p
there is (see e.g. [BCGP21l Thms. 2.7.1, 2.7.2]) a semi-simple representation py p :

Grp+ — GSpy(Q,,) satisfying the following properties.

® VO Pry = el
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For each finite place v {p, we have

WD (prpla, . )™ 2 recar,p(m @ [v]73/2)>.

If pr p is irreducible, then for each finite place v of F, /)7,7;D|GF+ s pure and

WD (prpla, )™ = recqr p(m @ [v]72/2).

For each v|p, prpla, . is de Rham with Hodge-Tate weights ((ky +1v)/2 —

1, —(ky — 10)/2, (ko — 1)/2 + 1,2 = (ky + 1,)/2).
If p splits completely in F, v | p, and 7, is ordinary, then there are poten-
tially unramified characters o, 8 such that:

aslf(k”H”)/Q * * *

N 0 Belke—to)/2 * *

Pw,p|GFv+ = 0 0 ﬁ—lg—l—(ku—lu)ﬂ %
0 0 0 a telkvtln)/2=2

(1.8.14)

Remark 1.8.15. We can spell out more precisely the characters on the diagonal
in (L8I9). Let x, : T(Qp) — Q, be an ordinary p-stabilization of 7,. This
induces a p-stabilization of p’”"Gp . in the sense of Definition [.8.10] as follows. Let

- _3, _s3,._ 5
Xo = Xodopv 2|pr 2|71 T(Q,) — Z).

This character is valued in Zg by the ordinarity assumption. We can identify X,
with an homomorphism Q; — T(Z,), where T is the dual torus, which we identify
with T" by using the isomorphism GSp, ~ (?S\p4 of Section [[L8:8l Then by class
field theory, we interpret X, : Gq, — T'(Zp). This is the character on the diagonal
of p”’p|Gp "

We will also need to use the Galois representations associated to certain irregular
weight algebraic cuspidal automorphic representations for GSp, /F™.

Definition 1.8.16. We say that 7 has weight 2 if it is algebraic of weight A =
(1,152)y|00 (remember that by our convention, this A is not G-dominant) and 7
is a non-degenerate limit of discrete series.

The following theorem is well known. We provide a sketch of proof since we
couldn’t find a precise reference in the literature.

Theorem 1.8.17. Suppose that F' is totally real and that p splits completely
in F*. Let m be an ordinary weight 2 automorphic representation for GSp, /F'T.
There is a semi-simple representation pr, : Gp+ — GSp4(Qp) satisfying the fol-
lowing properties.

® VO Pry = g7t

e For each finite place v 1 p, we have

WD (prpla, )™ = recar,p(m, @ [v] /%)™, (1.8.18)
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e There are potentially unramified characters «, 8 such that:

« * * *
~ |10 B * *
pTl',;D|GF;r =1lo o 6_15_1 X (1.8.19)
0 O 0 a~tet

In fact, the character on the diagonal is described by the recipe explained
in Remark [L.8. 15

Proof. The representation m; will realize in the interior coherent cohomology of
the Hilbert—Siegel Shimura variety by [Har90, Thm. 2.7, Thm. 3.6.2]. By [BP21]
Thm. 1.4.3 (1) (4)], 7y defines a point x on an equidimensional eigenvariety which
dominates weight space. Let Spa(A4, A™) be an affinoid open subset of the eigen-
variety containing x. By [BP21l Thm. 1.4.3 (2)], there is a Zariski dense set
of classical points in Spa(A4, A1), with regular algebraic weight. Let X be the
space of GSp,-valued pseudorepresentations of Gg+ (in the sense of Lafforgue,
see [Qua23]). Then by interpolation of the representations in Theorem [[8T3 there
is a map Spec A — X. Specializing at x produces the semi-simple representa-
tion pr,. By interpolation the representation A%p , contains the character ¢!,
S0 prp admits a symplectic pairing with multiplier e~'. The statement regarding
local-global compatibility away from p follows by a standard argument from p-adic
interpolation (note that the Weil-Deligne representations are only considered up
to semi-simplification). If we assume that 7 is ordinary, then we can assume that
Spa(A, AT) is an ordinary component of the eigenvariety, and by interpolation our
local-global compatibility statement at p follows (see also [BP21, Thm. 1.4.8], for
a more general statement in the finite slope case). ([

Remark 1.8.20. In the situation of Theorem[Al we can upgrade the semi-simplified
local-global compatibility (I.818)) in Theorem [[8TIT to full local-global compati-
bility. More precisely, if 7 is of general type and pr , in is pure, then

WD(pW,p|GF+)F_SS = recar,p(mo ® |’/|_3/2)

for all v; that is, in addition to (L8I8), the monodromy operators N on each side
agree. To see this, note firstly that since 7 is of general type, and cuspidal auto-
morphic representations of GL,, are generic, the L-packet containing m, ® |V|_3/ 2
is generic; so by part vii of the main theorem of [GT11], the adjoint L-factor
L(s,ad(recar p(m, @ |[v|73/2))) is holomorphic at s = 1. Equivalently,

(ad(recar p(m, @ || 73/2))(1))P=1N=0 = 0. (1.8.21)

On the other hand, since ;),,4)|C;F+ is pure, so is V\/D(pmo|GF+ YE=ss (by [TYQT7, Lem.
1.4(1)]). By [TY07, Lem. 1.4(4)] and its proof, this means that V\/'D(pmp|GF+)F_SS
is equipped with the unique choice of N satisfying (L821)), as required.

Finally, we will need to use the Galois representations associated to certain
automorphic representations of GL,,, which we now very briefly recall. Let F be
an imaginary CM field. Recall that an automorphic representation 7 of GL,, /F is
RACSDC if it is regular algebraic, conjugate self-dual, (i.e. 7¢ = 7V), and cuspidal.
(See e.g. [BLGGT14, §2]) for more details.) Associated to a RACSDC automorphic
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representation 7 is a continuous semi-simple representation 7, : Gp — GLn(Gp)
such that rr p|c is de Rham for all v|p, and for each finite place v of F' we have

zWD(rw)p|GFv)F—ss =~ rec(m, ® | det |(17)/2)
(see e.g. [BLGGTI4, Thm. 2.1.1] and [Carl4] Thm. 1.1]). In particular, we have

=

1.8.22. Transfer between GL4 and GSp,. We firstly very briefly recall some re-
sults on Arthur’s classification of discrete automorphic representations of GSpy;
see [BCGP21l, §2.9] for a slightly longer treatment with precise references to the
literature. Suppose that F' is a number field, that II is a cuspidal automorphic rep-
resentation of GLy /F, and that x : A3 /F* — C* is unitary. Then we say that IT
is x-self dual if IT = ITY ® x o det, in which case the pair (II, x) is of symplectic
type if the partial L-function L9 (s, TI, /\2 ®x~ 1) has a pole at s = 1 (where S is
any finite set of places of F) or of orthogonal type if L°(s,II, Sym® ®@x~!) has a
pole at s = 1. Exactly one of these alternatives holds, and if (II, x) is of symplectic
(resp. orthogonal) type then it descends to a discrete automorphic representation 7
of GSp, /F (resp. GSpiny /F for some inner form GSpin§ of GSpin,) with central
character w, = x. (See for example [GT19, Prop. 6.1.7].) We say that a discrete
automorphic representation w of GSp, /F is of general type if it arises in this way
for some (II, x), in which case we say that II is the transfer of m, and that 7 is a
descent of II. For each place v of F, the L-parameter obtained from recgr(m,) by
composing with the usual embedding GSp, < GLg4 is rec(Il,). In this case 7 is
necessarily cuspidal, and it is stable. In fact if 7’ := ®'x, with m,, 7} in the same
L-packet for all v, then 7’ is automorphic, and occurs with multiplicity one in the
discrete spectrum. If 7 is (regular) algebraic then II is also (regular) algebraic.

If F is totally real, and w is regular algebraic and not of general type, then
the Galois representations pr, associated to = are reducible by [BCGP21 Lem.
2.9.1]. Since we will always be in a situation where our Galois representations are
irreducible (even irreducible modulo p), we will only need to consider 7 of general
type in this paper.

1.8.23. Galois representations associated to abelian surfaces. Let F' be a number
field, and let A/F be an abelian surface. For each prime p, we may write p4 , for
the Galois representation associated to H'(Ag,Z,). We often think of p4, as a
representation

pap:Gp— GSP4(QP)

with multiplier given by the inverse cyclotomic character e~ (compare [BCGP21],
Defn. 2.8.2]). We also let 5, , denote the Galois representation associated to
H'(A%,F,). If A admits a principal polarization of degree prime to p, then we
can and do think of p, ,, as a representation

Pap: Gr — GSpy(Fy).

We take the coefficient field of pa, (respectively, of p, ,) to be Q, or Qp (resp.
F, or F,,) depending on what is most convenient. If 7),(A) denotes the p-adic Tate
module of A, then (in our conventions) the Galois representations associated to
T,(A) and Afp] are the dual representations p} , ~ pa, ® € and Py, ~ Py, ® €
respectively. The representation p4 , is unramified at all but finitely many places v
of F', and if v|p then pa p|c,, is de Rham with HodgeTate weights 0,0,1,1 for every
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choice of embedding F' — Gp. Furthermore pa p|c,, is pure at all finite places v
(see e.g. [BCGP21), Prop. 2.8.1]). If A/F, has good ordinary reduction for some
v|p, then pa |G, is crystalline and ordinary of weight 2.

1.8.24. Notions of modularity. Let F' be a number field.

Definition 1.8.25. An abelian surface A/F is modular, or equivalently, automor-
phic if there exist C-algebraic cuspidal automorphic representations w; for GL,, /F
with 4 = > n; such that

L(s,H'(A)) = [[ L(s, m ® | det [27/2),
A genus two curve X/F is modular if A = Jac(X)/F is modular.

If A is modular, then L(s, H'(A)) = L(s, A"H*(A)) = L(s, I1;) for some automor-
phic representation IT;. This follows from known functorialities in small degrees,
most notably [Kim03| [Hen09] (cf. the proof of [BCGP21, Thm 9.3.1)).

Remark 1.8.26 (Warning). In [BCGP21], particularly [BCGP21l, Defn. 9.1.8], we
reserved the term modular to specifically refer to the stronger statement that F' was
totally real and that A was associated to a cuspidal automorphic representation
of GSp, /F with certain properties. With such a restriction, there are abelian
surfaces and genus two curves which fail to be modular, for example, when A/Q =
Jac(X)/Q is isogenous to a product of two elliptic curves or an abelian surface
of GLy-type. In retrospect, we feel that this distinction is unhelpful. In the main
theorems of this paper, we (under certain hypotheses) establish the modularity
of A/Q by proving the modularity of p4 , for some p. More precisely, we assume
that pa, is absolutely irreducible, and show that p4, = pr, for some weight 2
cuspidal automorphic representation 7 for GSp, /Q. This 7 will be of general type,
and thus transfers to a C-algebraic cuspidal automorphic representation of GLy,.

1.8.27. The Eichler—Shimura relation. We let ¢ be a prime. We let

Ty = Z|GSp,(Qr) // GSp4(Zy)]

be the spherical Hecke algebra for GSp,(Q/) with Z-coefficients. As a Z-module, it
has a basis consisting of the characteristic functions of the double cosets Ty =
[GSp4(Ze)N(0) GSpy(Zs)] where A € X, (T)T. In particular, we define T;; =
[GSp4(Z;)Be,i GSp4(Z;)], where

Beo = diag(¢,¢,¢,0),
Be1 = diag(£, £,1,1),
Be2 = diag(£?,0,4,1).

We write Q¢(X) € T[X] for the polynomial

X =Ty X3+ (T + (6B + D)Tp0)X? — BTy 0Ty X + OTF,.
We have the Satake isomorphism
S QWX (D)"Y = Q(VI) @2 Ty
For each representation V' of G/Sp\4 we let [V] be the character of T on V. This

defines an element of Q(v2)[X*(T)]"W. To each A € X,(T) we can associate
a representation V) of GSp, with highest weight A\. The [V)] form a basis of
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Q(VO)[X*(T)]". We consider in particular A = (—3,—13:3) € X.(T), correspond-

ing to the Spin representation (jS\p4 — GLy4 (which, as explained above, we use to
identify 68\1)4 and GSp,, so that via the isomorphism X, (T) = X*(T') = X*(T),
(—%, —%; %) goes to (1,0;1)). We also consider the dual of the Spin representation,
corresponding to A = (—1, —1; —3). We write P,y (X) = X*—[VA] X3+ [A?V,] X2~
[A3V)\]X + [A*V,] for the characteristic polynomial of the representation V) in ei-
ther of these cases. We write Qy(X) = €6Pé7(_%)_%;%)(€*%X). Then Q) is the usual
Hecke polynomial in Ty[X] whose definition was recalled above. The coefficient of
X3 is —T(_1 _1,1y. We also let
2 202

Py(X) =Py 1 (072 X). (1.8.27)
The coefficient of X3 in P, is —T(f%ﬁ%ﬁ%).

Let m be a C-algebraic automorphic representation of GSp,/Q whose component
at infinity is a non-degenerate limit of discrete series. Let S be the set of finite
places at which 7 is not spherical. Let T := ®¢¢sTe be the spherical Hecke
algebra away from S. We let ©, : T — C be the character describing the action
of T on the one dimensional C-vector space of spherical vectors of Qy¢sTy- Then
by the definition of rec, the Galois representation pr , : Gq — GSp,(Q,,) has the
property for all primes £ ¢ S U {p}, 1«(0.(Q¢))(X) is the characteristic polynomial
of pr p(Frob,) (here Frob, denotes a geometric Frobenius element).

Lemma 1.8.28. For all primes £ ¢ S U {p}, 1«(0r(P))(X) is the characteristic
polynomial of (py , ® e~3)(Froby).

Proof. Unraveling the definitions, we find that 6*61((9,,(Pé7(_%7_%;_%)))(€%X) is
the characteristic polynomial of pxyp(Frobg). The characteristic polynomial of
3py ,(Froby) is therefore £%4(© (Pg)(_%)_%;_%)))(E*%X). O
For any neat compact open subgroup K = [[, Ky C GSp,(Ay), let Sh%g —
Spec Q denote the Siegel threefold of level K. We will make use of the following
Eichler—Shimura relation.
Theorem 1.8.29. On RP(Shalq ,Z/p"Z) and RT (Sh’;(qu, Z/p™Z), for each place
£ = p at which Ky is hyperspeczal the local Galois representation of Gq, is unram-
ified at £ and P;(Frobg) = 0.

Proof. Let £ # p be a place at which K, is hyperspecial. We have a natural smooth
integral model Sh%?ze — Spec Z;. We first claim that RT'(Sh%“. | Z/p"Z) =

K,Q.’
RI(Sh}%, . Z/p"Z). By [LSIS, Coro. 5.20f,

RI(Sh’%, . Z/p"Z) = RT(Sh}% \RUZ/p"Z).

Since Sth — Spec Zy is smooth, the map Z/p"Z — RVZ/p"Z is an isomor-
phism. By Pomcaré duality, we deduce that

RT(Sh} %, Z/p"Z) = RTo(Sh}% . Z/p"Z).

2whose proof considerably simplifies in our case, due to the existence of smooth toroidal com-
pactifications, with normal crossing boundary divisor.
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We now use the Eichler—Shimura relation of [FC90, VII, Thm 4.2], to deduce that
Py(Froby) = 0. It only remains to explain why it is the polynomial P, and not Qy
that we need to use. This all boils down to understanding how we attach to a char-
acteristic function of a double coset in the Hecke algebra, a Hecke correspondence.
Using our conventions (which we think are standard, but are the transpose of that
of [EC90]), to the double coset T} is associated the Hecke correspondence:

al al
Sh)\(%)*lKk(é)ﬁK A(0) Sh)\(%)KX(Z)*lﬂK

lm lm

l l
Sh%? Sh%?
For example, for A = (—%, —%; —%), this is the moduli space parametrizing abelian
surfaces pj A and p3 A, with certain prime-to-¢ level structure and prime-to-¢ polar-
ization, together with an isogeny (compatible with level structure and polarization)
piA — piA whose kernel is a maximal isotropic subgroup of piA[¢]. The reduc-
tion of the natural integral model of this correspondence modulo ¢ contains the
Frobenius correspondence. O

2. LIE ALGEBRA HOMOLOGY

2.1. Introduction. Let g be a reductive Lie algebra over F, let p be a parabolic
subalgebra of g with Levi m and unipotent radical up,, and let b be a Borel of g
containing a Cartan b, which we assume is also contained in m. In this section
we study the up-cohomology of objects of category O and of category @, a p-adic
analytic version of the BGG category O. The categories O and O are equivalent,
via base change from the universal enveloping algebra U(g) to its completion, the
Fréchet-Stein algebra U (g). We establish in particular the key Theorem 2:3.32
which shows that in a fixed p-adically non-Liouville weight, the operation of taking
up-cohomology is compatible with completion, i.e. with passage from category O
to category 0.

We use the language of condensed mathematics throughout, and we begin in
Section 2220l with an overview of the results that we need (mostly from [RIRC22])
on solid E-vector spaces, together with a summary of some results from [Schl3al]
on category 0.

2.2. Solid functional analysis and representations.

2.2.1. Solid E-vector spaces. Rather than use the classical theory of topological
vector spaces, we work throughout with the condensed mathematics of Clausen—
Scholze [CS]; for the convenience of the reader, here and below we recall some of
the comparisons to the classical definitions. Let E be a finite extension of Q,. By
[CS] lecture 7], the non-archimedean field E can be viewed as a solid abelian group.
It follows that E can be equipped with a structure of an analytic ring, where for
any profinite set S, Em[S] = F ®z Zg[S]. We let Mod(FE) be the abelian category
of solid E-vector spaces; this has a tensor product, which we denote by ®, and
an internal Hom, which we denote by Hom(—, —). We refer to [RIRC22| §3], for
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a complete treatment of non-archimedean functional analysis from the condensed
perspective. We simply recall what is strictly necessary for us

We have a functor V' +— V from topological spaces to condensed sets, where
V is the condensed set defined by V(S) = C%(S,V) for any profinite set S. This
functor has a left adjoint X — X (*)yp from condensed sets to topological spaces,
given by evaluating a condensed set X on the point * and endowing X (x) with
the quotient topology of the map Hs,zeX(S) S — X(x), where S runs through all
profinite sets. The restriction of the functor V' — V to the category of compactly
generated topological spaces is fully faithful, and if V' is compactly generated then
V = V(#)top (more precisely, the counit V (*)iop — V of the adjunction restricts
to the identity functor on compactly generated topological spaces, see [CS, Prop.
1.7)).

By [RJRC22|, Proposition 3.7], the functor V' +— V restricts to a functor from the
category of complete locally convex E-vector spaces to the category of solid E-vector
spaces. All the complete locally convex E-vector spaces that we will encounter will
be considered as solid E-vector spaces unless explicitly specified otherwise.

We introduce certain full subcategories of Mod(E).

Definition 2.2.2.

(1) A Banach space is a solid E-module of the form (lim, (®;Og/p"OFr))[1/p]
for some set I.

(2) A Smith space is a solid E-module which has the form ([[, Og)[1/p] for
some set I.

We let B(E) be the category of Banach spaces and S(E) be the category of Smith
spaces.

Remark 2.2.3. The categories of solid and classical Banach spaces (resp. Smith
spaces) are equivalent via the functors V' +— V(x)yp and V +— V. The essential
surjectivity follows from the explicit description of the objects. The full faithfulness
is a consequence of the fact that classical Banach spaces and Smith spaces are
compactly generated. (See for example [RJRC22 Prop. 3.5].)

Proposition 2.2.4. [RJRC22, Lem. 3.10] There is an anti-equivalence of categories
between Smith and Banach spaces given by V +— VV := Hom(V, E). Moreover,
(VV)V =V.

Remark 2.2.5. The functor V — VV is exact in the sense that it sends short
exact sequences of Banach spaces (resp. Smith spaces) to short exact sequence of
Smith spaces (resp. Banach spaces). In fact, any short exact sequence is split.

Remark 2.2.6. If V is in B(E), then V"V (x)iop is the classical Smith space equal
to the continuous dual Hom(V (x)cp, ) equipped with the compact open topology.

Definition 2.2.7.

(1) A Fréchet space is a solid E-module which can be written as a sequential
limit of Banach spaces.

(2) An LS-space is a solid E-module which can be written as a sequential
colimit of Smith spaces with injective transition maps.

3In order to fix set-theoretical issues, we choose a strongly inaccessible cardinal £ and we only
consider k-small profinite sets. See [CS| Lecture 1, rem. 1.3]
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(3) An LB-space is a solid E-module which can be written as a sequential
colimit of Banach spaces with injective transition maps.

We let F(E) be the category of Fréchet spaces, we let LS(F) be the category of
LS-spaces, and we let LB(F) be the category of LB-spaces.

Remark 2.2.8. The categories of solid and classical Fréchet spaces are equivalent
under the functors V — V (%)top and V — V, [RJRC22, Lem. 3.24(1)]. To see this,
we claim that it suffices to show that V +— V is an essentially surjective functor
from classical to solid Fréchet spaces. Indeed, since the counit V (x)iop — V is an
isomorphism (because Fréchet spaces are in particular compactly generated), we
will then know that V' — V is fully faithful and essentially surjective, and thus
an equivalence; it follows formally from this that the unit V' +— V(%) of the
adjunction is also an isomorphism of Fréchet spaces, as required.

Now, if V = lim, V, is a classical Fréchet space (where the V,. are classical
Banach spaces), then by Remark 2.22.3) V. = lim, V;. is a solid Fréchet space (note
that V +— V commutes with limits, being a right adjoint). Conversely, since by
definition a solid Fréchet space can be written as V' = lim, V,. where the V,. are
Banach spaces, we have

V =1imV, = lim V;. (*)sop,

which gives the essential surjectivity.

Note in particular that as a consequence of this equivalence, any (solid) Fréchet
space admits a presentation where V' = lim, V. with V;11(*)top — Vi (*)top has
dense image.

Proposition 2.2.9. [RJRC22, Thm. 3.40] We have an anti-equivalence of cate-
gories V. — VV := Hom(V, E) between F(E) and LS(E) extending the biduality
between B(E) and S(E). Moreover, (VY)Y = V. The functor V — VV is ezact.

Definition 2.2.10.

(1) Amap f:V — W of Smith spaces is trace class if there exists a map ¢ :

E — VY ®W such that f is the composite V Mv@s o yvew AW

(2) A map f:V — W of Banach spaces is compact if its dual is trace class.

Example 2.2.11. Let I be a set and let (a;)ic; € ET = [lic; E be a fam-
ily converging to zero with respect to the net of the complements of finite sub-
sets of I. Let f : OL[1/p] — OL[1/p] be the map sending (x;)ics to (a;z;)ier-.
Then one sees that f is trace class, represented by the tensor >, a;ey ® e; in
(lim, (&;0g/p"Or))[1/p] ® OL[1/p] (where ¢; is i-th basis vector of OL[1/p]).

Definition 2.2.12.

(1) An object V of LS(E) is of compact type if it has a presentation V =
colim,, V,, where the maps V,, — V41 are trace class.

(2) An object V of F(E) is of compact type if it has a presentation V' = lim,, V,,
where the maps V,, — V,,_1 are compact.

(3) An object V of LB(FE) is of compact type if it has a presentation V =
colim,, V,, where the maps V,, — V,,;; are compact.

Proposition 2.2.13. [RJRC22, Cor. 3.38] A solid E-module is an LB-space of
compact type if and only if it is a LS-space of compact type.

We will use the following lemma in Remark 2.3.8



MODULARITY THEOREMS FOR ABELIAN SURFACES 21

Lemma 2.2.14. A Smith, Banach, LB or LS-space is flat. A Fréchet space of
compact type is flat over E.

Proof. The flatness of Smith, Banach, LB or LS-spaces is [RJRC22, Lem. 3.21].
Let V be a Fréchet space of compact type. By [RJRC22, Cor. 3.38(1)], we can write
V = lim, V,, as an inverse limit of Smith spaces. Following the proof of [RIJRC22,
Lem. 3.21], it suffices to show that if W' — W is an injection of Smith spaces, then
W' @V — W ®V is injective.

Since we have an injection lim, V,, — Hn V., and since Smith spaces are flat
over E (by [RJRC22, Prop. 3.20, Lem. 3.21|), it suffices to show that ([], V,) ®&
W' — (I1,, V) ®e W is injective. For any Smith space X, we have (see [RJRC22,
Prop. 3.12|)

(] V) @6 X = [[(Va @2 X),

so it suffices in turn to show that [, (V,®eW') = [[,,(Va®EeW) is injective. Since
the Smith spaces V,, are flat, each morphism V,, @ g W' — V,, ® g W is injective,
and we are done. [l

2.2.15. Representations of algebraic groups. In this section we recall the classical
notion of representation of an algebraic group, before moving to representations of
analytic groups. We let Mod®(E) be the usual category of E-vector spaces (the
superscript 0 stands for discrete). Let G = Spec O¢ be an affine group scheme over
Spec E. The algebra O¢ is a Hopf algebra with comultiplication 1 : Og - Oc®Og
and augmentation e : Og — E. We let ModZ,(E) be the category of algebraic
representations of G. Its objects are vector spaces V over E, equipped with a
co-action map ¢: V — V ® Og such that:

(1) (associativity) The maps (c® Id)ocand Id®@ pu)oc: V = V® Og —
V ® Og ® Og agree.
(2) (neutral element) The map (Id®e)oc: V=V ® Og — V is the identity.

2.2.16. Representations of analytic groups. We recall the following standard defi-
nition.

Definition 2.2.17. An adic space X is called quasi-Stein if it has an open cover
given by an increasing countable union of affinoid spaces of finite type X = U, X,
where H%(X,,41,0x,,,) = H"(X,,0x,) has dense image. A quasi-Stein space
is Stein if it admits a covering as before having the property that A, is relatively
compact in &, 41 (|L90, 2.4]); equivalently, if the closure &, of &, in X,y is proper
over Spa(FE, Og).

We now let G be a Stein analytic group over Spa(E, Og).

Remark 2.2.18. We have two cases in mind: either G is the analytification of an
affine group scheme over Spec F, or G is a quasi-compact affinoid open subgroup
of such an analytification.

We let O¢ be the algebra of functions on G, which is an object of Mod(E) (it
is a Fréchet space). It has a structure of a Hopf algebra. We define the category
Modg(E) of representations of G on solid E-vector spaces. Its objects are solid
vector spaces equipped with a co-action map c: V — V ® Og satisfying the same
conditions as before. Similarly, we let Bg(F) be the category of representations of
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G on Banach modules. We let LBg(E) be the category of representations of G on
L B-spaces.

We let D(G) = Hom(Og, E) = O be the distribution algebra of G. The dual of
the comultiplication 1 : Og — Oc®0O¢ induces the algebra structure on D(G). If V
is an object of Modg(FE), then it is naturally a D(G)-module (via V& D(G) 5V ®
Og ® D(G) — V). We therefore have a natural functor Modg(F) — Mod(D(G))
from the category of solid G-representations to the category of solid D(G)-modules.

Remark 2.2.19. In some cases, one can go backwards. For example if G is quasi-
compact and V is a Banach space, we have that Hom(D(G),V) = Og ® V by
[RIRC22, Cor. 3.17] so that any D(G)-module structure on V can be turned into
an action of G on V. If we denote by B(D(G)) the category of D(G)-modules
which are Banach spaces, then the categories Bg(E) and B(D(G)) are equivalent.

2.2.20. Representations of locally profinite groups. We now let M be a locally profi-
nite group. We view M as a condensed group. We let E[M] be the associated
condensed ring and we let Eg[M] be its solidification. If M is compact, then
Emn[M] = (limy Og[M/N][1/p] where N runs through the compact open subgroups
of M. In general, if My C M is a compact open subgroup, then we have the formula
Em[M] = E[M] ® g, Em[Mo]-

Definition 2.2.21. A representation of M over a solid E-vector space is a solid
Em[M]-module. The category of M-representations is denoted by Mod s (E).

Remark 2.2.22. Equivalently, a representation of M is a solid E-vector space V'
and an action map M x V' — V of condensed sets satisfying the usual group action
axioms.

2.2.23. Smooth representations. Let V € Mody(E). We let V™ = colimycy VY
where N runs through all compact open subgroups of M. We say that V is smooth
if the natural map V™ — V is an isomorphism. We let Mod3; (E) be the category
of smooth representations.

We let Myisc be the group M equipped with the discrete topology. There is
a natural map Mgise — M of condensed sets. Omne can consider the category
Mod sy, (E) of E[Mgjsc]-modules. We can define the subcategory Modjy;,. (E) of
smooth representations of Myisc. Its objects are representations V' of My such
that V = colim VNai«c where N goes through all compact open subgroups of M.

Lemma 2.2.24. The categories Modyy (E) and Modyy,. (E) are equivalent.

Proof. We have a natural functor Modas(E) — Modas,,.. (E), induced by the map
Magise — M. This induces a functor Modyy (E) — Modjyy, (F). We now con-
struct a functor Mody7, (E) — Mody/ (E). Let V' € Modyy, (E). Let My be
a compact open subgroup of M and let M,, be a system of normal compact open
subgroups of My. We see that VM is an E[(Mp)disc/(Mn)disc]-module. Since
(Mo)aisc/ (My)aise = Mo/M,,, we deduce that the (My)disc-module structure on
VMn extends uniquely to an Mp-module structure. Passing to the colimit over n,
we deduce that V' is an Mo-module. Since E[M] = E[Maisc] ® 5[(My) o] £[Mo], We
are done. ]

Recall that an abelian category is an Grothendieck abelian category if it has
arbitrary colimits, it has a generator, and filtered colimits are exact (AB5). By
[Stal3l Tag 079H], any Grothendieck abelian category has enough injectives. We
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will now show that Mod}; (E) is a Grothendieck abelian category; note that this
relies on our set-theoretic assumption that we only consider x-small profinite sets
for some fixed k.

Lemma 2.2.25. The category Mody; (E) is a Grothendieck abelian category, and
in particular it has enough injectives.

Proof. This is obvious, except for the existence of a generator. For a totally discon-
nected S and compact open subgroup N C M, we consider Vs v = Em[M] @ gg(n
Em[S] with N acting trivially on Eg[S]. We claim that ©g nVs ny is a generator.
This follows from the property that for any V' € Modj} (E), Homygoqsm () (Vs,n, V) =
VN(S). O

Here is a slight generalization of the concept of smooth. Let A : M — E*
be a character, and write E(—\) for the corresponding representation of M (with
underlying vector space E).

Definition 2.2.26. We say that V' is Ad-smooth if V ® E(—X\) is smooth. We let
Mod}; ™ (E) be the category of A-smooth M-modules.

Note that if A\, \ are two characters such that A ® (\)™! is smooth, then the
categories Mod}, ™ (F) and Mod}, *™(FE) are canonically equivalent.

2.2.27. Locally analytic representations. We now assume that M arises as the set
of Qp-points of an analytic group G over Spa(Q,, Z,) and we also assume that we
have a fundamental system of quasi-compact open subgroups {G, },>o of G, where
G, is a polydisc. We let G,(Q,) = M,. The {M,} form a fundamental system
of compact open subgroups in M. We now define the locally analytic vectors of
V € Mody(E). Note that Og, ® gV has three commuting left actions of M,.: *;, *,
and *y (induced respectively by left translation on the group, right translation on
the group, and the original action on V'). The action *y comes from an action of M.
Moreover, the group M acts by conjugations *;, on its system of neighborhoods
of identity {M,.}. We set VMr—an = HO(M,. (Og, @ V)), where the invariants are
taken for the action *;®@#y,. The space VMr—an stil] carries a *).» @ xy-action of M,.
The evaluation map at e, Og_, ® V — V induces an injective map Y Mr—an _y v/
We let V' = colim, VMr—2n This is an M-representation. We thus have inclusions
ysm o yla Ly,

Remark 2.2.28. The functor V +— V! can naturally be derived into a functor
V s VR See [RIRC22, sect. 4.4].

2.2.29. The algebra U(g). Let us assume now that we have an algebraic group
G2 — Spec Op. Its analytification defines a quasi-compact affinoid analytic group
G = Gy — Spa(E, Op). For any r € Q>¢, we let G, be the quasi-compact analytic
subgroup of G of elements reducing to the identity e modulo p”. We have that
Og,e = colimOg,. is an LB-space of compact type. We let g be the Lie-algebra
of G. We define U(g) = O\c/:,e- This is a Fréchet space of compact type.

Since the categories of solid and classical Fréchet spaces are equivalent, we will
freely write U(g) for the underlying classical E-algebra U(g)(*)iop of the solid
E-algebra U(g). We have a natural map g — U(g) given by X — [f(g) —
f'(gexp(—tX))|i=o], which extends to a map from the enveloping algebra U(g) —

U(g) with dense image.



24 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

One can describe U(g) as a completion of U(g) as follows (following [ST0Z,
lemma 2.4] and [Schi3al sect. 3.2]). If we fix a basis x1,--- ,z, of g, then U(g) =
Sy E ]z by the PBW theorem. For each r € Rxo, we define a norm | |, on

U(g) by putting | > ana®|, = supﬂ|aﬂ|rz " We let U(g), be the completion of
U(g) for | — |, and we have U(g) = lim,>; U(g),.

Remark 2.2.30. For any r, there exists 7/ such that U(g),» — D(G,) and D(G,.) —
U(g),. We thus have two presentations of U(g) = lim, U(g), = lim, D(G,.), as an
inverse limit of Banach spaces with compact transition maps and as an inverse limit
of Smith spaces with trace class transition maps.

Since U(g) is a Fréchet-Stein algebra (see [ST03, sect. 3|), there is an associ-
ated abelian category of coadmissible modules Mod®*!(T(g)), which is defined as
follows.

Definition 2.2.31. A (left) U(g)-module M is coadmissible if it has a presentation
M = lim M, where M, is a finitely generated U(g),-module and M, g

U(g)r = Mr-

9)r+1

We let Mod(U(g)) be the category of solid U(g)-modules.
Theorem 2.2.32. We have a fully faithful ezact functor Mod“*d(U (g)) — Mod (U (g)).

Proof. By for example [Sch13al, Prop. 3.1.1], any coadmissible module is canonically
an object of F(E) of compact type. O

Definition 2.2.33. An admissible module is the dual of a coadmissible module.
Admissible modules are objects of LB(FE) of compact type.

2.2.34. Categories of U(g) and U(g)-modules. We recall the the maps (of classical
rings) U(g) — U(g), and U(g) — U(g) are flat (see for example [Schi3a, Thm.
4.3.3]). Let Mod™(U(g)) be the category of finitely generated left U(g)-modules.

Proposition 2.2.35. We have an exact functor:

U(g) @u(g) — : Mod™®(U(g)) — Mod*!(U(g))
M — Ulg) @y M

Proof. This follows from the flatness of U(g) — U(g). O

Corollary 2.2.36. We have an exact functor:

U(g) ®u(g) — : Mod®(U(g)) — Mod(U(g))
M = M:=U(g) Qug M

Proof. By combining Theorem and Proposition [2:2.35, we obtain an exact
functor Mod™®(U(g)) — Mod(U (g)). O
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2.2.37. Category O and category O. We assume that g is a reductive Lie algebra
with Borel b and Cartan b, and as usual we write ®* (resp. ®~) for the positive
(resp. negative) roots determined by our fixed Borel subgroup b. We can consider
the abelian category O(g, b) (simply denoted O if g and b are clear from the context)
whose objects are finitely generated left U(g)-modules for which the b-action is
locally finite and the h-action is semi-simple (see [HumO8|, chapter 1).

Definition 2.2.38. Following [Schi3al Defn. 3.6.2], we let O be the category whose
objects are coadmissible U (g)-modules M for which the action of U(h) is diagonal-
izable and the following properties hold:

(1) All weights of M are contained in finitely many subsets of the form A 4+
N[®~], and
(2) all weight spaces of M are finite dimensional.

Theorem 2.2.39 ([Schi3al, Thm. 4.3.1). We have an equivalence of categories:

o - 0
M — U(g) ®u() M.

A quasi-inverse to this functor is given by the functor: M — M3, which takes M
to the direct sum of its weight spaces.

2.3. Lie algebra cohomology and homology.

2.3.1. Definitions. Recall that Mod® (E) is the usual category of E-vector spaces,
and Mod(E) is the category of solid E-vector spaces. We let D(Mod®(E)) be the
derived category of Mod®(E), and we let D(Mod(E)) be the derived category of
Mod(E). Let g be a Lie algebra (not necessarily reductive) with enveloping Lie
algebra U(g). We let Mod(U(g)) be the category of (discrete) U(g)-modules, and
let D(Mod(U(g)) be its derived category.

We have a functor “homology of g™

E®f g —: D(Mod(U(g))) — D(Mod’(E))
L
M — F ®U(g) M

We let H(g, M) := H™'(E @4 M).

We also have a functor “cohomology of g™

RI(g,—): D(Mod(U(g))) — D(Mod’(E))
M +— RHomy(E,M)

These functors can be computed by taking the Chevalley—Eilenberg resolution
CE(E) of E, in cohomological degrees [—d,0] with d = dim(g) (see [Wei94] sect.
7):

0— U(g) @ Alg — --- = U(g) — 0.

We can also define functors:

E®f g —: D(Mod(U(g))) — D(Mod(E))
M — E®pgM
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RI(g,—): D(Mod(U(g))) — D(Mod(E))
M +— RHomy(E,M)

These fupctors can also be computed by taking the solid Chevalley—Filenberg
resolution U(g) ®y(g) CE(E) of E (which remains a resolution of E by Corollary

2.2.36)):

0—U(g) @ Alg—--- = Ulg) = 0.
We sometimes write respectively RHomg(g) or RHomﬁ( o) in place of RHomy.

Remark 2.3.2. We have the following trivial relation between homology and co-
homology: RHom(F ®5(g) M, E) = RHomy () (E, RHom (M, E)). We also have the

following relation between homology and cohomology ([Haz70]):
E ®f (g (M[—d] @5 A’g") = RHomy () (E, M). (2.3.3)
We have the following well-known lemma.
Lemma 2.3.4. O¢.. is an acyclic U(g)-module.

Proof. This is a simple consequence of the standard relationship between the Chevalley—
Eilenberg resolution and the de Rham complex, ¢f. [RJRC22, Prop. 5.12]. ([l

2.3.5. Homology and cohomology of g and m. For the rest of this section we put
ourselves in the situation of Section [[L84] so that in particular g is a reductive Lie
algebra with Cartan and Borel h C b C g, and p O b is a standard parabolic with
Levim D . We let d = dimu,. From now on until the end of Section 2.3 we fix
aw € MW and consider the conjugates p,, My, Uy, , b, . We note that because
we MW, by, =bNm,.

We can define the homology functor of u,_:

E ®f; D~ (Mod(U(g))) — D~ (Mod(U(my)))
M = E®fq, M

Upy,)

Remark 2.3.6. This functor is defined by taking a projective resolution of M as a
U(pw)-module. By the PBW theorem, U (p,,) is free over U(u,,, ), and so this is also
a projective resolution of M as a U(u,,, )-module. We also have a natural functor
D(Mod(U(my))) = D(Mod(U(pw))). If we resolve E via the Chevalley-Eilenberg
resolution
Uluy,) ® Auy, — - = Uluy,) = E

then we get a complex which computes F ®5(upw) M in D(Mod(U(py))) (but on
the cohomology groups, the action of p,, factors through an action of m,).

We similarly have a cohomology functor of u,:

RT(up,,, =) : DT (Mod(U(g))) — D (Mod(U(my)))
M + RHom,, (E,M)
Remark 2.3.7. Similarly to Remark [2.3.6] this functor is obtained by taking an
injective resolution of M as a U(p,,)-module. If one uses the Chevalley—Eilenberg

resolution of F instead, then we obtain a complex which computes the composition
of this functor with the natural functor D(Mod(U(m,,))) — D(Mod(U (p.))).



MODULARITY THEOREMS FOR ABELIAN SURFACES 27

We can also define functors:

E®f, ) —: D" (Mod(U(g))) — D~ (Mod(U(m.)))
M = E®fq, M

RI(up,,—) : DT (Mod(U(g))) — DT (Mod(U(m,)))
M ~— RHom,, (E,M)

Remark 2.3.8. Following Remarks and 2.3.7 these functors are well defined

because U(p,,) is flat over U(uy, ) so that U(m,,) = U(p.,) ®Lﬁ(u ) E. In order to
Pw

see the flatness, by the PBW theorem and the description of U (p,,) given in section
2229, we find that U(py) = U(uy, ) @ U(m,,) and so it remains to note that the

Fréchet space of compact type U(m,,) is flat over E by Lemma 22,14

2.3.9. Finiteness of the algebraic cohomology. Let Z(g) and Z(m,,) denote the cen-
tres of U(g) and U(m,,) respectively, and let W and Wy, be the Weyl groups of g
and my,. If M is a U(g)-module on which Z(g) acts via a character x, then we say
that x is the infinitesimal character of M. Recall the Harish-Chandra isomorphism
HCy : Z(g) — U(h)"> (where the target is the invariants for the dotted action
of W), determined by the property that z ® 1 = 1 ® HCy(z) in U(g) ®up) U(h).
Using this isomorphism, any character A : Z(g) — E is identified with an element
of bV, well defined up to the dotted action of W.

Remark 2.3.10. Let ¢ : Z(g) — Z(g) be the map induced by the inverse map
ong, X +— —X. We have HC o1 = —wgo HC. If X\ € bV represents a character
of Z(g), —woA represents the character A o¢.

We similarly have a natural Harish-Chandra isomorphism HCy,, : Z(m,) —
U(h)Wmwr and we deduce that there is a natural Harish-Chandra map

HC : Z(g) = Z(my). (2.3.11)

This map is characterized by the property that in U(g) ®yp,) U(my), we have
z®1=1® HC(z).

We also have a map from Z(g) (resp. Z(m,,)) to the centre of the derived cat-

egories D(Mod(U(g))) (resp. D(U(m,,))) (i.e. the t-centre in the sense of [Mill4]).
The following is known as the Casselman-Osborne theorem.

Theorem 2.3.12 (J[CO7H), [Mill4]). The functor R (uy,,—) : DT (Mod(U(g))) —
DT (Mod(U (my))) is Z(g)-homogeneous, in the sense that for z € Z(g), we have
RI(up,,2) = HC(z).

In particular, if M is a g-module with infinitesimal character X € bV, then H(uy,,, M)
is a Z(my) ®z(g) A\-module.

Theorem 2.3.13. Let M € O(g,b). Then Hi(up,,, M) € O(my, by, ).

Proof. Using the Chevalley—Eilenberg resolution, the cohomology is computed by
the complex 0 - M — M ® ugw — ---. We see that all modules occurring in
this complex have locally nilpotent action of uNm,, (the unipotent radical of by, )
and semi-simple h-action, and furthermore each h-eigenspace has finite dimension.
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This also holds for the cohomology groups. It follows that the cohomology groups
admit a (possibly infinite) increasing filtration where each graded is a simple object
in category O(my,, by, ). Indeed, if a cohomology group is non-zero, we can find a
highest weight vector since u Nm,, acts locally nilpotently, so we get a map from
a Verma module. We can repeat the process with the quotient. Since all simple
objects of category O have a generalized infinitesimal character, it follows from the
Casselman—Osborne Theorem that there are only a finite number of possible
infinitesimal characters of the simple subquotients, and therefore only finitely many
possible highest weight vectors of all irreducible subquotients. Since h acts semi-
simply with finite-dimensional eigenspaces, we deduce that the filtration is finite
and that the cohomology groups belong to O(m,,, by, ), as required. O

We write DP™(U(m,,)) for the category of perfect complexes of U(m,, )-modules.
Since U(m,,) is Noetherian and has finite global dimension (see e.g. [Wei94, Ex.
7.7.2]), these are equivalently the complexes whose cohomologies are finitely gener-
ated U(m,,)-modules, and are nonzero in only finitely many degrees.

Corollary 2.3.14. If M € O(g,b), then RI'(up,,, M) and E ®5(up ) M belong to
Drei(U(my,)), and their cohomologies belong to O(my,, by, ).

Proof. This is immediate from Theorem and Remark O
2.3.15. Cohomology of Verma modules.

Definition 2.3.16. For any A € hY, we write M) := U(g) ®yp) A for the corre-
sponding Verma module for g, and M(m, )y := U(my) ®up,, ) A for the Verma
module for m,,. We write L(m,,)» for the simple object in O(m,,, by, ) with highest
weight .

Definition 2.3.17. Let A € hY. We let W., be the subset of W consisting of
elements w’ which satisfy: w'-A =X =37 44 naa, where ng € Z>g, and ny >0
for some a.

Remark 2.3.18. If A\ € hY is such that w' - A — X\ ¢ Z® for w’ # 1 (a generic
condition on \), then Wy = 0.

Theorem 2.3.19. Let A € bV, and let w € MW . Assume that uy is abelian.
(1) The groups H;(uy,, , M) belong to the category O(my,, by, ).
(2) These homology groups vanish if i > d — £(w).
(8) There is an injective “highest weight” map
M(mw)w—l(w,)\+2p1¥1) — Hd—é(w) (upw,M)\).

(4) The cokernel of the map M (W )1 (w-rt2pM) > Ha—p(w)(Mp,,, M) and the
homology groups H;(up,, , My) fori < d—~4(w) have Jordan— Hélder factors
among the L(My ) w1 (w at2pM) With w' € wWey.

Remark 2.3.20. In particular, if Woy = 0, then H;(uy,,,My) is concentrated in
degree d— K(w) and Hd_g(w)(upw,M)\) = M(mw)wfl(w,,\HpM).

Proof of Theorem[2.3.19. By Corollary 23141, the homologies belong to the cate-
gory O(my,, by, ). Since M) is free as a U(u)-module and so also as a U(uy,, N i)-
module, there is an isomorphism

H,(up,, My) = H,(up, Nu, Hy(up, N, My)). (2.3.21)
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(Here we used that u,, is abelian, since u is abelian by assumption.) Write N :=
Hy(up, N, My). The homology [23.21)) is computed by the Chevalley-Eilenberg
complex:

0= AW, NWON—--- =5 N0
and so in particular vanishes in degree bigger than d—¢(w) = dim(u,, Nu). Moreover
the highest weight occurring in this complex is

At w two pp+p=wt(w- A+ 2pM) (2.3.22)

(the equality holding because we have assumed that w € W), which occurs exactly
once in A (up Mb)@ N. Tt follows that there is a natural map:

M(mw)wfl(w.x.kgpzw) _y pAd—E(w) (upw Nu) @ N
which induces the (necessarily injective) map of part (3)
M(m’w)wfl(w»)\-i-ZpM) — def(w) (upw ) M)\)

It remains to prove (4). By the Casselman—Osborne Theorem 2-312] together
with (233]), we see that the possible infinitesimal characters of simple subquo-
tients in the homology belong to the set {w=!(w’ - A + 2p™),w’ € MW}. Thus
the simples which can occur are the L(mw)w—l(w/, At2pM)- Moreover in order for
LMy )1 (wr-r42pM) t0 Occur as a subquotient of H;(uy,,, My) for i < d —£(w) or
of Hy—g(w)(Upy > M2)/M(My) =1 (- At2pm) We must have that w=(w’ - A +2p™M) is
of the form w=!(w - A + 2pM) — >~ n,a with n, > 0 and some n, # 0. Therefore
w' e wWey. O

Remark 2.3.23. One can show that the highest weight map computes the Euler
characteristic of H,(up, ,My) in the Grothendieck group, see Proposition [Z4.11]

2.3.24. Strictness. We now state our main theorem on the comparison of algebraic
and solid cohomology of Lie algebras (Theorem 2:3.32)).

Definition 2.3.25. We say « € FE is p-adically non-Liouville, or simply non-
Liouwille, if iminf,cz_, |z — |V #£0.

Remark 2.3.26 (Inconsistencies in the literature concerning the definition of
non-Liouville). There are a number of conflicting definitions in the literature of
what it means for o € Q,, to be p-adically non-Liouville. The original definition
in [Cla66l Def 1] is equivalent to the existence of a real number d such that

o =7 >|r|7¢, reZ, r— oo (2.3.27)

This is the most direct analogue of the definition over R — Liouville’s original
argument shows that any a € Q C Q,, satisfies (2.3.27) with d = [Q(«) : Q]. There
is a weaker definition of non-Liouville given in [Ado76], which is equivalent to

VB € (0,1), |a—r|> B, reZ r— oo (2.3.28)
Definition 2325, following Pan [Pan22al, Rem 5.2.11] (see also [MA13], Def. 1]) is
weaker still, and is equivalent to

3B (0,1), |a—7>B", rez, r— . (2.3.29)

Despite these differences, both [Ado76] and [Pan22a] attribute their respective defi-
nitions to [Cla66]. The definition given in Kedlaya’s book [Ked10, §13] is equivalent
to the one in [Ado76]. The reason we use the definition in [Pan22a] is because (for
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a number of arguments) our results are true if and only if A\ is non-Liouville in
the sense of Definition 2.3.25] although we do not stress this point. As a practical
matter, however, the reader should feel free to take any definition they like, since:
(1) In applications, the strongest assumption from [Cla66]| is satisfied.
(2) In proofs, only the weakest assumption from [Pan22a] will be assumed.

Definition 2.3.30. We say that a weight A\ € hV is p-adically non-Liouville if
(A+p, V) is p-adically non-Liouville for all & € ®*. Again, we will often abbreviate
“p-adically non-Liouville” to “non-Liouville”.

Remark 2.3.31. Any integer is p-adically non-Liouville, and if (g, b, b) arises as
the Lie algebras of (G, T, B) with G a reductive group, then any algebraic weight
A€ X*(T)ChY =X*(T)g is p-adically non-Liouville.

We let O,1(g,b) € O(g,b) be the direct factor abelian subcategory consisting
of objects whose weights are p-adically non-Liouville.

Theorem 2.3.32. Let M € O,1(g,b). The canonical map
U(mw)®U(mw)(E®5(upw)M) = U(pw)@)U(pw)(E@é(upw)M) - E®5(upw)(0(g)®U(g)M)
is a quasi-isomorphism.

Proof. This is proved below as Theorem [2.8.2] ([

. — — \% N
Corollary 2.3.33. For alli, H' (up,, M) = H;(u,,, M) is an admissible U(m,,)-
module (where as usual we write M = M Ry (qg) Ulg).

Proof. The Chevalley—Eilenberg complex CE(E) Qg M which computes F ®Lﬁ (y.)
Pw

M has the shape: 0 — A4 ® M\upw — ... > M — 0. Thisis a complex of
Fréchet spaces, and its cohomology groups are also Fréchet spaces by Theorem
Moreover, we have that H~*(CE(E) ®g ]\/4\) = Hz(u/pw\,M) We recall from
Remark that Hom(—, E) is an exact functor between Fréchet and L B-spaces.
We see in the first place that Ho_m(C’E(E)@E]\/Z, E) =Hom(CE(E), M\v) computes
RI'(u,,,, M) and that H'(Hom(CE(E)®g M, E)) = Hom(H " (CE(E)®p M), E).

. — v
Since Hom(H *(CE(E)®g M), E) = H;(u,,,, M) by Theorem2.3.32] we are done
by Theorem O

2.4. Algebraic local cohomology and twisted Verma modules. Now we fix
a split reductive group G/FE with Lie algebra g. We work over the field E, viewed
as a discrete field (we ignore its natural p-adic topology for the moment). We want
to introduce twisted Verma modules as local cohomology on the flag variety.

Remark 2.4.1. We will make a small variation on the classical presentation since
we will use the six-functor formalism in coherent cohomology of Clausen and Scholze
[CS], and endow the Bruhat cells with the structure of analytic stacks. We feel that
this perspective clarifies the discussion. We note that most of our statements are
classical (see for example [ALO3]), and our proofs can easily be translated into more
classical language.

To any affine scheme Spec A, we can attach an analytic stack AnSpec(A, Mod(A))
where Mod(A) is the category of condensed A-modules which are solid Z-modules.
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This procedure glues to define a functor from the category of schemes to the cate-
gory analytic stacks, which we denote by X — X.
For any Zariski open subset Spec A[1/f], the corresponding map

i : AnSpec(A[1/ f], Mod(A[1/f])) — AnSpec(A, Mod(A))

is proper (!) and can be regarded as a closed immersion. The inclusion ¢ has an open
complement j : U — AnSpec(A,Mod(A)). We can describe U as the ind-scheme
equal to the formal completion of A along the ideal (f). Via the morphism j,, the
(derived) category of quasi-coherent sheaves on U identifies with the subcategory
of D(Mod(A)) of modules which are derived (f)-complete (i.e. modules M which
satisfy limy r M = 0).

We now let FL := B\G. We consider the classical Bruhat stratification FL =
Hyew Cw where C, = B\BwB. We let X,, = C\, be the Schubert variety. We
now equip each X, with the structure of an analytic stack X ! which admits a map
to X,. Let Y,, be the open complement of Xy, in F'L. Then Y, defines an analytic
stack Yy, the map Y,, — FL is proper, and we let X ' be its open complement. Its

structure sheaf is the completion OFlew where Ix, is the ideal of X,, in Opr.
The corresponding category of modules are the Opp-modules which are Z-solid
and derived complete modules for the Ix, -adic topology. In other words, we are
considering the formal scheme equal to the formal completion of FL along X,
which we view naturally as an object of the category of analytic stacks. From that
perspective, the map X ' — FLis an open immersion.

This induces a structure of analytic stack C, on each Schubert cell C,,. Indeed,
we have classically Cy, = Xy \ Uyr<w Xy and we let C'{U = X{U ~ Uw'ng{U/- Note
that C'{U is naturally closed in X{U We now simplify our notations, and denote by
FL, Cy,, X, the analytic stacks we just defined.

Example 2.4.2. We can illustrate how this works for SLy. In this case, we have
FL = P!. We have that C4 has structure sheaf E[T~!] and category of modules
the solid E[T~!]-modules which are derived complete for the 7~ !-adic topology.
We have that C,,, has the structure sheaf F[T] and modules are the E[T]-modules
which are solid Z-modules.

Example 2.4.3. We can also describe C,, in general. Write E[T,] for the un-
derlying ring of the root group U,. Then C,, has structure sheaf F[T,,a €
w T N O[T, € w™1®~ N &~ ] and category of modules the solid Z-modules
which are E[T,,a € w™1®~ N®T|[T,,a € w1®~ N®~]-modules and are (T,,« €
w™t®~ N ®~)-derived complete.

We can in fact consider the action of an analytic stack in groups G x Bon FL
(via the the product G x B — G and the obvious G-action on FL), which is such
that the C,, (with their analytic structures) are the G x B-orbits. We begin with
some definitions.

Whenever we have a classical affine algebraic group H we view it as an analytic
stack using the functor H +— H. In other words, it is equipped with the structure
sheaf Oy and category of modules the condensed Og-modules which are solid Z-
modules. Similarly, we define H (the completion at identity) with structure sheaf
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(5}; (the completed structure sheaf at the identity) and modules the solid Z-
modules which are @—modules and are derived complete modules for the mep,, .-
adic topology. Note that H is the complement of H ~ {e} (where again H ~ {e}
is equipped with its structure sheaf Op . jc} and category of modules all the solid
Z-modules which are Oy {.}-modules). Note also that H is open in H and H~ {e}
is closed. R

The relevance of the group G is clarified by the following lemma.

Lemma 2.4.4. The category of representations ofé is naturally equivalent to the
category of U(g)-modules on solid E-vector spaces.

Proof. Write 7 : G— Spec E, so that a representation of G is a solid E-module M,
together with a comodule map M — 7*M satisfying the usual cocycle condition.
We have 7*M = Rlim,, M Qg Og/m?)c’e, so that the map M — 7*M is equivalent
to the data of compatible maps M — M ®@g Og/mp G which dually corresponds
to amap U(g) ®g M — M. O

The following computation will be used repeatedly.

Lemma 2.4.5. Let U, be a root group, with underlying ring E[T,]. Then we have
RI.(Us,Ov,) = E[T,] and RI'.(Us,Ov,) = E[T,, T, /E[T.)[—1]. Moreover,

E ®5(ua) RI.(Uy, Op,) = E(a)[1] and E ®5(ua) RI.(Ua, Oy.) = E(—a)[-1].

Proof. When regarded as above as an analytic stack, Uq is proper over Spec E so

that R[.(U,, Oy, ) = E[T,]. We can then compute RI'.(Un, Op.) = E[Tw, T; '/ E[Ts][—1]
by using the triangle:

RL(Us, Op.) = RT(Ua, Ov,) = RT(Us ~ {e}, Op,) .

Next, £ ®5(ua) RI'.(Uq, Oy,) is computed by the (Chevalley—Eilenberg) complex

in degrees —1 and 0: E[T,] ® u, — E[T,] with basis vector u,, of u, acting by the
derivation dr, . It is thus E(a)[1]. Similarly, E @, ) RTc(Ua, Ou,) is computed

by the complex in degrees 0 and 1: E[T,,T;']/E[Ts] @ uy — E[Ty, T,/ E[T.).

It is thus E(—a)[—1]. O

We check that the semi-direct product G x B is well defined (i.e. there is an
action of B on G) First, there is an action of B on G by conjugation (with G
equipped with its structure sheaf Og and category of modules the solid Z-modules
which are also Og-modules). We observe next that G is the complement of G~ {e}.
It is clear that B preserves G \ {e} and thus it also acts on its open complement
G.

We see that each C,, is a G x B-orbit in FL. Therefore, we have an equivalence
of categories between G x B-equivariant sheaves on C,, and representations of the
stabilizer Stab(w) of w, given by the fiber functor .# — %|,,. An inverse of this
functor is given by V + m.(Og, 5 ® V)5®) where 7 : G x B — C,, is the
uniformization map. One can describe the stabilizer Stab(w) of the point w under
this map.

Lemma 2.4.6. We have Stab(w) = Bﬁw\[(éw x B) x BN B, where the map
(Bw x B) x BN By — G % B is given by (b,b,b") — (b(b)~1,0'b") and the map
BN By — (By x B) x BN B, is given by b (b=1,b=1,b).
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Proof. This is straightforward; see Lemma [3.3.0] for the proof of a very similar
statement. (|

Lemma 2.4.7. Let Z be a Gx B equivariant sheaf on Cy,. Then F is isomorphic
as a Bwow-equivariant sheaf to F|, @p Oc,, (where the Bwow-equivariant sheaf
structure on ¥ arises from regarding f?wow as a subgroup of G; and Bugw acts on
F|w through T and via its natural action on Oc,, ).

Proof. By Example Bwo/ﬁ?wow X BN Upw (viewed as a substack — but not
a subgroup — of G x B) maps isomorphically to C,, via the uniformization map
x — wx. It follows that the product map gives an isomorphism of analytic stacks
(not of groups):

Stab(w) X (Buwg N Uwgw X BN Upgw) — G % B.

This isomorphism is equivariant for the ﬁwow—action by translation on the right on
Bwo/ﬁ?wow X BN Uyyw and G % B. Tt is also equivariant for the T-action (the one
by right translation on G x B, and by right translation on Stab(w) and conjugation
on Bwo/ﬁ?wow X BN Uygw). We construct a map F|, — &, by sending v € F|,,
to (ss’ — sv) viewed as an element of 7, (O, g ® F |1) 510 = F for s € Stab(w)
and s’ € Bwo/ﬁﬁwow X BNUygw. This induces an isomorphism #|,, ® g Oc,, — F
which satisfies the expected properties. ([

Let (x,v) € X*(T)% with the property that x + v € X*(T). We define a
character of Stab(w) as follows: we let B,, act via , we let B act via v, and we
let BN B, act via x + v. This defines a G x B equivariant sheaf £, (v) over C,,.
We sometimes drop v from the notation since we are mostly interested in the G-
equivariant action (the B-action rigidifies the construction and will be used in the
construction of intertwining maps). We let j,, : C,, — FL be the inclusion. Let
drr, be the dimension of F'L. We can now define the twisted Verma modules:

Definition 2.4.8. We define the twisted Verma module M (g)¥ = H ==Y (FL, (ju ) Lxtw-1,1,(1))-

This is a representation of G x B. By Lemma 244} the G-action amounts to a
g-module structure. We will usually write M}’ for M (g)¥.

Proposition 2.4.9. The g-module M3’ belongs to O(g,b). It has the following
properties:

(1) Its highest weight is X.

(2) It is isomorphic to the direct sum

Do >0,0€w-10- N0+ ko <0,acw—10-no- EQA+w ™ p+p) H T

and in particular the action of by, is completely explicit.
(3) Ml is the Verma module of highest weight \.
(4) M" is the dual Verma module of highest weight .
(5) The elements [M}'] of the Grothendieck group are independent of w.

Proof. This is proven in the course of the proof of [BP21l Lem. 3.2.2]. Let us give
some details. Given Lemma [Z4.7] and the projection formula, the key computa-
tion is that RFC(OU,, ch) = 6916&20,&6w*1<1>*ﬁ<I>+,kQ<0,a€w*1<I>*ﬁ<I>*EHTSQ- This
follows from Lemma 2. 4.5 We deduce that M}’ is a finitely generated U(g)-module
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and that the action of b is semi-simple with the same character as that of the
Verma module M{¢. This implies that M belongs to category O and that [MY]
is independent of w (see [HumO8|, 1.15]). O

One can compute easily the homology of uy,, on M;"" as follows. We continue
to write d = dimpg(uy).

Proposition 2.4.10. We have

wZ\/I —lw w
) MY = M () () 3 it gy [d — £(w™)]

L
E @y (wM) = (w2429

Upy

where w = wywM for wyr € War and wM e My,

Proof. We have a map

T H U, H UQ — H U, H U, o

acw1d+tNPt+ acw 1d+tNP— a€w*1<I>1\+/[ﬁ<I>+ aGw*l'@xIﬂ@*

of analytic stacks with fiber

F = 11 U, 11 Us.
acw— 1o+t Mnd+ acw— et MNH—
This map is Pw x BN Py-equivariant (the action of Pw x BN P, factors through an
action M, x By, on the target). The space [[,c,-10+na+ Uallacw-10+no- Ua
is the Bruhat cell Cy,q in B\G. The space HaEw*hP]\t[ﬁ(b* Ua HaEw*IQLNQ* Us
is the Bruhat cell C/ . v in B, \M.,,. We deduce that
(wM)=Two, ywyw w

L wow L
E®u,,) M = RFC(OZUJM)“WO,MWMWM’7T!£>\+wflwoflp+9 Q0 (up.,) E).

L . .
It therefore suffices to compute the sheaf w;ﬁA+w,1w51p+p ®U(upw) E. This is a

M, By, -equivariant sheaf, so it is determined by its fiber at w.
It follows from the basic computations of Lemma 240 that RT'.(F, OF) is con-
centrated in degree ¢(w™) and equals

k
Dk >0,0cw-10+M D+ ky <0,0cw-10+MAp— L H Ty~
(e}

We then compute that

E®f, RI.(F,0p) = H(up, Nb,Hy_ gu)(up, Nb,H ) (F,0p))[d— 20(w™)]
= F( Z a— Z a)[d — 20(w)].
w1+ MNP+ w—ld+MNd—

It follows that W!L)\+w,1w51p+p®5(up ) E is an invertible sheaf in degree 20(wM)—d

)\—l—w*lwo_lp—l—p—l— Z o — Z a.

w1 MO+ w1+ MND—
It follows that M}™" ®[L](up ) E is concentrated in degree 20(wM) —d + L(wM) —
l(w) = £(wM) — d, and is the twisted Verma of weight

/\—l—w*lwo_lp—i—p—i— Z a— Z a— Z «

w1+ MNp+ w—1e+MNP— w*hp]\*/[m@*

of weight
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=X+ Z a= (W) wM - (A + p) + 2pM). O

w1+ MNP+

Proposition 2.4.11. Let w € MW. In the Grothendieck group of category O for
my,, we have

[E ®5(upw) Mid] = (_l)dil(w) [M(mw){udfl(w-AJerM)]'

Proof. In the Grothendieck group of O(g,b) we have [M{9] = [M*"“"""] and
b(y f]roposition we have E ®[L](upw) MM = M(mw){ud,l(wv)\Jrsz)[d —
L(w)]. O

2.5. Some SLso-computations. We now make some explicit calculations in the
case G = SLy. We let H, X, X be the standard basis of g with E-H O E-X = b
and [X,X] = H. Let A\ : h — E be a character (identified with its value A\(H) €
E), and write E(X) for the underlying representation. The Verma module M) =
U(g) ®u(p) E(N) has basis the {X"},,>0 (or more precisely, X" @ 1 where 1 € E())
is a basis vector).

We let M} be the dual Verma module (the dual in category O). Concretely,
MY is the subspace of the algebraic dual Hompg (M, E) which has basis the vectors
{(X™)*},>0 where (X™)*(X™) = 1 if m = n and (X")*(X™) = 0 if m # n. For
g€ gand f € M, wehave that gf = f('g—).

Lemma 2.5.1. We have that X - (X")* = (n+1)(A—n)(X"*H)* and X - (X")* =
(anl)* .
Proof. These follow from the corresponding formulas in My: X - X™ = n(A —n +
DHX"!and X - X" = X"+l O
Corollary 2.5.2.
(1) There is a unique map of U(g)-modules, I : My — M,/ which sends X"
to n!A(A —1)--- (A — (n—1))(X")*. Any other map of U(g)-modules is a
E-multiple of this map.
(2) If X ¢ Z>, the map My — M) is an isomorphism. If X\ € Z>q, we have a
long exact sequence:
0= M_o \— My — M;\/ — ML/Q,A — 0.

The map M_o_x — My sends the basis vector X™ of M_o_y to X"t 2
in My. The map My — MY, is dual to the map M_o_x — M.

Proof. Giving a map My — M)’ of U(g)-modules amounts to giving a map of b-
modules, E(\) — M. Since M, has a unique vector of weight A, namely (X°)*,
the space of maps is one dimensional, generated by the map X° + (X°)*. Then we
see by Lemma 5.1 that X" — X" (X9)* = n]AA—1)--- (A = (n — 1))(X™)*. If
A ¢ Z>p, this map is an isomorphism. Otherwise, let Ly be the finite dimensional
irreducible representation of highest weight A (and dimension A 4+ 1). There is a
surjective map My — Ly — 0, fitting in an exact sequence:

00— M_o_\—>My—Ly—0
The dual in category O of this exact sequence gives:
0= Ly— MY =M, , =0

and combining these exact sequences concludes the proof. (I
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2.6. Intertwining maps. Let § be a simple root. Let us consider the correspond-
ing parabolic Pg, and the partial flag variety F'Lg := Pg\G. We have a map
ng : FL — FLg which is a P'-fibration.

For each w € W, we let D,, = P3\PswDB be the corresponding Bruhat cell. As
in Example 2.4.3] it is equipped with the following analytic stack structure. Its
structure ring is E ®@z Z[T,, a € w &M N ®F|[T,,a € w 1@ Ms nd~]. Its
modules are solid Z-modules which are E ®z Z[T,,a € w™t®~Ms N &F][T,,a €
w™ld=Ms N @~ ]-modules and are (T,, o € w=1®~Ms N &~ )-derived complete.
Assume from now on that £(spw) = £(w) + 1; then we have wgl(Dw) = CpUCsyu.
Each D,, is a G x B-orbit. We let Stab(w) s be the stabilizer of w. We again have
an equivalence between Stab(w)g-representations and G x B-equivariant sheaves
on D,,.

Lemma 2.6.1. Stab(w)s = BﬁP\sﬂw\[(Pst x B) x BN Pyl

Proof. The same as Lemma [2.4.6] O
Lemma 2.6.2. Let .F be an G % B-equivariant sheaf on D,,. There is a T-
equivariant isomorphism |, ® Op,, — F.

Proof. This is the same as Lemma 2.4.7 (]

Given any pair of characters (\,v) € X*(T)% with A+ v € X*(T), one can con-
struct representations M (v) and My (v) of Stab(w)g as follows: the underlying rep-

resentation of Psﬁw factors through M., and is respectively given by M (M, )x

or M(mg,)y; and we let B act via v. The product of these actions integrates to
an action of B N Py, .
By Corollary[2.5.2) we see that we have intertwining maps: I : My (v) — M) (v).

Lemma 2.6.3. We have
_ k
RI¢(Dw,Op,,) = Bro>0,0cw-10" M8 N+ ko<0,acw—10" M8 mé*EHTaa'

Proof. This follows from Lemma O

Proposition 2.6.4. Assume that {(spw) = £(w)+1. There is an intertwining map
of g-modules:

w Sgw
MY — M,"".

This map is giwen (as h-modules) by the map

M>\+w*153p+p RF RFC(DUJ7 ODw)

I®ld
— M)\\/+w7155p+p KR RFC(DU,, ODw)-

(1) If (X + p,w™BY) € Zwo, we have a long exact sequence:

0— MY | = MY — M — Mjii“lB,A -0

which is the tensor product of the long exact sequence of Corollary
with RT'c(Dyw, Op,,) (as h-modules). Furthermore M LA MY

Sw*IB'A'
(2) Otherwise, the intertwining map is an isomorphism M3 ~ Mf\ﬁw.
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Proof. Consider the map 7 : 'L — F'Lg and the maps my, : Cyy — Dy and m .y
Csgw — Dy. We construct a map: 1Ly w—1p45(V) = TsgwtLagw—1s5p4p )
For this, we observe that both are G x B-equivariant sheaves on D,,. We compute
the corresponding Stab(w)g-representations. For this we can work over the fiber
at w by proper base change. By Proposition 24.9] (3) and (4) we deduce that the
fiber 7 1Ly 411 p4plw corresponds to the representation My -1, ,4,(¥), and the
fiber 75, 1 L2 4w—1s5p4plw corresponds to the representation M;/er,lsﬂﬁp(y). As
noted above, we get a map between these representations by using the intertwining
map I defined in Corollary Moreover, by Lemma [2.6.2] both sheaves are
trivial, and are respectively f—equivariantly isomorphic to My, 15,54, ®E Op,,
and M) tw-sspip OF Op,. We now take cohomology with compact support so
that the cohomologies RI'c(Du), Tuw 1 Lxyw—1p4p) a0 REc(Days Tsgw 1 Lxgw—155p40)
are indeed given by the claimed formulas (use the projection formulas).

To see (1) and (2), observe that (A + p,w™18Y) € Z~¢ then again by Corollary
252 (noting that A there is (A +w ™ 1sgp + p,w™1BY) = (A + p,w™ 1Y) — 1), we
actually have a long exact sequence of sheaves:

0— 7Tw7!£5w715,>\+w—1p+p(1/) — 7Tw)[£>\+w—1p+p(l/) —

7755w,!£)\+w*155p+p(y) — WSBw,!‘Csw,IB-)\er*lsBerp(V) —0
inducing the expected long exact sequence on cohomology. Otherwise, the inter-
twining map of sheaves is an isomorphism, inducing an isomorphism on cohomol-
ogy. O

2.7. Topology. In this section we consider E-vector spaces V equipped with a
weight space decomposition V' = @, ¢ x«(1)V,, where each V), is finite dimensional

and equipped with a norm | — |,. We can define the norms | — |, by choosing a
basis for V,,, and decreeing the basis vectors to have norm 1.
Fix a basis {e;} of X*(T); then we have a function | — | : X*(T) — N measuring

the size of v as follows: any v can be written as > n;e; and we put |v| =1+ |n,]
(where in contrast to the rest of this section, |n;| is the archimedean norm of n;).

Let 7 € Rsg. We define a norm | — |, on V by letting | Y. v, |, = sup,, |v, |, 7.
We write V, for the Banach space completion; concretely,

v, = {(v) € HVV | limsup|v,j|,jr"’| =0}.

We let Tpa:r be the natural topology on V defined by the family of norms {| —
lr}r>1, making V' a locally convex E-vector space. We let Viat be limy o0 VT, the
completion of V' for T,4:. This is a Fréchet space.

This applies in particular to V' = U(g). Fixing a PBW basis gives a decom-
position of U(g) into weight spaces and defines the natural topology. We have
U(g) = U(@)nat- It follows that any object M of O, being a finitely generated
U(g)-module, inherits a canonical topology 7., which is a locally convex topology.
For any such M, its completion is M = M Ru(g) U(g)

Lemma 2.7.1. Any map M — N in category O is strict for the canonical topology.
Proof. See for example [Sch13al, Prop. 3.1.1]. O

We can consider the twisted Verma module M}’, which admits the basis

k
Ok >0,0ew- 10~ NI+ ko <0,acw-1d-Nd- E H Ty
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We use this basis to define the natural topology T,.: as above. It follows that
twisted Verma modules have two topologies T4t and Teqpn. It is immediate that in
case w = Id, the canonical topology and the natural topology coincide. We will
next show that they coincide more generally if X is p-adically non-Liouville (see

Definitions 2:3.25 and 2-3.30)).

Lemma 2.7.2. Suppose x € E is p-adically non-Liouville and x & Z~q. Then
there exists a constant C' > 0 such that [[_, |z —r| > C™ for all n.

Proof. If © ¢ Z,, there is a constant C' > 0 such that |z — r| > C for all r (e.g.
take C' = min,cz, | — r|) so the result is clear in this case. So assume x € Z,.
By assumption, there is a constant B > 0 such that |z —r| > B" for all r € Z+
(see [Z3.29)). For a given n, let p~1 < n < p™ and choose 0 < ry < p™ with
ro = x (mod p™). Then, for 0 < r < n with r # ro, |x — | = |ro — r|, and so we

may estimate
n n

H|:E—r|=|:1c—ro|- H |ro — 7]
r=1 r=1,r#rg
> B"-[(p™)] = C"
for some C' > 0. O

Lemma 2.7.3. If X is a non-Liouville number, the maps of Corollary [2.5.2 are
strict for the natural topology.

Proof. When \ € Z>, the statement is obvious. We now assume that A ¢ Z>o,
so we need to show that the isomorphism I : My — M) which sends X" to
AN —=1) - (A= (n—1))(X™)* is strict. By Lemma 272 (and the trivial bound
[nl] > p~™), we see that for n > 0, we have [nIA(A—=1)--- (A= (n—1))| > C" for a
positive constant C. This easily implies strictness. ([l

Lemma 2.7.4. If A is a non-Liouville weight, the sequence of Proposition[2.6.7] (1)
0— M | = MY — M — iji”lB,A =0

or the isomorphism M — M,"" of Proposition[2.6.4] (2) are strict for the natural
topology.

Proof. This follows from Lemma O

Lemma 2.7.5. Let 0 =V}, — Vo — V3 — 0 be a short exact sequence of E-vector
spaces. Assume that Va has two locally convex topologies T and T'. Assume that
the induced topologies Ty and T{ on Vi, as well as the induced topologies Tz and T3
on V3 coincide. Then T and T’ coincide.

Proof. The topologies T and T’ are given by families of lattices {L;};c; and
{Ly}irer subject to certain conditions (in particular, for any i,j € I, there is
a k € I such that Ly C L; N L;). By symmetry, it suffices to prove that for any
i/ € I, there is i € I such that L; C L;. Any lattice L in V5 sits in an exact
sequence 0 — Ly — L — Ls — 0, with L1 = LNV;. By assumption, there isi; € 1
such that L;, 1 € Ly ; and i3 € I such that L;, 3 C Ly 3. Picking ¢ € I such that
Li Q Li1 N Li3, we find that Ll g Li/. O

Proposition 2.7.6. If \ is a non-Liouville weight, the canonical and natural topolo-
gies on My’ coincide.
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Proof. We use induction on the length of w. We know this is true if w = I'd. We
assume that this is true for w and all )/, and want to prove it for M iﬁ “ where
{(sgw) = £(w) + 1. If the intertwining map MY — M,”" is an isomorphism, it is
strict for both the canonical and natural topologies (by Lemmas [Z 7.1l and 2.7.4)),
so we are done.

Otherwise, we have a long exact sequence:

0— M | \— MY — MY — M;jiﬁ,A - 0.

This long exact sequence is again strict for the natural and canonical topologies.
Since the natural and canonical topologies agree on M " PN and M}, and also on

MY~ MY Ly, We are done by Lemma 275 O

sw,lﬁ-k - s
2.8. Proof of Theorem [2.3.32]

Lemma 2.8.1. Let a be a root. Consider the complexes Cy : E[Ty] ® uy — E[T4]
and Cy : E[Ty, T7Y/E[To] @ uq — E[Tw, T/ E[T.]. Let Cipg and Copgr be the
completions of these complexes for the natural topology. For i = 1,2, the natural
map C; — C’inat is a quasi-isomorphism. In particular, the differentials in C'imt
are strict.

Proof. This is a standard computation; for instance, C’lnat computes the de Rham
cohomology of the analytic affine line, but in any case it is a simple explicit calcu-
lation as in Lemma [2.4.5] O

We now restate Theorem 2.3.32] for the reader’s convenience.

Theorem 2.8.2 (Theorem 2.3:32). Let M € O,1,(g,b). The canonical map

U(mw) @u(m,) (B @, ) M) = E@F ) (U(9) ®@u(g) M)

(Upy,

is a quasi-isomorphism.

Proof. A standard argument using the five lemma shows that we may replace M by
a resolution, and thus we reduce to the case that M = M) for some non-Liouville \.
In fact, it is more convenient to handle all of the twisted Verma modules M = M}\“/
by induction on £(w'w ™ wp).

We begin with the base case w' = wow. Lemma [Z8T] implies easily that the
Chevalley-Eilenberg complex computing E ®5(upw) M is a strict complex for
the natural topology, so that the formula of Proposition

wM) "1y w
) MO = M () () 3oty [d — £(w™)]

L
E @y (wM) =1 (- A42p

Upy,
passes to completions for the natural topology. The result now follows since the
My—1

canonical and natural topologies coincide (on M, and on M (mw)Ele M;,IZS%?\) 12, M))
by Proposition 2.7.6]

For the inductive step, we can suppose that there is some 3 such that £(szw'w ™ wg) =
{(w'w™twg)—1. Then £(sgw’) = £(w')£1. Let us assume that it is /(w’)+1, so that
we have the intertwining map M;“/ — M ;ﬁ “" (the other case is almost identical,

using the intertwining map M iﬁ e M}\”,, and we leave it to the reader).
If the intertwining map is an isomorphism, we are done. Otherwise, we have

3 w’ w’ SB’LU, SB’LU,
a long exact sequence: 0 — Ms(w/)ilﬁ_/\ - MY — M, — Ms(w/)ilﬁ_/\ — 0.
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’

! !
By induction, the theorem holds for M;”" and M.°" . Since M¥ N
(W) =1p (w)=1p

SS(T:J)AB,A is an isomorphism, it also holds for MS“(J;/)AB,/\, and thus (again by the
five lemma) for M;\”l, as required. O

We will use the following result in Section

Proposition 2.8.3. Assume (8 is a simple root with w = wéWSg € MW and
<)\,Bv> € ZZQ. Then

E ®[Lj(upw) Mid = M(mw){udfl(w-k—i-%zw)[l]

Proof. By the hypothesis that (\,3") € Zso, there is an isomorphism M{? =
M,” by Proposition .64 (2). The result then follows from Proposition
(taking w there to be wo pw). O

Remark 2.8.4. We note that the condition that w)fsz € MW is equivalent to 3
not being a root of m,ar.

3. EQUIVARIANT SHEAVES ON THE FLAG VARIETY AND LOCALIZATION

3.1. Introduction. This entire section is concerned with geometric representation
theory. We fix a split reductive group G, a Parabolic P with Levi M, and a Borel
B C P. We consider the partial flag variety P\G and its Bruhat decomposition
P\G = Il,cmw P\PwB into B-orbits, indexed by the subset W of Kostant
representatives of the Weyl group W of G.

In Section and Section [B.3] we consider equivariant sheaves on the partial
flag variety as well as (dagger neighbourhoods of) Bruhat cells, for the action of
G, its Lie algebra g, or a Borel subgroup B, depending on the context. We also
establish the connection between these equivariant sheaves and twisted D-modules
and introduce the horizontal Levi action. We begin with some generalities on
equivariant sheaves on adic and dagger spaces, before turning to the specific cases
that we need. We repeatedly make use of the standard equivalence (given by
passage to the fibre at a point € X) between H-equivariant sheaves on a space X
on which the group H acts transitively, and the representations of the stabilizer
group Staby (x); however, since we are working with topological (or rather solid)
sheaves, we have to go to some lengths to make precise the categories that we
are working with, and their interactions with these equivalences. (The particular
categories that we work with are ultimately dictated by the use of geometric Sen
theory in Section M)

Remark 3.1.1. All the sheaves we consider will be sheaves on topological spaces,
valued in the category of solid E-vector spaces (where E is a finite extension of Q).
These form an abelian category. Our topological spaces will usually be adic spaces
or dagger spaces, and our sheaves will also be “quasi-coherent” and often be twisted
D-modules. This means that the objects we manipulate would naturally fit in the
formalism of quasi-coherent sheaves on adic spaces of [And21], and the formalism of
analytic geometry and the de Rham stack of [RC24]. The much simpler perspective
we adopt is sufficient for our purposes.

This preliminary material is used in Section [3.4] to produce, for any w € MW,
a functor HCS (for “Higher Coleman sheaf”) from category O for m,, (the Lie
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algebra of w™'Mw), to the category of (g, B)-equivariant sheaves on the dagger
neighborhood of the Bruhat cell P\PwB. In section ] we will use these sheaves
to produce sheaves on (open subsets of) Shimura varieties whose cohomology with
support is Higher Coleman theory of [BP21].

In Section we define our localization functor on the partial flag variety. This
functor goes from category O for g to twisted D-modules on the flag variety. In
Theorem B5.TT] we describe the localization in terms of Higher Coleman sheaves.
Namely, in p-adically non-Liouville weight, the restrictions to the Bruhat cells of
the cohomology sheaves of the localization of a Verma module M of g are given
by the Higher Coleman sheaves associated to the up, -homology of M. (It is here
that we use Theorem 2:3:32]) Furthermore we give an explicit filtration on these
sheaves in Corollary

Finally in Section we specialize to the case G = GSp, and prove the crucial
Theorem B.6.9, which describes the cohomology of the horizontal Cartan action on
the localization in a special case of interest to us.

3.2. Equivariant sheaves on partial flag varieties. In this section we discuss
several kind of equivariant sheaves.

3.2.1. Equivariant sheaves over adic spaces. Let C be a rank one field extension
of E. In applications, C'is either E' or C,. Let X be an adic space which is locally of
finite type over Spa(C, O¢). Its structure sheaf Ox is naturally a topological sheaf,
whose value on a quasi-compact open subset is a Banach space. It follows that we
can think of Ox as taking values in the category Mod(FE). All the sheaves we will
encounter will be sheaves of solid E-vector spaces. By a solid Ox-module we mean
a sheaf valued in the category Mod(F) equipped with an Ox-module structure.
We emphasize that we do not impose any kind of quasi-coherence condition in the
definition of solid O x-modules.

Definition 3.2.2.

(1) A sheaf .# of solid Ox-modules is an orthonormalizable Banach sheaf if
there exists a Banach space V over F such that % = Ox Qg V.

(2) A sheaf .# of solid Ox-modules is a summand of orthonormalizable Banach
sheaf if it is a direct summand of an orthonormalizable Banach sheaf.

(3) A sheaf .# of solid Ox-modules is a Banach sheaf if there is a covering
X = U;Spa(4;, A]) and a Banach space V; over E such that ylSpa(Ai,A;r)
is a direct summand of the sheaf OSpa(Ai,Aj)®E‘/i'

(4) A sheaf .F of solid Ox-modules is an L B-sheaf if there is a covering X =
U;Spa(A;, A]) and LB-spaces V; over E such that Z |spa(as,at) is a direct
summand of the sheaf OSpa(Ai,A;r)(gE‘/i' '

Banach sheaves define a category B(X) and LB-sheaves define a category LB(X).

Let G be an analytic group acting on X. We have two maps act,p: Gx X — X,
which are respectively the action and projection maps. We let Bg(X) be the
category of G-equivariant Banach sheaves, whose objects are objects .% of B(X)
together with an isomorphism act* # — p*# (in the category B(G x X)) satisfying
the usual cocycle condition. We let {G,,}nez., be a system of neighborhoods of
the identity e in G, given by quasi-compact open subgroups.
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Definition 3.2.3. The category LBg(X) is the category whose objects are objects
F of LB(X) together with an isomorphism act*.# — p*.# (in the category LB(G x
X)) satisfying the usual cocycle condition, and further satisfying the following
finiteness condition:

(1) There exists a covering X = U;U; such that F|y, = colim,>¢.%;, is a
filtered countable inductive limit of orthonormalizable Banach sheaves with
injective transition maps.

(2) For all j, there exists a quasi-compact open subgroup G,;y C G which
stabilizes U; and we can upgrade .%; , to an object of Bg, ,, (Uj), in such a
way that the inductive system {.%; ,.} is an inductive system in Bg, , (U;).

(3) The two G,(;-actions on .# |y, (the one induced by the inclusion G, ;) —
G, and the one obtained by taking the colimit of the .%;,) are the same.

We let g be the Lie-algebra of G. The action of G on X induces an action of g
by derivations on Ox. We let Mod;(X ) be the following category: its objects are
solid Ox-modules .# together with a map g ®g % — % inducing an action of g
on .# by derivations in the following sense:

(1) For any X,Y € g, we have [X,Y] = XY — Y X in End(.%).
(2) For any (X,a,f) € g x Ox x %, we have X (af) = X(a)f + aX(f).

Definition 3.2.4. We let Modg(X) be the subcategory of Modj(X) generated
under colimits by objects .# which have the following property: for any quasi-
compact open subset U of X, there exists r such that the action g®@.% (U) — #(U)
can be integrated to an action D(G,) ® #(U) — Z(U).

Lemma 3.2.5. The categories Mody(X) and Modg(X) are Grothendieck abelian
category, and in particular have enough injectives.

Proof. We begin with the case of Mod/g (X), where the only non-obvious point is the
existence of a set of generators. For this we may take the sheaves ji(U(g) @ R® Op)
for R a generator of the category of solid E-modules, j : U — X a quasi-compact
open subset and 7 € Q>o. We now turn to Modgy(X), where we first make a
comment on the condition that the action g ® .#(U) — .Z#(U) can be integrated
to an action D(G,) ® #(U) — Z(U) for some r. Let D(G,+) = limy~, D(G,/).
Then D(G,+) ®u(g) D(G,+) = D(G,+) by [RIRC22, Lem. 5.13|. As a result, the
extension of the g-action to an action of D(G,+) for some r is a property of #(U)
and not some extra data: it means that .7 (U) @ g D(G,+) = F(U) for some
r. By construction Modgy(X) is an abelian subcategory of Mod’gl (X) stable under
colimits, and filtered colimits are exact since they are exact in Mod’g (X). Then a
set of generators is given by the sheaves ji(D(G,) ® R® Oy) for R,U as above. [

We define the subcategory LBg(X) of Mody(X) as follows.

Definition 3.2.6. The objects of LBy(X) are LB-sheaves # on X together with
amap g ®g.# — .Z inducing an action of g on .# by derivations. We furthermore
impose that the g-action can locally be integrated to a locally analytic action. Here
is the precise condition:
(1) There exists a covering X = U;U; such that .7 |y, = colim,>¢.%;,, is an in-
ductive limit of orthonormalizable Banach sheaves with injective transition
maps.
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(2) For r large enough, we can upgrade %; , to an object of Bg, (U;), in such
a way that the transition maps .%;, — %;,  are equivariant for the maps
G — Gy

(3) The two g-actions on .#|y, (the one induced by differentiating the action
of GG, and passing to the colimit, and the one which is part of the original
data) are the same.

3.2.7. Equivariant sheaves over topological and ringed spaces. We also need to con-
sider the situation where a locally profinite group M acts continuously on a locally
spectral topological space X.

Lemma 3.2.8. Let V be a quasi-compact open subset of X. There is a compact
open subgroup N of M such that N -V =V

Proof. The map act : M x X — X is continuous. It follows that act=*(V) is open,
so that for any = € V, there exists a compact open subgroup N, of M and an open
neighborhood V, C V of = such that N, -V, C V. Since V = UzeyV,, and V is
quasi-compact, there is a finite collection of elements {z; };cr such that V = U, V.
We deduce that N = N; N, works. O

Definition 3.2.9. We let Mods(X) be the category consisting of:

(1) A Mod(F)-valued sheaf .7 on X.

(2) An abstract action of M on % (that is for any m € M, an isomorphism
m~LF — F satisfying compatibility conditions for various m).

(3) For any quasi-compact open subset V' C X for one (equivalently for any)
compact open subgroup Ny of M stabilizing V', the abstract action of Ny
on .Z (V) extends to a Em[Ny]-module structure.

(4) For any U C V, and for one (equivalently any) quasi-compact open sub-
group Ny stabilizing U and V, the restriction maps % (V) — #(U) are
Em[Nvy,y]-equivariant.

If in (3), the action of Ny is smooth, we say that & is smooth. We thus have a
subcategory category Modj; (X) of Mod/(X).

Lemma 3.2.10. The categories Mody; (X ) and Mod s (X) are Grothendieck abelian
categories, and in particular they have enough injectives.

Proof. All claims are obvious, except for the existence of generators. Let us first
prove the existence of a generator in Mod;(X). Let U be a quasi-compact open
in X and let N be a compact open subgroup stabilizing U. Let R be a gener-
ator of the category Mody(F). We consider the sheaf L(U) = @®pen/nimu R
where j,v : mU — X is the open immersion. It is endowed with the obvious M-
equivariant action. Let . be an object of Mods(X). A map L(U) — % amounts
to a map R — Z#(U) in the category Mody (F). It follows that &y L(U) is a gen-
erator of Mod;(X). We construct similarly a generator of Modj; (X) by the same
construction, but replacing R by a generator of Mody" (E). O

Let us briefly indicate some possible variations. If X is equipped with a sheaf of
algebras in solid E-vector spaces Ox, which belongs to Mod (X ), one can consider
the category Mod s (Ox ) of M-equivariant O x-modules. If the M-equivariant sheaf
Ox is smooth, we also have a category Modj; (Ox). In this case, we can also
introduce a twist by a character A : M — E*. We say that an object # of
Mod s (Ox) is A-smooth if ZF @ E(—M\) is smooth. The category of A\-smooth objects
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is denoted by Mod}; ™ (X). The categories Mod(Ox), Mod};*™ (Ox) are again
Grothendieck abelian categories, and in particular they have enough injectives.

3.2.11. Dagger spaces. We need to enlarge the category of adic spaces and also
consider certain limits of adic spaces (for example dagger spaces in the sense of
[GKO0]). Let Z be a locally closed subset of X. We let Z"X be the locally ringed
space limzcy U where U runs through the open subsets of X containing Z. As a
topological space, Z1X = Z. It carries the structure sheaf O, x = igl(QX where
iz : Z — X is the inclusion. This sheaf also takes values in the category Mod(E).

Remark 3.2.12. The locally ringed space Z5¥X depends on Z and on the embed-
ding Z — X. If X is clear from the context, we simply denote Z"X by Z1.

3.2.13. Notations for the flag variety. We let G be a connected split reductive group
over E and we let P be a parabolic subgroup. We let F£ = P\G be the partial
flag variety (an analytic adic space).

Remark 3.2.14. In section @] we will use the notation FL£"" for this analytic
space, and we will let £ be its base change to Spa (C,, Oc,))-

We let Up be the unipotent radical of P, with Levi quotient M = P/Up. We let
B C P be a Borel with maximal torus T and unipotent radical Ug. We let By; be
the induced Borel on M and Uj; be the unipotent radical of By;. We use gothic
letters for the Lie algebras of all groups introduced so far, so that for example g is
the Lie algebra of G and b is the Lie algebra of B; the one exception is that following
standard conventions, the Lie algebra of T is denoted by h. For any x € FL, we
let P, be 271 Pz, and let Up, be its unipotent radical. We adopt similar notation
for other groups or Lie algebras, and in addition for x replaced by an element w of
a Weyl group; so for example for w € W (the Weyl group of G) we have P, Up,
and so on.

From now on G is viewed as an analytic group over Spa(F, Og) (this is a Stein
space and is not quasi-compact unless G = {1}).

We fix a reductive model for G over Op. Its analytification defines a quasi-
compact open subgroup Gg C G. For any r € Q>g, we let G, be the quasi-compact
analytic subgroup of Gy of elements reducing to the identity e modulo p”. Here are
some slightly non-standard conventions and constructions:

e If H is an analytic subgroup of G, we let H, = G, N H.

o If H is an analytic subgroup of G, we let H, := lim,>¢ H, where the limit
is taken in the category of locally ringed spaces. Thus H., = {e}"#. As
a space, H. has only one point (the identity e of G), but it carries the
structure sheaf Oy . whose dual is the distribution algebra U (Lie(H)).

3.2.15. G-equivariant sheaves. In section [3.2.1] we have introduced the categories
Ba(FL) and LBg(FL). We also have the categories of representations Bp, (E) =
Bp, (Spa(E,Og)) and LBp,(E) = LBp,(Spa(E, Og)) for each w € W.

Proposition 3.2.16. Tuaking the fiber at w = P\Pw € FL gives equivalences of
categories between Ba(FL) and Bp, (E) and between LBg(FL) and LBp, (E).

Proof. We have an isomorphism P\G — P,\G, =+ w™~! -z, which takes w € FL
to e € P,\G; so we can and do reduce to the case w = e. Given a G-equivariant
sheaf V, we take its fiber at e = P\P € FL, which is a representation of P.
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Conversely, let 7 : G — FL, g — eg be the uniformization map. The sheaf 7,0¢g
is G-equivariant (via the action of G by right translation on itself) and carries a P-
action (via the action of P by left translation on G). Given an object V of LBp(E),
we consider (m,Og®V)F. These two functors define the equivalences of categories
of the proposition (and in particular match the various finiteness conditions); we
leave the details to the reader. O

Example 3.2.17. We have a filtration up C p C g of finite dimensional P-
representations. Via our equivalence of categories, this corresponds to a filtration
of G-equivariant coherent sheaves: u% C p® C g° = Oz, ® g. The fibers of this fil-
tration at a point € FL are up, = v ‘upx C p, = 2~ 'pz C E(xr) ® g. Moreover,
we have an isomorphism g°/p° = Tx,.

Example 3.2.18. Let A € X*(T)M-*. There is an associated highest weight
representation of M and via our equivalence of categories, this corresponds to a
G-equivariant coherent sheaf L. Here is an equivalent geometric construction
of this sheaf. Let m : Up\G — FL. This is a G-equivariant M-torsor. Then
Ly = (m:Opyp\a)[Bm = —wo,arA], with the right translation action of G.

Remark 3.2.19. In the Siegel case, the tautological exact sequence over FL is
(for St = E?9 the standard 2g-dimensional representation of G):

0— E(O)... 0,—1;1) — Orr ® St — 5(1,0,--- 0i1) — 0.

3.2.20. g-equivariant sheaves and the horizontal action. Let U be an open subset
of FL. By Definition B.2.0] we have a category of g-equivariant sheaves LBy(U).

On any object of LBy(U), the g-action extends linearly to an Oy ® g-action. We
recall that we have the moving parabolic Lie-algebra p° C Oy ® g.

Lemma 3.2.21. We have that p° C Oy @ g acts Oy -linearly and G-equivariantly
on any object of LB4(U).

Proof. We have that p® is a G-equivariant subsheaf of Oz, ® g. Moreover, it acts
trivially on Oz since Tr, = g% /p°. O

Definition 3.2.22. We let LBQ(U)“% be the full subcategory of LBy(U) of objects
which are annihilated by u%.

For any & € LBg(U)”?”, we have a G-equivariant map m® = p°/u}, — End,, (F)
which can be extended to an algebra map:
U(m°®) — Endy, (F). (3.2.23)
Let Z(m) be the centre of U(m).
Lemma 3.2.24. We have an injective algebra homomorphism Z(m) — H°(FL,U(m%)).

Proof. The G-equivariant sheaf U(mP) is associated via Proposition to the
P-representation U(m) (the fiber at e). We have a natural inclusion Z(m) — U(m),
and Z(m) identifies with the P-invariant subspace of U(m). It follows that we get
an injective map of sheaves Oz, ® Z(m) — U(m°), inducing the expected map on
global sections. (I

Definition 3.2.25. We define the horizontal action as the map Opo : Z(m) —
Endp,, (%) obtained by composing the map of Lemma B:2:24 and the map

H°(U,U(m°)) — Endp, (%)
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obtained from ([B2Z.23)).

3.2.26. (g, G)-equivariant sheaves. We now consider (g, G)-equivariant sheaves. We
sometimes find it helpful to interpret these as G. x G-equivariant sheaves, where
the action of G on G, is via conjugation, see Remark below. We remark
there is a group homomorphism G, x G = G, (ge, g) — geg-

Definition 3.2.27. The category LBy g)(FL) has objects consisting of a G-
equivariant sheaf .# € LB¢(FL) together with a map g®.% — % of G-equivariant
sheaves (where g ® # carries the diagonal G-action), giving a Lie algebra action on
T
(1) For any X,Y € g, we have [X,Y] = XY — Y X in End(#).
(2) For any (X,a, f) € g x Orz x F, we have X (af) = X(a)f + aX (.
We furthermore impose that the g-action can locally be integrated to a locally
analytic action. Here is the precise condition:
(1) There exists a covering FL = U;U; such that .Z |y, = colim,>o.%;,, is an
inductive limit of Banach sheaves with injective transition maps.
(2) For all j, there exists a quasi-compact open subgroup G,;y € G which
stabilizes U;.
(3) For r large enough, we can upgrade .%; , to an object of Bg,xa,,, (Uj), in
such a way that the inductive system {%; .} is now in Bg, xq,;, (Uj)-
(4) The two G,(;-actions on .# |y, (the one induced by the inclusion G, ;) —
G, and the one obtained by taking the colimit of the .%; ) are the same.
(5) The two g-actions on .#|y, (the one induced by differentiating the action
of G- and passing to the colimit, and the one which is part of the original
data) are the same.

Remark 3.2.28. In particular, the g-action on an object F of LB 4 ) (FL) can be

upgraded to a U (g)-action on .%. We can thus think of an object . of LBg,a)(FL)
as a G, x G-equivariant sheaf satisfying certain finiteness conditions.

Remark 3.2.29. In section @] we will also consider the category LB, o) (FLc,)
for the flag variety over C,, whose definition is the obvious variant of the definition
There is a base change map LB, ¢)(FL) = LB(y,q)(FLc,)-

Definition 3.2.30. We define LBy p,)(E) to be the category whose objects consist
of an object V of LBp, (E), together with a P,-equivariant morphism gV — V in
the category LBp, (F), inducing a Lie algebra action of g on V: for any X, Y € g,
we have [X,Y] = XY —Y X in End(V). We further impose the following finiteness

condition:

(1) V = colim, V,. is an inductive limit of Banach spaces with injective transi-
tion maps.

(2) There exists s such that for all r large enough, V;. can be upgraded to an
object of Bg, xp, . (E) and the maps V. — V. are equivariant for the map
Gp X Py s = Gr X Py .

(3) The action of P, s on V obtained on the limit is the one induced by re-
striction from P, to P, s.

(4) The action of G, on V. induces an action of g, and the action of g on V
coincides with the original action of g.

4We have a map g — Tr, and thus an action of g by derivations on Ox .
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Similarly to Proposition B.Z.16, we have the following equivalence of categories.
As usual, this equivalence is obtained by passage to a fiber; note in particular that
we are not simply restricting the g and G-actions, and indeed the action of g is
obtained as the difference between the given g-action and the derivative of the
G-action.

Proposition 3.2.31. Taking the fiber at w induces an equivalence of categories
between LB q)(FL) and LBy p,)(E).

Proof. As in the proof of Proposition B.2.16] we can without loss of generality
take w = e. We consider the uniformization map m : Ge XxG — FL, (ge, g) — €geg-
The stabilizer Stab(e) of e is the subgroup of elements (ge, g) € Ge x G, such that
geg € P. This is also the semi-direct product G x P with G, = {(g:,9¢)}
and P = {(1,p)}. A (g, G)-equivariant sheaf V gives a (g, P)-module by tak-
ing the fiber at e. Conversely, given a Stab(e)-representation V', we consider the
sheaf V = (m.(Og,xc)®@V)%*F. Tt has an action of G, given by g.f(g.,9') =
f(9t9'9:(9')~1, ¢') and an action of G given by g.f(gl,9') = f(ge,9'g). We check
that this induces an equivalence between LBy g)(FL) and LBy p)(E). For ex-
ample assume that V' is an object of LBy p)(E), thus V' = colim, V,. where each
V, carries an action of G, x Ps for s and r large enough. We can consider the
map G, x Gy — FL, (9,9') — eg’g. The image is a neighborhood U of e and the
stabilizer of e is G, x P,. We deduce that V|y = colim, (m.(Og, xg,) @ V,. )G
which proves that V is indeed an object of LBy )(FL). The reverse computation
is left to the reader. O

Remark 3.2.32. We can use the group homomorphism G. X G — G, (ge, g) — geg
to turn a G-equivariant sheaf into a G, x G-equivariant sheaf. This defines a
natural fully faithful functor LBg(FL) — LBg,c)(FL). We can also interpret this
functor as saying that a G-equivariant sheaf is naturally a (g, G)-equivariant sheaf
by differentiating the G-action. There is also a forgetful functor LB4 q)(FL) —
LBG(FL).

Via the equivalences of categories of Propositions and [3.2.31] the functor
from G-equivariant sheaves to (g, G)-equivariant sheaves amounts to associating to a
P-representation the (g, P)-representation with trivial g-action. Indeed, the (g, G)-
equivariant sheaf corresponding to a (g, P)-representation V' is % = (m.Og, xc ®
V)Gex*P If V has trivial g-action, then f(geg’, (¢.)"1g) = f(ge, 9), and we deduce
that f(ge,99.) = f(9.9(ge) g1, g), which means that the two g-actions (the obvious
one and the one coming from the G-action) coincide. The converse implication is
similar. The forgetful functor from (g, G)-equivariant sheaves to G-equivariant
sheaves corresponds to the forgetful functor associating to a (g, P)-representation
the underlying P-representation.

Definition 3.2.33. We let LB(gﬁ)(]-"L)”?D be the full subcategory of LBy ¢)(FL)
of objects which are annihilated by u%.

We let LBy p)(E£)"" be the full subcategory of LB, py(E) whose objects have
the property that the up-action coming from differentiating the P-action coincides
with the up-action coming from the g-action. (We will shortly see that this is
equivalent to the category LB(gﬁ)(]-"L)“%.)

Any object of LBy py(E)"* carries an action © of Z(m) defined as follows. The
differentiation of the P-action gives an action dpp of p. On the other hand the
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action pg of g restricts to an action of p. We then let z € m act via the formula
z-v=dpp(Z)-v—pg(Z)-v

for any lift Z of z in p (this is independent of the lift). This induces an action of U(m)
and restricts to an action of Z(m). This action commutes with the (g, P)-action.

Proposition 3.2.34. The equivalence of categories between LBy c)(FL) and LBy py(E)

of Proposition 3231 induces an equivalence between LB(4 ¢ (]-'E)”?” and LB(4 py(E)*r.
The actions Onoy and O of Z(m) correspond to each other.

Proof. Let V € LBy py(E)*F. On the sheaf (m,Og, xa®V)%*F, we want to see
that the action of u% is trivial. We have ((geg) *u(ge9))-f(ge,9) = f(uge,g) for
u € (Up)e. On the other hand, our assumption implies that the action of (u,1) €
P.x G C G x @G is trivial on V (since the actions of (u,u~!) and (1,u~!) coincide).
This tells us that f(uge,g) = f(ge, g), as required. The converse implication follows
similarly. The actions of Oy, and © correspond by construction. [l

Remark 3.2.35. Let Rep(M) be the category of algebraic representations of M.
Then the natural functor Rep(M) — LB py(E) (induced by inflation from M
to P, and letting g act trivially, see Remark B.2.32) factors through LB, py(E)"?,
and the obvious action of Z(m) on Rep(M) induces the action ©.

Remark 3.2.36. We have a natural functor
H(u®, =) : LB(g.)(FL) — LBg.c)(FL)'P,

which can be defined as follows. Via our equivalence of categories, it corresponds to
the natural functor H°(up, —) : LBy p)(E) — LB(g,p)(E)"". In this last formula,
the up action is the diagonal one. More precisely, on any object V of LBy p)(E),
we can differentiate the P-action to obtain a p-action. We therefore have an action
of g x p and up embeds diagonally via u — (—u,u) as a normal sub-Lie algebra.

3.2.37. Twisted differential operators and the sheaf C'.

Definition 3.2.38. Let D' = Or,@U(g)/ubOr, @ U(g) be the ring of universal
twisted differential operators.

Remark 3.2.39. We have that D'* = Or,@U(g)/p°Or, @ U(g) is the usual ring
of differential operators.

Remark 3.2.40. One also has an “algebraic” version of Dla, Namely, we let
DE = O 1 s QU (g) /uB™EO £ £0:@U (g) be the ring of (algebraic) universal twisted
differential operator on the E-scheme FL£®.

We have three commuting actions of G on Og ® Ox:

(1) h’*l f(gv'r) :f(h’ilgv'r)v

(2) h*Q f(gv'r):f(ghvx)v

(3) hox3 f(g,l')zf(g,l'h)-
We write *; 3 for the composition of the %; and *3 action, and similarly for *; 23
and so on.

Definition 3.2.41. We let C'* = (Og . ® (9].-5)“(1)’ where the invariants are for the
*1 3-action.
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Elements of C'* are functions f(g, z) with g € G., x € FL, satisfying f(u,g,x) =
f(g,z) for u, € Up, .

In particular C!* has a *; 3-action of g and a x; 2 3 action of G, and it is easy
to check that this gives it the structure of an object of LB(gﬁ)(]-"L)“[I)’. It has an
extra linear xo-action of g. Its fiber at e is the module C'* = Ovp\G,e- Under the
equivalence of B.2:3T] the (g, P)-module structure is the conjugation action of P
and the right translation action of g. The linear x;-action of g also induces the
right translation action on the fiber.

Remark 3.2.42. The subsheaf (C'*)"" C (Og.. @ Orz.)"? is some kind of infinite
jet bundle over Oz,.

We have a map Opor : Z(m) — Endp,, (C'®). We also have a map 2 : Z(g) —
Endo,, (C'*) induced by the *5 action of g. These maps are related as follows:

Lemma 3.2.43. We let v: Z(g) — Z(g) be the map induced by the inverse on G.
For any z € Z(g), we have x3(12) = Onor(HC(2)), where HC is the map (2311]).

Proof. The endomorphisms of C'®, %3(12) and Oy, (HC(z)) are G-equivariant and
Ox-linear. Therefore it suffices to understand what happens on the fiber at e,
namely Opp\q,.. We first observe that on Og,. the two actions *; and *2 of G
induce two actions of Z(g) and these actions are related by x3(z) = %1(tz). For
the second point, by the definition of the map HC, for any z € Z(g), we have that
HC(z) = z+ 2’ where 2/ € U(g)up. It follows that #1(z) and HC(z) act in the
same way on Op,\g.. = H(up, Oge). O

We have a left action of g on Og,¢, defined by g.f(-) = f'(exp(—tg)-)|t=o. This
induces a natural pairing U(g) ®0g,e — E, (9, f) — (9-f)(e). This pairing induces
a pairing (Og,.0rz) ® (U(g)@(’)fg) — Oz,. It passes to a pairing on the
quotient:

D@ C® = OF;.

Proposition 3.2.44. We have that RHom,, . (C'*,Or,) = D',

Proof. We will prove that RHom, .. ((Og,e®Orr), OFr) = U(g) ®0Oz,. Since C?
is locally a direct summand in (Og .20 r,) and D' is locally a direct summand in

U(9)®Oz, this implies the claim. We take a presentation Og e = colim, V,. where
the V,. are Smith spaces. We deduce that
RHom . (Og,e ® Orr,Orc) = Rlim.RHomg(V,, Orc)
= Rlim,(V,Y ® Oz,)
= lim, (VY ® Ox;)

= U(g) ®Orc

Here, the first equality is formal, the second equality is a consequence of the nucle-
arity of Banach spaces [RJRC22, Cor. 3.7], the third equality follows from Mittag-
Leffler [RJIRC22, Lem. 3.27] and the last equality follows from [RJRC22, Lem.
3.28]. O

Remark 3.2.45. Using [RJRC22 Lem. 3.10], one can prove conversely that
Hom, ., (D', 0r,) = €. Conjecture 3.41 of [RIRC22] would imply that fur-
thermore Hom, . (D=, 07) = RHom, . (D=, Ozpr).
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3.2.46. The admissible objects. We let Adm g4 py(E) be the subcategory of LB g4 py(E)

whose objects are admissible U (g)-modules. This is an abelian category. We let
Adm gy ¢)(FL) be the subcategory of L B4 ¢y (F L) which corresponds to Adm g py(E).

Example 3.2.47. We see that C'* is an object of Admg ¢ (FL).

3.3. Equivariant sheaves on Bruhat cells. We will now consider the stratifica-
tion of FL into its B-orbits (i.e. Bruhat cells).

3.3.1. (g, Q)-equivariant sheaves. Recall that ¥ W denotes the Kostant representa-
tives of Wy \W, and for w € MW we let C,, = P\PwB be the Bruhat cell. More
generally, let @) be a standard parabolic, i.e. B C @, and write Mg for the Levi

quotient of Q. We write Cy g := P\PwQ <y FL for the corresponding (Q-orbit
in FL. We write CLQ = limg,, ,cv U where U runs through the neighborhoods
of Cy,g in FL. By definition Ojqu is the space Cy,q equipped with the sheaf
ch =j 'Oz,

We consider the semi-direct product G, x Q. We have a product map G, x @ —
G, (g,q9) — gq. The group G, x @ acts on Ojqu

Definition 3.3.2. We let LB g, Q)(Cw Q) be the category whose objects consist of
the following list of data:

(1) An LB-sheaf .Z# over CT o+ this is a sheaf of OCT -modules such that

there is a covering Cy, o = U;U; by quasi-compact opens and for each i a
family {U; ;}; of quasi-compact opens of FL with U; ; N Cy.q = U; and
N;U; ; = U;, and Banach sheaves %, ; over U; ; such that {%; ;|v,}; form
an inductive system and .#|y, = colim; .%; ;|u, -

(2) We have a Q-equivariant map g ® .# — % of LB-sheaves providing a Lie
algebra action of g on .#.

(3) For each 4, there exists s(7) such that each U, ; is stable under the action
of Gj x Q) and F; ; is an object of Bg;xq,, (Ui,;) and the maps F; ; —
Z,j are equivariant for the maps G X Q) — Gj X Qyj)-

the (g, Q)-action.

Remark 3.3.3. Similar to remark[3.2.29 we also can define a category LB g @) ((OL,Q>C;7)
with a base change functor LB g, Q)(C Q) = LB, Q)((C’ 0)C,)-

3.3.4. An equivalence of categories. We consider the uniformization:
m:GexQ — OL,Q
(9,9) — wgq.
We let Stabg (w) be the stabilizer of w for this action, so that
Stabg (w) = {(g,9) € Ge X Q,9q € Py, }.
We have an injective homomorphism
Stabg (w) — Py, x Q
given by (g, ¢) — (g9q, q), which induces an isomorphism
Stabg (w)e — Pu.e X Qe (3.3.5)
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From now on we will frequently identify P, . X Q. with Stabg(w). via (33.35)), and
in particular we will frequently regard Q. as a subgroup of G, x @ via [38.3.3) (and
the inclusion Stabg(w) C G. x Q), i.e. as the subgroup of elements (¢~!,¢) with

q € Qe
Lemma 3.3.6.
(1) The group Stabg(w) is generated by its subgroups Stabg(w)e = Py,e X Qe
and P, N Q.

(2) There is an isomorphism (PyNQ)e\((Pu,e X Qe) X (PyNQ)) — Stabg (w).
Proof. Consider an element (g, ¢) € Stabg(w) C Ge %@, so that gg € P,,. Then g €
GeNP,Q = Py Q., so we can write g = p¢’ withp € Py, .,¢' € Q.. Then ¢'q € Q,
and since gq € P, and p € P, we in fact have ¢'¢ € P, N Q. Thus we can write

(9,9) = (0, (¢, 4" )(1,d'q) € Ge x Q

with (p,1) € Py, (¢',¢7 ') € Q. and (1,¢'q) € P, N Q, completing the proof of
the first part.
It follows from the first part that we have a surjective homomorphism
Stabg (w)e x (Py N Q) — Stabg (w)

given by (g,¢) — gq. The kernel of this homomorphism is Stabg (w)e N (Py N Q) =
(Py N Q)e, and the second part is immediate. (]

Corollary 3.3.7. A representation (V,p) of Stabg(w) is the data of a representa-
tion (V,p1) of Py.e, a representation (V, p2) of Qe and a representation (V, p3) of
P, NQ, satisfying:

(1) p1 and pa commute.

(2) Adps(a)(p1(b)p2(c)) = p1(aba~")pa(aca™).

(3) p3 = pip2 on (PyNQ)e.

Proof. This is immediate from Lemma [3.3.6] O

Example 3.3.8. We consider the sheaf Cla|cf . We see that the fiber C!* is
w.Q

Oup, \G,e» and the action of Stabg(w) is given by (g,¢)f(¢9") = f(¢ 97 ¢'q). In
other words, it has a P,, .-action by left translation, a (Q.-action by right translation,
and a P, N @Q-action by conjugation.

If r,s > 1, we can consider the semi-direct product G, x Q5. We let Stabg (w),. s
be the stabilizer of w for the action of G, x Q,; again, this is the subgroup of
G, X Qs of elements (g, q) such that gg € P,,.

Lemma 3.3.9. Ifr > s, we have an isomorphism.:
(P N Q) \((Puyr x Qr) ¥ (P NQs)) — Stabg(w),s.
Proof. This follows exactly as in the proof of Lemma (I
We now define a category LBsiab,, (w)(E) as follows.

Definition 3.3.10. The category LBStabQ(w)(E) has objects consisting of the fol-
lowing list of data:

(1) An LB-space V = colim, V, over E,

(2) An action of Stabg(w) on V.
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(3) For each r, there exists s such that V. € Bgiab (w),..(£) and the maps V. —
V,+ are equivariant with respect to the maps Stabg(w),/ s — Stabg(w),s.

(4) This induces on V an action of Stabg(w). and P, N (s which coincides
with the restriction of the Stabg (w)-action of V.

Proposition 3.3.11. Taking the fiber at w gives an equivalence between the cate-
gories LB(&Q)(CL,Q) and LBStabQ(w)(E).

Proof. As usual, by taking the fiber at w, we obtain a Stabg(w)-module. Con-
versely, we attach to an object V of LBsgan, () (E) the sheaf (m.(Og, xq)®V)Stebe(w),
O

Remark 3.3.12. We have a restriction map LBy ¢)(FL) — LB(g,Q)(CIu,Q)- The
category LB(g ¢y (FL) is equivalent to LBy p,)(E) by Proposition B.2.31] and this
restriction map corresponds to the map LB(gypw)(E) — LBStabQ(w)(E) which is
induced by the inclusion Stabg(w) < Ge X P, where ¢ € Q.+ (¢,1), p € Py —
(p~hp),r€Py,NQw (1,7).

Remark 3.3.13. For any object % of LB(gﬁQ)(CLQ), one can differentiate the
Q-equivariant structure and thus obtain a Q-equivariant map actq : q ® &# — #.
One may want to compare this map with the map acty : g ® % — # which is
given by the g-equivariant action. The difference acty — actyglq : q® F — F is a
@-equivariant linear map. It is therefore entirely determined by its fiber at w. If
& corresponds to a Stabg(w)-representation V' via the equivalence of Proposition
[B3.11] then the g-action acty — acty|q is induced by the Q.-action on V.

We let LB(gﬁQ)(CIU)Q)”?D be the subcategory of objects which are killed by u%.
We let L Bsgab, (w) (£)"7» be the full subcategory of objects with trivial action of
the subgroup (Up,,)e <+ Puw,e- The objects of L Bsap, (w)(E)"#» carry an action ©
of Z(my,).

Proposition 3.3.14. The equivalence of categories between the categories LB(g,Q)(CIu Q)
and LBg;ap,, (w) (E) induces an equivalence between LB 4 q) (C’Jf Q)“[I)” and LBggab g (w) (E)" P .

w,
Via this equivalence, the action of Oney of Z(m) corresponds to the action © of

Z(my,) via conjugation by w=? .

Proof. This follows from Proposition B.3.11] exactly as in the proof of Proposi-
tion 32341 O

Remark 3.3.15. Let p € X *(Mgb) be an algebraic character. There is a functor
LB(B,Q)(CZJ,Q) — LB(Q)Q)(OLQ), F — F ® E(u), corresponding to twisting the
Q-action by pu. There is a map Stabg(w) — Ge x Q@ — Q — M2, so that
any character p € X *(Mgb) induces a character of Stabg(w). The operation of

twisting the @Q-action by g corresponds to the operation of twisting a Stabg(w)-
representation by p.

3.4. Algebraic and locally analytic representations. In this section we will
explain how to define a functor from a subcategory of the algebraic category
O(my, by, ) to representations of Stabg(w). We begin with some more general
considerations.
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3.4.1. Completion of category O. In this subsection we consider a reductive group
G with Borel B and maximal torus T'. Its Lie algebra is g with Borel b and Cartan
h. We recall that O(g, b) is the corresponding BGG subcategory of U(g)-modules.
Let B C @ C G be a parabolic with Levi M. Let q C g be its Lie algebra, with
Levi m. We let O(g, q) be the parabolic BGG category, which is the subcategory
of O(g,b) of objects whose restriction to m is a direct sum of finite dimensional
representations.

We start with the following definition which is nothing but Definition spe-
cialized to X = Spa(F, Op).

Definition 3.4.2. We let LBy(E) be the category of g-representations on LB-
spaces. More precisely, its objects are LB spaces over F, V which are U (g)-modules
and satisfy the following conditions:

(1) We have V' = colim, V,. and for r large enough V,. € Bg, (F). Moreover, the
transition maps V,. — V, for r < r’ are equivariant for the map G, — G,-.
(2) The actions of G, on V. induce the action of g on the limit.

Proposition 3.4.3. There is an exact contravariant functor:

O(g,b) — LBy(E)
M~ [M®ygU)Y =M

Proof. This follows from Theorem Indeed, our functor is the composition
of the functor @ — @ which is an equivalence of abelian categories, and then of
the duality functor (which is an exact anti-equivalence of categories, and turns a
coadmissible U (g)-module into an admissible U (g)-module), and finally the forgetful
functor to the category of L B-spaces equipped with a g-action. It remains to justify
that [M ®yp(q) U(g)]Y belongs to LBgy(E). To see this, note that U(g) Qug M =
lim, M @y (g D(G), so that MY = colim, V;. where V, = (M ®yq) D(Gr))Y is a
Banach space. Moreover, there is an action of G, on V.. O

Remark 3.4.4. We can explicate what this functor is doing on Verma modules.
Let A € X*(T')g be a character of b. Let M = U(g) ®y () A. We see that MY is the
submodule of O, of functions f which satisfy f(gb) = A(b) f(g) for (g,b) € G. X B,
with the action of g being that given by the action of G, as (gf)(z) = f(g~'x).
More generally, let V' be a finite dimensional representation of b with dual V'V. Let
M = U(g) ®up) V. We see that MV is the submodule of the space of functions

f: Ge — VY which satisfy bf(gb) = f(g).
We let X*(M) be the character space of M.

Definition 3.4.5. Let A € X*(M)g. We let O(g, q)r—alg be the full subcategory
of O(g,q), whose objects are those V' which have the property that in the weight
decomposition V' = @, ¢cx+(1), V] for the action of b, we have v — X\ € X*(T).
This is an abelian category.

Lemma 3.4.6. IfV € O(g,q)r—alg, then the q-action on the twisted module V(—X)
integrates to an action of Q.

5By definition, V[v] = {m € V, h.m = v(h)m}. In the direct sum, we suppose V[v] # 0.
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Proof. We observe that V(—\) is a union of finite dimensional representations of
q. We claim that on any finite dimensional representation (W, dp) of q, the action
integrates to an action (W, p) of @ as long as the action of h integrates to an action
of T (which is the reason why we are introducing a twist). Indeed, the Lie algebra
action gives a map U(q)®@W — W and since W is finite dimensional, we can dualize
thismaptoamap W —- W® 5;;)\6 where @\e is the completion of the local ring at
e. We claim that this map factorizes through W ® Og and gives the coaction map;
this establishes the lemma. This claim must be well known but we could not find
a reference so we sketch the argument. Using the Levi decomposition @) = M x Ug
it suffices to treat the case of M and Ug separately.

To see that the action of the unipotent radical Ug of () integrates we can just
consider a root groups Ug ~ G, inside Ug with Lie algebra ug generated by ug, and
the rule V. — V ® E[T], v — exp(T'ug)v defines an action of U (we use here that
the action of ug is locally nilpotent). On the other hand, the action of h on V(—X)
integrates to an action of 7. Similarly, the action of M?" integrates (from the
action of m). Indeed, for a semi-simple group, the categories of finite dimensional
representations of the group and of its Lie algebra are equivalent. This actions of
M9 and T combine together to an action of M. ([l

3.4.7. A particular class of representations of Stabg(w). We now go back to our
original setting. Let Qar, = Puw N Q/Up,no-

Lemma 3.4.8. If w € MW then Qur, is a parabolic subgroup of M, containing
B

w *

Proof. Clearly, Qs contains P,,NB/Up,n¢g which is a Borel subgroup of M,,. Any
closed subgroup of a reductive group containing a Borel is a parabolic subgroup. [

Let \ € X*(MQ)E
Definition 3.4.9. We let Admy,, @,,,)(F)x be the following category. Its objects

are admissible U (my)-modules V' = colim, V- which admit an action of @y, , com-
patible with the action of @z, by conjugation on D(M,, ). We further demand
the following conditions :

(1) For q € Qur,,, g € My, and m € V, we have Ad(q)(g).m = q.g.¢"*.m.

(2) there exists s € Z~o and an action of @z, s on each V;., inducing an action
of V' = colim, V,. which coincides with the restriction of the action of Qar,
to QMw,s-

(3) Let us denote by pg,,, the action of Qs on V. This action differentiates
to an action dpq,,, of qa,,. We let py, be the action of m,,. Then we ask
that dpg,,, = A+ P lqar, -

Remark 3.4.10. The category Admm, g, )(£)x is an abelian category by gen-
eral results on coadmissible and admissible modules over Fréchet—Stein algebras
(see [STO03], sect. 3).

The category Admy,, g, )(E)x is a full subcategory of LBy, (E). In particu-
lar, since @y, is connected, the action of @y, in the third condition is uniquely
determined by the m,-action and A.

Remark 3.4.11. By Proposition B:22:37] (applied with G replaced by M, ), we see
that objects of Adm(n,, @y, )(F)x define M,-equivariant Dy-modules on the flag



MODULARITY THEOREMS FOR ABELIAN SURFACES 55

variety X = Qur, \My, where Dy := Ox ® U(mw) ®q0. A is a ring of twisted
differential operators.

Proposition 3.4.12. There is a natural fully faithful functor: Admy, 0, )(E)x —
LBStabQ (w)(E)upw .

Proof. Tt suffices to exhibit an equivalence of categories between Adm (.0, ) (F)x
and a full subcategory of LBgian,(w)(E)"*=. To this end, recall that by Lemma

B30, Stabg(w) = (Puy N Q)e\((Puw,e X Qc) ¥ (Py NQ)). Accordingly, we may
consider the full subcategory of representations of Stabg(w) which factor through
(Qar)e\ ((M)e x Méb ) X Qn, and have the property that M"‘be acts through
the character A. In other words, we consider the full subcategory of L Bsab, (w)(E)
whose objects V satisfy the following properties:

(1) The action of P, . factors through an action p; of M, .. Moreover V,

viewed as an object of LBy, (F), is admissible.
(2) The action of Q. factors through Mffe acting via A.
(3) The action of @ N P, factors through an action p3 of Qypy,, -

Clearly, this is equivalent to Admy,, B, )(E)x- O

We now consider the parabolic BGG category O(my,, qar,, ) for m,, and the par-
abolic g N m,, = qar,. We think of h — b as giving the Cartan of m,,. We now
apply the material of Section B.AT]to O(m.,, qar,,)-

By Proposition B:43 (applied to O(my,,qas,)), we have a completion functor
O — LBy, (E), which restricts to a functor O(my,, qar, )r—alg — LBm,, (E).

Proposition 3.4.13. We can uniquely upgrade the completion functor
O(mw,qu)A,alg — LBmw (E)
Vo= v
to a fully faithful functor

Oy, qar, )a—alg —  Admm, 0, ) (E)r
Vo= VY.

Its essential image is the subcategory of Adm(m, g, )(E)x of objects which are
in the image of the functor O(my,qa, )a—alg — LBm, (E) when viewed as my,-
representations.

Remark 3.4.14. As the notation VY (\) suggests, we make a twist of the action of
qar,, on V'V by A so that it extends to an action of Qpy,, . (See also Lemma B.4.6])

Proof of Proposition[54.13 Let V. € O(my,qa, )r—alg. We consider VV. This
space carries an action of P, . (factoring through M, .). We can also define an
action of (Mg)e on VY via scalar multiplication by the character . Clearly these
two actions commute. The product of the two actions defines an action of (Mg)e N
P, . factoring through Qas, ... We claim that we can extend it to an action of
Q N P, factoring through Q. It follows from Lemma that we have an
action on V(—\). We thus get an action on V(=) = V(=\) ®U(my) U(m,,), since
M,, acts on U(m,,) and U(m,,) via the adjoint representation. O
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Remark 3.4.15. Clearly the categories O(my, qar, ) a—alg and O(My, qar, ) A+ p—alg
are equivalent if € X*(Mq). However, the functor O(muw, qar, )a—alg = Adm(m, Q,,. ) (E)A
depends on the choice of X (as clearly the target category depends on A). We have
a functor Admm,, Q) (E)x = Admim, 0y ) (E)rtp, V = V @ E(u). We have

the following commutative diagram of functors (telling us that VY()\) @ E(u) =
VYA + p):

O(mw, CIMw))\—alg e Adm(meMw)(E))\

J l

O(Muy, qar,, ) At p—alg — Adm(meMw)(E)/Hu
3.4.16. Higher Coleman sheaves.

Definition 3.4.17. We now define a contravariant exact functor
0

HCSQywy)\ : O(mw, qu))\,alg — LB(&Q)(OL,Q)%

(where “HCS” stands for “higher Coleman sheaf”) as as the composite

0
(’)(mw, qu))\—alg — Adm(quQMw)(E))‘ — LBStabQ(w) (E)u"w — LB(g’Q)(C';L’Q)u\ﬂ7

where the first functor is the one defined in Proposition [3.4.13] the second is the
fully faithful functor of Proposition3.4.12] and the third is the equivalence of Propo-
sition 3.3.14]

In the case Q = B we write HCS,,,» for HCSp 4 .

Proposition 3.4.18. Let M € O(my,bar, )a—alg- Let p € X*(T). We have
HCSw (M) ® E(p) = HCSyrsn(M).

Proof. This follows from Remark O

We have an action of Z(m,,) on O(my, bar, )a—alg. We also have an action Z(m)

on LB, B)(C';L)”g via Oper. These two action are related by the following lemma.
We let ¢ : Z(m) — Z(m) be the map induced by the inverse map on M, and let
w : m,, — m be conjugation by w.

Proposition 3.4.19. Let us consider the map w : Z(my,) — Z(m). Then we have
that HC'Sy A(2) = Oner(twz) for any z € Z(my,).

Proof. This follows directly from the construction, bearing in mind Proposition 3.3.141
O

3.5. Localization on the partial flag variety.

3.5.1. Statement of the localization problem. Recall that in Section B.Z37 we de-
fined an object C'* € LBy ¢)(FL). This is a D'*-module and it carries an action

%9 of g which commutes with the D'*-module structure.
We define a localization functor:

Loc: D™ (U(g)) — D(D%)
M + RHomg,,(M,C")

where D(D') is the derived category of solid D'*-modules. We will sometimes drop
the subscript *2 from the notation, and simply write RHomg (M, C'?).
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Recall that if M is an object of Mod™ (U (g)) then we let M = M @y (q) U(g) and

MV = Hom(M, E). The following lemma gives another description of Loc(M) for
M € Mod™®(U(g)).

Lemma 3.5.2. Assume that M € Mod™®(U(g)). Then we have:
RHomy .,(M,C"™) = RHomyg ., (M,C"?)
= RHomg ., (E, M" ©C"%).

Proof. For the first equality, we use that C'* is a U (g)-module so that RHomy(g) +,(M,C?) =
I?Homf](g)’*2 (M ®5(g) U(g),C"). Tt follows from Corollary that M ®[L](g)
U(g) = M[0].
For the second equality, we have an obvious map
RHomy ., (E, M ® C'*) — RHomy ., (M,C'®) = RHom, ., (M,C'?).
By resolving M by free modules it suffices to check that this map is a quasi-
isomorphism for M = U(g). But then we have
RHomy ., (U(g),C'™) = €'*[0] = RHomy, ., (E, Og,. ® C**)

where the first equality is obvious. For the other equality, we think of Og ®C!* as a
submodule of O¢ .80, .0 r which is the germs of functions f(¢’, g, ) at (e, e) in
G x G x FL. The g-action is induced from ¢”.f(g',g,2) = A=2(b) f((¢")"1q', 99", )
for ¢ € G.. We consider the automorphism of Og,. ® C'* given by the map
fld' g,2) = [(¢',9) — f(¢',99',x)]. Via this automorphism, the g-action becomes
" f(g,9,2) = f((¢")"'g', g,2) for ¢ € G, and is therefore only on the first factor.
We can now use the flatness of C'* over F and Lemma [Z:3.4] to conclude. O

We recall that Z(g) lies in the centre of D~ (U(g)). We also have defined a map
Onor : Z(m) — Endo,,(C'*) in section B.2.37

Lemma 3.5.3. For any z € Z(g), we have Loc(z) = Oper(HC(12)).
Proof. This follows from Lemma O

Corollary 3.5.4. Let M € Mod(U(g)) be a module with infinitesimal character
A€ X*(T)g (modulo dotted W -action). Then on Loc(M), the horizontal action of
Z(m) factors through an action of Z(m) ®pc,z(g) (—woA).

Proof. We recall that for the map HCy : Z(g) — U(h), we have HCyor = —woHC.
The rest follows from Lemma 353 O

Remark 3.5.5. Let us describe Spec Z(m) ®pc,z(q) (—woA), or equivalently
the idempotents in this finite F-algebra (note however that in singular weight
Z(m) @ e, z(g) (—woA) is not reduced). The possible characters of Z(m) ® ye z(q)
(—woA) range through the set {w - (—wo)),w € MW}. Since w - (—woA) =
—wo,pr (wo, prwwo - A+ 2pM) we deduce that
Spec Z(m) @pc,z(g) (—wo) = {—wo ar(w - A +2p™),w € MW}
It follows that if M has infinitesimal character A\, then
Loc(M) = @yemwLoc(M) _yq f(wrt2p™)

where Loc(M) _wq ,, (w-at+2pM) 18 the direct factor which corresponds to the idem-
potent in Z(m) @y, z(g) (—wo) given by —wo ar(w - A+ 2p™).
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We conclude our generalities on our localization problem by showing that it is
pre-dual to an obvious variant of the classical localization problem as in [BB83|
(which is of course formulated in the algebraic context, and involves a fixed choice
of (generalized) infinitesimal character). In order to do so, we recall the Chevalley—
Eilenberg resolution of E (with d = dim g):

0-U(g@Ag— - = U(g) = E—0.

By Lemma[3.5.2] for a finitely generated U (g)-module M, Loc(M) = RHomg ., (M, C'?)
is computed by the following complex of LB-sheaves (in degree [0, d]):

0=CPoMY —. ... oMY ®AlgY 0. (3.5.6)
Proposition 3.5.7. For M € Mod™®(U(g)), we have RHom,, .. (RHomg ., (M,C),0r,) =
D2 @f g M.

Proof. The same computation as in Proposition [3.2.44] shows that the derived Oz -
dual of the complex:

0C*MY = - =C*e MY oA%gY =0
is the complex:
0D Me@Ag— - —D*x M- 0. O

3.5.8. B-action. We can also exploit the B-equivariant structure on Loc(M). To
this end, suppose that M € O(g, b)x alg, so that M(—X\) has an action of B (see
Remark B46). Then by Proposition BA3, MY ()\) € LB4,p)(FE). We deduce
that the complex ([5.6) computing Loc((M(—A)) = RHomyg ., (M(—A),C'?) is a
complex in LBy g)(FL). More precisely, Cao MY ® AgV carries the induced
g-action from the *; 3-action on C' and the B-action which is the tensor product
of the B-action on C'* and the B-action on MY ® AfgY. There is another g-action
which is the tensor product of the %5 action on C'* and the g-action on M (and
which is used to construct the differentials in the complex).

3.5.9. Main theorem. For M € O(g, b)x_a1g, the cohomology sheaves of Loc(M (—\))
are (g, B)-equivariant sheaves that we want to describe. As a first step we intend
to describe their restrictions to CJ, for each w € ¥ W.

Remark 3.5.10. In principle the cohomology sheaves could be sheaves of solid
E-vector spaces which need not arise from nice sheaves of topological spaces (in
more classical language, the cohomology could be non-separated). However, under
the assumption that A\ is non-Liouville, we see as a consequence of the following
theorem that they are actually separated objects and again belong to the category
LB(Q,B)(CL)-

Theorem 3.5.11. Let M € O(g, b)a—alg and assume that X is non-Liouville. Then
we have:

H' (Loc(M(=M))|cq = HCSw A (Hi(up,, M)).

Proof. By the definition of the functor HC'S the sheaf HCS,, A(H;(up, ,M)) cor-
responds via the equivalence of categories of Proposition B311] to the Stab(w)-

— v
representation H;(u,, M) (A). By Corollary 2333, we can identify this with
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Extipw (E, MY ())), and by Proposition B5.14 below, this can in turn be identi-
fied with _ R
Exty ., (M (=), Oyp, \a.e)- (3.5.12)

g,%2

By definition we have

H' (Loc(M (=) 1 = Exty ., (M(=A),C"| 1 ). (3.5.13)
Morally, it remains to show that passage to the fiber at w identifies the right hand
side of BLI3) with However, we have to be a little careful with this
comparison, because we have not developed a theory which allows us to consider
arbitrary sheaves of solid E-vector spaces. ‘

To this end, we consider the Chevalley—Eilenberg complex computing Ext ., (M (—=)),C ] i)

Under the equivalence of categories of Proposition 311l (given by taking the fiber
at w), this complex corresponds to the following complex of Stab(w)-representations,

0= Opp,\c,e®MY(N) = Opp v e @MY (N)@Y — Opy. v, MY (N@A2gY — ...

which computes RHomyg .., (M (=), Oup,\G.e)» as required.

(This cohomology is computed in the category of solid E-vector spaces. Again,
the cohomology groups could be very pathological (from the classical perspective).
For clarity, we can make explicit the action of Stab(w) on Oy, \g,.®M"(A)@A'g".
This action consists of:

e An action of (P,). induced by the action on Oy, \g. via p.f(-) =
fp=1=).

e An action of Be, which is the tensor product of the action on Oy, \g,. Vvia
b.f(—=) = f(=b) and of the restriction to B, of the B-action on MY (\) ®
AtgV.

) Ang action of BN P, which is the tensor product of the action on Oy, \ge
via b.f(=) = f(b~' — b) and the action of BN P, on MY (\) ® Ag¥.

The differentials in the complex involve the g-action which is the tensor product
of the * action on Oy, \@,. and the g-action on MY(\) @ g".) O

Proposition 3.5.14. If M € O(g,b)x-alg, then we have a quasi-isomorphism
RHomyg ., (M (=), Oy, \a,e) = RHomy,, (B, MY())).

Proof. Indeed we have

RHomg ., (M (—)), Opp\G,e) = RHomg.,(E,MY(\)® Op,, \c.e)
RHomgeu,, (B, MY (\) ® Og.e)
= RHom,,, (E,M"(\)).

Here the first equality follows from the same argument as in Lemma [3.5.2] the
second equality uses that RHomy, (E,Og.) = Oy, \c.[0] and the flatness of
MV(X) (as it is a colimit of Smith spaces), and the last equality follows from
Lemma 2.3°4 O

3.5.15. Localization of finite dimensional representations. Let A € X*(T)*. Let V)
be the irreducible finite dimensional representation of G of highest weight A viewed
as an object of O(g, b)o—a1g- Let A € X*(T)TM. We let Ly be the irreducible finite
dimensional representation of M of highest weight A\. We also let d = dim(up). We
recall the following theorem of Kostant:



60 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

Theorem 3.5.16. We have that H;(up, V) = @weMW7g(w):d7iLw,)\+2pM.

Proof. See for example [oGVAGQ9, Thm. 4.2.1] (together with (233)) to pass from
cohomology to homology). ([

Proposition 3.5.17. We have Loc(V)) = @, ey Loc(Va) _wg y (w-at2pm) and
LOC(V)\),MO,M(w,)\JerM) = ﬁ,wo’M(w,)\JFQPM) [—d + E(w)]

Proof. Since there is a G-action on V), we see that Loc(V)) is in fact computed

by a complex in LBy ) (FL) (and not just in LB, gy (FL)). Via the equiva-

lence of categories of Proposition B.23T] this complex corresponds to the com-

plex RHomg ., (Vx, Oy, \g.e) in Lg p)(E), and as in Proposition B.5.14, we find

that this is quasi-isomorphic to RHom,,, (E, V\Y). It follows that the cohomol-

ogy groups are simply given by the representations of M: Extipw (B, Y) =
H;(up,Vy)V. By Kostant’s Theorem[3.5.16] these correspond to B, 0(w)=d—iL —wo. ar (w-A+2pM)>
as required. (I

Remark 3.5.18. Proposition 3517 is clearly compatible with Theorem [B.5.1T],
since

LOC(VX”CL = GBw’EMW‘C—wo,M(w’-X-WpM)[E(wl)_d]lcju
= @?:OHCSwy)\(Hi(upw,V)\))

but it also gives more information as it describes all the extensions between the
sheaves on the Bruhat strata.

3.5.19. Localization of Verma modules in the non-Liouville case. Let A € X*(T)g

be non-Liouville. We view the Verma module M, of weight A as an object of

O(g, b)xr—alg- Thanks to Theorem[3.5.11] we see that understanding Loc(Mx(—A))| 41
boils down to understanding the cohomology of some Verma modules, as in Theo-

rem [Z3 T We also assume for simplicity that up is abelian (this assumption holds

in our applications to Shimura varieties).

Corollary 3.5.20. Assume that A € X*(T)g is non-Liouville and that up, is
abelian. Then the following hold:

(1) All the cohomology groups ﬂi(Loc(M,\(—)\))ﬂCL belong to the image of the
functor HCSuH)\ : (’)(mw, wa))\—alg — LB(&B)(CL).
(2) The cohomology groups are zero if i > d — £(w).
(8) There is a surjective “highest weight” map:
ﬂd_é(w)(LOC(Mk(_)‘)))lcju - HCSw,)\(M(mw)A-i-w*lwo,Mp-i-p)'

(4) The kernel of the highest weight map, and the cohomology groups ﬂi(Loc(M,\(—)\))ﬂCL
fori < d—L(w), admit finite filtrations with sub-quotients ranging among
the sheaves Lo, _wqy o (w' A+2pM) @ E(X — wlw' - N —wwg pp — p), where

w' € wWey.
Proof. This is immediate from Theorem [B.5.11] and Theorem 2.3.19 bearing in
mind (23.22) and Proposition B.4.T8] O

Remark 3.5.21. In particular, if A is non-Liouville and antidominant (i.e. that
W< = 0), we see that the cohomology is concentrated in degree d — £(w) and that
the highest weight map is an isomorphism on this cohomology.
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3.5.22. Localization of Verma modules in general. Let A\ € X*(T)g. For sake of
completeness, in this section we give the following general result (without any non-
Liouville assumption on A) which is a weaker form of Corollary We still
assume for simplicity that up is abelian. This result was obtained by Juan Esteban
Rodriguez-Camargo in his PhD thesis.

Theorem 3.5.23 (Rodriguez-Camargo). Let My € O(g, b)s—alg be the Verma mod-
ule of weight \. Let w € MW. The following is true:

(1) ﬂi(Loc(M,\(—)\))ﬂCL vanishes unless i € [0,d — £(w)].
(2) We have a surjective “highest weight” map
ﬁdie(w)(LOC(MA(_)‘))HCL — HCSw,A(M(mw)Aer*lwo,Merp)-

(3) If w=w}!, the above map is an isomorphism.

Proof. We remark that
Loc(M)) = RHomg (M), C"™) = RHomyg (E()), C'?). (3.5.24)

Thus, the fiber of Loc(My) at w is the Stab(w)-representation Exty ., (E()), Oy, \a.e)s
and the result is immediate from Proposition below.

Proposition 3.5.25. The cohomology groups Exté)*2 (E(N), Oup, \a.e) vanish out-
side degrees [0,d — £(w)]. Moreover, there is a canonical surjective map

d—L(w
Eth1*2( )(E()\)7 OUPw \G,B) — M(mw)Xer*l’UJo’]\/ijrp'

If w=w}!, this map is an isomorphism.
Proof. We recall that by Proposition B.5.14 (and its proof), we have:
RHomp,+, (E(A), Ovp \cre) = RHomu,, gu(E, Oc.e(—A))
= RHom,,, (E,M)).
Now, the cohomology RT(up, Nb, MY) is concentrated in degree 0. (Indeed, recall

from Remark 344 that My = (Ogv.e(—=N)". As a up, N b-module, this module
can be written in the form O, 5 .®V where V' is an L B-space of compact type

with trivial action. We observe that H'(up, N b, Ovp,nB,e) =0ifi>0.)
We therefore have:
Rl (up,,MY) = RI(up, Nb,RT(up, Nb, MY))
= RI(up, Nb, H(up, Nb, MY)),
and we see in particular that the cohomology vanishes above degree d — ¢(w) =
dim up, N b.
We now consider the surjective “restriction” map Og,e = Op, (B, ), induced
by the inclusion P, (B NUp,) — G. We deduce a map:

RHomquGBb(E()‘)v OG;G) — RHomqu@b(E()\), OPw(BﬂUpw),e)'

We claim that this this map is surjective in degree d — ¢(w), and that it is an
isomorphism if w = wj!. To see this, we first take b and up, N b-cohomology which
gives a surjective map (the cohomology is still in degree 0):

(OUpw ﬁB\G/B,e(_)‘))h - (OUPWQB\Pw/BﬁPw,e(_)‘))h'
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Taking the cohomology of up, Nb, we see that the above surjective map induces a
surjective map in top degree cohomology (which is an isomorphism if w = wj?).

It remains to identify the target of the surjection with M(mw)Xer,lmeerp.
We cannot immediately deduce this, because the computation above is not m,,-
equivariant (because the decomposition of up, = up, Nb @ up, N b is not m,-
invariant). In order to identify the m,-module structure of RHomy,, a6 (E(X), Op, (Bnip, ).e)
we compute the cohomology in a different way, by first considering up, -cohomology,
and then b-cohomology.

Certainly

RHomy,, (E, OPw(BﬂUpw),e) = OUpw \Pw(BmUpw),e[O]a
so it remains to show that
Exty " (B(X), Oyp\py(Btpy ) = (O jUnr, e (=X —w ™ wo ap — )P

We will then be done, because the right hand side is M(m,,)
mark [3:4.4] and the proof of Proposition
We now show the claim. Note that b =bNyp,, & bNup, . We first compute

by Re-

V
Aw~two, pptp

Rr*z (b N ﬁPwa OUpw \Pw(BﬁUpw),e) = OUPw\Pw,G[O] = OMw,e[O]'

We now observe that Oy, . is a bNp,,-representation, with bNup, acting trivially.
We deduce that

Extyre ) (E(A), O, e) = Homprm,, vy (B(N), Orr, e ® AT4 (up, Nb)Y)

w,*2

= (O jUrgy (A = w ™ wo,ap — p))°. O

3.6. Localization and higher Coleman sheaves at singular weight. In this
section we study localization at a singular weight for G = GSp, and P is the Siegel
parabolic associated to the cocharacter p = (—1/2,—-1/2;1/2) € X, (T)g. We freely
use our notation for GSp, (see [[88). We consider the Klingen parabolic Q O B
attached to the simple root 5. We denote by Mg the associated Levi which is a
group of semi-simple rank 1. It is important for us that w)!sz € YW this implies
that the stratum C,u ¢ is the union of two B-orbits C,» and Cyu,, . We wish
to study the localization LOC(M(Q)A(—/\)”CwMQ for A = (1,1;w). We notice that
in this singular weight the horizontal action Uis not semi-simple. We are going to
study this action and describe the semi-simple part.

3.6.1. Geometry of the strata. We consider the Q-orbit Cw[z)va on FL, which is the
union of the two Bruhat strata C,» and Cyp .

Note that the map @ — Cw{,‘/’,Qv q — w)lq induces an isomorphism Pwévl N
Q\Q — C,r . The projection Q — Mg induces a map (P, NQ)\Q — (P N
Mq)\Mgq. Since Mg has semi-simple rank one and (P, NMg) is a Borel subgroup,
we can identify (P, N Mg)\Mq with P!, with co the image of w{!sz and 0 the
image of w))!. We therefore have a natural map r : Cwirg = P!, with 7=1({oc0}) =
Cyis, and 771 (A1) = C, a5 moreover, BNsgBs;' acts transitively on 7 (G, ) =
Cwé” N C,wé\/f S3-
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3.6.2. Sheaves on the union of strata. The inclusion G, x B — G, %@ induces an in-
clusion Stabpg(w{’) < Stabg(w{?), which induces the restriction map LB(4 o) (el Q) —

wq
LBy p)(C!

wéw). Similarly, conjugation by sgz gives an inclusion Stabg(wi!sg) —
Stabg(w)?!), which induces the restriction map LB4 o) (Cjugf,c)) — LBq,B) (Cjugfsﬁ).
We also note that the image of @ N P,y in M, is the Borel By ,, (and
wo
the image of @ N Py, in My, is the Borel Bng)WsB)' Therefore, the source
category O(myar,qn ,, ) for producing sheaves on Cy g (see Definition B.4.17) is
wo )

tautologically equal to O(m,a, bas, " ).

Proposition 3.6.3. Let v € X*(Mg)E.
(1) Conjugation by sp induces an equivalence of categories sg : O(m a1, waé” Jv-alg =
O(ma s, wagfsE )v-alg-
(2) For any M € O(m,, waéu)u-alg’ we have

HCS g0 (M)l = HCS 1, (M),
“o
HOSquwy o (M)|et = HCS s, ., (s5M).
wo B

Proof. The first point is obvious, and the second is immediate from the definition of
the functors HC'S (i.e. from the construction in the proof of PropositionB.4.12). O

3.6.4. Singular localization. Write jwé\/l : C’LM — C’LM 0’ jw(z)wsﬁ : CLMSﬁ
0 0 0

CL(IJW,Q for the inclusions. We take A = (1,1;w) € X*(T). Recall that p =
(—1,—-2;0), so that A+p = (0, —1; w) is invariant under sg. However, this character
is not integral. Let us define n = (0, —1; 1) which differs from A + p by a character
of the centre, and is still invariant under sg.

Applying Proposition B.6.3] with v = 1, we have a short exact sequence of (g, Q)-
equivariant sheaves:

0 = (Jup WHCS o1 (M (mya0)x) = HCSg yar (M (myai)x) = HCOSyp g, (M(mypg)ssn) =0
(3.6.5)
We want to study Loc(M (g)x(=N))|-t = RHomg ., ()\,Cla|CrM ).
)

wdt,Q Q

Proposition 3.6.6. We have an exact triangle:

(Juwpar WHCOS yae 5 (M (mya1)x) = Loc(M(g)r(—A)) L7 HCS gy \(M(myr)pn)[-1] 5

|CZ:8/I,

Proof. This is immediate from consequence of Theorem [B.5.17] together with The-
orem [2.3.19 and Proposition 2.8.3] (I

There is a horizontal action Oye, of Z(m) on Loc(M,\(—)\))|CTM . By Propo-
wy”,Q

sition B.ATY (see also Remark .68 below), this action is via ug := (—woA, p) on
both HCSw[I)\/IA(M(mw(IJW))\) and HCSw[J)LfSﬁ7)\(M(mw(1J»1)SBA) (and in particular the
action of p doesn’t split the triangle). Taking the derived invariants for p — uo
yields a triangle:
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(Juwpt WHOS yar \(M(mya1)3) & (Jup NHCOS yar A (M (myar)2)[—1] —
RHombﬁ*ﬁ#(()‘a UO)?Cla|CTM Q) -

wy”,

(3.6.7)

+1
HOSw{)‘/ISg,)\(M(mwéW)SB)\) [_1] S5 HCSw[])WsB,)\(M(mwév[)SBA)[_m -
Taking the H'! yields the following short exact sequence of (g, B)-equivariant
sheaves:

0— (jw[])w)!HCSwé‘/I,)\(M(mw[])W))\) - EXt%,*g;,u((/\MUJO%CIﬂC* o Q> - HOSw(I)‘/ISB,)\(M(mw[])‘J)SB)\) —0
wd,

(3.6.8)
The main result of this section is the following:

Theorem 3.6.9. The two extensions of (g, B)-equivariant sheaves [B.6.8)) and
BER) differ by a twist of the B-action by the character X — n and multiplication
by a scalar in E*.

Remark 3.6.10. This arguments in the remainder of this section admit a simpler
analogue in the GLy-context; see [Pil24] §6].

3.6.11. Preparations for the proof of Theorem[3.6.9. We have commuting actions of
b (via *2) and p (via the horizontal action) on C!. We begin by isolating a certain
sub-Lie algebra of b @ Eu whose cohomology on C'?| ot is in degree 0.

wM o

We use the usual standard basis elements XB,X_B,OATB with Hg = [Xg, X_g].
We set ' := ker(8), so that b-cohomology can be obtained by first taking b’ @ ug-
cohomology, and then taking FXz @& EHg-cohomology. We write X' = Ally’.

Lemma 3.6.12. C'&\#o .= Exty euo.u((N510),C? ot ) is concentrated in de-
wdl,Q
gree 0. ’

Proof. We can do the computation separately on each of the strata CL  and CL Mg
0 0

so we reduce to showing that the cohomology on the fibers at w)! and w)sg
of C'* vanishes in positive degrees. These fibers are respectively Oy, o \Ghe and

0
Oup ., \G,e; and the required vanishing follows from a consideration of the actions
o °B

of p,p Nb = b and p,u,, Nb =hSug respectively. (Note that p = diag(0,0,1,1),
so that w}! u = diag(1,1,0,0) and sgw}! i = diag(0,1,0, 1), and therefore b’ @ E -
wiflpu=4 OF - sgw)p=n.) O

We thus see that

RHomb,*2;#(()‘a ,u())v Cla|cT o ) = RHomEXBGBEHg (Av Cla,)\’,,uo)
wdl,Q

(where the restriction of A\ to EXg ® EHpg takes X — 0). This cohomology is
represented by the following Chevalley—Eilenberg complex K*® (in degrees 0,1 and
2):

(HB - /\(Hﬂ)>
1N o (Xp HB_; A(Hpg)) _i(ﬂ

Cla’)‘/’“°®E(—B)®Cla’)‘/’“° claN s mo QE(-B).
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Since

HCS 0 \(M(m00)5) = Exty (X, C?or ),

0

we deduce that syHCS,ur \(M(m,a)x) @ BE(=f) = Ext] (sﬁA,clﬂcl

sgh )®

M 5B
9

E(—pB). On this sheaf, h acts via sgA — f = A (this is a crucial place where
we use that the weight is singular), and p still acts via pg. Thus, we can consider

the map

0 1 1 _ plaN, la,\’,
Extsﬁb(SgA,CﬂC;Msﬂ)®E(—ﬂ) — K |Cf,,év15a_ca uo|cljéwsﬁ®E(_ﬂ)®ca #0|C:U(1Jv15ﬂ

0

s = (s,0),

which induces a map

Ethgb(Sﬁ/\vcla|CT MSB) & E(_ﬂ) - EXt%),*m,u(()‘a ,U'O)a Cla|cT MSB)' (3613)
wo wo

We will show below that [B.6.13)) is an isomorphism. We begin by studying its
restrictions to C' u N cf v83 and to of . ; it is immediate from the definitions
’IJJO ’IJJO U}O SB

that the former restriction is a map in LB(&BQBSB) (CL(])W N Czjév, sg), and the latter

is a map in LB(M,W%)(OT v )

Wy~ Sp
Lemma 3.6.14.
(1) The restrictions of the left and right hand sides of B.6.13)) to Cju{,” DCIU(IJW%

are isomorphic, and their endomorphism algebras in LB(&BQBSB)(CL(])W N

C' 1 s3) are the scalars E.

Wo

(2) The restrictions of the left and right hand sides of BLI3) to C’L(])WSB

are isomorphic, and their endomorphisms in LB(BxBﬁBSg)(OL{)stB) are the

scalars E.

Proof. To begin, we note that it follows from the Q-equivariance of HC'Sg 1 , (M (m,01) )
that

SB(HOSQ,w{,”,n(M(mw{,”)A) QEAN—n+p)) = HOSQ,wgf,n(M(mw{}f)A) R E\—n).
It follows that

Ext)_,(sg\, C"|

sgb = SEHOSM(J)V[,)\(M(mwéW))\) ®E(_ﬂ) |CL[1)»IQCT

w

)| T T
sg/1C C sg sg

= HCSw(z)w’A(M(mw(z)w)A) |CL(1,VIQCL3155'
On the other hand
1 1 _
Eth,*z;u((/\"“O)’Ca|CLysa)|CLymCLysg - HOSW(Ju‘/Iv)‘(M(mwy)A) |Clg{mcjug{sa

(by Proposition B.6:3 and the proof of Proposition [3.6.0])
We now check that the endomorphisms of the sheaf HCS jar (M (my,20)x) [or ot o
’ M M
wo o

in the category LB(E)BQBSE)(OT m N C’L[])\J sg) are scalars.

Wq
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Since B N By, acts transitively on C,ar N Cyasg by section B.6.Il an endo-
morphism is determined by its behavior at any fiber. More precisely, let = €
Cyar N Cyarsg. We consider the uniformization map

Gex (BNBy,) — ClunCluss
(g,b) — xgb.
Let Stab(x) be the stabilizer of x for this action. We have Stab(z) = {(g,b),gb €
P, }. Exactly as in the proof of Lemma [B3.6] this group is
(Pe N BN Bg,)e\[((Pr)e x (BN Bsy)e) X (PN BN Bg,)).

The fiber we consider is the completion of a dual Verma module for m,, (by Defini-
tions B.4.17 and 4.6.6]), and the first part of the lemma follows from the property
that the endomorphisms of a Verma module are the scalars (together with Theo-

rem [2.2.39)).

The second part is proved in the same way, as follows. We first observe that

EXtO (Sﬁ>‘5cla|CJr ) ®E(_ﬂ)|CfM = HOSstlg,)\(M(mwéwsB)SﬁA)

Sgb SB 0
o 0 °B

= EXt%’;*z?M(()\’NO)’Cla|CTM )
wo °B

We reduce to showing that the endomorphisms of HCS . »(M(m1,,)s,3) in

the category LB 4 Bn B.,) (CL MSB) are scalars which again follows from the property
0

that endomorphisms of Verma modules are scalar. (|

Proposition 3.6.15. The map B.6.13) is an isomorphism.

Proof. By Lemma [B.:6.14] it suffices to show that (3.6.13]) is nonzero on the fiber at
one point of C,x, . and at one point of Cm N Cyrsp. It suffices in turn to prove

that the map

Hg—\(Hp)
—_

ClasN o Cla:N po

induces an injective map on the fibers at w)! sz and at one point of Cypr NCyprsp.
By definition, the kernel of this map on the fiber at a point = is
Homf)@qu*z;M(O‘v 1) C;a)'

We first consider the fiber at z = w{!sg, where Ci;‘MSﬁ = Oup, \G,e- We have
0 w
UPa,, = EXg®EX @ EX_ 5, ug=EX,®Xs®X,.
wo s

For any s € ® we write U, for the corresponding 1—parameter subgroup. We
pick a coordinate xs on Us with the property that the corresponding vector field
is X;. Then elements of Homggu +,(A,C2*) are germs of analytic functions on
U_gU_,T, which can be written as

kg ko
fle_g,x_y,t) = Z e,
k,57k7w6Z20
We need to show that if (Oper(1) — po)f = 0, then f = 0. By definition, Opor (1)
acts on the left via the action of —(w{!sz)~1u € b. It follows that
Onor(p) = <(wé\43ﬂ)_lﬂvﬁ>x—ﬁaﬂhﬁ + <(w(1)\483)_1/‘77>x—vaw—w - <(w(])w‘93)_1ﬂv A)

w
= I7581¢75 - 5
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(We are using here that (wlfsg) "ty = (—%, %; %), B =(-2,0;0), v = (=1,-1;0),
A= (1,1;w).) Thus Onor(p) acts by kg — %5
we deduce that Oner (1) — po is injective.

We now consider the point w{!sgg_g € Cppr N Cya 85, where g_g = exp(X_p).
We see that

on :Ck’ﬁﬁxlif;)\(t). Since pig = —1—%,

(w'spg—p) = (wh'sp) "+ ((wysg) ", B)X .

la,\",po

2g . CAD still be expressed as a germ of an analytic function on

An element of Cy)" "
U_gU_,T, and can thus be written as

k_g k_
fle_g,x_y,t) = Z = x ().
k,57k7w6Z20
We now find that Oner(pt) = 2_p0:_, — § + 02_,, so that

k_p k_ W\ kg k_ k_g—1 k_
ehor(,u)x—,@ﬁx—'yw/\(t) = (k*ﬁ - 5)x—ﬁﬁx—'yw/\(t) + k*ﬁx—,@ﬁ z—'yw/\(t)v
and we again deduce that One, (1) — po is injective. O

Proof of Theorem [36.9. By PropositionB.6.15} the sheaf Extj, woip (A 10),C% ot )
*23 o

is obtained by gluing HC'S a1 (M (my0)x) and s5HC S a0 5 (M (myp0)x) @ E(—DB)

along CLM N CLMSB. The same is true of HCSq a1 (M (my00)x) @ E(A —n) by
2 2 awg,

construction. The gluing data is that of an isomorphism of (g, BN B, )-equivariant

sheaves, and by Lemma [3.6.14] the space of such isomorphisms identifies with E*,
so there is (up to isomorphism) a unique way to glue, as required. O

4. p-ADIC EICHLER—SHIMURA THEORY

4.1. Introduction. The main goal of this section (as mentioned in §I.4)) is to
relate higher Coleman theory to completed cohomology, so that (ultimately) we
can connect the Galois-theoretic properties of a p-adic ordinary (overconvergent)
modular form (in terms of the action of the Sen operator) to its classicality.
Before proceeding, we introduce some notation. We fix a Hodge type Shimura
datum (G, X). We assume that Gq, is quasi-split. Let P be the parabolic cor-
responding to p with Levi M. Let B C Gq, be a Borel subgroup. We pick a
maximal torus T C B. The relevant flag variety is FL = P\G and we have the
decomposition F'L = HweMW P\PwB where MW C W is the set of Kostant rep-
resentatives in the absolute Weyl group. We also fix a coefficient field £ which is a
finite extension of Q,, and admits a map from the reflex field of the Shimura datum.

4.1.1. Higher Coleman theory. Higher Coleman theory [BP21] is a theory of (higher)
overconvergent modular forms. The different higher Coleman theories are parame-
terized by two parameters: an element w € W, and a weight.

Remark 4.1.2. We note that MWW parametrizes chambers in the weight space
which are M-dominant, and the w-theory will interpolate those classical cohomolo-
gies whose weights belong to the w-chamber.

To describe the weight parameter, we fix w € MW. Let m = Lie(M), and let
m, = wlmw. Let O(my,by,) be the BGG category O of U(m,,)-modules for
the Borel by, = Lie(B) N m,. In the same way that weights of modular forms
are finite dimensional representations of M, weights of (higher) overconvergent
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modular forms (parameterized by w € W) are objects of O(m,, by, ). For any
A€ X*(T)g, we let O(my, by, )a—alg be the subcategory of category O(my, bwm,, )
with weights in A + X*(T).

We have higher Coleman functors (see Definition [L.6.35):

HCy 3, HCouspwn : Oy, b, )3 1 — D(Modiy &7 (E)) (4.1.3)

where Modgzar;’)(E) is the category of locally analytic representations of B(Q,)
with b acting like A\. For example, if A = 0, this is just the category of smooth
B(Qj)-representations.

Remark 4.1.4. The parameter A is there to specify the B(Qp)-action. If n €
X*(T), the categories O(my, by, )r—alg and O(My, by, )r+n—alg are canonically
the same and one has HC\y ) 4n(M) = HC\y »(M) ® E(n) where —® E(n) means a
twist of the B(Q,)-action by 7.

The functors [£13) are defined by first attaching to every object M of O(my,, by, ) r—alg
a “quasi-coherent” B(Q))-equivariant sheaf over the pullback of the Bruhat stratum
P\PwB via the Hodge-Tate period map and taking its cohomology with suitable
support condition.

We also have a finite slope part functor D(Modgzgj) (E)) = D(Mod) &™ (E))

T(Qp)
and we can speak of the finite slope part of higher Coleman functors (Section

[4.6.54):

H@&H@&MMOmmmdﬂm%meﬁﬁwﬁ

Remark 4.1.5. Let x € X*(T)"M. Let L(My)_yy-14, ,,« be the finite dimensional
representation of m,, of of highest weight —w~='wq arx. We show that

HCZ;S,O(L(mw)—wflwoyMn)

is the direct sum of the R, (KP?, k, x)™/* of [BP21] (Theorem F6.56). These are
higher Coleman theories with value in the classical sheaf of weight x. On the other
hand, if M (M) -1, 4« denotes the Verma of highest weight —w ™ wo prk, then

HC{;?O(M(mw)fwflwg,Mn)

corresponds to higher Coleman theory with value in the big “induction” sheaf (The-
orem L.6.57)). The surjective map M (M) _y—1wo pn — L(Mw) =10, 5, induces a
map

HCw,O(L(mw)—wflwo,Mn) - HCw,)\(M(mw)—wflwo,Mn)

and similarly on the finite slope part. In summary, the improvements on [BP21]
are the following:
e We extend the definitions to the infinite slope part (in [BP21], only the
finite slope part was canonically defined).
e We introduce a more functorial perspective on the weights. In [BP21] we
allowed weights to be either finite dimensional representations or Verma
modules, which of course generate the BGG category.

Our main results on higher Coleman theory can be summarized as follows.

Theorem 4.1.6 (Theorems [£.6.45 A.6.58 and [4.6.60]).
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(1) HCy x, HO{;S,A have cohomological amplitude [¢(w), d] and HCousp,w ;s HO({sSp)wA
have cohomological amplitude [0, £(w)].

(2) Let M € O(myy, b, )a—alg be a module generated by a highest weight vector
of weight v. Assume that the Shimura variety is proper or that we are in
the Siegel case. The slopes appearing in HC'ijspyw))\(M) and HCI)SA(M)

are > X\ — v +w two pp + p.
Remark 4.1.7. In the proper case, the functors HC,, » and HCﬁ)\ are exact.

4.1.8. Completed cohomology. We let RT'(Sh;, Q,) be completed cohomology and
RI:(Shkr, Q) denote completed cohomology with compact support.
We let O(g, b) be the BGG category O for g and b. We define functors (Section

CC\y : O(gv b))xfalg — D(MOd%zar:) (E))

M+ RHomg(M,RI(Shgr,Q,)™)
COcusp,)\ : O(ga b))\falg - D(MOd%?SZ) (E))
M~ RHomg(M,RT.(Shkr, Q)™

Remark 4.1.9. The first natural example is to apply these functors to M a finite
dimensional representation of GG, in which case we recover classical étale cohomology
with weight MY (it is natural to take A = 0). For a non-classical example, we can
take M = U(g) ®y(p) A to be a Verma module of weight A so that we are computing
b-cohomology.

4.1.10. p-adic FEichler Shimura. We are now ready to state our main result com-
paring completed cohomology and higher Coleman theory. It holds under a non-
Liouville condition on A (see Definition Z325). We observe that if A € X*(T) is
algebraic, it is non-Liouville.

Theorem 4.1.11 (Theorem L7.1)). Assume X is non-Liouville and M is an object
of O(g,b)r—alg. We have a spectral sequence

EP? = @uwemwpwy—pH" T (HCw (M ®£vw E))

converging to HPT1(CCy\(M)) ® C,. Moreover, the Sen operator is given by wu €
Z(my) acting on H,(u,,,M).

Remark 4.1.12. The functor — ®y, ) E: D(O(g,b)) = D(O(my, by, )) is the
Lie algebra homology of the unipotent radical u,, of p, = w™'Lie(P)w. It is
computed by the Koszul complex (in degree —d to 0):

0= M@Au, == M—=0

Remark 4.1.13. In Section we attached to M € O(g,b) a certain twisted
D-module Loc(M) on the flag variety. This is a version of Beilinson—Bernstein
localization. This twisted D-module completely encodes the p-adic Eichler—Shimura
theory (see Theorem [I7T] for a precise statement). We observe that Loc(M) is
“constant” on each Bruhat stratum C', and its restriction to each C\, is determined
(in the non-Liouville case) by the Lie algebra homology M ®£pw E.
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Under favorable “genericity” assumptions, the spectral sequence simplifies a lot.
Let us denote by M(g)x = U(g) ®u(p) A the Verma module of weight . We adopt
a similar notation to denote Verma modules for other reductive Lie algebras.

Corollary 4.1.14 (Corollary A73)). Assume that A is non-Liouville and antidom-
inant in the sense of Remark[3.5.21] and that the Shimura variety is proper. Then
CCx(M (g)») is concentrated in the middle degree d and moreover, it has a decreas-
ing filtration Fil'HY(CC\(M(g)y)) with

e FilT'HY(CCy(M(g)y)) =0,

o Fil'HY(CCy(M(g),)) = HY(CCA(M(g),)).

° GrpHd(CC,\ (M(g))\)) = EBwEMW,E(w):pHp(HCw,)\(M(mw)k-i—w*lwo,Mp-i-p))-

We also refer to Theorem [4.7.5] for a similar result in the ordinary case.

4.2. Perfectoid Shimura varieties. We consider a Hodge-type Shimura datum
(G,X). We also fix a map from the reflex field of the Shimura datum to E. We
let Sh;?pt kv be the analytic space over Spa(E, O) attached to the Shimura variety
of level K, KP over Spec E. We let Shg, xr = Sh;?pth X Spa(E,05) SPa(Cp, Oc, ).
We let Sh;?:’;(‘;iz be a toroidal compactification of Sh;gpth over Spa(F,Op) for a
specific choice of cone decomposition % (see [FC90], [Lanl3|). For K, C K,, we
have a natural map Sh;ggg‘;{ 5 = Shi S s We let Shicy 5" = limge, Sh;ggg‘;{ s By
[Sch15] (and [PS16al, [Lan22| for the extension to the compactification), this is a
perfectoid space. We note that the same cone decomposition ¥ is used at each stage
of the limit and that there is some restriction on the choice of cone decomposition
if we are not in the Siegel case. Concretely, the underlying topological space of

Sh7¢80" is the inverse limit of the topological spaces of the Sh’/ %', and there
; LK®,

is a basis of affinoid opens Spa(A4, A1) of Sh;?ﬁ:;’r, which are pull backs of affinoid
opens Spa(Af;, Ak) in Sh?,’f}t{‘;’iz for small enough K, and such that A* is the

p-adic completion of colim K}, A}, .
P

We let Sh7E < Shi25%" be the open subspace lim g, Shil/ s, We let it s,
: [ :

Sh;?ﬁ:;)r — FL" be the Hodge Tate period map, where FL"* is the Flag variety
over Spa(FE, Og).

We let Sh}?; K» 5 be the base change to Spa(C,, Og,) of Sh;g:;;;ﬁz (which there-
fore carries an action of Gal(E/E)). We similarly define Shi} 5, Shxr and FL,
and the period map murx : Shigy 5, — FL which is Gal(E/E)-equivariant.

The period map is also K,-equivariant. The action of G(Q,) on Shk» 5 does not
extend to an action on ShtKO§)72 but for a general g € G(Q,) we still have diagrams:

tor 9 tor
ShKP,E —_— ShKP,gZ

|, |

FL—2— FL

Remark 4.2.1. The choice of a specific ¥ does not usually play any role. If no
confusion is likely to arise, we fix a ¥ and drop it from the notation. We will
eventually allow ourselves to change . It is also important to note that all the
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cohomologies we will consider (coherent cohomology, completed cohomology) do
not depend on .

4.3. Smooth and locally analytic vectors of the structure sheaf. We let
(’)Sh% be the structure sheaf of the perfectoid space. If U C Sh%? is a quasi-

compact open, then U is stabilized by an open subgroup K, of G(Q,) and we get
a continuous action of Kj on Ogprer (U). One can speak of the smooth and locally

analytic vectors of (’)Sh% (U). We thus obtain subsheaves of smooth and locally
analytic vectors:

g‘;;; - (’)Shmr C Osntey, -
Proposition 4.3.1. For any compact open subgroup KI’7 C G(Qp), let TK!
Shi% — Sht}?i}(; be the natural map. The pullback map colimg; wf}i(’)Sh;?ZKp —

(’);‘f}l% is an isomorphism.

Proof. We consider the map of sites v : (Sh'2 Kp)prokt — (Sh%%; Kp)ket from the
pro-Kummer-étale site to the Kummer-étale site. It follows from [Sch13b, Coro.
6.19] (which is easily extended to the Kummer-étale case via the machinery of
[DLLZ23|) that ViOgptor = Ogpror . We are going to see that the proposition
P p

follows directly from this statement. We consider the pro-Kummer étale cover my, :
Shih — Shighx,. Since Shig, is perfectoid, it follows from [DLLZ23, Thm. 5.4.3]
that for any open affine U C Sh'2, OSh%Kp (U) = Ogpter (U). Since Sh'2% Xghtor,

Shig; = K, x ShiZ;, we deduce that OShi?ZKP = V*OSh%KP = H%(K,, Wpr*Ogi’]er )
The proposition follows by taking the colimit over K. (I

We let fShtI?r be the ideal of the (reduced) boundary Dy, in Shy Kykr- This
is an invertible ideal in ﬁSh}?;m’ that we also denote by OSh}?;Kp( Dg,). We let

jsslzrgor = COth/ jShtor K

We let fShmr be the ideal of the boundary in the structure sheaf OShtor . Its

subsheaf of locally analytic vectors is denoted by .#1*

Shier and turns out to be equal

to Olah or ® O jSh“’r by the following lemma.

Lemma 4.3.2. The natural map: Olsahcor ®O§ fsﬁéor — flhm 18 an isomor-
KP

phism.

Proof. This is a consequence of [RC23| Thm. 3.4.1.]. O

4.4. Completed cohomology. Let Sh}l(l‘g K, denote the Shimura variety, viewed

as a scheme, defined over its reflex field F(G, X). Let Sh%g = limg, Sh%g K,
The limit exists as a scheme since the transition maps are affine. We define com-
pleted cohomology with Q,, coefficients to be Rl"pmet(Shalp Q Q). The cohomol-

ogy groups of RI‘met(Shalp Q Q) identify with the usual completed cohomology
groups with Qp-coefficients (as defined for example in [CE12|). This cohomology
has a G(Qp)-action, an action of the Hecke algebra away from p, and an action of
G g(a,x), the absolute Galois group of E(G, X).

Using comparison theorems in [Hub96, page 30] and [RC22, Cor. 6.1.7], com-
pleted cohomology with Q-coefficients identifies with RFpmkt(Sh}?Z, p). Here
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the subscript prokt is is short for “pro-Kummer-étale”, in the sense of [DLLZ23];
this modification of the pro-étale site is needed because our Shimura varieties are
not compact. We usually omit this subscript from now on. Similarly, we identify
RI:(Shkr, Qp) with the completed cohomology with compact support.

We let RI'(Shig, Q)" be the (derived) locally analytic vectors in completed
cohomology. Similarly, we let RI'.(Shg», Qp)'* be the (derived) locally analytic
vectors in completed cohomology with compact support. We remark that both
RT(Sh'2;, Q,) and RT.(Shg», Q,) have admissible cohomology groups, and that
the passage to locally analytic vectors is an exact functor on admissible represen-
tations by [ST03|, Thm. 7.1 (see also [RJRC22, Prop. 4.48]). Therefore, the co-
homology groups of RT'(Sh'2},, Q,)" and RT.(Shg», Q)™ are the locally analytic
vectors in the completed cohomology groups.

Theorem 4.4.1. We have

RT(Shigh, Qp)©qQ,Cp = RTan(Shis, Ogpeer )

RT(Shx», Qp)©q,Cp = RITun(Shigh, Fanier )
We have

RI(Shih, Qp)*®q,Cp = RFan(Shﬁ?LOls%%)

RIc(Shir, Q) *®q,Cp = RLan(Shith, i )

Proof. The first part is immediate from [DLLZ23| Thm. 6.2.1], by passing to
the limit as in the proof of [Sch15, Thm. 4.2.1]. The second part is [RC22, Thm.
6.2.6]. O

Remark 4.4.2. The main ideas in the proof of Theorem [£.4.1] are due to Scholze
and Pan. More precisely, the statements regarding completed cohomology (before
taking locally analytic vectors) are a consequence of Scholze’s primitive comparison
theorem; see e.g. [Schlf, Thm. 4.2.1]. For the locally analytic vectors, in the
case of usual (i.e. not compactly supported) cohomology it is a consequence of the
fact that Olsah% = Ogﬁ%z where Rla are the derived locally analytic vectors (in
the sense of [RJRC22]). This was proved for modular curves in [Pan22a], Thm.
4.4.6. In loc. cit. it is also proved for modular curves that RI,,(Sh'2, Ols%;g;) =
Rl an(FL, (TFHT)*OIS%}?;). We do not need (and have not proved) this fact more
generally.

4.5. The functor V' B. We now introduce a functor which turns equivariant sheaves
on the flag variety into sheaves on the perfectoid Shimura variety.

4.5.1. Definition of the functor and main properties. Let us briefly reintroduce %
to the notation (see Remark FL20)). Let U%% be a quasi-compact open subset
of FL™ and let Uz, be its base change to Spa(Cyp, Oc,). We write Ugr x =
WI;%_’E(U]:L‘,) = limK; UK;KRE where UK;KP7E is a quasi-compact open subset of
ShK; K»,5 for K]'D small enough. In Definition (see also Remark B229) we
have defined the categories LBy(U%%) and LB4(Ur,) and there is a base change
functor LBy(U%%) — LBy(Uz,). We define a functor

VB% . LBQ(U}-L) — MOd( ?JH;(P,):)
F = COlimK;((Wﬁéﬂ)Zﬁ)@) Orr OUKP,Z)K;

-1
THT,S
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Remark 4.5.2. Note that this functor is (well-) defined, because for any quasi-
compact open subset Vr, C Ugzg, we have & (Vrz) = colimKé 35(V]:£)KI/) where
F(Vrr) K, isa submodule of % (Vx.) where the action of g integrates to an action
of K,, (compatibly for the transition maps).

We also need a derived version of this functor. We recall that in Definition
324 we introduced abelian categories Modg(U%%#) and Mody(Uz,) which respec-
tively contain LBg(U%%) and LBg(Uz,). Moreover there is a base change functor
Modg(U%%) — Modg(Ur,). We define a functor

VBs : D(Mody(Urz)) — D(Mod(OF, )

Ukr,x

. —1 L
F COth;RF(KI/ﬁ(FHT,Zy)(X)ﬂ-;I;E(’)FLOUKP,E)'

Remark 4.5.3. The pullback functor

—1 ar L
F (WHT’ZJ)@)”ElT,EOFc OUKP’E

in the definition of V By, is exact on the category LBy(Ur,) (essentially by the
definition of LB-sheaves). Thus on LBg(Urz), VB is left exact, and we may
think of V By, as its right derived functor.

It might be more natural to denote this pullback by 71 5, but we reserve this
notation below for the underived pullback

1 o
F= (WHT,XJ)&T;T L05OUxp -

Since the Hodge Tate period map is Gal(E/E)-equivariant, if .# is an object of
Mody(Urc) which comes from Mody(UF) by base change, then V Bs/(.F) carries
a semi-linear action of Gal(FE/FE). One can study this action as follows. We can
consider the category Modga (s, E)(Ogﬁ% ) of sheaves of (’)glf]’% -modules, carrying
a semi-linear continuous Galois action. We let O™ GHE/E)=sm 10 the subsheaf of

Shigh i
smooth vectors for the action of Gal(E/E). We remark that O;fgfal(E/E)_sm =
KP

Ozr}r]lrat,tor ®E E
KD
We define an arithmetic Sen functor:

ari sm sm,Gal(E/E)—sm
S s Modgays/m) (Ospiey ) — Mod(O (E/E)=sm)

Shih

F = colimp yGal(E/Eéycl),Gal(Eéycl/E/)—an

where the colimit goes over all finite extensions E’/E and the superscript
(_)Gal(E/Eéycl),Gal(Eéycl/E/)—an

means the Gal(E/Eéycl)-ﬁxed and Gal(Ey,,/E’)-analytic vectors (where Gal(Ey .,/ E')

is viewed as a subgroup of Z; via the cyclotomic character). We observe that

Sarit(ﬁ ) carries an O;?QSaI(E/ E)fsm—linear arithmetic Sen operator, obtained by
KP

differentiating the Gal(E,,/E')-action on () GAUE/ Beya), Gal(Beya/ B')=an an q pass-
ing to the colimit.

The following theorem is implicit in [Pan22al] in the modular curve case, see
[Pil24] for a formulation in this spirit. In higher dimension it is essentially a direct
consequence of the results [RC22 [RC23|, as we will see in the course of the proof.

Theorem 4.5.4.
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(1) Forany F € LBg(Uy:g)“[I)”, there exists a covering by open affinoids Ugr 5, =
UiV with V; = limg, Vi, (for K,, small enough; here the Vik, are open
affinoid) a sequence of compact open subgroups {KPJ‘}TEZZO and summand
of orthonormalizable Banach sheaves VB%,KP,T,% (F) over Vi i, , such that
we have:

VBy(7)

_ : sm 0 o
v, = colim, OV ®o,, . VBy g,  v.(F).
Kp,r ’
Moreover, we have

VB%(«?)@O?JH;(REOUKPE = (F;I;«)Zeg.)@) E)OUKP,):' (455)

-1
Tur,s(Ovg

(2) The restriction of the functor V BY to the category LBg(U]—‘ﬁ)u% is an exact
functor, and for an object F of LBg(Uy:g)“(I)P we have

VBx (%) = VB (%F) Dogn, . (colimg, @f:o%wp,z (log(Dk,,s))[—1])-

(3) Let # € LBy(Ugr). Assume that for all i, we have H*(u%, %) € LBy(Urr).
Then we have isomorphisms: VBY(H!(u%, 7)) — H'(V Bs(.%)).

(4) Let F € LBg(Ufg)”?”. Assume that F arises from an object of LBg(U%%).
Then we have

Sd“t(VB%(y)) & sm,Gal(E/E)—sm O[SJ’,ZP,E = VB%(fg.)

O
Ukp,s

and the action of ju via Oy is an arithmetic Sen operator on St (V BL(F)).
More precisely, in the notation of (1), we can suppose that the covering
Ukr s = U;V; comes from a covering U}(‘ZI{E = UiV[“t, and there exists a

finite extension E; ., of E such that
VB%;Kp,n7‘/i (ﬁ) = VB%)KIM“V%_(y)Gal(E/Ez‘,n,cycl)1G31(Ez',n,cycl/Ei,n)*a" ®F; . C,.

Proof. We explain why the theorem follows from the results of [RC22] and [RC23].
The statement is local so we can assume that .#% = colim.%, is a colimit of or-
thonormalizable Banach sheaves with injective transition maps and that G, acts
on each Z,.. We can assume that Ur, = Spa(C,C7) is affinoid. We can also
consider Vi» 5, = Spa(B, BT) an open affinoid subset of Uk» x. The open subset
Vir,s descends to Vkrr, s = Spa(Bk,, B;;p) for K, small enough.

For K, small enough (such that K, € G,(Q,)), the pull back 7} 5.7, to Shigy 5
carries a Kj-action Let us put F, := .%,(Urz). We pick a CT lattice F,F (that is,
Ft is the completion of a free Ct-module and F¥ ®c+ C = F,). The action of
G, amounts to a co-action map c: F, = F, ®c Og,.. By continuity, there exists n
such that ¢(F;F) C p "F;F ® Of . We claim that for 7' = r +n+ 1 the restriction
of the co-action map ¢ : F. = F,. ®c¢ Og,, induces a map F;t — Ff @¢ Oéw and
moreover, this co-action map is trivial modulo p. To see this, we may write (for
example by using the exponential map) Og, = C,(X1,---,X;) so that Og,, =
Cpolp™ " 'X1, -+ ,p7" X,). For any f € FF, we write ¢(f) = >, fiX%, where
fo=fand f; € p "F7 is tending to 0. Our claim is thus clear. By shrinking K,
we can assume that K, C G,+(Qp). We remark that we have in particular checked
that the action of K, is “locally analytic” in the sense of [RC23| Defn. 1.0.1]; more
precisely, the pro-Kummer-étale @VKP Kp,z—module corresponding to WET)Zﬁ} is
relatively analytic ON Banach in the sense of [RC23| Defn. 1.0.1]. Note that this is
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the familiar smallness condition in p-adic Simpson theory (see [RC23, Rem. 1.0.1]

).
We let:

o T = Spa(C, (T, T~Y), CHT. 1)),
o T, =Spa(C,(T? ", 77 "), CH(TP ", TP ")) for any n > 1.

D = Spa(C, (T}, C; (T?),
D,, = Spa(C,(T? "), CH (TP ")) for any n > 1.

We can also assume (after shrinking Vg» 5 and taking K, small enough) that
we have a toric chart (in the sense of [DLLZ23| Prop. 3.1.10]) Vi, k»,s — T¢xD?¢.
We let Spa(Br, n, Br, ,) = Uk, kv, X e xpa- T5, x D¢, We let Spa(Bi, 00, Bre, o) =
lim,, Spa(Bx, n, B;gp)n). We let Spa(B,,, B;Y) = Uks 2 Xpexpa—e TE x D7¢. We let
Spa(Beo, BL) = lim,, Spa(B,, B;Y). After making a choice of compatible p-power
roots of unity, We let I' = Zg, acting on T¢ x DZ~¢. We thus have an action of
K, xT' on By. By |[RC23| Prop. 3.2.3|, the triple (B, K, xI',pro : K xI' = T)
is a strongly decomposable Sen theory in the sense of [RC23| Defn. 2.2.6].

We consider the semi-linear representation of K,, B ®c¢ F,. Our goal is to
compute colimg, H'(Kp, B ®c F) using Sen theory. By almost purity, we have

RI(K,, B®c F,) = RT(K, xT', Bo, ®c F,) = RI'(T', H*(K,, B, ®c F;.)). (4.5.6)

By [RC23, Thm. 2.4.3|, we have (after possibly shrinking K, and for all n large
enough) the Sen module
Sk, n(Fy) = (B ®c F,)Kep ' T-on (4.5.7)

which is obtained by taking the Kj-invariants and the p"I'-analytic vectors. This
is an orthonormalizable Banach By, ,-module with a locally analytic action of T',
and it satisfies

B @B, n SKp,n(Fr) = B ®c¢ k. (4.5.8)
In addition by ([@5.6) we have
H(T, Sk, n(Fy)) = H(Kp, B®c F,). (4.5.9)

We have an action of Lie(I") on Sk, ,,(F’.), which are the “geometric” Sen operators,
and by [RJRC22, Thm. 1.7] we have

RI(T, H*(Kp, B ®c F,)) = H°(T',RT(Lie(I), Sk, n(F}))) (4.5.10)

where RI'(Lie(T"), Sk, n(F})) is a complex of smooth I'-modules and H%(T', —) is the
exact functor of I-invariants on smooth I'-modules. It is a consequence of [RC22,
Thm. 1.1.5] that these Sen operators are induced by functoriality from the map
u) ® Z,. — F,, using the identification 7};,u% ~ Lie(T') ® Oy, ...

Since the transition maps in the colimit F = colim F,. are injective, it follows in
particular that .# € LBy(U. fg)”?’ if and only if the geometric Sen operator of each
Z, is trivial. Let us assume that this is the case. Then the action of I' on Sk, »(F})
is smooth, and this action factors through I'/p"I". By finite étale descent, we find
that

Bk, @By, Sicpn(Fr)" = Sk, n(Fr) (4.5.11)

and that SKP)W(FT)F is a direct summand of the orthonormalizable Banach Bk, -
module Sk, »(F;). Taking p"I'-invariants in {fL.5.8)), we obtain

Bn ®BKp’n SKp,n(Fr) = Bn RKc Fr
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and thus (using ([@5.TIT)
B, @By, SKp,n(FT)F = B, ®c F,.
Taking I-invariants and using ([{.5.9]), we deduce that
B @py, H'(Kp, B®c F,) = BRc¢ F. (4.5.12)
Passing to the colimit over r and K, we obtain (£5.5]). This completes the proof
of (1) (taking VB%KWM(ﬁ) to be the sheaf associated to H°(K,, B ®c F,),

and K, » to be Kp).
We now prove (2). We have

RT'(Lie(T), SKP’H(FT)) = @SKP,n(FT) ® Ai(Lie(F))v[—i]
from which we deduce that

VBs(F) = VB (%) Bog, (colimp, @f:OQéijKPYZ(log(Dprg))[—i]). (4.5.13)

Let 0 » % — £ — 2 — 0 be an exact sequence in LBg(U]—‘[j)u?D. Applying
V By, yields exact sequences:
0 — VBY(ZF) = VBL(ZL) — VBL ()
and
VB (Z)@opV Be(A(up)") = VBE(ZL)@opV By(A'(up)) = VB (#)@0;V By (A(up)") = 0.
Since VB (A%(u%)V) is an invertible sheaf, we conclude that 0 — VBX(ZF) —
VBY(Z) — VBL(H#) — 0 is exact, as required.

We now turn to (3), so we no longer assume that .Z is killed by u%. We let
Sk, (F) = colim, Sk, n(F;), we let S(F,.) = colimg, Sk,(F,) and finally we let
S(F) = colim, S(F,). We claim that

H(Lie(T"), S(F)) = S(H'(u%, F)). (4.5.14)
Granting (£5.14), we claim that taking I-invariants gives
colim, x, H (K,, B ®c F,) = colim, x, H*(K,, B®c H'(u}, F,)),  (4.5.15)
which immediately gives (3). Indeed, by 5. 10 and ([@5.6) we have
H(T, H'(Lie(T), Sk, n(F))) = H (T, H*(K,, B ®c F,)) = H(K,,B®c F,).
On the other hand, passing to colimits in (£.5.9) we see that
colimg, H*(K,, B ®c F,) = H’(T, S(F,)), (4.5.16)
so that (replacing F, by H'(u%, F}.))
H(T,S(H'(u}, F))) = colim, x, H*(K,, B®c H'(u}, F,)),
as required.

We now establish ([L5.14). Firstly, we claim that B, o is an orthonormaliz-
able B, n-module. Indeed the algebra of Ty, = lim, T,, has a topological basis
{T"}icq,,z, over Cp(T,T~"), and similarly the algebra of D lim,, D,, has a topo-
logical basis {T"};cq, sz, over Cp(T'). We next claim that Bo is a direct summand
of an orthonormalizable By, ~-module. To see this, let us fix a decreasing se-
quence of compact open subgroups {Kj,}r>0 tending to {e} with K, = K.
Since BIJQ oo B}; 100 is almost étale, there exist finite B};pr modules

P, P, . »O0
Xk and Yx together with:

p,r+1

p,r+1
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e an injective map Bitp,moo D XK, — B}EWH’OO whose cokernel is anni-
hilated by p, and

e an integer n, € Z>( and an injective map Xk, ., ®Yrk,, ., — (B;gpmoo)”r
whose cokernel is annihilated by p.

We deduce that Boo @(@Tﬁ{; +1[1/p]) is orthonormalizable over B, o, as re-
quired.

In particular, we have shown that By, is flat over Bk, . We deduce that
H'(Lie(T'), Beo @By, . Skpn(Fy)) = H'(Lie(T), Boo @By, ,, Sk, n(Fr)), and passing
to the colimit over K, n,r we obtain that (for B the subring of smooth vectors
for the K, x I'-action):

H'(Lie(T'), B @psm S(F)) = Bog ®@psm H'(Lie(T'), S(F)).

On the other hand, H*(u%, Boo ®c F) = Boo @c H'(u%, F) since all the H7 (u%, F)
are flat over C' (here we use our assumption that H(u%,.#) € LBy(Ur.)). Recall-
ing (£.5.8), we deduce that we have K, x I'- equivariant isomorphisms:

Boo @psm H'(Lie(T), S(F)) = Boo ®¢ H'(up, F) = Bog @pem S(H' (up, F))

Taking K, x I smooth vectors yields H*(Lie(T"), S(F)) = S(H*(u%, F')), as required.

We now prove the last point. We take # € LBy(U. ]-‘ﬁ)u%, arising from an
object of LBy(U%%). We can therefore choose the F, to be defined over E, so that
there is a semi-linear Gal(E/E)-action on B®c F,.. Moreover, taking a topological
basis {v;};er of F, defined over E, we see that the Galois action is trivial in this
basis. Assuming that K, acts trivially modulo p? on F,* (which we can always
arrange after shrinking Kj), we deduce that Sk, ,(F,) has a topological basis
{v}}ier where the change of basis matrix (for the isomorphism (@5.8))) from {v;}
to {v}} is congruent to 1 modulo p (see [RC23, Thm. 2.4.3, (1), (b)]). As a result,
the matrix of the Galois action on Sk, ,(F;) is congruent to 1 modulo p. One
can therefore apply Sen theory to the extension B;g":m — Bk, n where B;gptm =
(Bprn)GalE/E(Cpn)' We let Sarit7S(SKp,n(Fr)) _ SKp,n(Fr)GLCYCl1GL(CPS)7an. For s
large enough, Sarit’S(SKp,n(Fr)) ®BrKapt1n(Cps) Br,.n = Sk,n(F,) and the derivative
of the Gal(Ecyc1/E((p)) action provides an arithmetic Sen operator.

In order to prove (4), it only remains to identify this Sen operator with the
operator y coming from the horizontal action. The orbit map provides an embed-
ding F, — C*"(K,,F,), f — [k — k.f]. It intertwines the action of K, on F,
with the action of K, on functions h(—) € C*"(K,, F;) via k %9 h(—) = h(—k)
(therefore the 9 action does not depend on the Kp-action on F,). Note that
C*"(Kp, F;) is a C-module as there is a orbit map C' — C*"(K,, C) and C*" (K, C)
acts on C*"* (K, F.) naturally. Moreover, the embedding F, — C**(K,, F,) factors
through C"(Kp, FT)”?”. It therefore suffices to identify the arithmetic Sen oper-
ator of C*"(Kp, FT)”?”. Since F,. has a topological basis over C' we can reduce to
understanding the Sen operator of C*"* (K, C)u?”. The orbit map C' — C*"(K,,C')
induces an isomorphism C*"(K,, Q,)®q, C — C*"(K,,C). Moreover, the subspace
of algebraic functions C*9(K,, Q,) < C*"(K,, Q,) is dense, and it induces a dense
map (C*9(K,, Q,) ®q, C)r < (C™(Kp, Qp) ®q, C)*. Viewing the arithmetic
Sen operator as an endomorphism of

B @Bk .n Svan(Can(va Qp) ®Q, O)u%) = B ®c (Can(va Qp) ®Q, O)u%
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we deduce that it suffices to prove it coincides with y on Bo ®c (C*9(K)p, Q,) ®q,
C)*F. Since C*(K,, Qp) = Grex-(ry+Ve @ VY and (V, @ VY ©q, Orc)'r =
L, ®q, V. we deduce that it suffices to understand the Sen operator of the clas-
sical automorphic vector bundles. It therefore suffices to show that VB%(L,) =
w™*™(k(p)), where r(p) is the Tate twist and w™*™ = colimg, wi is the colimit
of the automorphic vector bundles defined over Shi?; K, (equipped with their ratio-

nal structure). This follows from an inspection of the rationality properties of the
Hodge—Tate map and of the universal M-torsor, see [RC22, Thm. 4.2.1]. O

Observe that by (£5.13)
VBs(Ou,., ) = colimg, &L,Qp, ., . (log(Dx, x))[~]

is a DG algebra and admits an augmentation map to O [0]. We can therefore
make the following definition.

Definition 4.5.17. We let VB : D(Modg(Uzz)) — D(Mod(OF, 1)) be the
functor given by

VBYY(F) ;= VBx(F) ®€BZ<OUH) o0].

Remark 4.5.18. By Theorem 5.4 @), if .# € LBy(Ur,)*?, then VBX(F) =
VBY(Z)[0]. Consequently given a complex of objects in LBQ(U]:g)“(I)D, we can
evaluate V BXY by applying V BY termwise.

4.5.19. Variants. We now introduce variants of the above functor carrying extra
structure. Let us define Modg(q,) (O ) to be the category of sheaves (Fx)s of
KP
O, -modules with the properties:
Shigy, o

(1) For any refinement ¥’ of ¥, inducing a map msy » : Sh}?i)z, — Sh}?;z,

we have an isomorphism 73, 5 Fs — Fxr of Ofli. -modules (and these

i s
isomorphisms are compatible).

(2) For any g € G(Qy), inducing an isomorphism g : Shi} & — Sh}?i)gg, there
is an isomorphism ¢* %5, — F5 of O;‘;l?;’z-modules (and they satisfy the

usual cocycle condition).

Then we have a functor
VB": LBy, (FL) = Modg(q,) (Ofie: ),

constructed as follows. Composing the functor VBY with the forgetful functor
LBg.c)(FL) — LBy(FL) gives a functor VB, : LB4 ¢)(FL) — Mod(OF%,, ).

Shigh
For each g € G(Qp), there is amap g : Shi} 5, — Sh}?f,_’gz and amap g*V B (F) —
VBY(Z) satisfying the usual cocycle condition. The various VB thus define a
functor VB : LBy ) (FL) = Modg(q,)(O5.. ) as claimed. Note that in prac-
KD

tice, we fix some X and really work with the functor VBY (but see Remark 2]
for our notational convention).

We recall the stratification into B-orbits £ = [[,,c vy Cuw, with Cy, = P\ PwB.
We let j, : Cy — FL be the locally closed immersion. It induces jvah%,z :

w;,;z(cw) — Sh, 5. Instead of working on the whole Shimura variety, we can

also work over WI}%F7E(CL) for any w € MW. We recall that this is a ringed
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space, whose underlying topological space is wgl} 5(Cy) and whose structure sheaf

is _7 ! tor Ogptor . In this case, we can consider functors:
Sh )
w,SthyE KP,x

0 . T sm
VB : LB(g,p)(C}) = Mod(O3%, o).

Ifb € B(Q,), thereisamapb : WI_JELECL — W;IlT,bECL and a map b*V Bl (%) —
VBY(Z) satisfying the usual cocycle condition. This leads us to consider the
category Modp(q,) (O, CT) whose objects are collections of sheaves (Zyx)y of

HT W

oy o -modules, such that for any refinement ¥’ of 3, inducing a map 7y x :
Tar,stw
Shi2h v — Shi2} 5, we have an isomorphism 7%, %, — Fsv of O™, + -modules
) El ’ ™

HT,»/ ~ %

(and these isomorphisms are compatible), and such that for any b € B(Q,), there
is a map b*Fpy, — P satisfying the usual cocycle condition. The various V BS

thus define a functor VB : LB(E)B)(C':‘U)“(I)’ — MOdB(QP)(Oj:ngcL)'

practice, we fix some ¥ and really work with the functor VB (but drop ¥ from
the notation).

We also remark that we have E-rational structures F£™* on FL£ and C!* on
Cu, and we can consider the categories LBy ¢)(FL™*) and LB4 p)(Ce4 1) which

admit base change functors to the categories LB4 c)(FL) and LBy 5)(CY).

Again, in

Theorem 4.5.20.
(1) The functor

0 S
VB®: LBy, (FL)*" — Modg(q,) (Offer )

is an exact functor.

(2) For any F € LB(gﬁ)(]:E)“[I)”, we have an analytic covering Sh'%;, = UV;, a
sequence of compact open subgroups K, ,, and summand of orthonormaliz-
able Banach sheaves VB%p,mVi(f) over V; k, . such that

SIm

VB°(#)|y, = colim,, VB?(;: i F) o, . O
: i Kpon

Moreover, there is a compact open subgroup K, fixing V; such that all
sheaves VB%W“VI_((?) ®Ov, 0 Oy are Kp-equivariant (compatibly with

n) and this induces in the limit the K,-equivariant structure on V B°(.%)
(8) For any F € LB(gﬁ)(]:L)“(l)’, we have

Vi -

t
ntor

0 -1
VB(F)®0m,, Oshier, = TypF Q-1 0., Osprer -
(4) We have that V B°(C') = (’)IS'%%.
(5) The functor
0
VB : LBy, 5)(C})"r = Modp(q,) (O 1)

is an exact functor.

6) For any F € LB, g (C! “[I)’, there exists an analytic covering by quasi-
y (9.8)\“w y g by

compact subsets w;llT(Cw) = U;V;, a cofinal decreasing family of quasi-

compact strict neighborhoods of V;: 'V, ,, = limg, Vin k,, compact open sub-

groups Ky, ,, and summand of orthonormalizable Banach sheaves VB?(p v (F)
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over Vi n Kk, such that

VB(F)|v, = colim, VBy v, (F)Qo,, Oysm

z,n,KpYn i,m

Moreover, for each i, there is a compact open subgroup Kp C B(Qy) stabi-

lizing V; and all V; ,, and such that the sheaves VB?(p,n,Vi,n (F) ®OV¢,n,Kp,n

Ovsm are Kp-equivariant, compatibly in n, and this induces in the limit the
KB’—equz'vam'ant structure on V BY(F)|v,.

(7) For any F € LB(gyB)(CL)“[I)”, we have that

VBO(g‘\)@osn:l o O‘”;TCEJ = Wﬁ%f@

THT W

-1 O _—1 1.
""HTOCL TarCu

(8) The following diagram of functors is commutative (where the horizontal
functors are given by VB, and the vertical functors are the natural re-
striction functors):

0
LB(g)G) (]:,C)uP E— Modg(Qp) (O;Iﬁl;% )

l |

LB(97B)(O1TU)u[‘)° —— Modp(q,)(O

sm )
w;,}cl,

(9) If Z arises from LB(gﬁg)(}'Em’f)“?’ or LB(gyB)(C;“t’T)”?D, the action of p
via Onor is an arithmetic Sen operator on V BY(F).
Proof. Everything but part () is an immediate consequence of Theorem [£5.4l To
see (), note firstly that since RT'(up, Og.c) = Oy, \a.e[0] (cf Lemma 2.3.4), it
follows from Theorem 5.4 @) that VB(Og,. ® Ox,) = VB°(C'*)[0]. On the other
hand, bearing in mind Remark [£.5.2] we see that
VB(Og,. ® Orr) = Oé‘ﬁ?ﬁ,

where Rla is the functor of derived locally analytic vectors defined in [RJRC22
Defn. 4.40]. The result follows immediately. 0
Remark 4.5.21. In particular the proof of Theorem [4.5.20/ showed that Olsf}]m =
KP
ORl2., | confirming Remark
KP
Proposition 4.5.22.
(1) Assume that & € LB(E)G)(]:E)“[I)” is such that the g-action is the derivative
. 0 sm
of the G-action. Then V B° (%) 06 Modg(q,) (Osnter, )-
(2) Assume that F € LB p)(CL) 7 is such that the restriction to b of the g-
action is the derivative of the B-action. Then V B°(.F) € MOdSBH(lQP)(OirngCL)-
Proof. This is immediate from the definition of V By, (and of the G(Q,)-action). O
We now address the existence of an arithmetic Sen operator on the locally ana-

lytic vectors in completed cohomology. One can consider the category Modgi(z,g)(Cp)
of semi-linear C,-representations and define a Sen module functor

S s Modgays/m)(Cp) — Mod(E)

V — colimp (V)Ga‘l(E/E(/:ycl)’Ga‘l(E(/:ycl/E/)_a"l
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We still denote by S the right derived functor. The following is [RC22, Cor.
6.3.6].

Theorem 4.5.23.
(1) We have that
RF(Sh}?ﬁ,, p)la®QpCp Sarit(RF(Shtlgia p)la®Qp C,) @g Cp,
RT(Shkr,Qp)*®q,Cp = S™(RI.(Shkr,Q,)*®q,C,) @5 Cp.
(2) The action of ji via Oney on RI'(Shigh, Qp)*®q, Cp = RI 4 (Shid), Ol‘}lmr)
and RT:(Shi}, Qp)*®q,Cy = Rl"an(Sht[?f),fslim,) is the arithmetic Sen

operator for the semilinear action of Gal(E/E) (whose existence was guar-

anteed by (1)).

Proof. We can take an affinoid covering V = {V;} of Sh'2}, with the property that
(’)lshm lv; is a colimit of acyclic sheaves VB?(p,n,Vi (C'»). Tt follows that the Cech
complex C(V, OIS&L“),) represents RI'(Shig;, Q,)*®q,C, and carries a semi-linear
Gal(E/E)-action. It follows from Theorem 5.4 (4), that we have

cU,ok Sheer ) = CU, st (O hier )) @5 Cp,
where C(U, S (OSh“’T )) is therefore the sub-complex of Gal(E/E“!)-smooth and

Gal(E/E)-locally analytic vectors. We deduce that RI'(Shi}, Q,)'*®q, C, admits
a Sen operator and it is given by One, (1) by Theorem 520, (9). O

4.6. Higher Coleman theory.

4.6.1. Automorphic vector bundles. One can apply the functor VBY to the G-
equivariant locally free sheaves of finite rank which are parameterized by finite
dimensional representations of M. Let k € X*(T)™T. We let w™™ = VB?(L,)
(where L, is constructed in Example B218). The sheaf w™*™ descends to a sheaf
wi, on the Shimura variety Shi2 K, ke (the usual sheaf of modular forms of weight
k). By construction RT(Shi2},w™*™) is a complex of smooth admissible G(Q,)-
representations, equal to colimy, RT'(Shi" K,kr Wi,). Recall that we have denoted
by D, the divisor of the boundary in Sth xr- We then consider the cuspidal
subsheaf wf (—Dk,). Passing to the limit, we get

K,sm(__ _ : -1 5 (_ = osm sm S
w™ M (=D) = colimmy wi (—Dk,) =w ®oShtor ISt -

Similarly, RT'(Sh2,, w"s™(— D)) is a complex of smooth admissible G(Q,, )-representations,
equal to colimg, RF(ShE?rKP,wK (=Dk,))-
Remark 4.6.2. For G = GSp,, the tautological exact sequence over FL is

0= Lo,-1;1) > 5t®0xrL = L1,01) = 0
which pulls back to
0— Lie(A)Kp(l)@’OSh;g;Kp Osprer, = TpA®z, Ogpror, — (WA*)KP‘X’OSh;ngP Ospter, — 0
for any level K,. We deduce that w(®=1sm = Lie(A)x, (1) ® Oy, and thus
that

wODmm — () (—1) ®0 s e OBz
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by duality; so our normalization of the weights of Siegel modular forms is the
standard one.

4.6.3. Higher Coleman sheaves. We now fix w € MW. Let A\ € X*(T)g. We
consider the exact functor:

VBO o HCSU,)A : O(mw, wa)A—alg — LB(&B)(CL) — MOdB(QP)(O

Sm

w;lTCL)'

Lemma 4.6.4. The functor VB HCS,, \ factors through the category Modgzar;’)( 2 ot ).
HT>w

Proof. This is a combination of Proposition [4.5.22 and of Remark [3.3.13] O

Lemma 4.6.5. Let A € X*(T)™*. Let L(My)_y-10y yx € Oy, bas, o—alg
be the finite dimensional irreducible representation of highest weight —w™ wo pr .

Then VB® o HCSuy,0(L(Mw) w1y p0) = @] 1 o
’ HT Y w

Proof. . Let V) be the highest weight A-representation of M. Then V) identifies
with L(my), -1 if we conjugate m,, to m. It follows from the definitions that
Ly |CL = HCSu,0(L(Mw) _yp—14 4, 1) and the conclusion follows from applying V BY.

O

As in Definition 22316, we have the Verma module M (m,, ) of weight A.

Definition 4.6.6. We define the following object of Mod;?(;;”“’M)‘ism((’)“‘jl o ):
THTW

Wi == VB% 0 HCSy 1wy y A (M (M) — =100 10)-

Remark 4.6.7. This definition compares with [BP21, §6.3] as follows. In that refer-
ence we (GB+VP) defined Banach sheaves V]}~%" for characters v : T(Z,) — CJ,
n large enough, over certain quasi-compact open subspaces w;llT (1Cw k[n,nKp) of
Sh'2y k, (for K, small enough), where |Cy k[n,n K} is a quasi-compact open subset
of Cy. The colimit over K, over all v with dv = A and over all n of the V] ="
identifies canonically with the germ of wj;* at 75 ({w}). A slight change of per-
spective from [BP21] is therefore this passage to the limit, and the fact that we
define the sheaf w[;* over the entire 7;;4-(C,,). For the definition and computation
of the finite slope part of higher Coleman theory, the sheaves V] %" are however
sufficient (and seemed to us easier to define in the first place). See Section
for further details.

One reason for the twist from A to —w_1w07 M A s in order to obtain Remark[4.6.8
and Proposition 26.9 more conceptually, the multiplication by w™! is justified by
the change of base point in the flag variety, and the appearance of —wg, s is due to

the usual duality involution on highest weights which comes from the contravariance
of HC Sy x.

Remark 4.6.8. We see from Proposition B.4.19 that the ©y-action on

HCSw,—wflwo,Mk (M(mw)—wflwoyMk)

is via A\. (We recall from Remark 2310 that HCyt = —wo mHCy.) Thus, the
arithmetic Sen operator acts via (u, \) on wi*.

Proposition 4.6.9. Assume that A € X*(T)™F. We have an injective, B(Qy)-
equivariant map: w™™| . ) ® E(—w™ wo m\) — wii.
HT w
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Proof. By Lemma I6.5, w*s™| L) = VB o HCSy0(L(My) —w-1w, 4 2). The
HT w )

map of the proposition is thus given by applying VB o HCSy, w10y 12 to the

surjection M (My) w1 3ox = L(Muw) —w—1wy 402, USing Proposition BT O

4.6.10. The Bruhat stratification and a Cousin spectral sequence. We recall the
stratification into B-orbits FL =[], cayy Cuw, with C, = P\PwB. We let X,, =
Uw<wCy be the Schubert variety. We let j,, : C,, < FL be the locally closed

immersion. It induces jy, gptor T (Cu) — ShiZh.

Definition 4.6.11. If .7 is any sheaf of solid E-modules on 75;1(C.,), we let
RFw(ShtI?;agz) = RF(ShtI?;a (jw,Sh“Igg)!gz)'

In this definition, ( Juw,Shter )1 is the extension by zero functor on abelian sheaves of

solid abelian groups. By abuse of notation, if .% is defined over any subset of Sh'2},

containing 751(Cy,), we let R, (Shi2h, F) = RT(Sh, (Ju,Shtes, 1F fr,}lT(Cw))'

We now explain that if .# carries a B(Q))-equivariant structure, the cohomology
is a B(Qp)-representation.

Lemma 4.6.12. The functor
Mod(r4(Cu)) —  D(Mod(E))
F — RIL(Sh'%, %)
can be upgraded to functors:

MOdB(Qp)(Tr;[;’(Ow)) — D(MOdB(QP)(E)).

Modyy & (i (Cu))  —  D(Mody g™ (E)).

Proof. The existence of Modp(q,) (T (Cw)) — D(Modp(q,)(E)) follows from the
fact that Mod B(QP)(WI_{} (Cw)) has enough injectives (see Lemma B2.10).

We verify that this induces a functor Modgzarz) (g (Cw)) = D(Mod%?é’:)(E)).
We can reduce to the case that A = 0. Then (j, shter 17 is a smooth B(Qp)-

equivariant sheaf on Sh'%, which is quasi-compact, so by definition the global

sections HY (Sh'2, 9).6 Mo.dSBn(’QP)(E)' are a smooth B(Q,)-representation. The
result follows by applying this to an injective resolution. (I

Proposition 4.6.13. Let .Z be a solid abelian sheaf defined over Sh'2,. We have
a spectral sequence (Cousin spectral sequence):

EP? = @yemwo(wy—pHLTI(ShE5, F) = HPI(Shi,, 7).
Proof. See e.g. [BP21l, §2.3]. O

Remark 4.6.14. If 7 in Proposition 613 is B(Q))-equivariant, then so (by
construction) is the Cousin spectral sequence.

4.6.15. Tools for computing the cohomology. In this section, we give a few basic
tools for computing cohomology. All adic spaces are locally of finite type over
Spa(E, Og) and are separated unless specifically mentioned (thus they correspond
to separated rigid analytic spaces in the sense of Tate). We will often consider the
case of Stein or quasi-Stein spaces, which we recalled in Definition 222.17]
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Let X be an adic space over Spa(FE,Og). Let # be a coherent sheaf over X.
We can think of .% as an abelian sheaf of solid F-modules and compute RT'(X,.%#)
in the derived category of solid E-modules, D(Mod(FE)).

Theorem 4.6.16 (Tate acyclicity). Let X be an affinoid adic space. Let F be a
coherent sheaf over X. The cohomology RT'(X,.#) € D(Mod(FE)) is concentrated
in degree 0.

Proof. Let {U;}ier be a finite affinoid covering of X. We know by [Hub94, Thm.
2.5] that the augmented Cech complex of {Uf; }icr is a long exact sequence of classical

Banach spaces. Therefore, it is also an exact sequence of solid Banach spaces (see
Remark 2:2.3). One concludes by [Gro57, 3.8, coro. 4]. O

Corollary 4.6.17. Let X be a finite type, separated adic space over Spa(E,Og).
Let F be a coherent sheaf over X. The cohomology of F agrees with Cech coho-
mology.

Proof. This is an application of [Gro57, 3.8, coro. 4] and Theorem O

Corollary 4.6.18. Let X be a quasi-Stein affinoid adic space. Let F be a coherent
sheaf over X. The cohomology RT'(X, %) € D(Mod(E)) is concentrated in degree
0.

Proof. By Corollary 617, the cohomology is given by Rlim, H°(X,,.%#). One
knows by [Kie67] that the maps H(X,, 11, #) — H°(X,,Z) of classical Banach
spaces have dense image. Then the topological Mittag-Leffler [RIRC22, Lem. 3.27]
shows that Rlim, H°(X,,,.%) = lim, H°(X,,,.7), as required. O

By [RJRC22| Lem. 3.21] a Banach or Smith space over E is flat.

Corollary 4.6.19. Let X be a finite type, separated adic space over Spa(E,Og),
and let F be a coherent sheaf. Let V be a Banach or Smith space over E. Then
RINX,# @pV)=RINX,Z)Qg V.

Proof. In the affinoid case, we check that RI'(X,.# ®g V) = HY(X,Z#) @ V|0].
To see this, we simply check it on the Cech cohomology of arbitrary finite affinoid
covers, and this follows from the flatness of V. For a general X, we deduce (again
using [Gro57, 3.8, coro. 4]) that the cohomology of # ® V' is computed by the Cech
cohomology of a finite affinoid cover, and we use one more time that V is flat. O

Corollary 4.6.20. Let .% be a coherent sheaf over X, and let V be a Banach or
Smith space over L. Suppose that X is covered by finitely many quasi-Stein spaces.
Then RI(X, # @ V) = RT(X, F) @ V, and if X is itself a quasi-Stein space,
then we have RTX,# @ V) = HY(X, Z) @ V[0].

Proof. If X is quasi-Stein, then by Corollary £.6.19 the cohomology is given by
Rlim, (H°(X,, #) ®g V). By the topological Mittag-Leffler and [RJRC22, Lem.
3.28], this limit is simply (lim,, H°(X,,, %)) ®g V. From this, we deduce that if X
is covered by finitely many quasi-Stein spaces, then the cohomology of % Qg V is
computed by the Cech cohomology of any finite quasi-Stein cover, and the claim
follows again from flatness of V. O

We also consider duality and cohomology with compact support. Let X be an
adic space. Let # be a solid sheaf of abelian groups. Following [Hub96| 5.2], we let
HY(X,F) = colimz H%(F) be the space of sections with compact support where
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Z runs through the poset of closed subsets of X which are proper over Spa(FE, Og).
We let RT'.(X,.%) = colimz Rz (X, %) be the cohomology with compact support.
(Here RI'z (X, .%) is by definition equal to RT(X, (iz)«i's.7), where iz : Z — Z.)

Remark 4.6.21. For example, Z is proper if it arises as the inverse image of a
proper subset of a formal model of a quasi-compact open subset of X.

Consider a quasi-compact and separated adic space of finite type X. Let j :
U — X be an open adic subspace of X. We assume that I/ admits an increasing
covering by quasi-compact opens U = U,U,, with the property that U, is relatively
compact in Up41.-

Example 4.6.22. One can take X = P!, I/ = A1%", More generally, one can take
X a proper finite type analytic space and U be the complement of a Zariski closed
subset of X' (see |[L90, 5.9]). One can also take X = Spa(L(T"), Or(T)) (the closed
unit ball of radius 1), with ¢ the open unit ball of radius 1 inside X

Lemma 4.6.23. Let .F be a solid abelian sheaf overU as above. Then RT'(X, j1.F) =
RI.(U, F) = colimRI' z (U, F) where Z runs through all closed subsets of X con-
tained in U. Moreover, there exists an increasing family of closed subspaces U, C
Z, € Upt1, each with quasi-compact complement in X, such that RT.(U,.F) =
colim, RT'z, (U, F).

Proof. Firstly, we check that a subset Z C U is closed in X if and only if Z is
proper over Spa(F,Og). Suppose that Z is a closed subset of X' contained in U.
Then Z is quasi-compact (as it is a closed subset of X). Let U4 = U,U,,. By
assumption, U, (the closure of U, in U) is proper over Spa(E,Of). Since Z is
quasi-compact, Z C U, for n large enough. Hence, Z is closed in U,,, thus partially
proper. Conversely, if Z is a subset of U, proper over Spa(F, Og), then Z — X is
proper, as claimed.

For any closed subset Z C U, the counit of adjunction for iz : Z — X gives a
map (ig)*i!zj!ﬁz — j1Z which induces a map colimg(iz)*i!zjgf — j1#. This map
is injective (both sheaves are subsheaves of j,..%), and both sheaves restrict to .# on
U and have zero stalk at points of X' \U; thus the map is an isomorphism. Since X is
quasi-compact and separated, this implies that R['(X, j1.%) = colimz Rz (X, 1. %).
Moreover, colimz Rz (X, j1.#) = RI.(U,.F) by definition. We finally claim that
for each n there exists a closed subspace U,, C Z,, C U,+1 with quasi-compact
complement in X. We let U;c1V; be a covering by quasi-compact opens of U,". We
claim that there exists a finite subset I’ of I such that U;c;/V; contains US +1- This
follows from endowing X’ with the constructible topology and noticing that Uy, |  is
compact in this topology. We can take Z,, = (U;er'V;)¢. The Z,, are clearly cofinal
among all Z’s. O

The basic duality statement is the following.

Theorem 4.6.24 ([Chi90]|). Let F be a locally free coherent sheaf defined over a
smooth Stein space X of dimension d. The cohomology RT(X,.F) is concentrated
in degree d and is an LB-space of compact type. Moreover,

HY(X,.7) =Homg(H°(X,D(%)),E)
where D(.F) = Hom(.Z,04.).
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Remark 4.6.25. Although we use the formalism of compactly supported cohomol-
ogy for abelian sheaves, we get the correct “coherent duality”. This is a favorable
property of Stein spaces.

We now extend this result to orthonormalizable Banach sheaves.

Corollary 4.6.26. Let % be a locally free coherent sheaf defined over a Stein space
X of dimension d. LetV be a Smith space over E. We have that RT (X, FQgV) =
RI.(X, %) @V is concentrated in degree d and moreover,

HYX,# @ V) =Homg(H*(X,D(F) 2 V"),E).

Proof. We let X = U, X}, be an open cover by affinoids, with &), relatively compact
in X,4+1. We also let X, C Z,, C X,,+1 be closed subspaces with quasi-compact
complement as in the statement of Lemma (with U, = A,,). It follows from
Lemma, that R[.(X,.7 ®g V) = colim,, RT'z, (X, +1,F @ V). We observe
that R['z, (X141, F QV) = Rl"zn (Xnt1, ) ® V by an easy reduction to Corollary
We deduce that R[.(X,.7 @ V (X, %)®g V. Next, we see that

Homp(H®(X,D(Z) @ V"), E) = Homg HO( D(F)) @ VY, E) by Corollary F.6.20]
HY(X, D(%)),V) by adjunction and Proposition 2241
HO(X,D(%)), E) ®5 V by [RIRC22, Thm. 3.40]
= HY(X,.7) ® V by Theorem E6.24
= HY(X,.# @ V) by the first point. O

) =
(
(
(

4.6.27. On the computation of the local cohomology. We want to give some formulas
for computing RI',, (Sh'%}, . 7).

The Bruhat cell C,, is an affine space of dimension ¢(w) and its closure X, is a
compactification of this affine space. We recall (see [BP21], Lemma 3.1.3] for exam-
ple) that C,, = w Hae@*ﬁw*hb*’M U, where U, is the a-root space, isomorphic to
A1 We also have a neighborhood of Cy,, U, = wHQEM,%,,M U,. Let us pick

a coordinate u, on each U,,.

Definition 4.6.28. We now define certain subsets of Z,,, Z,, ., U, and Uy, of
Cw, for n,m € Z>g. Let ng > 0 be fixed. We take:
Zy ={x € Cp,Va € T Nuw &M |y, |, < [p|to—"}.
o U,={xeCyp,Vacd Nw 1d-M |y,|, <|p/mo—"1},
¢ Zym = {x € Up,YVa € & nw 1@ M |u,l, < [p|?o " Va € &~ N
wilq)i"Ma [uale < |p[3}
e Upm = {x € Uy,YVa € O Nw o™ M |uyl, < Ip|ro"l Vo € &7 N
wilq)i"Ma [ual: < |p[3}-

Here are some obvious properties of these sets.
o UyZ, =U,U, = C’w;
The complement of Z, in X, is a quasi-compact open subset,
U, is a quasi-compact open subset of X,,,
U, =N Upm, and Uy, N Xy = Uy,
U,,m is a quasi-compact open of FL,
Zn.m is a closed subset of U, ,, with quasi-compact complement,
Zn =UnNZpm.
We let F,, = W;I%(Zn), V, = W;;%(Un), Fn,m = W]}%W(Zn m) and V,,, m = 7"'HT(Un.,m)-
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Lemma 4.6.29. Let % be a solid abelian sheaf over wfl%p(cw). We have RT', (Shtig’; ,F) =
colim, RT'g, (V;,, F).

Proof. This is a consequence of Lemma 623 (since the V,, give a cofinal system
of closed subsets of Z,,).
O

Lemma 4.6.30. Let mg > 0 and let F' be a sheaf on Vy, o and let F =i~ . F' on
Vi fori: Vi —= Vi my- Then we have: RT'g, (V,,, #) = colimy,>m, RTE, . Viem, F').

Proof. We consider the triangle:

RTp, , (Vims F') = RT (Vs F') = RE (Vi ~ Fum), ) 5

Passing to the colimit over m, we need to see that colim,, RI'(V;, i, #') = RT'(V,,, #)
and colim,, RT' (Vim ~\ Foum, Z’) = RI(V,, \ F,,.%). This follows from the fact
that all spaces involved are quasi-compact. (|

The combination of lemmas [4.6.29 and [4.6.30] allows us to compute the cohomol-
ogy as a colimit of cohomologies of the shape RI'r,  (Vi,m, #') where RI'r,, ,, (Viom, F')
fits in a triangle:

RTE, .. (Vi Z') = R (Vin, F') = RT (Vo ~ Fyom, F) 53

and both V,, ,, and V,, ,,, \\ F}, , are quasi-compact opens.

We now give another similar presentation of the cohomology which puts emphasis
on the cohomology with compact support. We will be using Stein spaces because
of remark

Definition 4.6.31. We define sets X,,, X, ;, and T}, » for n,m,r € Zx>o.
e For any ¢ € Q~q, we put X, = {x € C,Va € &* Nw &M |y, |, <
Ip|7o~"te} and set X, = Ues0Xp e
¢ Xpme=1{z € Up,Va € T Nw 10— M |u,|, < [p[Po~" ¢ Va € &~ N
w ™M |, < [pImFel, and set Xom = Ues0 X m e
e We also put Ty ey = {@ € Xy, Ja € ™ Nw &M |uyl, > [p|" 7}
We let T, mr = Up>0Tn,mr -

We see that X, is an increasing sequence of Stein subsets of C',, with the property
that C, = U, X,, and that each X, is included in a quasi-compact open subset Z,
of C,,. We see that X, ,,, is a decreasing (in m) family of Stein open subsets of FL
with X,, = X, ;m N Xy and Ny X5 = X5 We have UrsoTh,mr = Xnom ~ Xpn.

Let Yy, = 7 (X,). Welet Vi, = 750 (Xnm) and Wy = Tipp (Tonnr)-

Lemma 4.6.32. Let . be a solid abelian sheaf over 55 (Cy). We have RT,,(Shig;, F) =
colimy, RT.(Y,, %).

Proof. This follows from Lemmal[4.6.29] Indeed the two inductive systems are equiv-
alent as Y,, C F,, C Y, 11, and we have a series of natural maps RT'g, (V,,, #) —
RI(Y,,#) = Rl (Vag1,F). O

Lemma 4.6.33. Let F' be a sheaf on Yy, and let F =i 7' on'Y,. Then we
have a triangle:

—

R (Ypm ~ Y, F') = RTe(Yym, F') = RT(Yy, F) 5

Moreover, RU(Yy,m \ Yn, F') = colim, RU.(Wy i, F').
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Proof. Let m > 0. We consider the following commutative diagram:

Y, — 2 i (Xw)

T

n,m tor

Y —™ Shior

. in,m
J

Yom NY,

We have to prove that we have a triangle
RT(ShZ% , (i m)tF") = RU(SiZ5, ()M ") = RT (7 (Xu), () 7) 5
We have the triangle 515 '.%' = #' = .7 . We apply (jn,m )1, and we get a
triangle: (in.m)ii " F = (Gum 1 F' — (um)1ieF 3. Observe that (j.m )i F =
i' (juF (as i, =i and i/, = i]). We then apply RT'(Shi2}, —). O

4.6.34. Higher Coleman functors.

Definition 4.6.35. Using Lemma [£.6.12] we define the contravariant higher Cole-
man functor:

HClyx: O(my, bar, )r-alg = D(Mody " (E))

M+ RI,(Shih, VBY(HCS, (M)
and the contravariant cuspidal higher Coleman functor:

HCeuspw,x : Oy, bar, -ty = D(Mody " (E))

M~ Ry (Shih, VB (HCS, A (M)(=D))).
We extend these functors to the derived category
HCy 3, HCeuspw,n + DP(O(mu, bar, )a—atg) = D(Mody &2 (E))

by putting HC\y x(M) = RI,(Sh'e;, VB (HCS,, »(M))) and similarly in the
cuspidal case. We note that HCS,, » is an exact functor O(my,bar, )r—alg —
LB(&B)(CL)“S, and VBY is also exact on LB(BVB)(CL)“S. Therefore, if M is
a complex, VB™4(HCS,, »(M)) is computed by applying VB(HCS, A(-)) to
each term of a complex representing M. Moreover, its i-th cohomology sheaf
H (VB (HCS,\(M)) is VB (HCS,, »(H (M))).

4.6.36. Formal models and the Hodge—Tuate period map. Our goal is to compute the
cohomological amplitude of the higher Coleman functors. The main source of van-
ishing is the affineness of the Hodge—Tate period map. To perform the argument,
we need to consider formal models for some of the spaces and sheaves introduced
so far. We can consider the following diagram where Shj, is the minimal compact-
ification.

Shig,

I

Shk,, T4 FL
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In [BP21], sect. 4.4.31, we constructed a formal model of this diagram:

tor,mod
Shper

LN

Sy —— 3L

tor,mod __ 1. tor,mod *,mod __ 7. *,mod
Moreover Ghy,, = limg, GthKp and Ghy, " = limg, GthKp for all K

tor,mod . tor *,mod .
small enough, where Gh K,Kr 15 @ formal model of Sth xv» and Gh K,Kr 1S @

formal model of Shj k.

Let U be a quasi-compact open of FL. Let 4 — FL be a formal model for
the map U — FL. Using the notation of [BP21], sect. 4.4.31, we have a formal
model for 75 (U), denoted by GhtK":’ﬁOd as well as a formal model for (73) "1 (U)

denoted by Gb}z;d. There is a diagram:

tor,mod
Gpr,u

LN

*,mod
Shyal — 3y

Moreover, we have 75(U) = lim K, T (U) i, for K small enough and accord-

ingly &b, 4" = limg, by 7Y. Similarly, for K, small enough (m3;,) ™' (U) =

. _ ‘mod 1. .mod
limg, (750) " (U)k, and Gh*KZfZ = limg, Gh*K;n;p)u.

4.6.37. Formal Banach sheaves and formal Smith sheaves. In this section we con-
sider a flat p-adic formal scheme X which locally of topologically finite type over
Spf Opg (in other words, Zariski locally, X is Spf A where A is a quotient of
Op(X1, -+ ,Xn)). We write Xfor the generic fiber of X. The sheaf Oy is a sheaf
of solid Og-modules, as are all the sheaves we will consider. We define the scheme
X, =X Xspt 0p Spec Op/p"Og.

Definition 4.6.38.

(1) A locally trivial formal Banach sheaf over X is a sheaf § of Ox-modules
which is flat as an O g-module, and such that § = lim,, #, for #, = §/p"F,
and there exists a covering X = U;0; and sets I; and such that ynh/m =
OV, ., @0, /pm 05 (@ser, Op/p"Op) and the transition maps ., |v, , = Fn_1lv,,._,
are the obvious ones.

(2) A very small formal Banach sheaf over X is a sheaf § of Ox-modules which
is flat as an Og-module, and such that § = lim,, .%,, for %, = §/p"F, and
F1 =% R0, (®serOp/p) for some coherent sheaf 4 and some set I.

Definition 4.6.39.
(1) A locally trivial formal Smith sheaf over X a sheaf § of Ox-modules which

is flat as an Og-module, such that § = lim,, %, for %, = §/p"F, and there

exists a covering X = U;*Y; and sets I; such that %, = Ov, ., QROp/pm 0%
(Op/p"Og) with the obvious transition maps %, v, — Fn_1

Vim—1-
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(2) A very small formal Smith sheaf over X is a sheaf .# of Ox-modules which
is flat as an Og-module, such that § = lim,, &%, for %, = §F/p"F, and
F1 =% @ (Op/pOg)! for a coherent sheaf % and some set I.

If § is a locally trivial formal Smith sheaf, then it has a generic fiber .# over
X defined as follows: we take a covering X = U;U;, such that §|y, = Oy, ® OIE
Over the generic fibre V; of %;, we define Z|y, = Oy, ®@p (O%[1/p]) and we use
the gluing data of § to glue the F|y,.

A similar construction applies to a locally trivial Banach sheaf. See also [BP21]
Thm. 2.5.9] for a more general statement.

Proposition 4.6.40. If § is a very small formal Banach sheaf or a very small
formal Smith sheaf, X admits an ample invertible sheaf and X is affinoid, then
H(X,7)®0, E=0 for alli> 0.

Proof. The formal Banach case is [BP21, Thm. 2.5.8]. The same proof with minor
modification applies to the Smith case. O

4.6.41. Cohomological amplitude of the higher Coleman functors. Let M € Ox_a,.
Let us consider the sheaf F := VBY(HCS,, A(M)). Theorem addresses the
local structure of this sheaf. We also need to produce some integral structure, as
in the following lemma.

Lemma 4.6.42. There exists a quasi-compact open subset Uy C C,, containing w
such that if we set Vo = mi(Uo), then we can write F |y, = colimi,,'.%,, where:
(1) Uy = NinUo,m where {Uom}mezs, 18 a decreasing sequence of quasi-compact
open affinoid subsets of FL;
(2) Vo,m = i (Uo,m) is a quasi-compact open subset of Sh'2,, stable under a
compact open subgroup Kpm C G(Qyp);
(8) im : Vo = Vom is the natural inclusion;
(4) Fm is a sheaf over Vo m;
(5) Vom,kpm < Sh}?iKp’m is a quasi-compact open which descends Vo, to
finite level Ky m, and 7r, . Vom — Vom,K, . 15 the induced projection;
(6) We have a Banach sheaf Gk, .. o0 Vo,m. K., and Fm = lei,mgm7Kp’M®ﬂ';<l

SIm

Vo,m?
(7) The sheaves % K, ,, arise as the generic fibers of locally trivial, very small,

tor,mod
formal Banach sheaves &, i, . over GhKPKp,m,uo,m'

Proof. The first 6 points follow from Theorem We need to give a more
explicit construction of ¢, k, .. in order to be able to produce an integral struc-
ture. We will follow closely the proof of [BP21, Lem. 6.6.2]. As M € Ox_aig, we
deduce that MV (\) = colim, M,. where each M, is a Banach space representation
of the group denoted Stab(w), s in Definition (with @ = B). Unraveling
the definition, we deduce in particular that M, is a Banach space representation of
My Unm,,s =0 My s = M,,. Moreover, after possibly changing r and s, we can
also assume that there is a lattice M;¥ C M, with the property that the co-action
map M, — M,®0y, . induces amap M," — M@0y, trivialon M,"/pM,}.
We consider the My, , s-torsor w(Up, N G,U;)\G,Us - w(Py N G.U)\G,Us.
This is a reduction of structure of the standard M-torsor Up\G — P\G over
w(Py N GrUs)\G,Us. Let us write U, = w(P, N G,.Us)\G,Us, which is a quasi-
compact open subset of FL. Over ﬂ'l}lT (Uy), we pull back to get a M,, , s-torsor

(@]
pom ~ VO,m Kp m
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that we denote by Mgr rsu,. For K, small enough, by [BP21l, prop. 4.6.12], it
descends to a My, . s-torsor Myg s u, x, over WIZ,lT (Ur)k,. Moreover, by [BP21],
prop. 4.6.15] for any affinoid open subset Vi, C oy (U)k,, we can find K, C K,
such that the torsor Myg s ., K,’)|VK; is trivial. After rescaling, we can assume
that Uy » C U,. We now attach to M, a locally projective small formal Banach sheaf
on the formal model Gbggi’}{n:fyuw of Vork,, = mgr(Uor)k,,. for a small enough

K, . Indeed, we pick a finite affine covering U;U; = Spf(A4;) of Gbﬁgi’zﬁﬂw. Af-
ter replacing K, by a smaller compact open, we can assume that Mg r s,u .., K.
is trivial over the generic fiber of every *U;. It follows that the torsor is described by
a 1—COCyC16 {mi,j S Mw,r,s((Ai,j[l/p]7 Ai,j))}i,j (where ‘Bi,j = ‘BZQQ}J = Spf(Alj))
We can use the elements m; ; to glue the trivial formal Banach sheaf Oy, ®0, Mt to
get the very small, locally trivial, formal Banach sheaf &, x, .. The very smallness
property comes from the fact that the m; ; act trivially on M /p. O

We give a technical variant of this description, using formal Smith sheaves in-
stead.

Lemma 4.6.43. There exists a quasi-compact open subset Uy C C,, containing w
such that if we set Vo = mi-(Up), then we can write F|y, = colimi,'.%,, where:

(1) Uy = Ny Uy, where {Up m }mez, S a decreasing sequence of quasi-compact
open affinoid subsets of FL,

(2) Vom = i (Uom) is a quasi-compact open subset of Sh'2, stable under a
compact open subgroup K, ., C G(Q,),

(3) im : Vo = Vom is the natural inclusion,

(4) Fm is a sheaf over Vi m,

(5) Vom,kpm < Sh}?iprm is a quasi-compact open which descends Vo, to
finite level Kp ,, and TKpm * Vo,m = Vom K, 5 the induced projection,

(6) We have a sheaf%;pr’m onVo,m, Ky oA Fyy = W}}i,mgmﬂp,m@ 1

”Kp,mOVo,m,Kp,m
o
\%

0,m "
(7) The sheaves %ﬁl_’Kp _arise as the generic fibers of locally trivial, very small,

. tor,mod
formal Smith sheaves &, , . over GthKp,myuo,

Proof. The argument is almost identical to the proof of Lemmal4.6.42] We have that
MY ()\) = colim,. M,. where each M,. is a Banach space representation of the group
denoted Stab(w),, s in Definition B33100 Since this is a LB-space of compact type,

it also admits a presentation as a LS-space of compact type, MY (M) = colim, M/
where each M/ is a Smith space representation of Stab(w), s (see [RJRC22, Cor.
3.38]). We then pick lattices (M/)* in M/ and glue the sheaves Oy, ®0, (M/)T to

T

get the very small formal Smith sheaf &, Ky d

X tor,mod tor,mod
For any K, C K} m, we have maps 7k, K, ,, GF)KPKP.,LLOM — GhKPKp,m,uo,m

and we write &, i, = Tk g Om K, (a locally trivial, very small formal Ba-
nach sheaf) and &;, ;. =7y p & . - (alocally trivial, very small formal
Smith sheaf). We denote their generic fibers by Gk, and Gy, j .

Lemma 4.6.44.
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(1) For any affinoid U' C Uy, any compact open subgroup K, C K, s fizing
U', and letting V' = 3 (U"), we have Hi(VI'(p,%n,Kp(—D)) = 0 for all
7> 0.

(2) For any Stein space S" C Uy, stable under a compact open subgroup K, C
Ky, let V' = 10-(S"). We have Hci(VI’ép,%;%Kp) =0 for all i # d.

Proof. The first part follows as in lemma 6.6.2 of [BP21]. We briefly recall the
argument. We take a formal model &' — FL of U’ — FL. By Lemma EG.42 we
have a locally trivial, very small, formal Banach sheaf &, , over 6()3?; Kp g Let
T GO gp s = OB gen - We have that Rim,®,, k,(—D) = 0 for all i > 0. In-
deed, using the very smallness, this reduces to the vanishing ([BP21, Thm. 4.4.37])
of Riﬂ*(’)g,’t}?;”’w (=D). We deduce that 7.&,, k,(—D) is a very small formal Ba-

nach sheaf and thus Proposition implies that Hi(Gf)tI?:pru/, Gk, (—D))®
E=0forall¢>0.

We claim that H (S v v, O i, (—D)) @ E = H (Vi ;% i,(=D)). To
see this, take a Zariski open affine cover {2}, of thK":pru/ with the prop-
erty that &, x,(—D)|ap, is a trivial formal Banach sheaf. By Corollary
H i(VI’(p,ffm k,(—D)) is computed by the Cech complex associated to the generic
fiber of this cover, which computes Hi(Gf)}?;pr, Gk, (—D)) ® E. We deduce
that H' (Vi ,%m,x,(=D)) = 0 for all i > 0, as required.

The second part follows from a certain form of duality. Let us define the “Serre
dual” of &7, 1

D( rIn,Kp) = I_IO—mOVO,m,Kp ( 7;1,KP7QI‘1/0,m,Kp)7

by which we mean the following. We take a finite Stein covering Vi = UV ;

with the property that Q‘{l/m,Kp |VI/</p,i is trivial and that ‘%;LKP = OVI/(/p,i ® M; for

a Smith space M;. Then D(9,, r )lv; , = Ovyy  ® M;” where M;’ is a Banach
) Pyt ot

m

space. We consider the Cech complex of Fréchet spaces:

C: HHO(VI/(Ip,iaD( &,Kp)) - HHO(VI/(IP,Z' n VI/(Ip,mD( &,Kp)) o
i inj

as well as the Cech complex of LS-spaces:

d d
D: Hc (miVII(/p,i7 7/71,Kp) - HHC (miijvll(/p,w 7;1,1(;,) —
J

The two complexes are termwise dual of each other by the duality theory (see
Corollary 6.26). The complex D computes RI"C(VIQ’T,,%;L Kp) and the complex
C computes RI'(V , D(9,, x,)) by Corollary L6201 and £.6.26 Thus, it suffices
to prove that the complex C' has cohomology concentrated in degree 0. Write
S’ = US! as a countable increasing union of affinoids, and let V; = m;;(S’) and
V' = UV It follows from Lemma .6.43 that D(¥;, ) admits a formal model
which is a very small formal Banach sheaf over a formal model of V,” . We deduce
that RI'(Vx , D(9;, ,)) is concentrated in degree 0 by the same argument as
for the first point of the lemma. Thus, the Cech complex C, of D(9,, Kp) with

respect to {V Kp} has only cohomology in degree 0. We then use topological

Y2

Mittag-LefHler to deduce that C' = lim, C). is concentrated in degree 0. ]
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Theorem 4.6.45. For any M € Ox_aig, HCcusp,w (M) has amplitude [0, {(w)]
and HCy x(M) has amplitude [¢(w),d].

Proof. We first prove the claim regarding HCousp w a(M). Let us denote F =
VBY(HCS, »(M))(—D). Let us fix a closed neighborhood Zy of w in C, and
an open neighborhood Uy of Zy in C,, as in definition Let t € TTT(Qp).
It is easy to see that Upez.,Zot" = Cy. As above, we put Vp = w;ﬁp(UO) and
Fy = wl}lTZo. By Lemma (noting that Zopt™ and Z, are cofinal), we have
that RT',,(Sh'2},.#) = colim, RT g, (Vot", .%). Tt follows that each H? (Sh'%},.%)
is generated as a B(Q,)-module by the image of H, (Vo, %) in H:,(Sh;, .F). Thus
it suffices to see that RI'g, (Vp, %) has amplitude [0, £(w)].

We are free to chose ng in definition 6.28] and to make Fy and Vj arbi-
trarily small. By Lemma [1.6.42] we can assume that %y, = colim.%,, where
Fm = YmKpm G - Ov,.,, (=D) where %, k,,. is a Banach sheaf ad-
mitting a locally trivial, x}ery small, formal model over Vg K, ,.. By Lemma
1630, we have that RI'g, (Vp,.#) = colim,, RI'p, (Vo, %) and RI'p, (Vo, %) =
colimy;, RT'p, , i, . (Vo,5,K,.0s D, K., (—D)) where K, tends to {e}. Thus it suf-
fices to prove that RI'm,, i, . (Vo,5,K,..> %m, K, .(—D)) has cohomological ampli-
tude in [0, ¢(w)]. Recall from definition that Fps = m(Zos) and Vo 5 =
7ga(Uo,s) for s large enough (and a fixed choice of ng big enough). We observe that
Up,s is affinoid while Uy s \ Zy.s is covered by £(w) affinoids. Using the triangle:

R’I‘FO,S,KPJL (V075;Kp,n ) gm;Kp,n (_D)) — R‘]‘—‘(V075;Kp,n ) gm;Kp,n (_D))

= R (Vo k. ~ Fosi,.sGmi, . (~D) 2
together with Lemma [£.6.44] we arrive at the desired conclusion.

We now turn to the case of usual cohomology, which follows along similar lines
to the above, using the presentation via cohomology with compact support. Let us
denote now .# = VBY(HCS,, A(M)). We first see by lemma and a similar
argument using the B(Q,)-action, that it is enough to check that RI'.(Yp, %) is
concentrated in degrees [((w), d] where Yy = 755X, and X is a Stein open neigh-
borhood of w in C,, (see Definition Z6.3T]). Next, we use Lemma [L.6.43] to see that
Fly, = colim ), where Z, = g”/"th,m lC N Oy,.,, and Yy, = T (Xo.m)
for Xo., a Stein neighborhood of Xy in FL. We deduce that RI:(Yp,.#) =
colimRI(Yo, 7). Let & = colimg, ¥, ;. where &, . is the pull back of
@' to Yom,kx, for K, C Kp,, and ¥, is viewed as a sheaf on Yp,,,. We

vapJn

deduce from lemma [4.6.33] that we have a triangle

p,n?

RT,(Yom ~ Y0,9.) = RO(Yom, 9,) — RT(Yo, Z) 3.

Recall that Wy, » = w;ﬁp(To,m’T) (see definition[L.6.31). We have that RI'.(Yy,m,¥9},) =
colimp, RIc(Yo,m, Kp,%’n) Kp) is concentrated in degree d by Lemma 644 Simi-

larly, RT'o(Yo,m~\Y0,%,,) = colim,. colimg, RT'«(Wo i r k,, %jn)Kp), and RFC(WO,mprvgfn,Kp)
has cohomology concentrated in degrees [¢(w) + 1,d] by Lemma 6.4 (as To . is

the union of ¢(w) Stein spaces). O

4.6.46. Finite slope projector. We follow the notation introduced in Section
Let Z be the character space of T'(Q,). Fixing an isomorphism 7'(Q,) = Z" xT(Z,)
(with r the rank of T, the maximal split torus in T'), we see that Z = W x (G&")"

with W = Spa(Z,[T(Z,)], Z,[T(Zy)]) Xspaz,) SPa(Qp, Zyp)-
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We fix an affinoid increasing covering of the Stein space Z = U,Z,. As in
[And21], we let D(Z,,) denote the category D((Ogn,Ogn).), and we let D(Z) be
the derived category of quasi-coherent sheaves over Z (see [And21, Thm. 1.6]). We
have defined in Section the monoids T7(Q,) C T7(Q,) C T(Q,). Note
that T1(Q,) = T(Z,) x Z° x ZL,°, where s is the rank of the maximal split torus
in Z(G). We let (Q,)m[T"(Q,)] be the solidification of Q,[T"(Q,)], and we let
(Q,)m[T(Q,)] the solidification of Q,[T(Q,)]. The categories of solid modules over
these rings are denoted by Modz+(q,)(Qp) and Modr(q,)(Qp) (this is consistent
with definition 2.2.21). Their derived categories are denoted D(Modr+(q,)(Qp))
and D(MOdT(Qp)(Qp)).

We define a functor f;: : D(MOdT+(Qp)(Qp)) — D(Z,), oM = M®(QP).[T+(QP)]
(OvaOEH)I- This functor has a right adjoint given by the forgetful functor
(fn)x = D(Z,) — D(Modrp(q,)(Qp)). These functors induce adjoint functors
£*: D(Mody+ (q,)(Qp)) = D(Z) and f, : D(Z) — D(Modz(q,)(Qp))-

We finally define the finite slope functor:

(=) = fof* : D(Modr+(q,)(Qp)) = D(Modr(q,)(Qp))-

The unit of adjunction gives a natural map M — M7* in D(Modz+(q,)(Qp)). Note
that M¥* = lim,, (f,).f; M.

Remark 4.6.47. The finite slope functor is a localization functor, which factors
over the functor — ®(q,)g(r+(Q,) (Qp)m[T(Qp)]. However, it is a stronger form of
localization. For example, let us (abusively!) consider the case that T (Q,) = Z>o
and T(Qp) = Z. In this case, (Q,)m[T"(Qy)] = Qu[X] and (Q,)m[T(Q,)] =
Q,[X, X !]. We can also suppose that Z,, = Spa(Q,(p" X, p"X 1), Z,(p" X, p" X 1)).
We claim that the module Q,((X)) is a solid Q,[X, X ~!]-module, whose finite slope
part is trivial. By definition we need to show that Qp((X))®ép x)Zp (0" X, pt Xl =

0 for every n. To see this, we first show note that Q,((X)) is a solid Q,(p~*X) for
every s > 0. Indeed Q,[X]/(X?) is a solid Q,{p~*X)-module for any ¢,s € Z>q
and so Q,[X] = lim, Q,[X]/(X?) is also a Q,(p~*X)-module, and thus Q,((X))
is a solid Qp(p~*X)-module, as claimed. It remains to observe that if s > n, then
Q,(p°X) ®(L2p (X] Q,(p"X,p"X 1) = 0. To see this, note that this is represented
by the following complex:

n n Vv — STrUptXTh-1 7 n Vv —
[Q;D<U7p va X 1>p p—> QP<Uap va X 1>]

But 1 — p* "U(p"X ') is invertible, with inverse Y, ,(p* "U(p"X ~1))".

Sometimes, one wants to consider not only the finite slope part, but to specify
the slope. For any rank one point Spa(C,O¢) — Z corresponding to a character
X : T(Qp) = C*, we define the slope of x as follows. Let v : C — R U {+o0} be
the valuation, normalized by v(p) = 1. Composing the valuation and x we obtain a
map v(x) : T(Qp) — R. On the other hand, via the exact sequence ([.8.0]) we can
think of v() as an element of X*(T%)g (see also [BP21, Sect. 5.9]). This defines
a continuous “slope” map s : Z — X*(T%)gr (which factors through the Berkovich
space of Z).

Remark 4.6.48. If (again abusively) we consider the case T(Q,) = Z, then Z =
G& and s : G& — R extends the p-adic valuation on classical rigid analytic

m

points.
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We have a partial order relation on X *(T9)g where A > X if A(v(t))—N (v(t)) > 0
for any t € T(Q,). For any A\ € X*(T%)q, we can consider the cone {\ €
X*(THgr,N < A}. The subset s '({N € X*(T9)gr,\N < A}) is the closure of
a unique rational open that we denote by Z<\ A Z. We have functors fiy e
D(Modr+(q,)(Qp)) = D(2<x), fEM =i} f*M. We also have a forgetful functor
(f<a)s : D(2<x) — D(Modr(q,)(Qp)). We finally define the slope < A functor:

(=)= = (f<x)«fZ5 : D(Modr+(q,)(Qp)) = D(Modr(q,)(Qp))-

If M € D(Modr+(q,)(Qp)), then we have lim M= = M/fs. We leave it to the
reader to define the slope A functor M +— M=* and the slope > A functor, M
M=,

Remark 4.6.49. Let us assume that M is a Banach space equipped with a com-
pact endomorphism X. In other words, we are (again, abusively) in the situation
TT(Qp) =Z>o and T(Q,) = Z, and 1 € Z>( acts like X. It follows from [Ser62,
Prop. 12| that for any A € Q, M=* is a direct summand of M and is finite dimen-
sional. In particular, f*M defines a coherent sheaf on Z and M/® is a pro-finite
vector space.

4.6.50. Hecke algebra action. Let Ky be a compact open subgroup of U(Q,) C
B(Qp) which admits an Iwahori factorization. Let A € X*(T)q,. For any M €
Mod%?(g:)(E), we consider the submodule M%V of Ky-invariants. It is canonically

a direct summand, since one can define a trace Trg,, : M — MXv. Indeed, we have
M = colimps MK where K’ runs through the compact open subgroups of U(Qy).
Then for any K{; C Ky we can define a normalized trace

1 /
TI'K//KUzi/ Z k :MKU—)MKU,
v [KU : U] k ’
EKu /K[,
and passing to the inductive limit over K;; yields the map Trg,,.
Let t € TT(Q,). We define an action of ¢t on MXv as follows:

Tr —1
tKyt—1 /Ky
—

MKU _t> MtKUt71 MKU

Lemma 4.6.51. The above rule defines an action of the commutative monoid
TH(Qp) on MEv.,
Proof. This follows from [Cas, Lem. 4.1.5]. O

We deduce that we have an exact functor

(=) : D(Modjy &) (E)) = D(Mody=7g | (E)).

Lemma 4.6.52. Let K/, C Ky. We have a natural transformation (—)5v =
(—)Ev | induced by the trace.

Proof. We consider the map Trx: /iy - MEv - MEv, 1t is elementary to check
that this map commutes with the action of ¢. ([

We can now consider the composite functor:

s —sm (_)KU —Sm (_)fs on
()07 s D(Modygn () 5 D(Mod}in ((B) (2 D(Mod) g (E))
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Lemma 4.6.53. Let K}, C Ky. The natural transformation (—)<v-75 = (—)Kv./fs
is an isomorphism.

Proof. We pick t € TH(Q,) such that tKyt~! C K[;. We have a commutative
diagram (where the vertical maps are trace maps, and the diagonal map is the

Tr 1 et
. t -1 TtKytTl/K
composite MEv — ptKuvt — Y MEv):

MKU —t) MKU

I

MEv L 5 MKy
On the finite slope quotient, the horizontal maps ¢ are isomorphisms, showing
that the maps MEuv.fs 5 MEv.Ss gre isomorphisms. O

In view of this lemma, we often simply write M7¥* instead of MKv:fs  as the
choice of Ky is irrelevant.

4.6.54. The finite slope part of the higher Coleman functor. We define the finite
slope part of the higher Coleman functor:

HCI, : Oxoalg = D(Mody & (E))

M +— RD,(Sh'%, VBO(HCS,, (M)))**

Hccfjsp,w,)\ : Ok—alg - D(MOd?Z\“?(SrZ) (E))

M~ RI,(Shi%, VB (HCS, A(M)(-D)))’*

4.6.55. Comparison with higher Coleman theory [BP21]. Let x € X*(T)™* and
x:T(Z,) — Q; be a finite order character. We have defined in [BP21] Sect. 5]
cohomology theories RT'y, (KP, k, x)*/* and RT', (K, K, x, cusp) T+/*.

Theorem 4.6.56. We have canonical isomorphisms of smooth T(Q,)-modules
(where the decomposition on the right hand side corresponds to the decomposition
into isotypic parts for the action of T(Zy)):

Hccjjsp,(),w (L(mw)—’wflwo,Mﬁ) ®Qp Gp = GBX;T(ZP)‘)G: Rrw (Kpa Ky X5 CUSP)—hfS
HC({iU(L(mw)*w’lwo,Mﬁ) 9q, Q:D - @X:T(Zp)ﬁai RIy (K7, 5, X)Jﬁfs
Proof. By Lemma[L6.5, we have VB 0 HCSy, o(L(Muw) 14y 1rx) = w“*sm|F§1T(CL),

so that by definition we have HCuy,0(L(Myw) 1140 1n) = REw(Shigh, w™™). Let
Zy be a closed neighborhood of w in C,, stable under a compact open subgroup
Ky C U(Q,) (admitting an Iwahori factorization) and let Uy be an open neigh-
borhood of Zy in C,,. We let Fy = ﬂ';IlT(ZO) and V) = ﬂ';IlT(UO). We can define an
action of t € TT(Q,) on RI'g, (Vo,w™ ™) as follows (where the second and third
maps are respectively given by restriction and the trace):

I{FF0 (V(), j)KU _t> Rngt*1 (Votil, wn,sm)tKUt*l _

RTp, (Vo, Z)5vi™" 5 RDp, (Vo ws™)Kv,
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The map RI' g, (Vo, w™™) — R, (Shigh, w™™) induces a T+(Q,)-equivariant
map R, (Vo, w™*™)Kv — RT,, (Shi2, w*™)Kv which is a quasi-isomorphism on
the finite slope part. Indeed, it is easy to see that we have factorizations:

RT g (Vp, @) K0 —— 3 RDp, (Vo, w™m) K

[ ]

]%1—‘F0t’1 (Vbt_l ’ wmsm)KU L) ];{1—‘F0t*1 (Vbt_l ; wmsm)KU

On the finite slope part, the maps ¢t are quasi-isomorphisms, therefore the maps
Rl g1 (Vot = wsm)Evofs — R g (Vo, w™sm)Kvs/s are also quasi-isomorphisms.
Now we can take t € T++(Q,). Since R, (Sh}2y, w®s™) KU = colim,, R g (Vot =, F)Kvsfs,
the colimit is constant and we conclude.
We now consider compact open subgroups K, , of G(Q,) which admits an Iwa-
hori decomposition K}, , = Ky X Kz, where K3, is the principal level p" con-
gruence subgroup in B(Q,). We let K, , be the compact open subgroup of G(Q,)
which admit an Iwahori decomposition K, , = Ky x T'(Z,) x Ky, where Ky ,, is
the principal level p" congruence subgroup in U(Q,). Note that K, , C K, ,isa
normal subgroup and that K, ,,/Kpn = T(Z,/p"Zy).
We have that RI g, (Vo, w™™) KV = colim,, ,, RLFy iy Voo, K ns Wi, . )- More-
over,
REEy iy (Vo s W5, )00, Qp = @y 12y B Py Vom.x > wics, | (X))-

We claim that each RFFo,m,K'pm (V07m,K;,n7w'I€(;,n(X)) can be equipped with an
action of T%(Q,) and on the finite slope quotient the maps:
RUE, ey (Vomsy Wi, (X)) = RF, s, Vom.xr ,»wicr (X))
for n’ > n are quasi-isomorphisms, and the maps:
RUE, ey Vom,iy o wicy () = RUE o (Vom0 Wi, (X))

for m’ > m are quasi-isomorphism. This follows from the property that for ¢ €
T*+(Q,) sufficiently regular, we have factorizations:

t
RFFO,m,K;)Yn, (‘/OvvaémﬂwIK{, ,(X)) RFFO,m,K’ (‘/O,m,Kém;w?(/ (X))

p,m p,n’ P,

[ T ]

t
RTr, e (Vo @y (00) —=RCe, o (Vomry, @k, ()
as well as factorizations:

¢
RUE, oy Vomiir Wi (X)) ——=RUE o (Vom0 Wi (X))

o

R’I‘Fo,m,K/p (‘/O;va;,n7w';(’ (X)) t RPF{),m,K/p (‘/O;va;,n7w';(;,n (X))

s p,n s

We conclude, since by definition (see just after Theorem 5.4.14 in [BP21]) we have
REF, 0 (Vo iy (0)* = R (K7, 5, x) T, O
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Let v : T(Z,) — C; be an analytic character. [BP21, Sect. 5] We have coho-
mology theories Ry an (KP, )"/ and Ry on (KP, v, cusp) T+7*, defined in [BP21}
Sect. 6.4] (see just after Theorem 6.4.10 there). Let dv € X*(T')c, be the differen-
tial of v. Define k € X*(T')c, by the formula dv = —w™ wo a (K + p) — p.

Theorem 4.6.57. We have canonical isomorphisms of T(Qy)-modules (where the
decomposition on the right hand side corresponds to the decomposition into isotypic
parts for the action of T(Z,)):

Hccfjsp,du,w(M(mw)fw’lwo,Mli) = 691//:T(Zp)—>C§, du’:duRFw (Kp7 Vlv Cusp)JﬁfS
Hcgj,w(M(mw)—wflwo,Mﬁ) = 69V’:T(Zp)—>C;<, du’:duRFw (K;D, V/)—hfs

Proof. This is similar to the proof of Theorem [4.6.56] and left to the reader. O

We have the following theorem which slightly generalizes [BP21, Thm. 1.2.1,
Thm. 6.7.3].

Theorem 4.6.58. The functor HCI{]SA has cohomological amplitude [¢(w),d], and
HCL

usp.w,x has cohomological amplitude [0, £(w)].

Proof. Given Theorem [£.6.45] we simply need to see that the functor (—)/* is exact
on higher Coleman theories. But one sees (see Theorem 656 and its proof) that
the finite slope part is obtained by taking the finite slope part of an inductive
system of complexes of Banach spaces acted on by a compact operator, and (—)/*
is exact in this case, see [BP21l Proposition 5.1.4]. We remark that we could also
deduce this theorem directly from [BP21l Thm. 1.2.1, Thm. 6.7.3] (which is the
current theorem in the case of H CUCS y and H crs applied to Vermas) by using

cusp,w,

a diagram chase similar to the proof of Theorem 2.3.32 ([l

4.6.59. Bounds on slopes for higher Coleman theory. Using [BP21] and [BP23|, we
can obtain bounds for the slopes.

Theorem 4.6.60. Assume that either the Shimura variety is proper or that we
are in the Siegel case. Let w € MW. Let M € O(my, b, )r—alg be a module

generated by a highest weight vector of weight v. Then the slopes of HCijSp’w’)\(M)
and HC’{:}S’)\(M) are > X\ — v +w two pp + p.

Remark 4.6.61. The finite slope projector and the notion of slope > A — v +
w™wg prp + p were explained in section FL6.26

Remark 4.6.62. We conjecture ([BP21, Conj. 6.8.1]) that the theorem should hold
for any Shimura variety. The slightly weaker bound > A — v is currently available
in full generality by [BP21, Thm. 6.8.3].

Proof of Theorem[{.6.60, For M = M (m,,), a Verma module with highest weight
v, this follows from [BP21] Thm. 6.10.1] for the proper case, and [BP23, Cor.
6.2.16] in the Siegel case, together with Theorem F.6.57 (the paper [BP23| shows
that the strongly small slope condition which is sometimes needed in [BP21] can be
weakened to the small slope condition in the symplectic case). Since any module M
as in the statement of the theorem admits a resolution by Verma modules M (m,,),/
with v > v/, we are done. O
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4.7. p-adic Eichler Shimura theory. Let A € X*(T)g. We define functors:

CO)\ : O(g, b))\falg — D(MOdgzaI:) (E))

M~ RHomgy(M,RT(Shxr, Q)™
Occusp,)\ : O(ga b))\*al!] - D(MOd)é?SZ) (E))
M~ RHomgy(M,RT.(Shkr, Q,)™).

Theorem 4.7.1. For any M € O(g,b)r—a1g, we have
CCy\(M) ® C, = RT(Sh'%, VB™(Loc(M)))
and

CCeusp (M) ® C, = RI'(Sh', VB (Loc(M)) ® gam

sm )
. fShtor
shter, KP

Moreover, the action of u € Z(m) on Loc(M) via the horizontal action induces an
arithmetic Sen operator on the left hand side.

Proof. By Theorem EZ1] we have RI'(Sh¥}, Q,)*®q, Cp = RTan(Shigh, O wo: ).
KP
We consider the category Mod’g (O;‘ﬁm ) of sheaves of solid O;‘}‘fm -modules equipped
KP KP

with an action of g, and the similarly-defined category Mod;(Cp).. These are
abelian categories, with enough injectives. We consider the diagram of functors:

Modj (O, ) —— Mod(OFP, )

Siicy Shizy

| |

Mod)y(C,) ———— Mod(C,)

where the horizontal arrows are given by taking g-invariants and the vertical arrows
are given by taking global sections. This diagram is 2-commutative, and it induces
a 2-commutative diagram at the level of bounded derived categories. We deduce
that CC\(M) ® C, = RI'(Shi;, RHomg(M, O% ... )). We therefore need to show
KP
that V B*4(Loc(M)) = RHomg (M, O ... ). To this end, the Chevalley-Eilenberg
KP

resolution yields

la _ \Y la \Y la \Y . \Y la r_ Vv
RHomg (M, Ogjior ) = [M*@Ogh0r = MY @0 10, @97 — -+ = M " Q0g} 00 OA"g"]
in degrees 0 up to r = dimg. By Theorem [L.5.20(4) (and the flatness of MV ®A‘g"),
we have

VB (MY ®C* @ A'gY) = MY @ O @ A'g",
K
and we deduce (see Remark EL5IR) that V B™(Loc(M)) = RHomg(M, OF ... ).
KP

The cuspidal case is identical. The final claim regarding the Sen operator follows
from Theorem [£.5.23] O

Theorem 4.7.2. Assume that A is non-Liouville. For any M € O(g,b)x_alz, we
have that H(V B**4(Loc(M))) = VBY(H(Loc(M)). We have a spectral sequence:

EP? = @weMW,l(w):;DHerq(HOUJJ(E ®£Pw M))
converging to HPT1(CCy(M)) ® C,. Similarly, we have a spectral sequence:
B = @uertw ) =p H”H1(H Conspao A(E 0L, M)
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converging to HPT1(CCeyspA(M)) ® Cp. In all cases wu € Z(my,) acting on
H,.(up,, M) induces an arithmetic Sen operator.

Proof. To prove the first part, it suffices to show that the cohomology sheaves
H'(Loc(M)) is acyclic for the functor VB*™d. We can check this acyclicity lo-
cally, and in particular after restricting to Bruhat strata, where it follows from
Theorems B5TT] and E5.20(5). Finally, the spectral sequence is then a simple
consequence of Proposition f.6.13] together with Theorems .7.1] and B.5.111 O

Let A € X*(T)g be a non-Liouville weight. We apply the above theorem to the
Verma module M(g), giving the following results.

Corollary 4.7.3. Assume that A is antidominant in the sense of Remark [3.5.2]),
and that the Shimura variety is proper. Then CCx\(M(g)x) is concentrated in the
middle degree d and moreover, it has a decreasing filtration Fil'HY(CCx (M (g)y))
with

e Fil"*'HY(CC(M(g)r)) =0,

o Fil’HY(CCA(M(g))) = HY(CCA(M(9),)),

i GrpHd(OCA (M(Q)A)) = @wGMW,E(w):pHp(HOwy)\(M(mw)Aer*lwo,Merp))'
Proof. This follows from Theorem [.7.2] because the spectral sequence degenerates
by a combination of Corollary (noting Remark B.5.2T)) and Theorem
(noting that since the Shimura variety is proper, HCeusp,w,x = HCyw ). O

Remark 4.7.4. We see that in the antidominant case, the highest weights appear-
ing in the p-adic Eichler—Shimura decomposition follow the exact same pattern as
the highest weights appearing in the classical Eichler—-Shimura theory.

We now consider the general case where A need not be antidominant, and we
take the “ordinary” part.

Theorem 4.7.5. Assume that we are in the Siegel case or that the Shimura variety
is proper. Let A\ € X*(T)g be a non-Liouville weight. We have that CCfS (M(g)x)
and CCY*

cusp,A
E?q = @wEMW,é(w):pH2p+q_d(HC;O)\(M(mw)A+w*1wo,Mp+p))
converging to HPT4(CCT (M (g)x)) @ Cyp, and similarly for cuspidal cohomology.

Proof. This is a combination of Theorem [L7.2] Corollary [35.20] and Theorem
14.6.60) (I

(M(g)x) have slope > 0. Moreover, we have a spectral sequence:

Finally we have the following corollary.

Corollary 4.7.6. Assume that the Shimura variety is proper. Let A € X*(T)g be
a non-Liouville weight. Then CCY (M (g)x)) is concentrated in the middle degree d
and moreover, it has a decreasing filtration Fil'HY(CC5O(M (g)y)) with

o Fil"HHY(COTO(M(g)2)) = 0,

o Fil'HY(CCTO(M(g)x)) = HY(CCT (M (g)r)),

o Gr"HY(CCT(M(9)x)) = Dwerwie(u)=pHP (HCZE (M (M) rtw-1wo arptp))-
Proof. This is a consequence of Theorem and Theorem .6.57 O

Remark 4.7.7. Thus, we see that on the ordinary part the highest weights ap-
pearing in the p-adic Eichler-Shimura decomposition follow the same pattern as
the highest weights appearing in the classical Eichler—-Shimura theory.
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4.8. The classical Hodge—Tate decomposition for GSp,. We now specialize
the theory to the group GSp, and first review the classical Hodge-Tate decompo-
sition. From now on we use the notation for GSp, introduced in Section [[L88 Let
k = (k1,ko;w) € X*(T)* be a dominant weight for GSp,. The dominance condi-
tion is 0 > k1 > ko. We let V,; be the corresponding highest weight representation.
We let V! . be the pro-Kummer étale local system on Sh}?; Kr, attached to VY.

The coherent weights appearing in the Hodge—Tate decomposition of the local
system V! ;. are the {—won(w.k + 2pM)} where w € MW (see [FC90], Thm.
6.2). We make this explicit: the set {—wq ar(w.x + 2p™)} consists exactly of
(3—ko,3—k1;—w), (3—ka, k1 +1; —w), (2—k1, ka; —w), (k1, k2; —w). We recall that
our conventions are that the cyclotomic character Q,(1) has Hodge-Tate weight
—1 and that the Sen operator acts via 1 on the Sen module of Q,(1), so that
the (generalized) Hodge-Tate weights are the negatives of the eigenvalues of the
Sen operator. Given our choice of parabolic P,, we have u = (—1/2,—-1/2;1/2) €
X.(T)g. By Theorem [A5.20) y is an arithmetic Sen operator.

Remark 4.8.1 (reality check). This is consistent with the fact that the tautological
exact sequence over FL is

0— Lo—1;1) > St®@0xrL — L101) = 0
which pulls back to
0 — Lie(A)k,(1)®o

) OShtI?; — TpA(X)poSh}?; — (WAt)Kp®O OShtI?; — 0.

SRl K
We see that Lie(A) has Sen weight

(and Hodge—Tate weight —1), while w 4+ has weight 0 = ((1,0;1), (—=1/2,—-1/2;1/2)).

shtor
KpKP

The Hodge Tate weight attached to the sheaf w(1:12:%) ig sz_w Thus, in
the Hodge-Tate decomposition of the cohomology of V.Y, the Hodge—Tate weights
are given by the formula: (k1, ke; —w) — M%“”, (2 — k1, ko; —w) — W
(3—k2,]€1 + 1;—11}) — W, (3—k2,3—k1;—w) — W

Theorem 4.8.2 ([FC90], Thm. 6.2). We have the following Gq, x Tk, kv -equivariant
isomorphisms:

)

Hi(Sh?;Km Vik,) ®q, Cp=

or k1 koi—w)y , —Kk1 — k2 —w i or Ik koi—w)y 2+ k1 — k2 —w
H'(ShiZ o wi, ) (g JOH T (SHIE e wie, 7)) 5 )
), —A 4 ko — kg — - o kS, —6 ko + ki —
OH T (SHE sy i, M) (P R )@ H (S e, T T (g

Hzc(s t}?EKmV;\{/,Kp) ®Q, Cp
—kl — kg —w

or k1,k2;—w
H'(ShiE e, wie) ™ ™ (=D, ) (57—
i— or — —w -2+ ki — ke —w
H 1(Sh}(pr,w§?p k1,ka; )(_DKP))( 12 2 )@
i or w ~d+ky—k1—w
HY2(ShE e, wfd M0 (2 D ) (e

—6+ky+ ki —w

7— or 3—k ,3—]{} J—w
H'73(ShI g, w2577 (D)) ( 5 )
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We can also state a similar result using completed cohomology. We first recall
the following theorem:

Theorem 4.8.3. Let V,; be a finite dimensional representation of G of highest
weight k. Then

CCo(Vx) = RHomg(V;, RT(Shigh, Qp)™*) = colimg, RE(Sh" xer, VY )
Cccusp,O(Vn) = RHomg (Vm RFC(Sh%’ p)la) = COlipr RFC(ShtI?;va V;/,Kp)
Proof. See e.g. [Eme06, Cor. 2.2.18]. O

We deduce the following:

Corollary 4.8.4. We have that
H'(RHomg (V,,, RT'(Sh%, Qp)'*))®C, =

, , —ky — kg — 24k —ky —
H (S5 otk b om0 = W i gpien (kb womy 22 2 0

; _ oy — 4+ ko — k1 — —6 4+ ko + k1 —
D H' (Shigh, a1y (2

There is a similar statement for compactly supported cohomology and the cuspidal
coherent cohomology.

Proof. This is simply obtained by passing to the limit over K, in Theorem 4.8.2)
But alternatively, this is a combination of Theorem 7.1l Lemma [4.6.5 and Propo-
sition B.5.17 O

4.9. The p-adic Eichler—Shimura theory for GSp,. We continue to assume
that G = GSp,, and let A € X*(T)g. We are ultimately interested in the case
that A = (1,1;w). We will now specialize the results of Section 7] in order
to compute the Hodge-Tate structure of the ordinary part of CCy(M(g)y) =
RHomp (A, RI'(Shi2h, Qp)'). We will use some more suggestive notation for the
higher Coleman sheaves now that we specialize to GSp,. Let us briefly summarize
who are the main players.

e For all Kk € X*(T)M:*, we have the classical modular sheaves w"*™ com-

puting classical cohomology.
e Following Definition F6.6, we have the “big” sheaves wi;* on 754 (CJ) for
all k € X*(T)c, and all w € MW. If k € X*(T)™* we have maps
"estol) wi* ® E(—w~twg pk) by Proposition (where the
fwist is & twist of the B(Qp)—action).
. We have higher Coleman theories RI",, (Sh%2}, wi»*) for the big sheaves and

. (Shi;, w™*™) for the classical sheaves.

The superscrlpt (—)°™ means the ordinary part, which is the minimal slope part;

we caution the reader that precisely what the “minimal slope” part occasionally
depends on the context, but will always be spelled out. On CC,(M(g),), the
ordinary part is the slope = 0 part by Theorem [L.7.5] Theorem [4.7.5] specializes as
follows.

Theorem 4.9.1. There is a spectral sequence:
M T
EY (H2p+q 4(Shier, w) T o (Fwxt2p )) ® Cp(—Pw ™ woprp — P))O 15

Hp+q(RHomb(/\, RI'(ShiZh, Q)" @ C,)



MODULARITY THEOREMS FOR ABELIAN SURFACES 103

and similarly:
BP: (H2F - Shg, wh, o A (DY) @ C(—Pu woep — p) T =
HP™(RHomy (A, RT'.(Shi%, Qp)'*)™ @ C,).

If the Shimura variety were proper, we could use Corollary to simplify
the spectral sequence. In our case we will arrive to a similar conclusion after
making a non-Eisenstein localization. We can give a first analysis of the spectral
sequence with the help of some vanishing theorems. The following lemma comes as
a complement to Theorem

Lemma 4.9.2.
(1) For all k € X*(T)g, we have that

Hy (Shigs, whi™ (= D))" = H (Shigh, wii)™* = 0
for all w # 1Id and
Hy,(Shigy, wli® (= D)) = Hi, (Shigh, i)’ = 0

for all w # wi!.
(2) For all k € X*(T)M:*, we have that

HO(Shig5 (= D))" = HY(Shigs, )" = 0
for all w # 1d and
Hiy(Shigh, ™™™ (= D))" = Hy, (Shigs, &™) * = 0
for all w # wit.

Proof. The statements regarding H° and H?® are equivalent under Serre duality
(IBP21, Thm. 6.7.2]). The vanishing of HO(Sh'2},wh ) for w # Id follows
from Theorem The injective map of sheaves wi;®(—D) — w:* induces an
injective map HO (Sh%%, wi*(—D)) — HO (Sh'2%, wh*) which implies the vanishing
of HY (Sh'%, wh*(—D))/* for w # Id. One argues similarly for the sheaf w®s™. [

Proposition 4.9.3.

(1) RHomg (X, RT.(Sh'2}, Q,)')°™ is supported in degrees in the range [1,3].
Moreover (with obvious notation) the graded pieces for the Hodge—Tate de-
compositions are:

(a) H3®C,, : coker(H} (—D) — H} (—D)),H? (—-D),H{ (D), HS (-D).
(b) H* ® C, : H} (—D),Ker(H: (—D) — H} (—D)).
(c) H*® C, : H} (—D).

(2) RHomg (X, RT(Shig;, Qp)'2)°d is supported in degrees in the range [3,5].
Moreover the graded for the Hodge—Tate decompositions are:

(o) H*® Cy : H3 HZ  H! ,Ker(H) — HZ).
(b) H*® Cp : Coker(HS — HZ, ), Hg,.
(¢c) H>® C, : H§, .

Proof. From Theorem and Lemma 9.2 we have that the cohomology
RI, (Sh%%, wl®)/* is supported in the range:

e [0,2] for w = w

e [1,2] for w = lw,

o [2] for w= 2w,
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o [3] for w = 3w
On the other hand, the cohomology R, (Shi%, wh*(—D))f* is supported in the
range:

e [0] for w = "w,
o [1] for w = lw,
e [1,2] for w = 2w,
e [1,3] for w = 3w.

It follows that the spectral sequences of Theorem 9.1l degenerate on the second
page. O

We now fix an irreducible residual representation p : Gq — GSp,(F,). We define
a maximal ideal m of the abstract spherical Hecke algebra of level prime to SU{p}
(where S is the set of primes at which p is ramified or K? is not hyperspecial) by
the formula:

Py(X) mod m; = det(X — p(Froby)), £ ¢ SU{p}
where P;(X) is the Hecke polynomial defined in (L827T).
Theorem 4.9.4. The map RT'(Shih, Q,)m, — RI(Shih, Q,)m, is a quasi-isomorphism.

Proof. Indeed the cohomology of the boundary is Eisenstein by identical arguments
to those of [NT16, §4]. O

Corollary 4.9.5. The maps Rl"w(Sh?Z,wlﬁ(—D))ﬁf’f — RT, (Sh'%, wi; "‘)Orf are
quasi-isomorphisms.

Proof. While this could be proved by analyzing the cohomology of the boundary,
we argue as follows. By Proposition [£.9.3] and Theorem [£.9.4] it suffices to show
that the maps

0w A42oM T Atr2pM
H(?w(Shggz, T —wo,pm (Cw-A4-2p ))ord_>H12w(ShtI?£, ty—wo, m (Fw-A+2p ))ord

)

HE, (Shign, i wom (w20 pyjord _y s (gptor yhewoaCwdb20t) pyyyord

are 0 after locahzing at mp. The second statement follows from the first by duality,
and the first statement follows from the fact that the natural map

HY,(Shigh, wl) (—D))°rd—>How(Sh3?27 Wi )os

mp

is an isomorphism, which is Lemma [£.9.6] below. O

Lemma 4.9.6. The map H{, (Shigh,w w( D))"m’fﬁd — HY (Shig,w w)"mrg is an
isomorphism.

Proof. This is similar to [Pil120, Cor. 15.2.3.1] and [BCGP21l, Lem. 3.10.7], except
that we work with ordinary p-adic modular forms rather than classical forms. We
translate the statement to a result about Hida complexes which can then be proved
as in these previous results but working mod p and with the structure sheaf.

The Hida complexes we consider are constructed in [BP23| and also recalled be-
low in Section[Z.3} they are perfect complexes M, . and Mg, of A = Z,[T(Z,)]-
modules, and there is a natural morphism Mo.w,cusp — Mg,,. The complex MJWCuSp
is projective in degree 0 (and in fact it is the classical object constructed by Hida
[Hid02]), while Mg has amplitude [0,2]. We can also consider the boundary Hida
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complex Mg, 5 = cone(M¢,, .., — Ms,). A priori this has amplitude [—1, 2] but
we will recall below the simple geometric reason that it has amplitude [0, 2].
Below we shall prove that after non Eisenstein localization Mo’w) B.my
plitude [1,2] (in fact it actually vanishes, but since we do not need this, we do
not prove it). This statement implies that for any continuous homomorphism

v:T(Qp) — 6; the morphism

has am-

HO(MO.w,Cusp,mp ®ZI§,U Qp) - HO(MO.w,mF ®k,u Qp) (497)

is an isomorphism, and by the comparison between higher Hida and Coleman theory
[BP23, Thm 6.2.15] and Theorem FL6.56 this is exactly the statement of the lemma.
To prove the claim, by Nakayama’s lemma it suffices to prove that

HO(MO.w,Cusp,mg ®k FP[T(FP)]) - HO(MO.w,mg ®k FP[T(FP)])

is an isomorphism. We now translate this back into a statement about mod p
modular forms on the ordinary locus which we prove by analyzing the boundary.

We consider IG/F,, the special fiber of the (ordinary) Igusa variety correspond-
ing to the pro-p Iwahori subgroup of P'(Q,), in the notation of [BP23| §3.4.5]. We
let m : IG*" — IG* be its (partial) toroidal and minimal compactifications. By
the very construction of the Hida complexes, the map (£9.7) is nothing but the
natural map

HO(IG"", O(=D))od — H(IG**,0)%d (4.9.8)

(For this and the meaning of the ordinary part, see [BP23| §5.2], but note that the
setup is substantially simplified because w = %w.) We remark that even without the
non-Eisenstein localization this map is always injective, which justifies the assertion
made above that the boundary cohomology always has amplitude [0, 2].

We now follow the strategy of [Pil20, Cor. 15.2.3.1] and [BCGP21] Lem. 3.10.7]
to prove that ([AL9.]) is surjective after non-Eisenstein localization. If not then
there is a non-Eisenstein Hecke eigenvector occurring in H(IG**, Op). We write
D* C IG* for the (reduced) boundary. We have 7,0Op = Op- so that H*(D,Op) =
H°(D*,0p-). The boundary D* is a union of (ordinary) Igusa curves crossing at
cusps. We write D* for the normalization, which is a disjoint union of ordinary
Tgusa curves. We have an injective pullback map

H°(D*,0p-) — H*(D*,05.)

There is a compatibility between the GSp, Hecke action and the GL2 Hecke action
at primes away from p and the tame level (see [BCGP21, Lem. 3.10.7] for a precise
statement). This implies that the systems of Hecke eigenvalues in H O(f)*, Op.) are
Eisenstein, as required. (I

Theorem 4.9.9. For any irreducible representation p : Gq — GSp,(F,), the
localization

V = RHom, (A, RI(Shigy, Q,)")me = COA(M (g)x)me

mp mp

is concentrated in degree 3. Moreover, there is a Gq, X Tkr x T(Q,)-equivariant
filtration {Filchp }i=01,2,3 on V@ C, and

A i or ,—w tw- M i =1 rd
Gr'Ve, = (Hl,(Shigh, wly " ") @ Cy(—'w ™ woarp - ),

mp
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The Sen operator is scalar on Gr'Ve, and acts via 7)‘172)‘277“ , 72+A127A27“’ , 74+)‘227)‘17“’ ,

%ﬂ for i =3,2,1,0 respectively.

Proof. This is immediate from Proposition[4.9.3] Theorem[4.9.4land Corollary[4.9.5
O

4.10. Sen and Cousin. We now specialize to A = (1, 1; w).

4.10.1. The Cousin map for the classical sheaves. All the action will be happening
on the union of Bruhat strata (in fact a Q-orbit) Cs, o = Cs,, U C2,,. We have

an extension over wng(Cst), corresponding to the stratification of Cs,, g into
B-orbits, with ja,, spter T (Coy) = T (Cay )

; L —w),s 1L, —w),s L —w),s
0— (JBw,Sh;g;)!w( ) S e s W) bm|7r;11T(c3wQ — Wbl "t () =0
(4.10.2)
Proposition 4.10.3.
(1) The natural map:
Rc(m 7 (Co ), w1 )%™) — RT(Shigy, w1 w)om)
induces a quasi-isomorphism on the ordinary part (the slope = —(1, 1;w)-

part).
(2) Moreover, RTo(myi(Csyp ), w1 w)sm)ord s computed by the following
complex in degrees 2,3 where Cous is induced by the class of the extension

t 3— 3 Cous t L §
ng(ShI?f)’w(l,l, w),sm)ord oy H?w(ShI?f),w(l’l’ w),bm)ord-

Proof. By Proposition L.6.13] we have a spectral sequence (the Cousin spectral
sequence) from local cohomologies converging to classical cohomology. The first
statement is equivalent to the vanishing of the ordinary part of the higher Coleman
theories for the elements “w and 'w. By Theorem [6.60, we find that the slopes on
Hi, (Shigy, wMLi—w)smy are > —(2,2;w) and the slopes on Hi  (Shig,, w(hlimw)sm)
are > (0, —2; —w). Since —(1,1;w)+y = —(2,2; w) and —(1, I;w)4+a = (0, —2; —w)
we conclude that the ordinary part vanishes. The second statement is a consequence
of Theorem and Lemma O

4.10.4. The Cousin map for the big sheaves. Applying the functor V B° to the sheaf
HCSg 3,n(M(ms,)x) of (3.6.5) and twisting the B(Q,)-action by A — 7 yields an

. —1 .
extension over 7 (Csyp )

POy BOHCS 50 (M (ms,,)2))RC, (A=) = wi (M@0, ((2,0;0)) = 0

3w w

(4.10.5)
The natural map in O(ms,,, by, ) (mapping a Verma of dominant weight to its
finite dimensional quotient) M (ms,,)x — L(ms,, )y yields a map

HCSstwﬁn(L(msw)k) — HCSQySwm(M(msw)k).
As in Lemma E6.5] applying V B° gives a map
wbli—w)sm o Cp(n)lﬂzl}r(c3w@) — VBO(HCSQﬁswm(M(msw)k)).

0 = Jsu,shter W

We deduce that there is a map of extensions from [@I0.2) to @I0H) (for clarity
we drop the twist of the B(Qp)-action in this diagram):
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£,(1,1;—w) (1,15 w)

00— ]3w bh‘ wdw _— VBO(HCSQ,SM,U(]\/[(msw)k)) _— w2w —0
00— (j3w,Sh'I‘ )w(l S —w), sm‘ ;117.(6'5 ) —>w(l 1;—w) S‘“‘THT(CJ Q) —)w(l 1;—w) Sm‘wHT(('z 5 — 0

Proposition 4.10.6. The maps
RI:,, (Shi2, w5 2)5m) @ €y (1, 1;w))”d = RI2,,(Sh', wl (M5 @ €, ((2,0;0))°"
RTs,, (Shi2h, wW 1525 @ €, (1, 1;w)) " = RIs, (Shi, wl (11 w)yord

are quasi-isomorphisms.
Consequently we have a quasi-isomorphism

RI(Shigs, w1m) & G, (1, 150))" =

H2, (Shi, wh (M5 @ €, ((2,050))70 “4° H (S, wi (W7 w)yerd

where the complex is in degree [2,3] and the map Cous is induced by the class of

the extension (LI10.5).

Proof. We have the BGG short exact sequence
0— M(msw)(oﬁg;w) — M(msw)(lﬁl;w) — L(msw)(lﬁl;w) — 0.

Applying HCs,, 5 gives a triangle

HC?’w,)\(L(m?’w)(l,l;w)) — HCsw))\(M(msw)(l)l;w)) — Hc3w))\(M(m3w)(0)2;w)) JL>1

By Theorem {.6.60, the ordinary part of HCs,, x(M (msy,)(0,2,0)) is trivial, so that
we get a quasi-isomorphism HC’st\(L(msw)(lyl;w)))ord — HC3w7)\(M(m3w)(1y1;w))Ord.
This translates into the quasi-isomorphism RTs,, (Shi, w1 w)sm)aC,((1, 1;w))'d —
5 (Shi, w) I (1’1’_ ))Ord. The quasi-isomorphism Rz, (Shi2}, w5~ sm@C, (1, 1;w))od —
Rl—‘zw(ShtI?;, Ws., 115 ))®Cp((2, 0;0))°" follows by similar considerations. The sec-
ond part is then immediate from Proposition O

Remark 4.10.7. We also have a quasi-isomorphism

RI(Shigs w2 )5m(— D)) & Cy (2,2 )™ =

HY,, (Shs, wh (W57 (- D)@ C,((3,3;0))¢ “4° HE (Shigh, wl **7) (— D)@ C,((~1, 3;0))

where the complex is in degrees [0,1]. This statement is Serre dual to Proposition
4.10.9

4.10.8. The Sen map. Let V = HB(RHomb()\,RF(Sh}?;,_p)la)omrg). By Theorem
499 Ve, carries a filtration where

o Gr®Vg, = H3, (Shigh,wl ") @ €, (0,0;0)%9,
o Gr’Vg, = H2, (Sh'2, w! “1’1‘ ) ® Cp(2,0;0)99,
° GI‘1VC _le( t}?;, T(2 2§—w))®cp(_1,370>ord
o Gr'Vg, = HY, (Shi2, T<22*‘w>)®(319(3,3;0)0,.;d
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Acting on Vg, we have a Sen operator whose eigenvalues are —1—35,-1—-35, -2~
- 5. The generalized Hodge-Tate weight 1 + F-part of Vc fits in the

following short exact sequence (where O is the Sen operator and we drop the twist

of the B(Q,)-action to lighten the notation):

0 — ng(Shf,?;Z, (1 1; w))ord N VC [(@+1+ 2) ]_> sz(Sht}?Za (1 1;— ))ord Y

(4.10.9)
Since Sen := © + 1 + 7 is nilpotent, it induces a map:

H2,(Shigh, wh (") @ C,(2,0;0)2¢ 29 B3, (Shieh, (W5 T)ad. (4.10.10)
Similarly, by looking at the weight 2+ g-part of V' we obtain the following map:

HY, (Shigh, wh** ™) @ €, (3,3;00¢ 9" Hi (Shigh, wl*F 7)) @ C,(—1,3;0)3

4.10.11. Comparison between the Sen and Cousin map. The following theorem is
one of the main results in this section. It is a generalization of [Pan22al Thm.
5.3.18], in the modular curve case. We will follow the method of proof of [Pil24]
Thm. 6.1].

Theorem 4.10.12. The two maps
Cous, Sen : HZ, (Sh'2, w) ( w)) ® C,(2,0; O)Ord — H3 (Sh$, w) I (1 1;7w))°rd

mp

(coming respectively from Proposition [{.10.6] and [@I0.I0))agree up to a non-zero
scalar.

Proof. We consider RHomg ., (A, O ior )| -1 = VB™4(Loc(M (g),)| )
KP

-1
”HTC%;,Q ”HTC%;,Q

which fits in the triangle (obtained by applying V B to Proposition [3.6.6)):

Eth *2( OShtor | ;IT( ) — RHOmb7*2( OShtor )

3w,0) ”HT( C3..,0)

1 +1
— Ethy*z( OShtor |7THT(C3w Q))[ 1] —

FHTCQ ) (]371) Shtor )ICU';U(j Li—w) and Ext%,ﬁw ()\ Ola

la
where Exty . (A, O Shier Shter,

wi ) @ €, ((2,0,0)).

2w
On RHomy ., (A, Oéhtor |TFHT(CS )), we have (©+1+ %)% = 0. Let us introduce
some simplifying notamons and denote by:

. ,(1,1;—
o X = (Jaw,Sh;gr)'wgug ),

e Y = RHomy ., (A, O

Shtor ;IT( 3w,Q)
«Z- w%ﬁ“*”’@cp((z 0,0))[-1],
e W = RHomp ., o(\, —1 — Olsahtor

7THTC%U Q

)a

|”I;1T(C3w,Q))'
Applying [Stal3l [Tag 05R0] to the commutative diagram

X—Y

lo l((~)+1+%)

X—Y

) =


https://stacks.math.columbia.edu/tag/05R0
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we obtain the following commutative diagram, where all lines and columns are part
of distinguished triangles:

X X[-1]—W—ZaZ-1]|—s X[1]® X

RN

X Y Z X[1]
lo J(®+1+;“) lo lo
X Y Z X[1]
The top horizontal triangle can be written as
(o )!wl;il,l;*w) & (o shies )!wlgl’l;’w)[—l] — RHomg ., (A, —1— %, (’)éah%)

Iy g g

w
(compare ([B.6.7); we again drop the twist of the B(Qp)-action for simplicity and
we note that taking the © + 1 + F-cohomology localizes over w;ﬁp (Cs4,0) s0 we
also drop it from the notation.)
Taking cohomology yields a long exact sequence:

H?(RHomg 4, (A, —1—%,05}%)) — H2,(Shiet, wh(Llmw)) & g3 (gpter (1 Li—w))y

where the map ¢ is induced by the class of the extension (extracted from the top
horizontal triangle):

0— j3w)Sh;?; wl‘;i(}l,l;—w) - EXt%y*%@()\, —1—%, OlSah';?;) — wggl,l;—w)®cp((2, O7 O)) — 0.
(4.10.13)

By definition, the map Sen is equal to §. Now, by Theorem and Theorem

520, the extensions ([AI0H) and (I0TI3) agree up to a non-zero scalar. Thus

the maps Cous, Sen agree up to a non-zero scalar, as claimed. O

4.11. The Eichler—Shimura relation and semi-simplicity. The following is a
special case of a result of Nekovar, [Nek18|. If r is a finite-dimensional representation

of a group I, and g € T', then we write char,( ) for the characteristic polynomial
of r(g).

Proposition 4.11.1. Let p: Gq — GSp,(Q,) and s : Gq — GL,(Q,) be contin-
uous representations (for some n > 1) and assume that

(1) the Zariski closure of p(Gq) contains Spy, and
(2) for a density one set of primes I, we have charp(pmbl)(s(Frobl)) =0.

Then we have s = p®™ for some integer m > 1.

Proof. We claim that the result is an immediate application of [Nek18, Prop. 3.10]
(with ¢ replaced by p), taking I' =I" = Gq, a = r = 1, and the representations p,
p1 of [Nekl8| Prop. 3.10] to be s and p respectively.

The hypothesis (C’) of [Nek18, Prop. 3.10] is immediate from our hypotheses,
taking ¥ to be the set of the Frob; for primes [ satisfying Condition (2]). For hy-
pothesis (A’), since the Zariski closure of p(Ggq) contains Sp, by hypothesis (and is
contained in GSp,), the Lie algebra Q,, - Lie (p(Gq)) is equal to sp, or gsp,, and the
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representation of this Lie algebra induced by p is the standard 4-dimensional rep-
resentation, which is minuscule. We are thus in the situation of part (3) of [Nek18|
Prop. 3.10], and the proposition follows.

We have the following variant of Proposition 1] in the induced case:

Proposition 4.11.2. Let p: Gq — GSpy(Q,,) and s : Gq — GL,(Q,) be contin-
uous representations and assume that

(1) the Zariski closure of p(Gq) contains SLg x SLg,

(2) p is absolutely irreducible but becomes reducible on some index two sub-
group Gg, and

(8) for a density one set of primes I, we have charp(pmbl)(s(Frobl)) =0.

Then we have s = p®™ for some integer m > 1.

Proof. We may write p|g, = 0 ® 0°, where Gal(E/Q) permutes the factors. The
assumption that p is symplectic (together with the assumptions on the image of p)
implies that det(p) and det(¢°) are both the restriction to Gg of the similitude
character of p.

Let ¢ be an irreducible subquotient of s|g,. Assumption ([B]) implies that we
have char,)(t(h)) = 0 for a dense set of elements h € Gz. We may assume
that o, ¢, and ¢ all have models over the ring of integers O of some finite extension
of Qp. Let T" and P denote the Zariski closures of ¢ and o @ p° respectively. By
assumption, T is reductive, and the Zariski closure of t ® o @ p° inside T'® P is also
reductive, and by Goursat’s lemma is the graph of some projections 7 : T — G,
mo ¢ P — G onto a common quotient G. By the Chebotarev density theorem and
continuity, Assumption (B]) implies that the minimal polynomial of any element
in K = ker(m;) divides (X — 1)%. This is because elements in the image of s which
lie in K are limits of s(Frob;) for Frobenius elements Frob;, and by assumption these
will satisfy (s(Frob;) —1)2O™ C #™O" for larger and larger m. This implies that K
is unipotent, which — since T is reductive — implies that K is trivial. Hence G =T
and thus T is a quotient of P. But now from the fact that P contains SLo X SLo,
we see that the only possibilities for ¢ up to twist are Sym’ 0 ® Sym? o¢, from which
one easily sees that ¢t must either be g or ¢°, and thus any irreducible subquotient
of s|g, is either g or o°.

We claim that s|g,, cannot contain any non-trivial extensions of g by ¢ (equally,
of ¢ by ¢°). To see this, note that a generic element in the image of o° acts
invertibly on . Hence the assumptions imply that for of a dense set of h € G, the
characteristic polynomial of g(h) annihilates this extension of p by p. But then the
results follow from the GLg-version of [NekI8| Prop. 3.10] (first proved in [BLRII]).

Now return to representations of Gq. By what we have shown for s|g,, we
deduce that every irreducible subquotient of s is isomorphic to p. Hence it suffices
to rule out the case that s is of the form

0—=p—->W-—=p—0
for some non-split extension W. Note that the restriction W|g,, is an extension:
02080 > Wlg, = 0®0°— 0.
In particular, W|g, corresponds to a Gal(E/Q)-invariant class in

Extg, (0, 0°) @ Extg, (0, 0) ® Extg, (0%, 0°) ® Extg, (0°, 0).
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As already shown, the corresponding extensions of ¢ by ¢ and p¢ by ¢ both split,
so the projection of this class to both ExtéE (0°, 0) and ExtéE (0, 0°) (they are per-
muted by the Galois action) must be non-trivial. In particular, we may assume
that W|g, has a subquotient which is a genuine extension of ¢ by ¢¢. Our assump-
tions on the Zariski closure of the image of p imply that a generic element of p
is regular semi-simple. Thus, by Chebotarev and assumption (3)), it follows that
there is a dense set of elements of Gq which act semi-simply on W. Moreover, since
the tensor product of two semi-simple matrices is semi-simple, the same holds for
the tensor product W ® p¥ and so consequently also for any subquotient of this
representation. We have an exact sequence:

0—=pp’ = Wep' = pp’ —0. (4.11.3)

Write x for the quadratic character of Gal(E/Q), and let n be the similitude char-
acter of p. We have (compare [BCGP21] §7.5.16]) a decomposition

p@p’ ~Q,oQ,x)®di®ad’(0) ®s(o) @1 ®s(o)@n ' @y,

where s(p) is the Asai representation (i.e. the tensor induction). Hence taking
suitable subquotients of ([AI1.3]), we arrive at a pair of extensions
0—=s(o)on ' —-U—-Q,—0,
. _’ (4.11.4)
0—=s(e)en @x—=V—=Q,—0.
We claim that at least one of these sequences must be non-split. The point is
that

Extg, (0, 0) = H'(E,Hom(g, 0°)),

but Hom(p, ¢¢) is the restriction of s(¢9)®@n~! to G, and thus, by Shapiro’s lemma,
we have

HY(E, (s(0)®n ") |as)
HY(Q, (s(0) ®7~") ® ndg2 Q,)
HY(Q,s(0)@n ' ®@x)®H (Q,s(0) @0~ ");

and by construction, the elements of the right hand side corresponding to our non-
split extension of ¢ by ¢¢ coming from W¢g,, are the extensions U,V of [@LIL4).
We consider the case that U is non-split, the case of V' being entirely similar.

To complete the proof, it suffices to show that for any such non-split extension,
there cannot be a dense set of g € Gq which act semi-simply. Write A = s(o) ®
n~!, and let G and H be the Zariski closures of the images of Gq and Gg on U
respectively. By constriction, the Zariski closure of the image of Gq on A is the
orthogonal group O4, and the Zariski closure of the image of G on A is the
index two subgroup SO4 which is isomorphic to the image of SLs x SLy. Any
generic h € Gg will act semi-simply on U because it will have distinct eigenvalues.
However, any g € Gq \ G has 1 as an eigenvalue on both A = s(p)®n~! and A®x
(the eigenvalues in either case take the form 1,—1,\, —\ for some A), so that in
particular the eigenvalues of g on U are contained within the eigenvalues of g on A.
By our semi-simplicity hypothesis, there is therefore a dense set of such g with
the property that the image of g in End(U) is annihilated by the characteristic
polynomial of g on A. By continuity, this extends to all elements of Gq \ Gg and
also to all elements of G \ H.

Ext, (0, 0°)
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Now, G is a subgroup of the semi-direct product N x Oy, where N is the standard
representation of O4 of dimension 4; and the projection G — Oy is surjective.
Since N is abelian, the conjugation action of G on N factors through this surjection,
and since N is an irreducible representation of Oy, we see that either G = Oy (in
which case the extension ([IT4) splits, and we are done), or G = N x Oy, in
which case there are elements g € G ~~ H whose minimal polynomial has degree 5,
a contradiction. (|

4.12. A classicality theorem. Let S be the finite set of primes at which K7 is not
hyperspecial, together with the prime p. In this section we will consider an ordinary
overconvergent modular form f € HY (Sh}%,w>2—w)sm)ord which is an eigenform
for T(Q,) as well as for the spherical Hecke operators at the places not contained

in S. We write xj™ : T(Q,) — 6: for the smooth character corresponding to f.

Via the identification of dual groups, x7™ induces a cocharacter Q7 — T'(Q,,) that
we denote by ¢ — diag(x1(¢), x2(t), x3(t), xa(t)). We write

my € Q,[7(Qy)] ® Q) Q,IGSp4(Q1)//GSp4(Z1)]

1¢S

for the maximal ideal corresponding to f.

Lemma 4.12.1. We have a continuous semi-simple Galois representation py :
Gq — GSp4(6p), which satisfies the following properties (where Py(X) is as
(1) py is unramified at primes £ ¢ S, and

Pg(X) mod my = det(X — pf(FI‘Ob[)).

(2) pflaq, can be conjugated to a representation pflcq, : Gq, — B(Q,) where
the diagonal is given, via class field theory, by the cocharacter

w

2 diagl ()2 G e E g ) e ) )
for 2 € Z), and

1 1 -2

gt TR e) T R ) TR,

Proof. Note that any cohomological, C-algebraic automorphic representation m has
an associated Galois representation pr, (see Section [[L812). This Galois repre-
sentation is furthermore ordinary if m, is ordinary. By a standard argument using
p-adic families, we can interpolate the Galois representations pr , associated to m
of regular weight (see Section [[[812), and we define py to be the representation
corresponding to the interpolation of pxyp ®e 3. ([l

p+ diag(x; ' (p)p~

Remark 4.12.2. The reason for considering ps rather than p]Y ® &3 is that py is
the Galois representation we are likely to realize in the completed cohomology, in
view of Theorem [[.8.20

We will also assume that py is irreducible and write mz, for the corresponding
maximal ideal of the spherical Hecke algebra with Fp coefficients, as in the previous

sections. We let V' = H?(RHomg(\, RT(Sh{%, p)la)gfsf), but we think of this
space as CC’O(M(Q)A)Ordf and not as C’CA(M(g)A)Ordf. In other words we now

mz my

twist the B(Q,) action to make it smooth (and not A-smooth as in section [£.10).
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Lemma 4.12.3. Let f € H(Qw(Shggi,w(2’2?7w)’sm)°rd be an ordinary overconvergent

modular eigenform with Galois representation py : Gq — GSp4(Qp). Let my be the
corresponding mazimal ideal. We assume that py is irreducible and either

(1) the Zariski closure of ps(Gq) contains Spy; or
(2) the Zariski closure of py(Gq) contains SLg x SLa, and p is irreducible but
becomes reducible on some index two subgroup Gg.

Let V = HB(RHomb(A,RF(Shggz,_p)la)ordf). Then Vimy] = py &g W for some

mp
finite-dimensional vector space W # 0.

Proof. Note that V' carries a global Galois action since by results recalled in F.4]
RI(Shi%;,Q,) = RI(Sh{?,Q,). By Theorem I Vo, := V ®g C, has a
P

decreasing filtration with graded pieces {Grchp }i=0,1,2,3 which are certain explicit
spaces of ordinary higher Coleman theories localized at m3 ;- In particular (bearing
in mind Proposition ET0.6]),

Gr'Vo, = (HG, (Shigh, w7 )sm))ord
Let x be the Nebentypus of f (the finite order character giving the action of T'(Z,)
on f). Then each Gr'Vg,[x] is finite dimensional (since we are fixing the slope to
be ordinary, and also the action of T'(Z,)). Taking the x-isotypic part is an exact
operation for smooth T'(Z,)-modules in characteristic 0. We deduce that Vg, [x] is
finite-dimensional and has a filtration with graded pieces the {Gr'Vc, [x]}i=0.1,2,3-
Since H, (Shigy,w%=w)sm)im ] =£ 0, this implies that V[mg] # 0 is finite di-
mensional. The result follows from the Eichler—Shimura relation (Theorem [[8:29)
together with Proposition [IT.1 and Corollary d

By Lemma .12 the representation pf|cq  is ordinary, i.e. pflaq, preserves a
Borel. The representation pf|GQp is de Rham if it fits in an extension:
(1+%) +3%)
0—)pf 2 |GQP —)pf|GQp —>pf 2 |GQp — 0

where p;H%)k;QP(l + %) and p§?+%)|gqp(2 + 4 ) are potentially unramified 2-
dimensional representations. Equivalently, this means that the Sen operator of

DSen(pf|GQp) is semi-simple with eigenvalues —1 — ¥ and —2 — ¥.

Theorem 4.12.4. Let f € HY (Shgp,w@ZE=w)sm)ord pe qn ordinary overconver-
gent modular eigenform with Galois representation py : Gq — GSp4(Qp). Let my
be the corresponding mazimal ideal. Let V = H3(RHomy (), RF(Sh}?Z,_p)la)gfﬁdf).
We assume that:
(1) Either
(a) the Zariski closure of ps(Gq) contains Spy; or
(b) the Zariski closure of pr(Gq) contains SLa x SLa, and py is irreducible
but becomes reducible on some index two subgroup Gg.

(2) The representation pflcq, is de Rham.
(3) There exists an integer n such that dimc, Grchp [mf] =n for each 0 <i <
3, and dimg V[m/s] = 4n.
Q,
(4) The representation p; is irreducible.

Then f is a classical modular form.
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Remark 4.12.5. The simplest way to verify the assumption (3) is to prove the

multiplicity one statement that dimc, H?, (Shi,w*%~%)»sm)[m;] = 1 for each 4

(when this statement is true). This forces dimg V[ms] = 4. Indeed, dimg V[my]
P X P X

is a multiple of 4 by Lemma [A.12.3

Proof. By Proposition 10.6] and ([£TI0.9), we have an exact sequence (where © is
the arithmetic Sen operator):
w . i
0= H, (Shigy, w1 sm)Be 5 Vo, [(04145)%) = HE, (Shigy, w172 — 0
Since © + 1 + 7 is nilpotent, it induces a map:

ord ®+1+ 2
mp .

H2, (Shig, w(tHmw)sm) 3, (St (11w smyord

mpf'

We pass to m-isotypic components. Assumption (B) implies that the sequence:
0— H3 (Shi%,w @ ’1;_w)’sm)°rd[mf] — ch[(®+1+%)2][mf] — H?w(ShtI?f),w(l’l*_w)’sm)ord [(ms] —0
remains exact. Therefore, we get a map

HE,(Shieh, w0t smordf ] S5 g (Shigh, w1 emyerdm ),

The kernel of this map is the space of classical forms H?(Sh'}, w(H1=%)sm) [m ;] be-
cause of Theorem L.10.12/and Proposition &.I0.6] The map is zero since Vg, [my] =
Dgen(ps)®" by Lemma L I23 and © identifies with the Sen operator of p; which
is semi-simple by assumption. It follows that H?(Shig},w(li—w)smyord)m ] =
HZ, (Shig, w-limwhsmyord(y ] This implies that dim H(Sh}%, w3 —w)sm))m;] =

n (by the stability of the L-packet of automorphic forms corresponding to f) and
therefore HO(Shi},w®%—w)sm))m,] = HY (Shi,w@Z—wsmjordiy ] and we
are done.

Remark 4.12.6. The way we have explained the argument, we naturally proved
the classicality of the relevant space of degree 2 cohomology classes, and used
Arthur’s classification of automorphic forms to deduce the classicality of f. This
may seem a bit strange. We should first explain why we focused on degree 2
and degree 3 cohomology classes in the argument, instead of degree 0 and degree
1 cohomology classes. The reason is that the localization Loc(M(g)y) is simpler
on Cs,, o, but has some richer structure on its complement. This rich structure
is irrelevant for the ordinary case, but would cause minor technical problems in
Section [.10l

Still focusing on degree 2 and 3 cohomology as we did, we could also have proven
the classicality of the relevant space of degree 3 cohomology, and then used Serre
duality instead of Arthur’s classification to deduce the classicality of f. In order
to do this, one would consider V/m;V instead of V[my], and the same argument
would apply with minor modifications.

5. AN ORDINARY MODULARITY LIFTING THEOREM FOR UNITARY GROUPS WITH
p=2

Our goal in this section is to prove Theorem [B.7.14, which combines an ordi-
nary 2-adic automorphy lifting theorem with a finiteness theorem for a universal
deformation ring. This result is a slight variant on the 2-adic automorphy lifting
theorems for unitary groups proved by Thorne in [Thol7]; we work with ordinary
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representations and use Thara avoidance, and we use a slighter weaker definition of
adequacy (see Definition £.3.3]). We emphasize that there are no significant inno-
vations here, and indeed the arguments of [Thol7| go through verbatim using this
weaker notion of adequacy. The one minor novelty in our arguments is an argument
using base change to allow us to use an auxiliary prime in order to work at neat
level; the usual choices of such primes for p > 2 rely on choosing a prime at which
all Galois deformations are unramified, which is impossible when p = 2.

We have endeavored to write out the arguments in enough detail to make it easy
for the reader familiar with automorphy lifting theorems for unitary groups which
assume that p > 2 (e.g. [Thol2, BLGGT14]) but unfamiliar with [Thol7] to check
the details (although where these details are literally identical to those of [Tholf]
we do not repeat the proofs). We follow the notation of [Thol7| closely, although we
assume throughout that p = 2, as the analogue for p > 2 of our results is already
known (see e.g. [Thol7, Cor. 7.3]), and in any case the only use of automorphy
lifting theorems for unitary groups in this paper is in the case p = 2.

In §5.11 we recall the notion of polarized representations and clarify the rela-
tionship between essentially self-dual representations Gp+ — GSp,,, (R) and their
associated polarized representations Gg — Ga, (R). In §5.20 we recall the notion of
strong residual oddness defined in [Thol7| and establish some basic facts concern-
ing what this entails for polarized representations associated to essentially self-dual
representations over totally real fields with image in GSp,, (k). (In practice, we
only use the special case corresponding to GSp,(F2).) In §5:3) we discuss variants
of the notion of adequateness in characteristic 2 as introduced in [Thol7]. Finally,
in sections §5.4] §5.5 §5.6] and §5.71 we adapt the arguments of [Thol7| to our
precise setting.

5.1. Polarized representations. Let G, denote the semi-direct product of GO =
GL,, x GL; by the group {1, 7} where

)(g.0))" = (ag™", a).

We let v : G, — GL; be the character which sends (g,a) to a and sends j to —1.
(This group, in the context of modularity lifting, was first introduced in [CHTO0S,

§2.1].)

Let F be an imaginary CM field with maximal totally real subfield F'. For each
infinite place v we let ¢, € Gp+ denote complex conjugation. Let ¢ denote a fixed
arbitrary choice of element in Gp+ \ G with ¢*> = e (so for example one could
take ¢ = ¢, for any v|oo).

Definition 5.1.1. Let k be a perfect field, p : Gp — GL,(k) an absolutely ir-
reducible representation, and p : Gp+ — k> a character. We say that (p, ) is
polarized if there is a perfect pairing (-,-) : k™ x k™ — k such that

(z,y) = —p(c)(y, o),
and for all ¢ € G we have
(p(g)z, plege™)y) = p(g)(x, ).
We have ([Thol7, Lem. 2.2]):

Lemma 5.1.2. If (p, 1) is polarized, then we may extend p tor : Gp+ — Gn (k) with
vor =y and v~ (G2(k)) = Gr; and this extension is unique up to GO (k)-conjugacy.



116 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

If R is any ring, then GO(R) acts via conjugation on the set of homomorphisms

r: Gp+ — Go(R) with r=1(Go(k)) = Gp.

Remark 5.1.3. Note that the GL;(R) factor of G(R) is not in general acting
trivially via conjugation (while it is in the centre of G(R), it is not in the centre
of G,(R)). Lemmas 2.1-2.5 of [Thol7] are analogues for G2-conjugacy of lemmas
in [CHTO08|, §2.1] which work instead with GL,-conjugacy. As well as giving cleaner
statements (for example, the extension of r to p above is unique up to GO (k)-
conjugacy, but the GL,, (k)-conjugacy classes of p are in bijection with k> /(k*)?),
the versions of [Thol7] hold in the case of residue characteristic 2, unlike their
analogues in [CHTO0S].

In Section [L.H we will need to relate representations Gp+ — GSp,(R) to repre-
sentations G+ — G4(R). We now explain how to do this following the construction
of [CHTO08, Lem. 2.1]. Write GSp,,, for the generalized symplectic group defined
by an antisymmetric matrix Ja, (in particular, we can take Jy to be the matrix J
that we use to define GSpy).

Definition 5.1.4. If R is any ring, then we extend the multiplier v : GSp,,,(R) —
R* to a homomorphism

v: GSp,, (R) x {1} - R*
via projection to the GSp,,,-factor, i.e. we set v(g,a) := v(g).
Lemma 5.1.5. There is an injective homomorphism
r: GSpy,, (R) x {£1} = G2, (R)
defined as follows:

(1) r((g:1) = (g.:v(9).
(2) T((gu _1)) = (g,u(g)) : (J2n 7_1)]-
This homomorphism is compatible with v (defined on the source in Definition[5.1.7)).

Proof. The only non-trivial thing to check is that r((g, —1))r((h,—1)) = r((gh, 1)),
which amounts to the claim that

(3 =1)3(h, v (R)) (S, , =1)3 = (h, v(h)).
The left hand side is (noting j = y371):
(Jan's =1y () (J3,' s —1)3 = (I, =1)g(h oy, —v(R))5
= (Jzn , =D)(=v(R)(hT5,) ™" —v(R))
= (—v(h)J3, (hJy, )~ w(R),
so we need to show that —v(h)J,, (hJy, )~ = h. This can be rearranged to
h'Jonh = —v(h)J3,,
and since J§, = —Jy, and h € GSp,,,(R), we are done. O

Corollary 5.1.6. If ¥ : Gp+ — GSp,,(R) is a homomorphism, then there is a
homomorphism ry : Gp+ — Gopn(R) defined by

rolg) = (¥(g),vov(g)) ifg € Gp
(Y(9),vorp(9) - (Jo, . —1)3 if g € Gp+ N GF.

Furthermore we have r;l(ggn(R)) =Gp, andvory =vo1.
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Proof. There is obviously a homomorphism
¥ : Gpv — GSpyy, (R) x {+1}
given by the product of ¢ and the projection onto Gp+/Gr = {£1}, i.e.

= @)1 ifgeGr
w(g)_{(‘/’(g)a—l) if g € Gp+ N GF. (5.1.7)

Furthermore we have v o 15 = vo1. By definition we have ry, =ro 1[, where r is as
in Lemma (.15, and the result follows immediately. O

Remark 5.1.8. If R is a (perfect) field, then we may apply Lemma to the
representation v|g, of Corollary EI.0, and we see that the extension of ¢|g, to
a homomorphism Gp+ — Gapn(R) is well-defined up to G5, (R)-conjugacy. Corol-
lary provides a particular choice of extension (depending of course on our
choice of symplectic form, i.e. on Ja,). The reader may find it helpful to compare
to the discussion at the end of [BLGGT14, §1.1|, which in the case that R is a field
and ©|g, is absolutely irreducible shows that the choice of a specific element in
the G3,,(R)-conjugacy class amounts to choosing b, € GLay,, (R) with

U(ege™) - be(9)" = v(g)be
for all g € Gp. The implicit choice of such an element in Corollary B.1.6]is b, :=
¥(e) T,
5.2. Oddness. We recall the following definition [Thol7, Defn. 3.3].

Definition 5.2.1. Suppose that (p, p) is polarized, that k has characteristic 2, and
that n is even. If v is an infinite place of FT, then we say that (p,u) is strongly
residually odd at v if r(c,) is GLy,(k)-conjugate to (1, 1)

Remark 5.2.2. The idea behind Definition [5.2.1]is as follows. A representation r :

Gp+ — Gn(Q,) is defined to be (totally) odd if vor(c,) = —1 for all infinite places
of F* (see e.g. BLGGTT4, §2.1]). If p > 2, then a representation 7 : G+ — G,,(F))
is odd if voT(¢,) = —1, and any lifting of 7 will automatically be odd. Furthermore,
in either case there is a single GL,-conjugacy class of elements (x,1) of order 2
(because all symmetric matrices are equivalent), so the analogue of Definition 5.2.1]
holds automatically. If p = 2, in contrast, then the condition that v o 7(c,) =
—1 is automatic. However, if n is even, then there are two conjugacy classes of
elements of the form (x,1)7 of order 2 (see [Thol7, Lem. 2.16]). In the situation of
Definition E271] any lift of (p, p) is automatically odd at v, i.e. the lift of y is odd;
this is one motivation for the terminology “strongly residually odd”.

In the remainder of this section, we examine when the representations r, of
Corollary are strongly residually odd at some v. We will ultimately only
need a single example for GSp,, but as it is straightforward to give a general
treatment, we do so. Assume for the rest of this subsection that k& has character-
istic 2, so that in particular Jo, = —Jo, = Jgnl. Let G = GLay, (k) x kX, and
let G.2 = G % Z/2Z = Ga, (k) where the action by the order 2 element 3 is by the
outer automorphism j(g,a);~t = (ag~*, a). Let x : G.2 — Z/2Z be the canonical
projection. By Lemma [5.T5] there is a natural map Sp,, (k) X Z/2Z — G.2 given
by sending —1 to Ja,7. If A € Sp,,, (k) satisfies A2 = I, then (AJ2,,1)-7 € G2\ G
has order 2. Recall (e.g. from the proof of [Thol7, Lem. 2.16]) that any invertible
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symmetric matrix M in GLg, (k) is either equivalent (under M — ¢'Mg) to Ja,
or to I; the former if and only if all diagonal entries of M are zero. In the former
case we say that M is alternating (since the corresponding non-degenerate pairing
satisfies B(z,z) = 0 for all 2) and otherwise we say that M is non-alternating.

Lemma 5.2.3. If A € Sp,, (k) satisfies A> =1, then AJay, is a symmetric matriz
and AJay, - ) € G.2 has order 2. This induces a map

Congugacy classes of Spa,, (k) . Conjugacy classes of G.2 N\ G
of order dividing 2 of order 2

The target has order 2 and consists of the conjugacy classes of 3 and Jay-3. The fibre
over Jop, - ) consists of A for which AJay, is alternating, and the fibre over ) consists
of A for which AJs, is not alternating. The set on the right remains unchanged if we
only consider order 2 elements in G.2~\.G up to conjugation by GLa, (k) C G C G.2.

Proof. For any element v € G.2 \ G, the G.2-conjugacy class of v coincides with
the G-conjugacy class of ~, since any element in G.2 either has the form g € G
or gy with g € G, and (g7)v(g7) ™" = gvg~". If v = (B,b)7 and g = (120, \) € G,
then

gﬂyg_l = (IQH, /\)(Ba b)](12n7 )\_1) = (/\_1 ’ Bv b).]a

but writing A=* = u? (possible since k is finite of characteristic 2), and taking h =
(ulan, 1) € GLayn (k) C G, we also have

h7h71 = (,UJIan 1)(37 b).](,u71]2n7 1) = (/LQ ! Ba b).] = ()\71 ! Bv b).]a

and so the G and GLa, (k)-conjugacy classes of v € G.2 \. GG also coincide.

If A2 =1, then (A, —1) € Spy,, (k) x Z/2Z has order 2 so the image AJa, 7 € G.2
certainly has order 2 and does not lie in G. Moreover, this map certainly induces a
map on conjugacy classes because if A is conjugate to A" in Sp,,, (k), then (4, —1)
is conjugate to (A’, —1) in Sp,, (k) X Z/2Z. The condition that (B,b) -y € G.2 has
order 2 is equivalent to the equation

(B,b)y(B,b)y = (b- B(B")~",b*) = (I,1),

which implies that 5> = 1 and so b = 1 and B = B! is symmetric. Let X5, C
GLa, (k) denote the set of symmetric matrices. Conjugation by (M, 1) € GLay, (k) C
G replaces (B, 1)y by (M BM?*, 1);. Hence the order 2 conjugacy classes in G.2\ G
are the orbits of GLa, (k) acting via M BM?® on X5,. But the orbits of GLa, (k) on
this space are none other than the equivalence class of perfect pairings on k%", and as
recalled above, there are two such orbits, corresponding to B = I and B = Js,,. 0O

5.2.4. Involutions in Sp,, (k). (See the proof of [FGS17, Lem. 4.3]). An involu-
tion A in Sp,,, (k) acting on the natural representation V' preserves a flag

0c(A-1Vcvicy, (5.2.5)

where we write r := dim((A — 1)V) < n for the rank of A — 1. With respect to this
flag, one can (by [FGS17, Lem. 4.4]) write A in the form

I, 0 Sy
A= 0 I2n—27‘ 0 )
0 0 I,
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where S, has rank r and S,.J;. is symmetric. The parabolic stabilizing the flag (5.2.5))
acts on the matrices of this form, and the orbit corresponds to all symmetric ma-
trices equivalent to S,J.. Accordingly, if r is odd, the conjugacy class of A is
determined by r. If » > 0 is even, there are two conjugacy classes corresponding
to S, = I and S, = J,.. In total there are n 4+ 1+ |n/2] conjugacy classes. We see
that
Sy Jy 0 Jr
Aoy = 0 Jon—2r O (5.2.6)
I 0 0

This is non-alternating if either r is odd or r is even and S, = J,. Any involu-
tion A € GSp,,, (k) must have v(A)? = 1 and thus v(A4) = 1, and hence must lie
in Sp,,, (k). In particular, from the discussion above and Lemma [5.2.3] we have the
following:

Lemma 5.2.7. Let ¢ : Gp+ — GSpy, (k) with k of characteristic 2, and let T
Grp+ = Gon(k) be as in Lemma 510 Let v be an infinite place of F*. Then the
polarized pair (Y|g,,v o) is strongly residually odd at v if and only if either

(1) ((cy) — I) has odd rank, or
(2) (¥(cy)—1I) has even rank r > 0, and the matriz S,.J, obtained from (5.2.0)

with A :=1)(c,) is non-alternating.

Equivalently (Y|g,,v o) is strongly residually odd at v if and only if the quadratic
form associated (¢, )2y is equivalent to the one associated with Iy, which occurs
if and only if ¥(cy)Jan has at least one non-zero diagonal entry.

Remark 5.2.8. If n = 1, then either A is trivial or A — I has rank r = 1. Hence in
this case strong residual oddness is equivalent to A # I (cf. [Thol7, Lem. 3.5(ii)]).
This is no longer true for n > 1; there are n conjugacy classes of involutions giving
rise to strongly residually odd representations and 1 + [n/2] conjugacy classes of
involutions which do not. In particular, for 2n = 4, there are two conjugacy classes
of involutions giving rise to strongly residually odd representations and two (one
of which is the identity) which do not. Explicit representatives for the odd classes
can be given as follows:

1 0 0 1 1 0 0 1
01 00 01 10
001 0}’ 001 0}’
0 0 01 0 0 0 1

where the latter is conjugate to Jy, and an explicit representative for the non-trivial
non-odd involution is given by

1100
01 00
0 011
0 0 01

When we later fix (in Lemma R3] an explicit isomorphism Sg ~ Sp, (F2), the first
two elements can be identified with the images of (1,2), and (1, 2)(3, 4) respectively,
whereas the latter can be identified with (1,2)(3,5)(4,6) (See also the proof of
Lemma [B2.4])
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5.3. Adequacy. Let ad = Hom(V, V) denote the adjoint representation and ad’ C
Hom(V, V) the submodule of trace zero endomorphisms. We begin with the fol-
lowing lemma just to clarify that the definition of weakly adequate used in [Thol7,
Defn. 2.20] (which is case () of Lemma 531 below) agrees with other definitions
in the literature.

Lemma 5.3.1. Let V be a finite-dimensional vector space over a finite field k, and
let HC GL(V). The following conditions are equivalent:

(1) For each simple k[H|-submodule W C ad ®k, there exists a semi-simple
element o € H with an eigenvalue o € k such that tr(e, oW) # 0. (Here
€g.a 18 the g-equivariant projection onto the generalized c-eigenspace of g.)

(2) For each simple k[H]-submodule W C ad® ®Fk, there exists a semi-simple
element o € H with an eigenvalue o € k such that tr(e, o W) # 0.

(3) End(V) is spanned by the set H* of semi-simple elements of H.

Proof. This follows directly from the proof of [Thol2, Lemma A.1]. More precisely,
it is shown there that we have an equality

U:={wead®k: tr(gw) =0 Vg€ H*}
= {w € ad®k : tr(egqw) =0 Vg€ H® a € k}.

Note that U is an H-submodule of ad ®k; suppose that w € U, g € H*, and h € H.
The element h via the natural action sends w to hwh ™!, and then

tr(ghwh™') = tr(h~*ghw) = 0,

since h~1gh € H* and w € U. Condition (@) is equivalent to U = 0, whereas
conditions (1) and (@) above are equivalent to the intersection of U with the so-
cle of ad ®k (respectively, the socle of ad’ ®Fk) being trivial. Since U C ad’ @k
(take g = 1), the result follows. O

Definition 5.3.2. We say that H C GL(V) is weakly adequate if the equivalent
conditions of Lemma (3T hold for H. A representation p : G — GL(V) is weakly
adequate if im(p) is weakly adequate.

As remarked in [Thol7| (after Definition 2.20), if H is weakly adequate, then H
acts absolutely irreducibly on V' as a consequence of condition [3] of Lemma [5.3.1]

Definition 5.3.3. Let k be a subfield of F5. We say that a finite subgroup H C
GL,, (k) is nearly adequate if:

(1) H is weakly adequate.

(2) HY(H,k) = 0.

(3) HY(H,ad) = 0.
We say that a representation p : G — GL(V) is nearly adequate if im(p) is nearly
adequate.

Remark 5.3.4. The definition of a nearly adequate subgroup is almost the same
as the definition of an adequate subgroup [Thol7, Defn. 2.20]. Indeed the only
difference is that we are assuming that H!(H,ad) = 0, rather than the stronger
assumption that H'(H,ad /k) = 0 (which implies the vanishing of H!(H,ad) in
conjunction with the assumption that H'(H, k) = 0).
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The point of our definition is that, as we explain below, the arguments of [Thol7|
apply unchanged with “adequate” relaxed to “nearly adequate”, and in our applica-
tions we will need to work with representations which are nearly adequate, but not
adequate. (See Lemma and Remark B2.3])

5.4. Galois deformation theory. We now recall some facts about Galois defor-
mation theory when p = 2. The results we need are essentially identical to those
of [Thol7, §2.1], except that we need to work relative to a larger coefficient ring
(the weight space A), which we do following [KTI17b §4].

We continue to assume that F' is an imaginary CM field with maximal totally real
subfield F*, and we assume that F'/F'T is everywhere unramified, and that all places
of F* dividing 2 split in F. We write S for the set of places of '™ dividing 2, S, for
the set of places of F'* dividing co, and S for a finite set of places of F'* containing
Sy U Ss. Let F(S) be the maximal Galois extension of F' unramified outside
of S, and write G+ g := Gal(F(S)/F™), Gp,s := Gal(F(S)/F). Throughout this
section we will use the notation established in Section [[.8 specialized to the case
p = 2, so that for example we have our field of coefficients E/Qg with ring of
integers O, uniformizer w, and residue field k.

We fix a representation 7 : Gp+ g — Gn(k) such that 7~1(G%(k)) = Grs, to-
gether with a character x : Gp+ g = O* with ¥ = v o7 and x(c,) = —1 for
all v € Soo. We abusively write T|g,. s for the representation given by restriction
to Gp,g and projection to the GL, (k) factor in G)(k). We assume that |g, ¢ is
absolutely irreducible. We often write p for 7|g . 5.

For each v € S, we fix A, € CNLp, and set A = ®,e5A,, where the completed
tensor product is taken over O. For each v € S, the canonical map A, — A induces
the forgetful functor CNLy — CNL,, .

As in [Thol7, Defn. 2.6], a lifting of 7|, to a CNL,,-algebra A is a continuous

homomorphism 7, : GFJ — Gn(A) such that ry mod my = F|GF+ and vor, =
X|GF+' We let LiftE : CNLj, — Sets be the functor sending A to the set of liftings
of F|GF+. The functor LiftvD is representable by an object RY € CNL,,. If v

splits in F', and r, is a lifting of F|Gp+’ then 7, (Gpr+) C GY(A), and we sometimes
write py : GFJ — GL,,(A) for the projection of r, to the GL,, factor.
A local deformation problem for F|GF . is a representable subfunctor D, C LiftqlJj

such that for all A € CNL,,, the set WDU(A) is invariant under the conjugation
action of G,,(A4) on Lift, (A).
A global deformation problem is a tuple

S = (F7F707X7S7 {A’U}’U657 {DU}UES)7

where:

o 7,0, x, S, and {A,},cs are as above.
e For each v € S, D, is a local deformation problem for ﬁ|GF L

As in the local case, a lift (or lifting) of 7 is a continuous homomorphism 7 :
Gr — Gn(A) to a CNLj-algebra A, such that »r mod my = 7. We say that two
lifts 1,72 : Gp — Gn(A) are strictly equivalent if there is an a € §n(A) such that
ro = aria”'. A deformation of T is a strict equivalence class of lifts of 7.
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For a global deformation problem

§= (F7 Fv Oa X S? {A’U}’UGSa {DU}UGS)a

we say that a lift » : Gp — G,(A) is of type S if r|g,, € Dy(A) for each v € S.
Note that if r; and ro are strictly equivalent lifts of 7, and r; is of type S, then so
is 2. A deformation of type S is a strict equivalence class of lifts of type S, and
we denote by Defg the set-valued functor that takes a CNLj-algebra A to the set
of deformations r : Gp — G, (A) of type S.

Given a subset T C S, a T-framed lift of type S is a tuple (r,{ay,}ver), Where
r: Gp — Go(A) is a lift of 7 of type S and a, € Gy (A) for each v € T. We say
that two T-framed lifts (r1, {ay }oer) and (r2, {8y }ver) to a CNLj-algebra A are
strictly equivalent if there is an a € §n(A) such that ro = arja™! and B, = ac
for each v € T. A strict equivalence class of T-framed lifts of type S is called a
T-framed deformation of type S. We denote by Defg the functor CNLy — Sets
taking A to the set of T-framed deformations to A of type S.

Let S = (F,7,0,x, S, {Av}ves, {Dv}ves) be a global deformation problem, and
let T be a subset of S. The functors Defs and Deffg are representable (see [Thol7l
Lem. 2.8, Lem. 2.10]); we denote their representing objects by Rs and ng, respec-
tively. If T' = ), then tautologically Rs = Rg, while if T' is nonempty, Rg is a
formally smooth Rg-algebra of relative dimension (n? + 1)#7T — 1.

Let T be a (possibly empty) subset of S such that A, = O for allv € S\ T.
Write R, for the representing object of D,,, and define Rg’CT = QA@UGTRU, with the
completed tensor product being taken over . It is canonically a A-algebra, via
the canonical isomorphism @UeTAU = @UegAv. For each v € T', the natural trans-
formation Defs — D, given by (p, {aw Jver) — o, ' plGy, oy induces a morphism
R, — Rg in CNL,,. We thus have a morphism R}é’CT — Rg in CNL,.

In [TholT7, §2.2], the relative tangent space to this morphism is computed via
Galois cohomology. (Strictly speaking this reference has A, = O for all v, but the
A-algebra structure does not intervene in the calculation.) More precisely, there is
an explicit chain complex of k-vector spaces Ofs,T with cohomology groups H}s,T of

k-dimensions h% 1, and by [Thol7, Lem. 2.12|, we have dimy, mpr /(Mg m.) =
3 s S
hé_’T, so that there is a surjection of Rg’fT-algebras Rg’CT [X1,..., X Tﬂ — REL.

Since we do not need any properties of Ofs,T and its cohomology groups beyond
those proved in [Thol7, §2.2], we do not recall their definitions here. (It may
however be helpful to point out that there is a typo in the definition of Cg 1 for ¢ >
3: the sum over places v € S should be of C*~1(F,", adF), not C*~1(F(S)/F*,adF)
as written in [Thol7].) We do however need to consider a certain dual Selmer
group Hg, ;. of k-dimension hg, ;, and we now turn to its definition (see (.4.3)
below).

We identify ad 7 with C/}in(k[e]), and we write g, for the adjoint representation
on Gy, (k[e]), so that we have an exact sequence of G F+,s-modules

0—ad? — g,7 =k — 0. (5.4.1)

For each v € S, we as usual identify Lift>)(k[e]) with the cocycles Z'(F.f,adT),
so that two liftings to kle] are G, (k[e])-conjugate if and only if the images of the
corresponding cocycles in H!(F,, g,7) coincide. (If v splits in F, this is equiv-
alent to their images coinciding in H'(F,",ad7).) We write £} C Z(F,\, ad¥7)
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for the cocycles corresponding to liftings in D, (k[e]), and L, for the image of L}
in HY(F,\,ad7). We write I}, 1, for the dimensions of the k-vector spaces L., L,
respectively. We define

to = ker (H'(F\,adT) — H'(F,[, gaT)) .

From the long exact sequence in cohomology associated to (.4.1]), there is a natural
identification

po = im (HO(ES k) — HY(F,S,adT)), (5.4.2)
and so dim(y,,) < 1. Note that since (by definition) D, is stable under conjugation
by g}, we have p, C L,, and p, is trivial if v splits in F (since in this case (5.4.1))
splits as a sequence of G Fj—modules). (Note however that the places in S, do not
split in F', and indeed if (p, u) is strongly residually odd at v € Sy in the sense of
Definition (2.1 then p, is 1-dimensional by [Thol7, Lem. 2.17(ii)].)

The trace pairing (X,Y) — tr(XY) on ad7 is perfect and Gp+ g-equivariant,
so ad7(1) is isomorphic to the Tate dual of ad7. (Of course, since p = 2, the
Tate twist is trivial, and ad7 is self-dual, but to avoid confusing the reader who
is used to the case p > 2, we preserve the Tate twist in our notation below.) For
each v € S we let £;- C H'(F,",ad7) be the annihilator of £, under this pairing,
and write y;- O L for the annihilator of i,.

For any T'C S as above (i.e. for any T such that A, = O for all v € S\ T) we
define the dual Selmer group

1 —
Hg. 7=

ker (Hl(F(S)/F+,adF(1)) = [ H' (75 ad7) /ey < [] H%Fj,ad?(l))/ﬁﬁ) .

veT veESNT

1 — T 1
sL = dimy, HSL,T'

by [Thol7, Lem. 2.15] and our assumption that 7|, s is absolutely irreducible,

the hj ;- vanish for i # 1,2, and we have h% , = h}si,T' (The assumption that T

is nonempty guarantees the vanishing of h%yT, and the vanishing of hfs,T fori >4
is automatic, as in the proof of [Thol7, Lem. 2.13].)

As usual, we write h Assume that T is nonempty; then

Remark 5.4.4 (Remarks on p, and our deformation problem.). We now try to
explain where the terms p- in (5.43) come from. A possibly unilluminating an-
swer is that they are necessary in order to prove that h3 . = hg, 5. Indeed, the

proof [Thol7, Lem. 2.15] is as usual via the Poitou-Tate sequence, and the ;- arise
because of the appearance of the cohomology groups H!(F,",ad7)" in the long ex-
act sequence in [Thol7] computing the Hf . Here H'(F,",adT)" is by definition
the image of the map

HY(ES, ad7) — H'(F}, g,7),
and fi, is its kernel, whence the appearance of - as the dual Selmer condition.

A possibly more helpful explanation is as follows. In the usual Kisin modifi-
cation of the Taylor—Wiles method, when one presents a global deformation ring
over a (completed tensor product of) local deformation rings at primes v € T,
the corresponding Selmer condition £, at v is trivial. In our setting (exactly as
in [Thol7]) we are considering deformations p : G+ — G,,(A) which are equiva-

lent under G, (A). As in Remark F.1.3, conjugation by the (/}il(A) factor of G(A)

(5.4.3)
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does not in general act trivially on deformations. The group p, exactly measures
deformations p which are not equivalent under conjugation by GL, (A) but become
equivalent under conjugation by G(A).

An alternative way to view these general deformation problems would be to work
purely with conjugate self-dual G g-representations. In this setting, the Selmer
groups are naturally subgroups of H!(F(S)/F,ad7)F/F")  To compare these
approaches, note that, (since 7 is irreducible so (ad7)“F = k) there is a natural
inflation-restriction sequence:

0— HYF/F* k) — HY(F(S)/Ft,ad7) 2= HY(F(S)/F,ad7)Sa(F/F)

(5.4.5)
— H*(F/F*,k) — H*(F(S)/F™, k).

The first group is 1-dimensional, and (for example by an explicit cocycle compu-
tation as in the proof of Lemma below) its localization at any prime v € S
agrees with p,,. On the other hand, since F/F* is CM, for any real place v, the
composite map

H*(F/F* k) — H*(F(S)/FT, k) = H*(E', k)

is injective (and indeed an isomorphism), so the restriction map in (E45) is sur-
jective.

5.5. Taylor—Wiles systems. We briefly recall the deformation condition that we
use at Taylor—Wiles primes, and the notion of a Taylor—Wiles system, follow-
ing [Thol7, §§2.3.2, 2.4]. A Taylor-Wiles prime is a finite place v of F* which
splits in F' and is such that 7 is unramified at v with 7(Frob,,) semi-simple. At such
a v we choose an eigenvalue «, € k of multiplicity n;, and decompose

ple,, = A, ® B, (5.5.1)

with A, (Frob,) = a, - 1,,. The local deformation problem DIV is given for each
R € CNL, by declaring that r € DFW(R) if there is a decomposition

p= A, ® B,
lifting (E.5.1]), with B, unramified and A”|1F+ =1, - 1, for some ), : Ips — R*.

Note that while DIV depends on the choice of ay, it is omitted from the notation.
Note also that D'V is indeed a local deformation problem, by [Thol2, Lem. 4.2].

We write A, = k(v)*(2) for the 2-part of k(v)*. For any p € DIV (R), the
character v, o Art p+ gives a canonical homomorphism A, = R*.

Definition 5.5.2. Let S = (F,7, 0, x, S, {Av}ves, {Dy}ves) be a global deforma-
tion problem, and set T = S \ Ss. For each N > 1, a Taylor—Wiles datum of
level N is a pair (Q, (o )veg) such that

(i) Q is a finite set of places of F'*.

(ii) For each v € Q, we have v ¢ S, and v splits completely in F'((on).

(iii) For each v € Q, p(Frob,) is semi-simple, and a, € k is an eigenvalue of
p(Frob,).

For each Taylor-Wiles datum (Q, (ay)vecg), we define the corresponding aug-
mented global deformation problem

SQ = (Fv T, O, X Su Qa {Av}v657 {D’U}'UGS U {DUTW}UGQ)a
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where for each v € Q the local deformation problem DEW is defined using the
choice of eigenvalue o, € k. Write Ag := [[,cok(v)*(2). Then the canonical
homomorphisms A, — R* give a canonical homomorphism O[Ag] — Rs,, and
we have a canonical identification Rs, ®o[ao) O = Rs.

The following lemma shows that it is not possible to kill all the classes in the
dual Selmer group by adding Taylor-Wiles primes. We will shortly see that it is
however possible to kill all but one class (more precisely, all but a one-dimensional
space of classes), and that this is enough to patch.

Lemma 5.5.3. Let S = (F,7,0,x,S,{Av}ves, {Dv}ves) be a global deformation
problem. Set T = S\ Soo. Then for N sufficiently large with respect to F*, and
any Taylor-Wiles datum Q of level N, we have hl > 1. In particular, taking

Q =0, we have hl > 1.

SLT
st.T

Proof. Let K} be the maximal totally real subfield of Q((am). Assume without
loss of generality that K, | C F* C K. Let LT /F* be the totally real quadratic
extension of F' given by LT = FT.K;} so LT € F*({am) C F((am), and assume
that N > m. We claim that the class ¢ in H'(F(S)/F*,ad7(1)) which is inflated
from HY(L*/F*,k) (via the inclusion of the scalar matrices into ad7 = ad7(1)) is
necessarily contained in H % s5.T for all Q of level N > m.

Since LT is totally real, 1/) is trivial at all of the infinite places of F'". In addition,
each prime in Q splits completely in F((a~) and hence also in F({am) and thus
in LT. Hence 1 is also trivial at all of the places in Q.

It remains to show that (the restriction of) ¢ is contained in y;- for each finite
placev € S. Let A, C H'(F,},adT) denote the the image of the map H'(F,\, k) —
HY(F;,ad7) induced by the map k — ad7. Certainly ¥, € A,; we now show
that u, C A, and then analyze the pairing A, x A, — k.

From (542) we have p,, = im(d,), where

5y ik — HYF}, ad7)

is the boundary map in the long exact sequence in cohomology obtained from the
action of G+ on (B.4IJ). The short exact sequence (5.4.1) has a G'p-equivariant
splitting g,7 ~ adT@® k. Choose a lift (0,1) of 1 € k compatible with this splitting.
The corresponding cocycle ¢ = §,(1) vanishes on Gr and sends ¢ € Gp+ \ G
to ¢(0,1) — (0,1) = (1,,0) € adT, so ¢ € A,, i.e. p, T A,.

Since the images of cocycles in A, are contained in k C ad7 and since the self-
duality on ad7 is given by (X,Y) — Tr(XY), the Tate pairing A, x A, — k
may be computed by first evaluating the pairing on & C ad7 and then multiplying
by n = Tr(I,,). If n is even, it follows that A, C A}, so that A, C ug, as required.
This completes the proof when n is even (which is the case which we ultimately
use). When n is odd, we must investigate more closely the pairing on k C adT.

The Tate pairing

HYE k) x HY(FS, k) — H*(F k) =k (5.5.4)
for any v is given by the (local) Hilbert symbol:
(k, %) 1 FTXJFEX2 5 X phx2 . (5.5.5)

More precisely, the relation between (£.5.4) and (5.5.5)) is given by first identifying k
with e ® k and H*(F,f, p2) with F> /F+>2 and then tensoring (5.5.5) with .
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The class associated to p,, C A, is the class cg, coming by localization from the
extension F/F*, and the class associated to ¢ C A, is the class ¢+, coming
from L/L*. Tt therefore suffices to show that
(Cruscr+ p)v = 1.

By assumption, F//F* is unramified at all finite primes and L™ /L is unramified
outside v|2, so the pairing vanishes at all finite primes away from v|2. (For primes
of odd residue characteristic, the Hilbert symbol vanishes when restricted to units).
Since LT /F7T is totally real, the Hilbert symbol also vanishes at v|oco. Finally, we

are assuming that the primes above 2 in F'* are totally split in F/F*, so ¢p, is
trivial for v|2 and the pairing also vanishes for v|2. O

The following is identical to [TholT, Prop. 2.21] except with “adequate” replaced
by “nearly adequate.” The proof is identical, but we go through it in detail in
order to show exactly where each hypothesis in Definition is used (or more
precisely, to show that the hypotheses in Definition are the only ones used
in the proof of [TholT, Prop. 2.21], and the stronger assumption made there that
p(Gr) is adequate is in fact never used).

Proposition 5.5.6. Let S = (F,7,0, x, S, {Av}ves, {Dv }ves) be a global deforma-
tion problem, and let T =S \ Soy. Assume that:
(i) For each v € Ss, p(cy) = —1 and D, = LiftE.
(ii) F = FH(y/-1).
(111) If n is even, there exists an infinite place v of Ft such that (p, p) is strongly
residually odd at v.

(iv) The group p(Gr) C GL, (k) is nearly adequate.
Write q = héJ-,T —land g = q+#T —1—[F* : Qn(n — 1)/2. Then for
each N > 1 there are infinitely many Taylor-Wiles data (Q, (ay)veo) of level N
such that #Q = q and the map R?CT — ngg can be extended to a surjection

RS [X1, ..., X,] — R§,.

Proof. We follow the proof of [TholT, Prop. 2.21] very closely, assuming throughout
that p = 2. As usual in arguments constructing Taylor—Wiles data, the proof begins
by using the material on Galois cohomology recalled above to reduce to showing
that for each N > 1, there are infinitely many Taylor-Wiles data (Q, (aw)veg)
of level N such that héé,T =1= h}si,T — #Q. (This second equation is of
course equivalent to #@Q = ¢ by the definition of ¢.) This reduction uses assump-
tion in the statement of the proposition, but makes no use of adequacy, so goes
over unchanged under our assumptions. Since a Taylor—Wiles datum of level N is
also a Taylor—Wiles datum of level M for any M < N, we can and do assume
that N is sufficiently large to ensure that Fy := F((yn~) strictly contains F. Let
Y] € Hgy , € H'(F(S)/F*,ad7(1)) be a cohomology class with nonzero image

in HY(F(S)/Fn,ad7(1)). We claim that:

Claim 5.5.7. There are infinitely many Taylor-Wiles data ({w}, o) of level N

with [¥] ¢ Hyy -

Admitting the claim for now, the proof of the proposition is as follows. Write s for
the dimension of the image of H§, ;. in H'(F(S)/Fn,ad7(1)). Applying the claim
repeatedly, we see that there are infinitely many Taylor—Wiles data (Q, (aw)ve0)
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of level N such that #Q = s, hi, . = hg, 7 — #Q, and the morphism H, . —
Q ’ o>
HY(F(S)/Fn,ad7(1)) is zero. We therefore have
H%VT C HY(Fy/FT,ad7(1)%~) (5.5.8)

(because by inflation-restriction, H'(Fx/F*,ad7(1)“F~) is the kernel of the re-
striction map H(F(S)/F*,ad7(1)) — H*(F(S)/Fxn,ad7(1))).

It only remains to show that h}sé,T = 1. It is now time to use that p(Gr)
is nearly adequate. We begin by using points () and 2] of Definition The
latter implies that (indeed, is equivalent to) p(Gr) has no normal subgroups of
index 2, so that 5(Gr,) = p(Gp). Then the former implies that p(Gp, ) acts ab-
solutely irreducibly, so that ad7(1)9"~ = ad7“F~v = k, the scalar matrices. In
particular we have H'(Fy/F*,ad7(1)9"~) = H'(Fx/F*,k). We are assuming
that F = F*(y/—1) (Assumption in the statement of the proposition) and
that Fiy = F((y~) is non-trivial over F. Together, these imply (since p = 2) that
HY(Fn/F*,k) is two-dimensional. By assumption ((ii)), together with [Thol7,
Lem. 2.17(ii)] (and [Thol7, Lem. 2.16] in the case that n is odd), there is a
place v € S, such that the morphism H(F) k) — HY(F,,ad7) is injective
(this morphism being the one induced by the inclusion of the scalar matrices in
ad7). In particular, for such a place the composite H'(Fy /F*, k) — HY(F, k) —
HY(F;,ad7(1)) is nonzero (because the first map is nonzero, for example because
F/F™ is an imaginary CM extension contained in Fy/FT and F." is real). (Note
that in [Thol7] there is a typo, asserting that this composite is injective, but being
nonzero is all that is needed.) Now, by definition (i.e. by (B43)) the restriction
to HY(F,f,ad7(1)) of any class in H}SJ-,T vanishes; indeed, our choice of T' gives
Se = S N T, and by assumption in the statement of the proposition, we
have £} = 0 for all v € co. Going back to (5.5.8) (and recalling Lemma [5.5.3) we
see that h}SL,T =1, and we are done.

It remair?s to prove Claim 557 Accordingly, we let

W] € Hy, p C H'(F(S)/F*,ad7(1))

be a cohomology class with nonzero image in H'(F(S)/Fy,ad7(1)). By [Thol7,

Lem. 2.19], finding a Taylor-Wiles datum ({w}, cv,,) of level N with [¢)] ¢ HS, .
{wy

amounts to choosing w, o, such that
e w splits completely in Fi, and p(Frob,,) is semi-simple; and
e a, € k is an eigenvalue of p(Frob,,) such that trepyob,, a,, ¥ (Froby) # 0,
where epyob,,,a,, 1S the unique idempotent in k[p(Frob,, )] whose image is
the au,-eigenspace of p(Frob,,).
By Chebotarev, it therefore suffices to find o € Gp, and « € k such that p(o) is
semi-simple, and « is an eigenvalue of p(o) with tre, ot (o) # 0.
Let K/F be the extension cut out by ad p, and write Ky = K- Fy. Let f denote
the image of [1)] under the restriction map

HY(F(S)/F*,ad7(1)) — H'(F(S)/Kx,ad7(1))#+. (5.5.9)

By the definition of K, the action of Gg, on ad7(1) is trivial so this image is a
homomorphism f : Gal(F(S)/Ky) — adT. We claim that f # 0. To see this, note
that the restriction map (5.5.9) factors through the restriction map

HY(F(S)/F*,ad7(1)) — HY(F(S)/Fx,ad7(1)),
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and by assumption, the image of [¢] in H'(F(S)/Fn,ad7(1)) is nonzero. It there-
fore suffices to show that the kernel of the restriction map

HY(F(S)/Fn,ad7(1)) = H(F(S)/Ky,ad7(1))

vanishes. By inflation-restriction, this kernel is H'(Ky/Fy,ad7(1)). As we saw
above, by Definition[5.3.3] ) we have p(Gry ) = p(GF), so that H' (K /Fn,ad7(1)) =
H'(p(GF),adF). This vanishes by Definition 5.3.3] [@3)), as required.

Let V C adp be the k-vector space generated by the image of f. Since f is
Gy -equivariant (as it is restricted from [¢]), V is a k[GF,]-module, and we let W
be a simple k[Gp,]-submodule of V. By Definition B33 () (and again using
that (Gpy) = p(GF)), we may find o9 € Gp, and ag € k such that p(og) is
semi-simple, and «ag is an eigenvalue of p(og) with tregsy o, W # 0.

If treq,.at(o0) # 0, then we are done, taking ¢ = 0¢ and o = «ap. Suppose
instead that tr ey, ,q,%(00) = 0, and choose any 7 € K such that tr ey, o, f(7) # 0.
(Such a 7 exists, because treq, qo,W # 0, and by definition V is spanned as a k-
vector space by the varying f(7).) We set o = 709, so that p(c) is a scalar multiple
of p(0v), and we let « be the corresponding scalar multiple of g, so that e, o =
€oo.00- We have (o) = (0g) + ¥(7), so that tres o1 (0) = treg,.a0f(T) # 0, as
required. (I

5.6. Local deformation problems. We now assume that all finite places v € S
of F* split in F, and choose a place ¥ of F above each v € S. We write S for
the set of places v with v € S finite, and Sy C S for the places lying over 2. For
each v € S we can and do identify liftings of F|GF . with liftings of pla,._.

5.6.1. Local deformation problems for vt 2. The following two lemmas are presum-
ably well known, but for lack of a reference we give a proof.

Lemma 5.6.2. Suppose that v { 2. Then there is a finite extension F./Fy such
that any lifting of p|la.. becomes unipotently ramified after restriction to GF%.

Proof. Since the universal lifting ring of p|g, is O-flat by [Shol8 Thm. 2.5], it
suffices to prove this for closed points of its g%neric fibre. Since this generic fibre
has finitely many connected components, it suffices to prove the result for the
closed points of any single connected component. For each connected component,
it suffices to prove the result for a single point on that component by [BLGGTI14,
Lem. 1.3.4(1)] (a theorem of Choi), and the result is immediate. O

Lemma 5.6.3. Suppose that v { 2, that p|G,. is unramified, and that p(Frobg) is
regular semi-simple. Then any lifting of F|GF§ is strictly equivalent to a direct sum
of characters. In particular, there is a finite extension FL/Fy such that any lifting
of ﬁ|GFﬂ becomes unramified after restriction to Gp:.

Proof. The second statement follows from the first by Lemma [(.6.21 Since ¢, = 1
(mod 2), the first statement is standard, and may for example be proved by an

identical argument to the proof of Lemma [6.1.0] O
Now let Xv,15.-s Xvn : O;ﬁ — O be finite order characters, which are trivial

modulo w. Suppose that p|g,. is trivial. We write DX for the set of liftings p of
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Play. to objects of CNLp such that for all o € I, we have

-1
char, ;) (X) = H (X — Xo,j(Artp, (o)) ).
i=1
Write RXv for the corresponding local lifting ring. The following is [Thol2, Prop.
3.16].

Proposition 5.6.4.

(1) Suppose that x,; = 1 for each j. Then each irreducible component of R}
has dimension n* + 1, and every prime of R minimal over w contains a
unique minimal prime. Every generic point of R is of characteristic zero.

(2) Suppose that the X ; are pairwise distinct. Then Spec R¥* is irreducible of
dimension n? + 1, and its generic point is of characteristic zero.

5.6.5. Local deformation rings for v|2: ordinary deformation rings for v|2. We now
recall the ordinary deformation problems introduced in [Gerl9, §3], and studied
there and in [Thol5l §3.3.2]. Suppose that v|2 and that p|g, can be conjugated
to an upper-triangular representation whose diagonal characters are Xir-->Xn °
Gp, — k* (in that order). Let Agr, . be the completed group ring of the group
I32(2)", where (2) denotes pro-2 completion. Let (x1,...,Xn) denote the universal
n-tuple of characters Ir, — Agy, , lifting (X1 |1e -+ X |15, )-

A

v

Proposition 5.6.6. There is a local deformation problem D
CNLag,, ,-algebra RvA with the following properties.

(1) RS is reduced and 2-torsion free.

(2) Let E'/E be a finite extension with ring of integers Og:, and fix a morphism
of local O-algebras Acr,,» = Op. Then a morphism of local Aci,, -
algebras RE — Op factors through RvA if and only if the corresponding
representation p : Gg, — GL,(Op) is GL,(Opr)-conjugate to an upper-
triangular representation whose ordered diagonal characters (1,...,%,)
are such that for each i, ;|1 1is equal to the pushforward of (x1,...,Xn)
along Agr,, v = OFr. :

(3) Suppose that bl is trivial, and that [F,f : Qo] > n(n—1)/2+1. Let Q be
a minimal prime of Agr, ». Then Spec RUA/Q is geometrically irreducible
of dimension [Ff : Qa]n(n+1)/2+n?+ 1, and R /(Q,w) is generically
reduced.

Proof. The lifting ring R% is defined in [Ger19, §3|; see [Thol®, §3.3.2] for a sum-
mary of its definition. It is reduced and flat over O by construction. The remaining
points are [Ger19, Lem. 3.3] and [Thol5, Prop. 3.14(3)]. O

represented by a

We will use the following remark in the proof of Proposition [(.5.10

Remark 5.6.7. Note that [Gerl9, §3] defines Spec R2 as the flat closure of the
scheme-theoretic image of a projective morphism 7 : G, — Spec RD, it is shown
in [Tholdl Lem. 3.11] that if p|g,_is trivial and [} : Qo] > n(n — 1)/2 + 1,
then G, is already flat over O, so that Spec RS is equal to the scheme-theoretic
image 7 : G, — Spec RU.

Definition 5.6.8. Let A € (Z7% )Hom(F%.K) We say that a continuous representation
p: Gp, — GL,(O) is ordinary of weight X if:
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(1) There exists a increasing invariant filtration Fil* of O", with each gr’ O"
an O-module of rank one.

(2) Write y; for the character Gr, — O giving the action on gr’ O". Then
for every o € F* sufficiently close to 1, we have

(xi o Artp, (o)) = H(T(Q))f(/\f,nfmﬂfl).

T

5.7. Automorphic forms on definite unitary groups. We now introduce the
spaces of automorphic forms that we work with, following [Thol7, §4] and [Ger19,
§2]. We suppose throughout Subsection [57] that the following hypothesis holds.

Hypothesis 5.7.1.
e F/FT is everywhere unramified, and each place v|2 of F* splits in F.
e n[FT:Q]=0 (mod 4).
Let ¢ denote the non-trivial element of Gal(F/F ™). By Hypothesis [5.7.1] we can
find a unitary group G/F7T which splits over F, and is such that:
e G(F,") is quasi-split at all finite places v of F'*.
e G(F' ®qR) is compact.
We can and do choose an integral model of G over Op+ (which we continue to

denote by G) in such a way that if v is a finite place of F* which splits as v = v0°
in F', then there is an isomorphism

Ly - G(OFJ) L> GLn(OFﬂ).

For each place v|2 of F'™ we choose a place T|v of F, and let §2 be the set of v
for v|2. Let I, denote the set of embeddings F' — FE inducing a place in Sy. To
each \ € (Zﬁﬁ)l~2 there is an associated finite free O-module M) with a continuous
action of [],cg, G(Opt) — [l,cs, GLn(OF, ), constructed as the tensor product
over T € Sy of the the algebraic representations of GL,, /O with highest weight .

We now write S = Soo UT, and let R C T be a (possibly empty) set of places

disjoint from S,. For each place v € R we fix a choice of ¥ (a place of F dividing v).
Suppose that U = [], U, is an open compact subgroup of G(A%,) such that

U, C ;'Iw(®) for v € R. (Here Iw(?) is the Iwahori subgroup of GL,(OF,)
consisting of matrices which are upper-triangular modulo v, with pro- v Iwahori
subgroup Iwy (v) C Iw(v).)
For each v € R, we choose a character
Xv = Xv,1 X "+ X Xon : Iw(0)/Iwy (V) = OF,
the decomposition being with respect to the natural isomorphism
Iw(?)/Twy (V) = (k(0)™)™.
We set
M) tx,y = My @0 <® 0()@)) :
vER
a representation of G(Op+ ) X [], ¢ Iw(v).

If A is an O-module, and U, C G(Op+) for v|2, then we write Sy ¢,,}(U, 4) for
the set of functions

frGEMI\GAF:) = My y,} ®o A
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such that for every u € U, we have f(gu) = ugzluRf(g), where ug,ur denotes the
projection to [[,cg,ur Uv- If R is empty then we write Sy 1,1 (U, 4) = S\(U, A).
We will sometimes assume that U is sufficiently small in the following sense.

Definition 5.7.2. We say that U is sufficiently small if for some finite place v
of F*, the projection of U to G(F,") contains no element of finite order other than
the identity.

Let w be a place of F split over F* and not contained in S, and let w,, be a
uniformizer of F,,. Write

afww = diag(w@y, .« - -, @, 1,. .., 1).
ﬁ_/
J
The spaces Sy {y,} (U, A) receive an action of the Hecke operators
T3 = 1" ([GLn(OF, )ol, GLn(0F,)]).

For integers 0 < b < ¢, and v € So, we consider the subgroup Iw(2%¢) C
GL,,(OF,) defined as those matrices which are congruent to an upper-triangular
matrix modulo v¢ and congruent to a unipotent upper-triangular matrix modulo
. We set U(I>¢) = [Togs, Uv x Ies, Iw(v%¢). (Our use of [ is in order to follow
the notation of [Ger19].)

We now recall from [Gerl9, Defn. 2.8] some additional Hecke operators at the
places dividing 2. For each v € Sy we let wy be a uniformizer of F;. As above we
write

ol = diag(wy, ..., @5, 1,...,1),
ﬁ_/
J
and we set ‘
Uy = (woN) (o) 7H [U(P)i5 (0, JU(P)]

where as usual wy is the longest element of the Weyl group. If u € T'(OF,) then we

write
(u) = [U(")ez " (w)U ()] .
By [Ger19l Lem. 2.10], these operators commute with each other and act on the
spaces Sy {y} (U(1>¢), A), compatibly with the inclusions

S (U(179),0) € 8y 1 (U(Y),0),
where b < b and ¢ < (.

We write Tf (xo }(U([b=c), A) for the O-subalgebra of Endo(Sy y,}(U, 4)) gen-

erated by the operators T and (T)~! as above and all the operators (u) :=

vaSz (uy) for

u = (uy)ves, € T(Op+ 2) H T(Op+),
vES>
where T' denotes the usual diagonal torus in GL,,. With these identifications, the
operators (u) endow each Hecke algebra TT e }(U([b’c), A) with the structure of
an algebra for the completed group ring

A=0[TO"], (5.7.3)
where T'([) is defined by the exact sequence

0—T() —— HUGS2 T((’)F+) —_— Hves2 k(v)* ——0.
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We have the ordinary idempotent e = lim, o, U(I)"", where we set

v =[] 1V

vES2 j=1
We define the ordinary Hecke algebra

T (U(9), A) = €T, (U(), A);

equivalently, Tf\rf{);i } (U(1b-¢), A) is the image of the Hecke algebra T;ﬁ{xv} (U(1b¢), A)

in Endo (sgngv}(U([bvc), A)) .

We set
SA,{XU}(U([OO)v E/O) = hﬂSA,{XWJ}(U([QC)u E/O)7

which receives a faithful action of the algebra

T (1,1 (U(™), E/O) = im T} (|, (U(1°°), E/O).

By [Ger19, Lem. 2.17], this algebra is naturally isomorphic to
TS () (U(%), 0) = m T 1, 4(U (1), 0).

We can again apply the idempotent e to these spaces and rings, in which case we
again decorate them with ‘ord’ superscripts.

Specializing to the case A = 0, we define a homomorphism 7'(I) — TOT’EE} (U(1°°),0)*
by

n
wes | I T | (w)
(where the u; are the coordinate entries of u, recalling that T is the usual diagonal

maximal torus in GL,). This gives rise to an O-algebra homomorphism A —

Tg)’f;j}(U([(’o), 0), and we write

T{ W), 0)

for Ta’f;j} (U(1>°), O) endowed with this A-algebra structure. This is the universal
ordinary Hecke algebra of level U. It is a finite A-algebra by [Ger19, Cor. 2.21].
Along with all of the other Hecke algebras considered above, it is reduced (by [Ger19,
Lem. 2.14]).

We can pass back from the universal ordinary Hecke algebra to the finite level
Hecke algebras in the following way. Corresponding to each A is a prime ideal g
of SpecA as defined in [Gerl9, Defn. 2.24(1)]; the prime ideals p) are dense
in SpecA (see the proof of [Gerl9, Cor. 3.4]). By [Gerl9, Lem. 2.25], we have
a natural identification

Homo (TLE™, (U(1%), 0)/9x, Q) = Homo (10 (U(1),0),Q,).  (5.7.4)

We say that a RACSDC automorphic representation 7 for GL,, /F has weight A €
(Z)"2 if its infinitesimal character agrees (after composing with our fixed isomor-

phism 2 : Q, ——+ C) with that of the algebraic representation of weight \. We say
that 7 is ordinary if (17 (®,)2m))*d # 0. (See [BLGGT14] §2].) The relationship
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between the spaces of automorphic forms considered above and ordinary RACSDC
representations is as follows. For each A, write

A = hﬂSA(U, Q,).
U

This is a semi-simple admissible Q,[G(AS%,)]-module, and by [Lablll, Cor. 5.3,
Thm. 5.9] the irreducible submodules of ©.4) are the finite parts of automorphic rep-
resentations of G/FT which arise as the descents of automorphic representations 7
of GL,, /F of weight A. These automorphic representations = are isobaric direct
sums of self dual representations, and in particular, they include the RACSDC rep-
resentations of weight A; and after localizing at a non-Eisenstein maximal ideal of
an appropriate Hecke algebra (as we will always do below), the RACSDC represen-
tations are the only ones that contribute. Furthermore the irreducible submodules
of 2.4 which have nonzero intersection with some S (U(1%%), Q,) are precisely
those which correspond to those m which are ordinary.

Now let 7 be an ordinary RACSDC automorphic representation = of GL,, /F,
and assume that 5 = 7 2 : Gp — GL, (F3) is irreducible. Assuming as always that
our coefficient field F is large enough, we fix an extension of p to 7 : Gp+ — G, (k).
As above, we let T O Sy be a finite set of finite places of F'* which split in F.
Again we consider a subset R C (T'\ S3), and for each v € R we fix characters
Xv : Iw(0)/Iwy1 (V) — O*. We assume furthermore that:

Hypothesis 5.7.5.

e T contains all finite places lying under a place w of F' at which m, is
ramified, and

e if v € R then p|g,. is trivial and @ £,

Set S =T USw. If v ¢ S then we set A, = O, while if v € Sy we take A, =
Acr, v where Agr, ., is as in Section We define the global deformation
problem

S{Xv} = (F7 77 07 Eliné??‘/}?% ) Su {Av}v657 {D'L);(U }UER

U{D5 }ves, U {LiftE}UGS\(RUSQ)>' (5.7.6)

Using the natural isomorphism ®,¢ s, A, = A provided by local class field theory,
we see that R{{"Xcv} is naturally a A-algebra.

Lemma 5.7.7. Every irreducible component of Spec Rs,, | has dimension at least dim A =
1+ [F: Qn.
Proof. By Propositions (.6.4 and 5.6.6, together with [Shol8| Thm. 2.5], the ring
RS 1 is equidimensional of dimension
{xv}s

dim RS | 7 =1+n"#T +[F*: QJn(n+1)/2. (5.7.8)
It therefore suffices to show that there is a presentation of the form

REO;W}[[JH, Tt 7$T]]/(fla ) fr+s) ; RS{XW}

for some r,s > 0 with s < n?#7T + [F™ : QJn(n — 1)/2. This follows from a
standard deformation-obstruction argument, and can for example be proved exactly
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as in [CHTO8, Cor. 2.2.12], using the complex OfS,T' Alternatively, the existence of
such a presentation is a consequence of [Ball2, Prop. 4.2.5]. (As noted in [BG19,
§4.1], it is assumed in [Ball2, §4.2] that the reductive group G there is connected,
but in the proof of [Ball2, Prop. 4.2.5] this assumption is only used in order to cite
results of [Ti196] which do not use this assumption.) O

Proposition 5.7.9. Suppose that for each v ¢ T, the compact open subgroup U,
is hyperspecial; and that for each v € R, we have U, C Lgllw(ﬁ).

Then there is a mazimal ideal m of T?}’(‘f}d(U(["o), O) such that there is a surjec-
tion of A-algebras

RS{Xv} — T,{))cir}d(U([OO)uO)m (5710)

The corresponding (unique up to strict equivalence) representation

rm: Gps = Gu(TEO (U (), 0)m)

is characterized by the following property: if v € T is a finite place of T which splits
as ww® in F, then ry is unramified at w and w®, and ry(Frob,,) has characteristic
polynomial

X" 4.+ (_1)j (qw)j(j—l)/2Tng"—j R (_1)"(qw)"(”—1)/2T£'
Proof. This is proved in exactly the same way as [Ger19, Prop. 2.29] (using [Ger19,
Cor. 3.4] for the compatibility at the places v € S3), using [Thol7, Lem. 2.4] in
place of [CHTO08, Lem. 2.1.12] (which is used in the proof of [CHT08| Lem. 3.4.4],

to which the proof of [Gerl9, Prop. 2.29] refers). (See also [Thol7, Thm. 4.1] for a
detailed proof of a very similar result.). O

Definition 5.7.11. If R is empty then we write ST°™ for Siy,} and RTvord

for Rs,,,, and we write TT" (U (1)) for T2 (U (1), O

Before stating and proving the main result of this section, we make a definition,
using the following (presumably well known) lemma.

Lemma 5.7.12. If w12 is a finite place of F, then there is a compact open sub-
group Uy of GL,(OF,), depending only on Tr s|ay, , such that if ' is a RACSDC
automorphic representation of GL,, /F with Tr 2 = 1,/ o then (7)Y # 0.

Proof. This follows from Lemma and local-global compatibility, together with
the compatibility of the local Langlands correspondence with conductors. (I

Definition 5.7.13. Suppose that v € T'\ S2. Then we say that a compact open
subgroup of G, (F;f) — GL, (F5) is sufficiently deep if it satisfies the conclusion
of Lemma 712 (for w = ).

Theorem 5.7.14. Let F be a CM field, and let n > 2. Fixz a continuous represen-
tation
7:Gr — GL,(Qy)
satisfying the following hypotheses.
(1) There is an ordinary RACSDC automorphic representation m of GL,, /F
such that T 2 = p.
(2) F/F* is everywhere unramified. All of the places v|2 of F¥ split in F, as
do all places lying under a place at which 7 is ramified.

(8) n[FT:Q] =0 (mod 4).
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(4) p(Gr) is nearly adequate.

(5) p(GF) contains a regular semi-simple element.

(6) If n is even, then there exists an infinite place v of F* such that the polar-

ized pair (p, El_"é}?/FQ is strongly residually odd at v.

Let T be any finite set of finite places of F* which split in F, which contains all
finite places lying under a place w of F at which m, is ramified, and all places
dividing 2.

Then RTo*d is a finite A-algebra. Furthermore, if for each v € T ~ So the
group U, is sufficiently deep in the sense of Definition [5.7.13, then the morphism
RTerd o ©Tord((190)),, given by (G.710) has nilpotent kernel, i.e.

(RT,ord)red L> TT,ord(U([oo))m

Remark 5.7.15. The assumption in Theorem B7.T4 (Bl) that p(Gp) contains a
regular semi-simple element is used in order to ensure that the automorphic forms
that we consider are of neat level.

Proof of Theorem[5.7.17) We will begin by making a succession of solvable exten-
sions of CM fields to put ourselves into a situation where we can apply the Taylor—
Wiles patching method. In order to keep the notation compatible with that above
we will continue to denote our CM field by F' until the end of the argument, where
we will descend to our original F'.

We can and do replace F with a solvable extension (and replace T' with the set of
places lying over places in T') and enlarge our coefficient field E so that in addition
to the hypotheses of the theorem, we have:

F = Fr(v/=T).
if v € T then |G, is trivial.
if v € Sy then [F) : Q2] >n(n—1)/2+ 1.
if v €T\ S then:
wéw(v) # 0.

— if 2¥||(go — 1) then 2V > n and O contains a 2¥th root of unity.
(Note that if (F")*/F™ is a solvable extension of totally real fields then (F')TF/F is
a solvable extension of CM fields, so we can choose a solvable CM extension to realize
any finite set of local extensions. All of these conditions are local except for the
first condition that F = F*(y/—1). Since arranging this only involves a quadratic
extension, and p(Gr) has no normal subgroups of index 2 by the assumption that
it is nearly adequate (which requires in particular that H'(p(GFr),k) = 0), this
quadratic extension leaves p(Gr) unchanged.) Choose a finite place v; ¢ T of F*
which splits in F' as v = 010§, for which p(Frobg, ) is regular semi-simple. (There
are infinitely many such v; by our assumption ({)).)

We replace T by T'U {v1 }, and write T' = So U {v1 } U R. Note in particular that
Hypotheses [B.7.1] and hold. For each v € R we choose pairwise distinct char-
acters Xuv,1,- -+ Xon ! (9;5 — O which become trivial after reduction modulo w.
(We can do this by the conditions arranged in our initial base change.) We have the
global deformation problem S, } defined in (E.Z.6]), and we write Sy;y for the global
deformation problem defined in the same way but with all of the characters x,,;
replaced by the trivial character. By the definitions of the local deformation prob-
lems DY» for v € R, we can fix compatible isomorphisms R};{va})T Jwo Rg’{cl}j /@

and RS{Xv}/w = RS{I} /.
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We now specify open compact subgroups U, C G(F,) as follows:
(1) Uy = G(Op+) if v ¢ T is split in F.
(2) U, is a hyperspecial maximal compact subgroup of G(F,\) if v is inert in
F.
(3) U, =1Iw() for v € R.
(4) Uy, is any torsion-free compact open subgroup of G(F;").
(Note in particular that the choice of U,, means that for any b, ¢, the group U (I>€)
is sufficiently small in the sense of Definition [5.7.21 While we will not explicitly use
this below, it is implicitly used multiple times, ultimately in the form of [Gerl9,
Lem. 2.6].)
Since by assumption 7 is ordinary and unramified outside of R U S, and since

wiw(v # 0 for all v € R, there is a maximal ideal m; of Tj‘{l‘;rd(U (1°°), O0) with

residue field k such that p = T, |g,.. (As ever, we feel free to enlarge O if necessary.)
Since the x, are trivial modulo w, we have

Sotey (U (), k) = SgTi, (U (1°), k), (5.7.16)

so my induces a unique maximal ideal m,, of Ti‘[r Or}d (U(1°),0). After conjugating

we can and do assume that T, =Ty, = p.
Write

Hy = Sg8 ((U(®),E/O), . Hy:= S0, (U(®),E/O),

By [Ger19, Cor. 2.21], H; is a faithful T?l‘;rd(U([Oo), O)m,-module, and is in partic-

ular an Rs,,,-module via (5.7.I0). Similarly H, is an Rs,, ,-module. By (5.7.10)

we have a natural isomorphism
Hy/w = H/w,
which is compatible with the isomorphism Rs, /@ = Rs,,,/@.
Write ¢ = h}SL,T —land g=q+#T —1—[F*:Q]n(n —1)/2. Write
Soo = A[X1,- -+, Xgp(n241)27-1]

with augmentation ideal ao, = (X1,..., Xt (n241)#7—1). (The number of formal
variables here is given by the number of Taylor-Wiles primes plus the relative
dimension of R} over Rs.) We set

Ryoo = RS 7[V1,- Y], Riooi=RS 7[V1,-.., Y]
By (B.7.8) we have

dim Ry oo =dim Ry oo = 1+ n?#T + [FT: Qn(n+1)/2+g (5.7.17)
= [F*:Qln+ (n* + D#T +4q
= dim S+

Using Proposition in place of [Thol2] Prop. 4.4], a standard patching ar-
gument exactly as in the proof of [Thol2] Thm. 8.6] provides us with the following:
e CNLj-homomorphisms So = Ri,00, Soc =+ Ry 00-
e An Ry -module Hj , and an R, ~-module H, o, each of which is free
of finite rank over S,
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e A surjection of R}é’{cl})T—algebras Ri,c = Rs,,, which factors through a

A-algebra map Ri o0 /000 — Rs,,; and similarly, a surjection of R?{CXW%T—
algebras Ry - — Rs,, ,, which factors through a A-algebra map Ry /000 —
Rsiyy-

o Isomorphisms Hi o /000 = Hi, Hy oo/00c = H, compatible with the sur-
jections Ry oo — Rg{l}, Ry oo — RS{X“.

e Compatible identifications of all the above data for 1 and for x after reduc-
ing modulo w.

In particular since Hy o is a finite free Seo-module, we deduce from (E7.17) that
depthRmo Hi oo > depthg  Hi o = dim So = dim Ry o,

whence deptthm H, o = dim R , and the support of H; » in Spec R; o is a
union of irreducible components (see [Tay08, Lem. 2.3]). Similarly, the support of
H, « in Spec R,  is a union of irreducible components.

We now examine the irreducible components of Spec R, ~ and Spec R; . Bear-
ing in mind PropositionsG5.6.4land[5.6.6, an identical argument to the proof of [BCG™25,
Lem. 3.2.4] shows that for each minimal prime @ of A, we have the following prop-
erties.

(1) The generic points of R, «/Q and Ry, /Q all have characteristic 0.

(2) The irreducible components C of Spec R, o /@ and Spec Ry /@ biject with
the products of the corresponding sets of irreducible components C,, of the
local deformation rings for v € RU {v; }.

(3) The irreducible components C of Spec Ry, /(Q, @) = Spec R /(Q, )
biject with the products over T of the corresponding sets of the irreducible
components C,, of the special fibres of the deformation rings for v € RU{v; }.

In view of these statements we will use the notation C = ®,cpru{v,}Co and C =
®UERU{’U1}E’U'
(4) The irreducible components of Spec R, -/Q biject with the irreducible
components of Spec REI .
(5) For each irreducible component C = ®,epu{s,1Co of Spec R1,00/(Q, @),
there are irreducible components C, of Spec R for v € R, and irreducible
components C} ...Cy, of Spec REI (for some s > 1), such that the ir-

v1? —
reducible components of Spec Ry /@ generalizing C are precisely the s
components C;, @yer Cyp-

Fix for the moment a minimal prime @ of A. The existence of 7w implies that
the support of Hj o in Spec R« is nonempty. Using the comparison modulo o,
the same is true of the support of H, o in Spec Ry . By points @) and (@), we
conclude that for each set X of irreducible components C, of Spec R} for v € R, we
can choose an irreducible component Cx ,, of Spec RE such that Cx v, ®uver,c,exCo
is in the support of H; . This choice of irreducible components corresponds to a

quotient Rg¢ of R?{Cl} o, and if we set

loc

Rx = Rsy, ®Rls°fl},T Ry,

then Spec Rx C Spec Rs,,, is contained in the support of Hj .; equivalently,
Spec Rx is contained in the support of Hj in Spec Rs,,.
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In particular (Rx)™? is a quotient of a Hecke algebra T{Tl’c]frd(U(["o), O)m,, 50 it
is a finite A-algebra, so that Ry itself is a finite A-algebra. (To see this, note by the
topological Nakayama lemma it suffices to observe Rx /my is Noetherian and zero-
dimensional, thus finite.) Since Rx has dimension at least dim A by Lemma 577,
we see that the morphism Spec Rx — Spec A/Q is dominant. In particular, we can
choose a weight X such that Rx /@ Rx is a nonzero finite O-algebra of dimension at
least 1, and thus has a Q,-point. Since (Rx )™ is a quotient of T?l’?rd(U([Oo), O)m,y s

it follows from (5.7.4)) that the Galois representation corresponding to this Q,-point
comes from an ordinary RACSDC representation of weight \.

Repeating this construction for all choices of ), we conclude that for each choice
set Y of irreducible components C, for v € R U Ss, there is an ordinary RACSDC
automorphic representation 7y of GL,, /F such that:

i FWYJ = pv

® 77y 2|Gp, is unramified for all places w not lying over a place in T,

e and for each v € R U S5, the representation TWY72|GFE lies on C, and on
no other irreducible component (by the genericity of my,,, see [BLGGT14,
Lem. 1.3.2(1)]).

By Lemma [5.6.3] we can and do choose a solvable CM extension L/F, linearly

disjoint from TP over F, with the following property: for any Y as above, and
any place wy of Lt lying over vy, the representation 7, 2|¢ Fa is unramified (where
we write wy = W w5).
We now repeat the patching argument above with F' replaced by L. More pre-
cisely, we:
e replace R by the set R’ of places of L lying over places in R;
e choose a place vy ¢ R'U Sy of LT splitting in L as ¥} (0})°, with 5(Frobg )
being regular semi-simple;
e and replace T by T = R’ U {v} }.
Writing H7, ’1700 for the corresponding objects over L, we find in particular that we
have the patched module Hj ., whose support in Spec R}, is a union of irreducible
components. Again, we write these irreducible components as C' = ®,¢7C,,, and
for each set Y as above we let C§- denote the irreducible component determined by
letting CjJ,l be the (unique) unramified component of Spec REI, and letting C/, for
v'|v € RU Sy be the image of the component C, for Y (via the natural morphism
Spec RS — Spec RL)).
By considering the base changes to L of the 7y, we see that each component Cj,
is in the support of H {700. The union of the irreducible components C corresponds

: loc loc :
to a quotient RL/RT, of Rsm,T/’ and as above, if we set

/ D/ loc
Lyr = Rsp, ®R1;§ L Ry /ps
.

then Spec R, JEr C Spec Rgh} is contained in the support of Hj . ; equivalently,
Spec R}, /o is contained in the support of H{ in Spec Rgh}' Thus (R/L/FyT/)red
is a quotient of a Hecke algebra T?{jord(U (1°°), O)m,, and in particular every ho-

momorphism R} /. — O factors through T{Tlliord(U([oo), O)m,. Furthermore, it
follows as above that R, /p 18 @ finite A’-algebra.
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We now return to the original situation of the statement of the theorem (so F is
now the CM field that we started with, before we made any base changes, and T'
is as in the statement of the theorem). By the choice of L, we have a commutative
diagram

A ' R/L/F,T’

||

A RT,ord TT,ord (U([oo))m

The morphism R’ SR RT°rd is finite, by the obvious generalization of [BLGGT14,
Lem. 1.2.3(1)] to the case p = 2, which has an identical proof up to replacing the
appeal to [CHTO08| Lem. 2.1.12] with a citation of [Thol7, Lem. 2.4]. It follows that
RT:ord ig g finite A-algebra, as claimed.

Suppose now that the U, for v € T \ Sy are sufficiently deep. Since every
irreducible component of Spec RT*°"! has dimension at least that of SpecA by
Lemma B.77 it follows that each irreducible component dominates an irreducible
component of Spec A. It follows that the set of points Spec Q, — Spec RT* which
lie over points of A given by the primes p, is dense in Spec RT:°'. It remains to
show that each such point is in Spec TT-°"4(U(1*°)),,. By (5.7.4) and the choice
of U, it is enough to check that the corresponding Galois representations are au-
tomorphic. By solvable base change, it is enough to check this after restriction
to G, where it follows from another application of (B7.4) (and the observation

above that (R’L/FyT,)red is a quotient of Ti‘{ll’}ord(U([oo), Oy )- O

6. ORDINARY MODULARITY LIFTING THEOREMS FOR GSp4: PRELIMINARIES

The goal of this section is — in part — to prove an ordinary modularity lifting
theorem for GSp, for p > 3 over totally real fields in which p splits completely.
Under suitable Taylor—Wiles hypotheses, this can be used to show that p-adic Ga-
lois representations coming from ordinary abelian surfaces give rise to quotients of
a certain p-adic Hecke algebra, but does not yet show that such classes are clas-
sical. The modularity lifting theorem we prove in this section is (in the language
of [CG18]) of Iy = 0 type rather than Iy > 0 type, and so is precisely amenable to
the usual Taylor-Wiles method. Under a stronger hypothesis (that p is residually
p-distinguished) our results are actually directly contained in [BCGP21] (although
that paper is generally concerned with the more subtle {; = 1 situation), and ver-
sions of this theorem go back as far as [Pil12]. The methods we use here follow
along generally similar grounds, with some important technical improvements due
in several cases to Whitmore [Whi22].

In §6.11 we recall some general constructions and notation for GSp,-deformation
problems. In §6.2] we introduce the corresponding ordinary local deformation rings
and study their local properties. In §6.3, we carry out the Taylor—Wiles argument
(in part following [BCGP21] and [Whi22|). Finally, in §6.4, we explicitly analyze
the subgroups of GSp,(Fs3) which satisfy our running collection of “big—image”
conditions.

6.1. Notation and definitions. We now turn to modularity lifting theorems
for GSp,. Our arguments have relatively little direct overlap with those of our
earlier paper [BCGP21], although we will occasionally make references to it. In
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particular, in order to avoid confusing clashes of notation with our results for uni-
tary groups in Section [Bl we continue to write F'T for a totally real field (whereas
totally real fields were denoted F' in [BCGP21]).

Accordingly we let F'™ denote a totally real field, and write S, for the set of
places of F™ above p. We fix a continuous absolutely irreducible homomorphism
p: Gp+ — GSp,(k) with similitude 27!, When 7 is explicitly considered as a
symplectic representation (as in this section), we denote by ad7 and ad’p the
adjoint G+ action with respect to GSp, and Sp, respectively (so dimadp = 11
and dim ad’ 7 = 10). We warn the reader that there is some tension in this definition
with the notation of §5 where ad 7 denotes the adjoint action with respect to GL,,;
we hope the precise meaning will always be clear from context.

Let S be a finite set of finite places of F* containing S, and all places at which
p is ramified. We write Fg for the maximal subextension of F'+/F* which is
unramified outside S, and write Gp+ g for Gal(Fg /F1). For each v € S, we fix
A, € CNLp, and set A = QA@UGSAU, where the completed tensor product is taken
over 0. Then CNL, is a subcategory of CNL,, for each v € S, via the canonical
map A, — A.

Definition 6.1.1. A [ift, also called a lifting, of ﬁ|GF+ is a continuous homomor-
phism p : G+ — GSpy(A) to a CNLy, -algebra A such that p mod my = ﬁ|GF+

and vop=el.

We let DY denote the set-valued functor on CNLy, that sends A to the set of
lifts of ﬁ|GF . to A. This functor is representable, and we denote the representing
object by RL. We can identify DY (k[e]) with the group of 1-cocycles Z*(F,,ad" 5)
by associating a cocycle ¢ to the lifting given by

plo) = (1 +€d(0))p(0).

Note that two such liftings are G/Sp\4(k[e])—conjugate if and only if the images of the
corresponding 1-cocycles in H*(F,,adp) are equal.

Definition 6.1.2. A local deformation problem for ﬁ|GFU+ is a subfunctor D,, of DY
satisfying the following:

e D, is represented by a quotient R, of Rg.

e Forall Ae CNLy,, p € Dy(A), and a € CES\p4(A), we have apa~! € D, (A).

Definition 6.1.3. A global deformation problem is a tuple
S= (ﬁa Sa {Av}v637 {DU}UES)

where:

e 7, S, {A,}ves are as above.
e For each v € S, D, is a local deformation problem for ﬁ|GF L

As in the local case, a lift (or lifting) of p is a continuous homomorphism p :
Gr+.s — GSpy(A) to a CNLy-algebra A, such that p mod my =pand vop =c 1.
We say that two lifts p1,p2 : Gp+ g — GSpy(A) are strictly equivalent if there is
an a € (?S\p4(A) such that p, = ap1a™'. A deformation of p is a strict equivalence

class of lifts of p.
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For a global deformation problem

§= (pv S, {AU}UGSa {DU}UGS)
we say that a lift p : Gp+ g — GSpy(A) is of type S if p|GF+ € D,(A) for each
v € S. If p1 and po are strictly equivalent lifts of p, and p; is of type S, then so
is p2. A deformation of type S is a strict equivalence class of lifts of type S, and
we denote by Dg the set-valued functor that takes a CNLj-algebra A to the set of
lifts p : Gp+ — GSp,(A) of type S.

Given a subset T' C S, a T-framed lift of type S is a tuple (p, {Vv }ver), Where p
is a lift of type S, and ~, € (?S\pél(A) for each v € T'. We say that two T-framed
lifts (p1, {7 }ver) and (p2, {7, }ver) to a CNLj-algebra A are strictly equivalent if
there is an a € (?S\p4(A) such that p2 = apia™!, and ~), = ay, for each v € T. A
strict equivalence class of T-framed lifts of type S is called a T'-framed deformation
of type S. We denote by DL the set valued functor that sends a CNL,-algebra A
to the set of T-framed deformations to A of type S.

The functors Dg, D:*g are representable (as we are assuming that p is absolutely
irreducible), and we denote their representing objects by Rs and Rg respectively.
Assume now that T is chosen so that A, = O for all v € S\ T. Write R, for
the representing object of D,, and define Rg’CT = ®per Ry, with the completed
tensor product being taken over O. It is canonically a A-algebra, via the canonical
isomorphism ®ycrAy, = RyegA,. For each v € T, the natural transformation
Defy — D, given by (p, {a Joer) — o, 'play, oy induces a morphism R, — R%
in CNL,,. We thus have a morphism RL??T — Rg in CNLp.

If T is empty, then Rs = Rg, and otherwise the natural map Rs — Rg is
formally smooth of relative dimension 11#7 — 1. Indeed D:*g — Dg is a torsor

under (J] (?8\1)4)/64,,1.
Definition 6.1.4. Let

veT

T :=Af21,...,21187-1]

be the coordinate ring of (] CES\104)/CA-}m over A.

veT

The choice of a representative ps: Grp — GSp,(Rs) for the universal type S
deformation determines a splitting of the torsor DL — Dgs and a canonical isomor-
phism

RE = Rs@,T. (6.1.5)

The following lemma and its proof are standard, but we include them in order

to reassure the reader that they remain valid for p = 2.

Lemma 6.1.6. Suppose that q, = 1 mod p, and that ﬁ|GFv+ is unramified, with
p(Froby,) being regular semi-simple with (ordered) eigenvalues @y 1, Cy,2, @;é, =
6;&. Let p: G+ — GSpy(A) be any lift of p.

Then there are unique continuous characters -y; : GFJ — A fori=1,2, such
that p is GSp,(A)-conjugate to a lift of the form

MOV @Y e By e

where (; mod my)(Frob,) = @,,; for each i =1,2.
Proof. Let ¢ be a lifting of Frob, to Gp+. Then p(9) is regular semi-simple, so is
contained in T'(A) for a unique torus T', and we need to show that for each o € I+,
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we have p(o) € T'(A). To do this we will prove by induction that for each n > 1 we
have

(p mod m3)(0) € T(A/m}),
the case n = 1 being true by our hypotheses.

For the inductive step, we assume the result holds for n and deduce it for n + 1;
replacing A by A/m"+1, we may furthermore assume that m"+1 0. By the
inductive hypothesis (and the smoothness of T) we can write p( ) = tu where t €
T(A)andu =1 (mod m™). Since p(c) = 1, we see that u and ¢ necessarily commute
(as do p(¢) and ¢, as both are contained in T'(A)).

Now, since p is tamely ramified, we have p(¢)p(c)p(¢)~! = p(o)?. Since ¢, = 1
(mod p), and u = 1 (mod m"), we see that u% = u, and thus that p(¢)up(¢p)~! =
t4»~1y. Using again that « = 1 (mod m™) and that p(¢) is regular semi-simple, it
follows that u = 1, as required. (I

6.2. Ordinary deformation rings. In this section we study some ordinary de-
formation rings for GSp,. We assume that v is a place of F'" lying over p such
that Fif = Q,. Write Agsp,,» = O[(O4 (p ))?], where (’)X +(p) denotes the pro—p

completion of O, jn . There is a canomcal character Ips — (9 +(p) given by Art F+,

and we define a pair of characters 6; A — Aasp,,vs @ = 1 2 by letting 6; corre-
spond to the embedding (9;+( ) — ((9; (p))? given by the ith copy. When p > 2,
Acsp, v = Ofz1,22] is forlilally smootﬁ, while when p = 2, SpecAgsp,,» has 4
irreducible components but the generic fiber is regular.

Assume that p|g, ., is ordinary, and fix a p-stabilization (X;,X2) of plc,.,,, 50
that (X;,X») is an ordered pair of characters G+ — k*. Then for any A € CNLo
there is an obvious bijection between homomorphlsms Agsp R A and ordered
pairs of characters (x1,X2) : Ips — A* lifting (%, X2), given by multiplying the
characters (61,62) by the Teichmiiller lifts of (X, X2)-

Similarly, write /NXGSPM, = O[Gal(F;F2P/F)(p)?], where Gal(EF;}*P/EF})(p) is
the pro-p completion of Gal(F, 2> /F,\). Then we have a universal pair of characters
(;17;2) : GFU* — AGSp4,v lifting (YlaYQ)'

We now introduce the ordinary deformation ring we consider, following [Ger19,
§3]. Let F denote the flag variety for GSp, over O, i.e. the variety whose S-points,
for any S/ Spec O, parameterize full flags

0 = Fily C Fil; C --- C Fily = 0%

with Fil; being locally free of rank 7 and locally a direct summand, with the further
property that (Fil;)* = Fily_; for each i (where * is with respect to our usual
symplectic form on O%).

Write RE for the ring denoted RE in Section when A, = /NXGSPM,. One
shows as in the proof of [Gerl9l Lem. 3.2] that there is a closed subscheme G,
of F xo SpecR , such that for any O-algebra A, the A-points of G, are exactly
the pairs (Fll.,Rv — A) consisting of a symplectic flag Fil, on A* and an O-
algebra morphism RUD — A, such that the pushforward of the universal lifting over
RUD — A preserves Fil,, and for ¢ = 1,2,3,4 the action of GFJ on Fil; /Fil;_ is
via respectively (the pushforwards to A of) the characters X1, Xa, € X5 1, € 'X7 .

We write

R i=im (RY = 0g,(G0))
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so that Spec RvA is the scheme-theoretic image of the morphism G, — Spec RE.
(Note that here we differ from [Ger19] by not passing to the p-torsion-free quotient.)
We denote by D4 the corresponding deformation problem.

Exactly as in the proof of [Gerl9, Lem. 3.3|, it follows immediately from the
properness of F that if F’/E is a finite extension with ring of integers Ops and
/NXGSPM, — Opr is a morphism of O-algebras, then the Og/-points of Spf RvA are
exactly those lifts p of p having the property that there is a symplectic flag

0 = Fily C Fil; C --- C Fily = OF,

as above such that for i = 1,2, 3,4 the action of GFJ on Fil; / Fil;_; is via respec-
tively the characters X1, X2, € 1X5 L 5‘1)?1_1. Equivalently, these are the lifts p

which are ordinary with p-stabilization (Y1, X2) in the sense of Definition [[810)

Remark 6.2.1. As in Definition[[.810, we say that p is residually p-distinguished if
the 4 characters 1, X3, 571Y2—1, sflyfl are pairwise distinct (if p # 2 this amounts
to X1 # X3)- In this case the filtration Fil; in the definition of G, is uniquely
determined by the Galois representation, and it follows that the map G, — Spec RE
is a closed immersion. In [BCGP21], §7.3], we made this assumption and assumed

p > 2 and studied G, under the name RZ7.

Let E’'/E be a finite extension, and let = : Spec B/ — G,[1/p] be a closed
point. Let p; : G+ — GSpy(E’) be the pushforward of the universal lift coming
from the composite Spec B/ — G,[1/p] — Spec RE. Let ad” p, denote the adjoint
representation with respect to Sp,, and define a decreasing filtration Fil’ ad® P
on py by

Fil' ad’ p, := {A € ad’ p,|AFil; p, C Fil;_; p.Vj};

in particular, Fil’ ad® p, is the subspace of ad” p, preserving the flag Fil, p,. We
have dim ad’ pz = 10, and dim Fil’ ad’ P =6,4,21,0,for i =0,...,4 respectively.

Lemma 6.2.2.
(1) If HQ(GFJ,FHO ad® p,) = 0 then = is a regular point of G,[1/p]; and x is
contained in a unique irreducible component of G,[1/p|, and this component
has dimension 16. We have

H*(Gpy, Fil’ad® p,) = 0
if and only if
H(G s, (ad” p,/ Fil' ad’ p;) (1)) = 0.

(2) The equivalent conditions of part ) hold under any of the following cir-
cumstances:

(a) none of the specializations at x of the characters X3€, X3¢, X1X2€,
X1X5 ' are equal to e.

(b) ps is pure and p-distinguished.

(¢) ps is pure and potentially crystalline.

(3) If p. is p-distinguished and the equivalent conditions of part () hold (in
particular, if p, is p-distinguished and pure) then the image of x in Spec RvA
is a regular point which is contained in a unique irreducible component of
Spec RS, which has relative (over O) dimension 16.

(s
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Proof. By astandard tangent-obstruction calculation exactly as in the proof of [Ger19,
Lem. 3.7] (see also [T1l96, §5.1] for the case of general algebraic groups), the tangent
space to G, ,[1/p] at @ has dimension

16 + dimps H?(G .+, Fil° ad” p,.), (6.2.3)

and there is an obstruction class in H?(G Pt Fil’ ad® p,) whose vanishing implies
that x is a regular point of Ga.g,, ,[1/P]-

For the remaining claim in (), note that the space ad” p, is self-dual under
the trace pairing (A, B) — Tr(AB) (since we are in characteristic zero). If A €
Fil’ ad’ p, and B € Fil' ad’ p, then AB € Fil' ad” p, and so Tr(AB) = 0. It follows
that Fil* ad” Pz C (FilO ad’ pz)*. By considering the dimensions of these spaces (6
and 10—4 = 6 respectively), we deduce that this is an equality, and hence the claim
follows by Tate local duality.

For part (2al), note that Fil® ad® p, has a filtration with graded pieces of rank 1,
and the characters through which G F+ acts on these graded pieces are 1, 1, X3e, X3¢,
X1X26, X1X5 - Part2dfollows from part (Zal) because a potentially crystalline pure
representation cannot contain two Jordan—Holder factors differing by a cyclotomic
twist.

We now turn to part (L)), so that p, is pure and p-distinguished, and (since we
have just established part[2d) we can furthermore assume that we are not potentially
crystalline. Assume for the sake of contradiction that H°(G Pt (ado px/ Fil' ad’ pz) (1)) #
0. We now argue as in the proof of [Ger19, Lem. 3.7(3)]. By our assumption, there is
some A € ad® p, — Fil* ad” p, such that for all o € G+, we have pz(0)Apy (o)™t =

(o))" A mod Fil' ad® p,; equivalently,
£(0)pz(0)A — Ap,(o) € Fil* ad’ p,. (6.2.4)
We can and do conjugate p, so that it is contained in the usual upper triangular

Borel subgroup, so that each Fil, ; is generated by eq,...,e;. Write

Xz,1 * * *
B 0 Xaoo2 * *
Pe=1 0 0 Xes =
0 0 0 )~(1)4

(S0 Xz,3 = 5’1%;12 and X4 = 5’1§;711). Let 1 < s < 4 be minimal with Aes ¢
Fil, .1 (such an s exists by the hypothesis that A ¢ Fil' ad® p,), and let r > s
be the unique integer with Ae, € Fil, , — Fil, ,_;. By ([6:24) and the assumption
on s, we see that for all ¢ € G+, we have

pz(0)(Aes) = e(0) H Apa(0)es = (€ Xas)(0)(Aes)  (mod Fil, o 1).

Since r > s this congruence in particular holds modulo Fil, ,_i, whence X, , =
£71Xz.s, and consequently r > s; and furthermore we see that E-(Aes) +Fil, 51 is
G +-stable. More precisely, we see that the 2-dimensional subquotient (E'- (Aes) +
Fil, s)/ Fily s—1 of p, is isomorphic to e 1y, s ® Xz s-

It is immediate from the definition of purity that no twist of € ® 1 can be a
subrepresentation of p,, so we must have s = 2 or s = 3. Since Fil, is symplec-
tic, the possibility (s,7) = (3,4) is also ruled out (because we already saw that
(s,r) = (1,2) is impossible), so we must have s = 2 and r = 3 or 4. However,
since we are pure and not potentially crystalline, we see in either case that we
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have X1 = Xaz,2, which contradicts our assumption that p, is p-distinguished. So
H(Gpr, (ad’ p,/ Fil' ad’ p, ) (1)) = 0 after all, as claimed.

Part ([B) follows immediately as when p, is p-distinguished, the map G, —
Spec RvA is an isomorphism in a neighborhood of z. (I

In the rest of this section, we assume p > 2. In [BCGP2I, Prop. 7.3.4], we
showed (in a somewhat hands-on manner) that if p is residually p-distinguished,
then Spec R5'[1/p] is irreducible. This was used in the proof of our modularity
lifting theorem. We expect that the same holds in general, but we don’t prove this.
Instead we explain a softer way to proceed. We prove a series of Lemmas which
will be used in our modularity lifting theorems.

Lemma 6.2.5. Assume that (p ®§)|GF+ is finite flat. Then any ordinary pure

weight 2 crystalline lift lies on a unique irreducible component of Spec R%, which is

moreover independent of the lift. This component has relative dimension 16 over O.

Proof. We first show that a point p of Spec RS corresponding to an ordinary
pure weight 2 crystalline lift lies on a unique irreducible component (if p were
p-distinguished this was already part of Lemma [6.22.2] (3])). Consider the fiber in G,

over p in Spec R%, or in other words consider the space of G Fj—stable symplectic
1

v
filtrations {Fil;} on p on which G+ acts on Fil; / Fil;_1 by x1, x2, ey e T
for : = 1,2,3,4. By assumption x1, x2 are unramified and p has two dimensional
inertia invariants, which hence must be Fily. Then either G F has scalar action on
Fily, in which case the fiber is the P! of possible Fil;’s, or there is a unique line
on which G F acts through x1 , and the fiber is a point. In particular either way
this fiber is connected.

By Lemma [6.2.2] ([2d) each point of this fiber is contained in a unique irreducible
component of G,, and as the fiber is connected, the entire fiber is contained in this
component. It follows that the image of this component in Spec RUA is the unique
irreducible component containing p.

Now we prove that all such p lie on the same irreducible component. Consider
the closed subscheme G2t C G, whose points for any O-algebra A are pairs (Fils, p)
where p ® ¢ is finite flat and Fil, is a filtration with Fily, unramified. We claim that
the formal completions of G2 at k’-points for k’/k finite are formally smooth. By
a standard tangent-obstruction calculation as in Lemma this amounts to the
vanishing of H3,, (Fil®ad’ 5) (cf. the proof of [Kis09, Prop. 2.4.4]).

We now consider R2f13% the scheme-theoretic image of G2 in RZ. It is irre-
ducible by the same argument as above, as the fiber over p is either a point or P*.
As every pure weight 2 crystalline point lies on this irreducible locus, they all lie
on the same unique irreducible component of R%.

Finally the dimension can be computed at any p-distinguished point using Lemma
0.2.2 ([

We finally prove a lemma which will help with “Ihara avoidance”. Let Q C R%
be a minimal prime, corresponding to an irreducible component of Spec R%'.

Lemma 6.2.6. Suppose that Spec R> /@) — Spec Agsp, v 18 surjective. Then there

exists a minimal prime of R% /(p) which contains Q and no other minimal prime
of RS. Moreover RS /Q has relative dimension 16 over O.
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Proof. By the hypothesis we can take an F,((t)) valued point x of Spec R2*/Q so
that no ratio of the characters x1 4, x2,a, Xgés_l, xf)ia_l is 1 or  (even on inertia).
By the same argument as in Lemma [6.2.2] (2a)) and (B]) we have that the local ring

RUA@ is regular. We now take any irreducible component of Spec R%/(p) containing
T. (I

We expect that the hypothesis in Lemma [6.2.6] is always satisfied. Rather than
attempt a direct local proof of this fact we will check it by global means in the
application in the next section.

6.3. An ordinary modularity lifting theorem for GSp,, p > 2. We explain
how to prove a modularity lifting theorem for a p-adic Hida family of Hilbert—Siegel
modular forms over a totally real field F* in which the odd prime p splits com-
pletely; this is a slight adaptation of the arguments of our earlier paper [BCGP2I]
and their improvements by Whitmore [Whi22]. Indeed, under a residually p-
distinguished hypothesis, our theorem is a very special case of the theorems proved
in those papers. (The entire difficulty in [BCGP21| was about proving modularity
lifting theorems in the case [y > 0, but the [ = 0 case that we needed here is com-
pletely routine.) It would of course be more natural not to include the assumption
that p splits completely in F'T, but as we do not know a reference for the relevant
Hida families beyond this case, we leave such results for a future paper.

We let F'* be a totally real field in which p > 2 splits completely and let 7 be
an ordinary cuspidal automorphic representation for GSp, /F* of central character
|-|? and weight ((ky, ly; 2)) |- Using our fixed isomorphism 2 : C = Q,, we identify
the places v | oo and v | p without further comment. Recall from Theorem [[811
that there is a Galois representation pr ), : Gp+ — GSp, (Gp) associated to w. We
let p =P, ,. We fix R, a finite set of finite, prime to p places of F* containing all
the prime to p places where 7 is ramified.

We make the following assumptions:

Hypothesis 6.3.1.

(1) p is GSpy-reasonable, in the sense of [Whi22, Defn. 3.19]. In particular, p
is absolutely irreducible.

(2) P is tidy, in the sense of [BCGP21l Defn. 7.5.11].

(3) For each v|p, ﬁ|GF + is ordinary of weight 2, with a fixed p-stabilization

(@,, B,) which is compatible with a fixed choice of ordinary p-stabilization
of m,.

(4) For each v € S, the representation ;),,4)|C;Fv+ lies on a unique irreducible
component of R4 (where R is defined via the p-stabilization (@, 3, ), and
p,r7p|GF . is a point of R% via the chosen p-stabilization on 7).

(5) For each place v € R we have:

. ﬁ|GF+ is trivial.

e ¢, =1 (mod p), and if p = 3, then ¢, =1 (mod 9).
Iw(v)

° T, #0.

Note that we do not assume that 7 is ordinary of weight 2 (it will be in the
main application but we also allow 7 to have regular weight in order to prove

Lemma [I0.4.7)).
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Remark 6.3.2. The main result of this section will be a “minimal at p” modularity
lifting theorem for ordinary p-adic modular forms. In particular hypothesis (B will
be used for Taylor’s Thara avoidance argument, in order to have no minimality
hypotheses away from p. In the application, F'*/Q will be a solvable extension
chosen to ensure this, and the main modularity lifting theorem for Q will be deduced
using base change.

We also note that the theorem is only “minimal at p” due to our failure to
completely analyze the deformation rings RS in the previous section. However
we emphasize that when ﬁ|GF . is residually p-distinguished then Spec RS*[1/p] is

irreducible and hypothesis (@) is automatic.

Remark 6.3.3. The most important applications of the result of this section are
in the case p = 3 and p(Gp+) C GSpy(F3). In this case the condition that p is
GSp,-reasonable can be made completely explicit, see §6.4

By the assumption that p(Gg+) is tidy, we can choose an unramified place wy
of F* of residue characteristic greater than 5, with g, Z 1 (mod p), and such that
no two eigenvalues of p(Frob,,,) have ratio g.,. We set S =S, UR U {wo}.

By the above hypotheses, we are in the situation of [BCGP21l Hyp. 7.8.1], except
that we have not assumed that we are residually p-distinguished. In the notation
of [BCGP21], §7.8] and [Whi22], §7], we take I = (), so that by definition the ring Ay
is equal to Agsp, p+ = <§>v\pAGsp4,u- The only change that we make to the setup
of [BCGP21], Whi22] is that for v|p we use the deformation problem D%, taking
X1 X2 to be unramified with ¥, (Frob,) = @,, Xy(Frob,) = j,. Note that in the
residually p-distinguished case that @, # Bp, this agrees with the deformation

problem denoted Dy*? in [BCGP21] (Whi22).

We can then carry out all of the constructions made in [BCGP21] §7.8] and [Whi22],
§7], which for the most part make no use of the hypothesis that @, # Bp: the proof
of [Whi22, Thm. 7.8| generalizing [BCGP21, Thm. 7.9.4] only uses the values of D
on Op for E'/E a finite extension (recall that in the non residually p-distinguished
case we don’t necessarily understand the values of D2 on general complete Noe-
therian local rings due to its definition as a scheme-theoretic image). We now recall
the key points, allowing ourselves to simplify the notation slightly in comparison
to that of [BCGP21], by dropping the symbols “I” and “?” appearing there.

In particular, we have the global deformation problem

Si = (7, S, {Acsp,,o Jves, U {O}vess,, {D5 }ves, U{Di} ver U {DEO})7

where D} is defined in [BCGP21, §7.4.5] (it corresponds to unipotently ramified
liftings). There is a surjection of Aggp, p+-algebras Rs, — Ts,, where Ts, is
the Hida Hecke algebra considered in [BCGP21 §7.9]: it acts faithfully on a finite
free Agsp,,r+-module M ! which is obtained from the ordinary part of the coherent
HY of Hilbert-Siegel Shimura varieties.

By Hypothesis[6.3.1] {@), for each v|p the representation p”7p|Gp . lies on a unique

irreducible component of Spec R4, which we denote Spec R>™. We let D2™ be

v

the deformation problem determined by this irreducible component, and write

Slﬂf = (ﬁv Sa {AGSP47U}UESP U {O}UES\SP7 {IDvAm}vESP U {Di}vER U {DSQ})
We let Ts, , denote Rs, , ®rs, Ts,. These should be thought of as “p-minimal”
deformation rings and Hecke algebras, see also Remark [6.3.2)
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Theorem 6.3.4. Assume that we are in the above situation, so that in particular
Hypothesis[6.3.11 holds. Then Rs, , is a finite Agsp, r+-algebra, and the morphism

Rs, . — Ts, . has nilpotent kernel, i.e. (Rs, )" — Ts, .

Proof. We first verify that for v | p, the irreducible components R5*™ satisfy the
hypothesis of Lemma[6.2.6l For this consider a minimal prime @), C Ts, contained
in the prime ideal corresponding to m and the chosen p-stabilizations, and consider
the composition

RUA - R$1 - TSl - T$1/Q7r-
By Hypothesis 6311 (@), the composite must factor through the component R%™.
We now claim that the composite

SpecTs, /Qr — Spec RUA”r — Spec Agsp, v

is surjective, and hence the second map is surjective, which is what we are trying
to prove. To see this note that the composite is also

SpecTs, /Qr — Spec Acsp,,r+ — Spec Agsp, v-

Here the second map is clearly surjective, while the first map is surjective because
Spec Ts, /Q is finite and torsion free as a Agsp,,r+-module, since T, acts faith-
fully on a finite free Aggp, p+-module.

Now we proceed with the proof of the theorem. It is enough to prove that the
support of M' in Spec Rs, contains Spec Rs, .. As in [Whi22, §7.3], we have a
power series ring S over Aggp, r+, and we write a for the augmentation ideal
ker(Soc — Agsp,,r+)- We also have a power series ring R, over R?f,s- Set

L 1 loc
Room 1= o ®pige R, 5-

The patching argument of [Whi22, Prop. 7.11] provides us in particular with:
e Agsp,, r+-algebra morphisms So — Rl — Rs,;
e a Rl module M1 which is free as an S, module (and hence has depth as
an R!, equal to the dimension of S.,).
e an isomorphism M1 /a., = M?;
e a commutative diagram of S..-algebras

R, ——— Endg_ (ML)

l l_®SmAGSp4,F+

Rgl —_— EndAG5p4,F+ (Ml)

It thus suffices to prove that the support of ML contains every irreducible com-
ponent of R ». Exactly as in the proof of Theorem 5714l we know that the
support of M1 /w contains Spec Reo »/w. (This is Taylor’s “Ihara avoidance” ar-
gument, using the data MX etc. from [Whi22 Prop. 7.11] which we have not
recalled here.) Every irreducible component of the support of My, has dimension
equal to that of S, and as every irreducible component of Spec R . has dimen-
sion equal to that of S, My will be supported on an irreducible component of
Spec Roo, » as soon as it is supported on some point which is only contained in that
irreducible component.

It thus suffices to show that for each irreducible component of Spec R there
is a point of Spec Roo »/p contained in it and in no other component. Since Roo x
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is a power series ring over a completed tensor product of local deformation rings, it
suffices to check the same property for each factor, i.e. to check that the same holds
for R2>™ (for v € S,), Spec R}, (for v € R), and Spec REO. The first of these follows
from Lemma [6.2.6] (noting that we have verified the hypothesis above), the second
from [BCGP21, Prop. 7.4.7], and the last from our choice of wg, which guarantees
that RFUD is formally smooth over O. O

6.4. Subgroups of GSp,(F3). In this section, we shall identify the precise sub-
groups of GSp,(F3) we are allowing for our modularity lifting theorems. We first
identify the regular semi-simple elements in GSp,(F3). We have:

Lemma 6.4.1. There are three conjugacy classes of elements g € GSp,(F3) such
that v(g) =1 and g is regular semi-simple, namely:

(1) The unique conjugacy class of elements of order 5,

(2) The unique conjugacy class of elements of order 10,

(8) The unique conjugacy class of elements of order 8 which lie in Sp,(F3).
There are five conjugacy classes of elements g € GSp,(F3) such that v(g) = —1
and g is reqular semi-simple, namely:

(1) Both conjugacy classes of elements of order 20,

(2) Three of the five conjugacy classes of elements of order 8, namely those

whose images in PSp,(F3) lie in the conjugacy classes 4D or 8 A but not 4C
in the notation of Lemmal[Z 1.3

We now turn to reasonableness [Whi22, Defn. 3.19]. Although this definition
does not a priori depend only on the image of p, it shall turn out that that under
our running assumptions this will be true.

Lemma 6.4.2. Suppose that A/Q is an abelian surface, and that A has good re-
duction at some p > 2. Then the image of ﬁA1p|GQ(<p) coincides with the image

Opr,p|GQ(<pn) for allm > 1.

Proof. Let K/Q, be the fixed field of the kernel of 5 A7P|GQ;D’ which certainly con-
tains Q,((p). Since Gal(Qp(¢n)/Qp(¢p)) is cyclic, the lemma holds unless there
exists an inclusion Q((,2) € K. Assume such an inclusion exists. It follows that
the root discriminant dx is divisible by the root discriminant of Q({py2), which
is p(2P°=3p)/p(p=1) — p(2p=3)/(P=1) The assumption that A has good reduction
implies that A[p]/Z, is a finite flat group scheme, which by [Fon85, 2.1 Thm. 1]
implies that the root discriminant of K satisfies

1
) 1+ —.
vp(0r) <1+ o1
Since p > 3, this contradicts our lower bound:
1 p—3
vp(0K) Z’Up(éQ(sz))Zl-f—ﬁ-f—ﬁ. (I

We deduce:

Lemma 6.4.3. Let A/Q be an abelian surface with a prime to 3 polarization and
good reduction at 3, and let

P="Das: Gq — GSpy(F3)

denote the corresponding mod 3 representation. Then the following hypotheses:
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I C GSpy(F3) and I' =TI N Sp,(F3) | Conditions |
LMFDB label small group labels for TV, T’ 0D @ @ @ |
3.1620.1 <64,258> <32,44> v
3.1620.2 <64,258> <32,50> X
3.1620.5 <64,152> <32,44> v
3.1620.10 <64,152> <32,8> v
3.1296.1 <80,29> <40, 3> v
3.810.1 <128,137> <64,137> X
3.810.2 <128,2023> <64,137> v
3.810.5 <128,137> <64,37> X
3.810.6 <128,142> <64,37> v
3.540.1 <192,1485> <96,190> v
3.540.2 <192,1483> <96,191> X
3.540.3 <192,1485> <96,202> X
3.540.5 <192,1018> <96,202> X
3.540.7 <192,965> <96,191> X
3.405.1 <256,6671> <128,937> v
3.270.1 <384,18045> <192,989> v
3.216.1 <480,948> <240,90> v
3.216.2 <480,947> <240,89> X
3.162.1 <640,21454> <320,1581> X
3.135.1 <768,1086054> <384,618> v
3.135.2 <768,1086054> <384,18130> v
3.45.1 2304 1152 v
3.36.1 2880 1440 X
3.27.1 3840 1920 v
1.1.1 103680 51840 v

TABLE 6.4.4. Conjugacy classes of subgroups IV C GSp,(Fs)
with v(I") # 1 and T' = TV N Sp,(F3) absolutely irreducible.
LMFDB labels determine the conjugacy class of IV, the small group
labels [BEOO1] determine T, T up to abstract isomorphism.

(1) P is GSpy-reasonable in the sense of [Whi22l Defn. 3.19],

(2) P is tidy in the sense of [BCGP21] Defn. 7.5.11],

(3) p(Gqc,)) contains a regular semi-simple element,

(4) p(GQ) ~ p(Gq(c,y)) contains a regular semi-simple element,
are satisfied precisely if I = p(Gq) in Table has a tick, where otherwise the
cross indicates the corresponding obstruction to condition (), @), @), or @). In
particular, these conditions are all satisfied if 5(Gq) = GSp,(Fs3).

Proof. Note that if I = p(Gq), and I' = p(Gq(c,)), then I' = I N GSp, (F3). Fur-
thermore, reasonableness (which a priori depends on the image of p|c(q(¢yny) for
all n) only depends on the image of p|c(q(c,)) by LemmaG. 42 As noted in [Whi22,
§4.3], the spanning condition of reasonableness is satisfied for all of these subgroups.
We have listed the abstract isomorphism types of IV and I' according to the small
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groups database [BEOOQI| when they are of small order. The LMFDB subgroup
labels [LME24] (which for proper subgroups are of the form 3.i.n where i =
[GSp,(F3) : T']) determine I up to conjugacy in GSp,(F3). The groups of larger or-
der are described more explicitly in [BCGP21], Lemma 7.5.21]. The abstract isomor-
phism type of T" is already enough to determine I up to conjugation in GSp,(F3)
(under the assumption that I' = IV N Sp,(F3) acts absolutely irreducibly) except
for two pairs with [[V| = 64, one pair with |I’| = 128, and the pair of groups
with |TY] = 768, and in all such cases they can be distinguished by the abstract
isomorphism type of I' = TV N Sp, (F3). O

Remark 6.4.5 (Sp,(F3) is not GLs-adequate). There is a natural inclusion
p: Sp4(F3) — GL4(F3) (646)

It turns out that the image G of p is not adequate (in the sense of [Thol7, Defn.
2.20]), which is the reason why, when p = 3, we need to use GSp, modularity lifting
theorems rather than U(4) automorphy lifting theorems (in contrast to our treat-
ment of the case p = 2 in Section ). The failure of adequacy can be seen directly
as follows. The group G ~ Sp,(F'3) has exactly two irreducible representations V,
V? of dimension 4 over C. The representations are defined over the ring Z[(3] and
are conjugate under the action of Gal(Q((3)/Q) |[CCNT85]. The mod 7 = (1 — (3)
reduction of this representation is p. The corresponding mod 7% = (3) reduction:

p: G — SL4(Z[¢]/3) = SL4(F3[e]/€?)

gives a non-trivial deformation of 5 and a non-zero class in H(G, sly) ¢ H*(G, gl,).
The deformation p is not, however, valued in Sp,(F3[e]/e?); this reflects the fact
that V is not self-dual in characteristic zero; we have VV ~ V. In particular,
identifying gl, with Hom(p,75) ~ 7 ® p ~ Sym?(p) ® A?(p), this cohomology class
lives in H'(G, A%p). In contrast, for p to be adequate as a symplectic representa-
tion, it suffices that H'(G,sp,) = 0 where (in this example) sp, may be identified
with Sym? (7).
This example is similar to the failure of the image of the map

to be adequate. This failure of adequacy for (6.47) does not cause an issue
in [Wil95]; one exploits the fact that the fixed field of the kernel of the adjoint
representation of pp 5 for an elliptic curve £/Q does not contain (s (see the proof
of [Wil95 Prop 1.11]). On the other hand, for an abelian surface A, the fixed of the
kernel of the adjoint representation of p, 5 always contains (3, so there is no way to
avoid this cohomological obstruction. Hence this situation is more analogous to the
problem of proving modularity lifting for elliptic curves over Q(v/5) using 5-adic
modularity lifting theorems; see the introduction to [KT17al] for an exposition of
this case, and an explanation of why there are classes in the dual Selmer group
(so-called “Lie classes”) that cannot be killed by Taylor—Wiles primes.

7. MULTIPLICITY ONE THEOREMS

Our classicality theorems in low weight (in particular Theorem ETIZ4) require
as input a multiplicity one theorem in characteristic zero. The main goal of this
section is to prove such a theorem. Note that multiplicity one really consists of
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two separate statements — firstly that the multiplicity is at least one (a p-adic
modularity statement), and secondly that the multiplicity is at most one.

One approach to proving multiplicity one (following Diamond [Dia97]) would
be to prove an R = T theorem for the corresponding ordinary Hida family and
then, assuming the local deformation ring at p is formally smooth, deduce that
the corresponding module M of modular forms is free, and moreover free of rank
one by specialization at classical points. Such an argument would work if we made
the additional hypotheses that p > 2 and that p was p-distinguished (as is done
in [BCGP21]). Since we are not making such assumptions, a further argument
is required. The first point to note is that we are working in characteristic zero
and hence we only need prove that M is free (and non-zero) after localizing at a
height one prime q corresponding to our characteristic zero representation. To show
that M is non-zero when p = 2 we are able to appeal to the R = T theorem for
unitary groups that we proved in Section [Bl while for p > 2 we use the R = T the-
orems for GSp, proved in Section [63] In either case, Diamond’s argument applies
(at least in principle) providing that the formal completion of the local deformation
ring at q is regular, something that is ultimately true under our hypotheses.

More precisely, what is ultimately required for our arguments is the following.
First, we need an R™4[1/p] = T[1/p] theorem in our higher Hida theory (not yet
classical) situation. (In truth, when p > 2, we get away with a weaker version of
such a theorem in a neighbourhood of the prime g, at the cost of some further
local complications already considered in §6l) This proves that M, is non-zero.
Second, we want to control the relative tangent space of R at the prime . This
is closely related to establishing the vanishing of the adjoint Bloch-Selmer group
(in characteristic zero) of our characteristic zero representation. Theorems of this
kind were proved by Newton and Thorne [NT23| in some generality for Galois
representations associated to automorphic representations of GL,, of unitary type,
and we follow their arguments closely. In fact our situation is for the most part
simpler than theirs, since as we are assuming that p is absolutely irreducible we do
not have to use pseudorepresentations. Finally, we need enough local properties of
the local deformation ring at p in characteristic zero at q, and this is what ultimately
requires the p-distinguished hypothesis in characteristic zero.

A summary of this section is as follows. In §71] we adapt the Galois-theoretic
arguments of Newton-Thorne [NT23| to our setting. In §7.2] we set up the basic
patching formalism required for our argument, and in §7.4] we show how this can
be applied in the setting of GSp, over Q, by patching modules coming from higher
Hida theory, as recalled in §7.31 Note that there is quite a lot of overlap between the
arguments of §7.4 and of similar ones in [BCGP21| §7.8, 7.9] — the difference being
that the latter worked under a more restrictive hypothesis on p but also proved
strong integral statements. Finally, in §7.5 we prove the desired multiplicity one
theorem. Note that our arguments certainly require understanding the multiplic-
ities of certain automorphic representations in cohomology, which ultimately uses
Arthur’s classification of discrete automorphic representations of GSp,.

7.1. Taylor—Wiles primes. Let H be a compact subgroup of GSp,(O). After
replacing E by a finite extension, we can assume that for each element h € H, the
characteristic polynomial of & is already split over E. We will assume this without
comment from now on. We write H for the image of H in GSp, (k). Throughout
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this section, we write ad, ad’ for the Lie algebras associated to GSp, and Sp,
over O.

Definition 7.1.1. A compact subgroup H of GSp,(O) is integrally enormous if
it acts absolutely irreducibly on E*, and if for all simple E[H]-submodules W C
FE ® ad®, there exists an element h € H such that

e 1is an eigenvalue for the action of h on W, and
e the image h of h in GSp,(k) is regular semi-simple (i.e. has 4 distinct
eigenvalues).

Lemma 7.1.2 (Examples of integrally enormous representations, I).

(1) If H contains a regular semi-simple element, and the Zariski closure of H
contains Spy, then H is integrally enormous.

(2) Suppose that the action of H C Sp,(O) is absolutely irreducible but becomes
reducible after restriction to an index 2 subgroup G. Suppose that (H < G)
contains a reqular semi-simple element. Suppose that the Zariski closure
of G is SLg x SLy. Then H is integrally enormous.

Proof. We first consider case (). Since Sp, acts irreducibly on both its standard
representation and on ad’, H acts irreducibly on both E* and E @ ad’. (Indeed
if H preserves a subspace, we obtain a partial flag which is stabilized by the Zariski
closure of H.) Furthermore every element h € GSp,(O) has 1 as an eigenvalue
on E ® ad’; so if h € H is any element whose reduction % is regular semi-simple,
then h satisfies the conditions of Definition [[.1.1]

We now consider case (). Our argument is essentially a characteristic zero
version of the proof of [BCGP21 Lemma 7.5.17] (though note that the roles of G
and H are reversed). If h € (H \ G) N Spy, then the eigenvalues of h are of the
form (a, ™!, —a, —a~!), and by assumption we may assume that the image of h
in Sp, (k) lands in (H ~ G) and is regular semi-simple — the latter condition being
equivalent to the condition that @* # 1. Now, following the proof of [BCGP21,
Lemma 7.5.17], the representation E ® ad’ decomposes over the algebraic closure
of E into two irreducible representations of dimension 6 and 4 on which h has
eigenvalues (1,—1,a2, —a?,a72, —a~2) and (—1,1,a% a~2) respectively, both of
which contain 1 as an eigenvalue. ([l

We now let 't be a totally real number field in which p splits completely, and
we fix a continuous representation p : Gp+ — GSp,(O) satisfying the following
hypothesis.

Hypothesis 7.1.3. Assume that:

(1) p is unramified at all but finitely many places.

(2) vop=e~L

(3) p: Gp+ — GSp,(k) is absolutely irreducible.

(4) p(Gp+ (¢ e)) is integrally enormous.

(5) p is pure.
(6) for all v € S, pla - is ordinary, semistable of weight 2, pure, and p-
distinguished. We choose a p-stabilization (ay, 8p) of pla i (and thus of

P|GF+, so that by definition p|gF+ corresponds to a point of Spec RPA).

(7) If p =2 then E(GF+(,L')) =p(Gp+).
(8) If p > 2 then p(Gp+) \ Spy(F,) contains a regular semi-simple element.
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We will use the following result to verify condition () in Hypothesis [[.1.3

Corollary 7.1.4 (Examples of integrally enormous representations, II). Suppose
that p : G+ — GSp,(O) satisfies either of the following two sets of conditions:

(A1) the Zariski closure of p(Gp+) contains Spy, and
(A2) p(GF+(c,)) contains a regular semi-simple element.

Or alternatively:

(B1) p is induced from a quadratic extension K/F™T disjoint from the composi-
tum Fuo of F1((pee) with the fized field of the similitude character. The
Zariski closure of p(Gp+) contains SLg x SLa, and

(B2) 5(Gr,. ) ND(Gk.F.,) contains a regular semi-simple element.

Then p(G p+(¢,»)) s integrally enormous.

Proof. We assume the first set of conditions. Since the regular semi-simple el-
ements have order prime to p, and since F*((p)/F*((,) is a pro-p extension,
P(GF+(¢,)) contains a regular semi-simple element. Since the Zariski closure of
p(Gp+) contains Spy by assumption, so does the Zariski closure of p(Gp+ (¢ )
(note that taking the derived subgroup is compatible with taking the Zariski clo-
sure, by [Bor91l, 2.1(e)]). The result follows from Lemma [Z-T.2]).

Now we assume the second set of conditions. The property of being integrally
enormous is inherited from subgroups so it suffices to show that H := p(Gr ) is
integrally enormous. By construction H C Sp,(O) is absolutely irreducible but
becomes reducible after restriction to G = p(Gk.r,_). Moreover, as in the first
case, we deduce that the Zariski closure of H contains SLy x SLy. Hence the result
follows from Lemma [[.T2[2]). O

We now use the notation for deformation rings that was introduced in Section [61]
Let S be a finite set of places of F't containing S, and the places where p is ramified.
We define a global deformation problem S by

§= (ﬁv Sv {AU}UGSP U {O}UGS\Spv {D'UA}'UGSp U {DE}UGS\Sp)v (715)

where A, = Aggp,,» and D2 is as in Section As in Section [6.1] we write
Aasp, F+ = @)UespAv. Given a nonempty subset 7" C S, which we assume con-
tains S, we fix an extension of p to a T-framed lifting (p, {Vv}ver) of 7 (ie. fix
choices of v, € 68\1)4 (O) for each v € T'). Write q (resp. qs,7) for the kernel of the
homomorphism Rs — O (resp. RL — O) corresponding to p, and write qiec for the
kernel of the composite R?CT — RL — 0.

Write W = adp, Wg = W ®o E, Wg/0 = Wg/W, and for each m > 1 write
Wy = W @0 O/w™:; and we similarly write W0 = ad’ p, W}%/O =W%®o E/O,
WO =W2®ep O/w™. We write

HYF$/FT, W) :=im (Hi(F;/FJF, W% — HY(F$/FT, W)),

and similarly we write H*(Fg /F*, Wg)' and so on. For any place v of F'* we also
have cohomology groups H(F,", W)’ etc. defined in the analogous way. We write
hi{(Fg,W,,)" for the length of the finite O-module H*(Fd, W,,)’, and similarly for
R (FS, W)
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Remark 7.1.6. Write j for the centre of ad. Since ad” and ad /3 are isogenous, the
quantities hi(Fg, Wy,) — hi(Fd, W) are bounded independently of m (and sim-
ilarly for h'(F,,W,,) — h*(F,, W), and for the various Selmer groups introduced
below).

We define Selmer groups ltléj(FJr7 W) by

Hg p(F*, Wp,) = ker (Hi(F;/F+, W) — H HY(F}, Wm)’> .
veT

We write hg p(F*,W,,) for the length of HS (F*,W,,). In the same way we
define

Hg r(F*, W) = ker (Hi(Fg/FJraW)/ - 1] Hi(FJF,W)'> ;
veT

Hg p(F*,Wg) = ker <Hi(FS+/F+, Wg) — H HY(E}, WE)’> :
veT

Hg 7(F*, Wgo) := ker <H1(F§F/F+a Wg0) — H H'(F}, WE/O)I> :
veT
Note that if we take direct limits via the injections W, = wW,,11 C W41 we
obtain

Hé,T(F+7WE/O) = thé,T(FFFva)a

while the Mittag-Leffler property means that if we take inverse limits with respect
to the projection maps W,,41 — W,, we have

Hé,T(FJer) = 1.gllié,T(F‘Jrvvvﬂ’b)
and thus

HA p(F*, W) = (&ﬂ Hé,T<F+,Wm>> @0 E.

Lemma 7.1.7. Assume that S, CT. For each m > 1, the length of the O/w™-
module

as.7/(a% 7 a5 - RS, @™) (7.1.8)
18
hs p(FY W)+ Y WGy, Win) = BY(FS, Wip,).
veT

Proof. The length of (ZLg)) is equal to the length of its O/w™-dual, which equals
Homo (qs5,7/(a%7, 97" - RS), O/=™),

and elements of this latter group correspond to strict equivalence classes of T-framed
liftings (p', {7, }ver) of type S of p to the ring O & eO/w™, which furthermore
satisfy:

(1) p' (mod e) is strictly equivalent to (p, {yv}ver), and

(2) for each v € T, (7))~ (¢la, )7 = v Hpla, ) ve-
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(Recall that since we have assumed that S, C T, we are not imposing any
conditions at the places v € S\T.) Suppose that [¢] € Hé)T(F+, W), and let ¢ be

a lift of [¢] to Zl(F;, W). By definition, for each v € T' we can write (;5|GF+ = dip,

for some 9, € Z°(F,F,W,,) = Wy, Then ((1 + €¢)p, {(1 — €)7o boer) defines a
T-framed lifting of p, and we claim that the strict equivalence classes satisfying the
two conditions above are exactly those containing ((1+€@)p, {(1+€(ay,—vy)) Vo boeT)
for some [¢] € Hg p(F*,W,,) and a, € HO(GFJ,WW). (Implicit in the claim is
that this set of strict equivalence classes does not depend on the choices of liftings ¢
and elements v,,.) Given this claim, the lemma follows immediately (because the
only strict equivalences between such T-framed liftings are given by replacing all
the a, with a, + a for some a € HO(F$, Wy,)).

To establish the claim, we firstly check that ((1 + ep)p, {(1 — €¥y) Vo tver) is a
lift of the required form. Condition () is obvious, while () is equivalent to asking
that gi)|GF+ (9) =ty — gty for allv € T, g € G p+, which is true by the choice of
the ,,. ’

Conversely, if (p/, {7, }ver) satisfies (), then after replacing p’ by a strictly
equivalent representation, we can and do assume that (p/, {7, }ver) (mod €) =
(ps {vo}ver). We may write p’ = (1 + €d)p for some ¢ € ZY(F, W,,), and
write v, = (1 + eay)y, with a, € W,,. Then (@) is equivalent to asking that for
each v € T and we have ¢|¢_, = —da,. Thus we require that [¢] € Hg p(F*, W),

and given this, the possible a, differ by elements of H(G Pt W), as required. 0O

We define dual Selmer groups as follows. We let W% be the O-module dual
of WO so that W2 := W% /@™ is the O/w™-module dual of W,, (and simi-
larly W' := W @0 E/O ~ Hom(W?, E/O)). Then we set

Hgy p(FT W(1)) := ker <H1(F+/F+ W) - [ H( F*,W,?j(l))),
veSNT

and similarly
H, p(FT WO (1)) i=ker | H'(F$/FT W™ (1) —» [[ H' F+,W0*(1))>,
vESNT

HYL (B2 WY (1) = ker (H (/W) - ] Hi(F;,Wg*u))) ,
veESNT
Hyo p(FF,Wo(1)) = ker (H (F3/FY Wiio) = [ H'FS Wy ))).
veSNT
Just as for the Selmer groups, these satisfy the obvious compatibilities with direct
and inverse limits.
We now show the existence of appropriate sets of Taylor-Wiles primes. We
closely follow the proofs of [NT23| Cor. 2.21, Lem. 2.26, Cor. 2.27], beginning with
the following lemma.

Lemma 7.1.9. Suppose that p : Gp+ — GSpy(O) satisfies Hypothesis 113 Let
q := corankp H§, o(FT, Wg70( ))-
Then there exist o1,...,0q € Gp+ (¢, ) Such that

(a) for eachi=1,...,q, p(o;) is reqgular semi-simple, and
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(b) the kernel of the map
q ~
Hg, s(FY Wiio(1) = D H'(Z, W0 (1))

=D Wejo()/(oi = IWijo(1)

G
(the product of the restriction maps Res<a’:>+’s associated to the homomor-
phisms Z — Gp+ s, the it" such homomorphism sending 1 to o;) is a finite
length O-module.

Proof. Since Hg ., S(FF Wg7o( )) is cofinitely generated, it suffices (by an obvious
inductive constructlon) to show that for any non-zero homomorphism f : E/O —

Hg. o(F*,Wgi(1)), we can find 0 € G+ (¢, such that (o) is regular semi-
simple, and the restriction Resi§+’s of + B/O — Wpio(1)/(0 = YW (1) is
non-zero.

Let L'_/F* be the extension cut out by W2 (1), and let Lo = L. ((p). We
claim that H' (Lo /FT,W2*(1)) = 0. To see this, note that the extension cut out
by Wi (1) = W% (1) ® E(1) is Leo, and since W} (1) is pure, it follows from [Kis04,
Lemma 6.2] that H'(Lo/FT,W;(1)) = 0, and thus H' (Lo /FT,W2* (1)) = 0 as
claimed. Thus H*(Loo/F*, W74 (1)) is killed by a power of p (since it injects into
the finitely generated O-module H?(Loo/F T, W& (1))), and hence the homomor-
phism

Resgy %, of : E/O = H(Fs/Loo, Wijo(1)%r 5
= Homg,, (Gr..s..Wiio(l)

is still non-zero (here Sr__ denotes the set of places of Lo, lying over places in S).

Let M C Wg’;o( ) be the O-submodule generated by the elements f(z)(o),

r € E/O, 0 € Gp_; it is a non-zero divisible O[G'r+ (¢, )|-submodule of Wg’;o( ).

By the assumption that p(G F+(<pm)) is integrally enormous, we deduce that there

exists 0 € G+ (¢, ) such that p( ) is regular semi-simple and M ¢ (o0— 1)W}%’;O( ).

Consequently, there exists m > 0 and 7 € G, such that f(1/@™)(r) & (0 —
DIV o(1).

If f(1/@™)(0) & (o )Wg’;o( ), then Res, F>+ S of is non-zero, as required.

On the other hand if f(1/@w™)(o) € (o )Wg’;o( ) then Res< > “of is non-
zero (because f(1/@w™)(r0) = f(1/w™ )(T)—i—f(l/w )(o) and (10 )Wg7o( )=

(o )Wg*/o(l)) By construction, 7 € Gr, C Gp+(cye) 50 T0 € Gpi(¢yee)-
Flnally, since 7 lies in Gr__, p(7) is scalar and hence p(7o) is regular semi-simple,
so we are done. g

Definition 7.1.10. A set of Taylor—Wiles primes of level N is a finite set of finite
places Q of F't, disjoint from S, such that for each v € @, we have g, = 1 mod p¥,
and p(Frob,) is regular semi-simple.
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Given a set of Taylor—Wiles primes (), we define the augmented global deforma-
tion problem

Sq = (1, SUQ, {Av}ves, U{O}ve(suq)~s, {DvA}veSP U {DE}UG(SUQ)\SP)'
Lemma 7.1.11. Suppose that p : Gp+ — GSp,(O) satisfies Hypothesis 113 Let
q = corankp H§, ((F*, Wg*}o(l)).

Then there exist constants di,ds > 0 such that for each N > 1 we can find a set
of Taylor—Wiles primes Qn of level N such that

(1) #Qn =q.
(2) h}séN,s(FJerJ(\)f*(l)) < d.
(3) for each m < N, the length of
qSUQN7S/(q25UQN,S7 q}SC‘)C ’ RgQN ) wm)
is at most dy + m(2q — 4[FT : Q] + #5 —1).

Proof. Let @ be any set of Taylor—Wiles primes. We have by definition the exact
sequence

0— Hééys(FJr, W' (1)) = Hg. o(FHWRH (1)) = @peH' (k(v), W (1))

More generally, for a set Q of elements o; € G FH(¢,n) with p(c;) semi-simple, let

us denote by Hg, ((F*,Wg*(1)) the kernel of the map
Q7

Hg, g(F* WY(1)) = &oH' ((0:), WY (1))

Accordingly, if @ = {v;} is a set of Taylor—Wiles primes, and Q = {o;} with o; =
Frob,,, then
Hyy o(F5 WA (1) = HE, (5 WR(1).

Moreover, by the Chebotarev density theorem, for any such set Q = {o;}, there
exists a set of places v; with ¢,, = 1 mod p" such that the action of Frob,, on the
finite module W (1) coincides with the action of o;, and such that for any m < N
and any f € HL, (FT,W2%(1)), we have f(0;) = f(Frob,,). (Here we use that

st,8
the O-modules H} n g(F,W2r(1)) are finitely generated and the modules W7*(1)

are finite.) This implies the equality
Hgy o(F7, W5 (1) = Hgy o(F7,W,r(1)). (7.1.12)

for any m < N. Comparing to Lemma [T.T.9) we see that we can and do choose a
set of elements Q = {o;} so that the groups H‘%)S(F*‘7 Wg*}o(l)) are finite length
O-modules of uniformly bounded length (indeed they are all isomorphic, but we
do not need this), and let Qn denote a corresponding set of Taylor—Wiles primes
of level N so that equality holds. We will now show that these sets in fact
satisfy properties [2) and (3).

Considering the long exact sequences in Galois cohomology associated to the
short exact sequence

N
0= WR(1) = Win(l) = Wip(1) =0
we see that we have a morphism

Hgy s(F5 W (1) = Hgy (F* WR (1) = Hyy o(FF Wijo(1))[="]
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whose kernel has order bounded by that of H°(F*, Wy’ (1))/ w?. Since as ex-

plained above hl FT Wg’;o( )) is uniformly bounded, in order to prove (2,

S35, s
it remains to ShOW that HO(F+, Wg*}o( )) has finite length. It in turn suffices
to check that HO(F*, Wg*(1)) = 0 (because then H°(F*, Wy’ (1)) is cofinitely
generated and injects into the finitely generated O-module H*(F*, W% (1))). But
HO(FT, W¥(1)) = HY(FT,W2(1)), and we even have H*(F+, Wg(1)) = 0, be-
cause p is absolutely irreducible and not isomorphic to p(1) (e.g. because it has
different Hodge—Tate weights).

We now turn to [@B). Write [ for the length of a finite O-module. By the
Greenberg—Wiles formula together with Remark [T.T.6] the quantity

Mgy .s(F T Win) = hgy  (F5,War (1) + hO(FF, Wit (1)) = hO(F*, W)

Sn
Y CROES W)+ > (BOES, W) = BHES W)+ (1 + )W)
vES VEQN v|oo

is uniformly bounded independently of N and m < N (and of our choice of Q).

Comparing to Lemma [[.T.7, we see that in order to establish (@), it suffices to
show that the quantity

—hgs s(FTWRI(1) +hO(EFT, Wy (1))

+ (hO(F+, W) — hO(FH, W0 — m) +> (hO(Fj, W) — hO(FF W) + m)
veS
+ ) (hO(Fj,Wg) — WM FF,W0) +2m) +Z( (14 c)W2) — 4m)
vEQN

v|oco

is uniformly bounded independently of N and of m < N. We will do this by showing
that each of the terms is uniformly bounded.
We begin with hg, ((F*+, Wp*(1)). Considering the morphisms
QN

)

W (1) = W' (1) = Wejo(1)
we obtain a morphism

HY,  G(FF W0 () = HY, ((FFWE (1) = Hy, (P W (1)

whose kernel is contained in the kernel of the morphism
H(FS B WO (1) — HY (B /P Wi (1),
This latter kernel is isomorphic to a subquotient of H°(FT W}%’;O( )), which we

showed above is a finite O-module. The uniform boundedness of h, o (F*, W2 (1))
QN S
for m < N then follows from that of h}% S(FT, W (1)), ie. from ().
N

)

To show that the term h°(FT, W2 (1)) is uniformly bounded, we recall from
above that HO(FT™, WX (1)) = 0. It follows that we have an injective map:

HO(F* W (1)) < H'(FF,W™)[@™],

and we are done because H! (F*, W%*)[cw™] is uniformly bounded (since H*(F*, W)
is a finitely generated O-module). The term

RO(FY, W,,) — RO (FY, W2) —m
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and the terms for v € S can be handled similarly, using that HO(F*, Wg) =
HO(FT, W) @& E (respectively HY(F,5,Wg) = H'(F.,-,W2) & E).

If v € Qn, then since v splits in F+(CPN) and m < N, the local Euler character-
istic formula and Tate local duality give

and since p(Frob,) is regular semi-simple, we have h(F,F, W9*) = 2m, so these
terms vanish identically.

Finally the claim for places v|oo follows easily from dimg HO(F,,W2) = 4
(which in turn follows from the assumption that v o p =e~1). O

Proposition 7.1.13. Suppose that p : Gp+ — GSp,(O) satisfies Hypothesis [T 1.3
Let q := corankp HE{S(FJF, Wg*}o(l)).

Then there exists an integer d > 0 such that for each N > 1 we can find a set of
Taylor—Wiles primes Qn of level N, together with a morphism in CNLy

GSpy,F+
RSS[X1, ..., Xg] = RS, (7.1.14)

such that:
(1) #Qn =g
(2) g=2q—4A[FT: Q]+ #S — 1.
(3) Let qg’f] be the kernel of the composite morphism

R$S[Xh,... . Xg) = RS, —O
determined by p and (CII4). Then the finite O-module

qSUQN,AS/(qQSUQN,S’ qg),_cq : REQN)
is killed by w®.

Proof. Choose the Taylor-Wiles primes Q as in Lemma [Z.T.11] and let d be the
constant ds in the statement of that lemma. We can without loss of generality
assume that N > d (because a set of Taylor—Wiles primes of level N 4 1 is also a
set, of Taylor-Wiles primes of level N). If M = qsuqy.s/(03u0,.5 95 - RgQN),
the length of M/w™ is at most gm + d for all m < N by Lemma [.TTT] (3). Thus,
by [NT23| Lem. 2.20], we can find a map
09 = M/w" = qsuqu,s/(050qy,s:98° - RSy, @)

whose cokernel has length at most d, and is in particular killed by w?. By the
topological version of Nakayama’s lemma, we can find a presentation (ZZLI4)) such
that

2 loc S
qsuQN,S/(QSuQN,& 4s,g - RSQN , W

)
is killed by w?. Since we are assuming that N > d, this implies that
1 S
qSUQN,S/(Q?SuQN,s, 98y - RSQN)

is killed by w?, as required. O
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7.2. An abstract patching argument. Set A, := Zf,q. Suppose that we have
the following data.

Hypothesis 7.2.1.

(1) An Rs-module M, which is finite free as a Aggp, p+-module.

(2) For each integer N > 1, a finite quotient Ay of A, such that A, —
Ao /pN factors through Ay.

(3) For each N > 1, a homomorphism Agsp, r+[AN] = Rs,, , and a finite
Rs, -module My which is finite free as a Agsp, r+ [An]-module.

(4) Isomorphisms of Aggy,, p+-modules

My @y, pvlan] Aasp, e — M,

(where the homomorphism Aggp, p+[AN] = Agsp, 7+ is the augmenta-
tion map), compatible with the actions of Rs,, and Rs and the natural
homomorphism Rs,, — Rs.

As in Definition B.1.4 we let 7 = Aqsp, 7+ [21,- -, T1145-1] be the coordinate
ring of ([, GSpy)/Gm over Agsp, p+. Let

Soo 1= AGsp4,F+ [[Aoo]]@A T

GSpy,F+ "7

and let as, be the kernel of the map Soc — Agsp,, r+ given by sending each element
of Ay to 1 and each z; to 0. Write Sy := Aggp,, r+ [AN]®a T =TIAN], a
quotient of So,. Let

GSpy,F+

Ry = R$S[X1, ..., X,].

For each N > 1 we write Ry := REQN and gy = qsugy,s, so that Ry is an R.-

algebra via (CII4) and an Sy-algebra via (GI5) and Hypothesis [2ZTIB). We
set

MY = My ®@ps, BN =My @2 T,

where the equality follows from (E1F). Write R = Rs, which is naturally an
Ry-algebra for each N.
Then Hypothesis [7.2.1] implies that:

e The R-module M is finite free as a Aggy, p+-module.

GSpy,Ft

e For each N > 1, we have a homomorphism Sy — Ry, and MJ\D, is an
Ryx-module which is finite free as an Sy-module.
e We have isomorphisms of Aggy,, p+-modules

MY /a. =5 M,
compatible with the actions of Ry and R and the homomorphism Ry — R.
Fix a non-principal ultrafilter 7 on N, and write A := []ycn Agsp,,F+, and

write A, for the localization of A at the prime ideal

T = {(IN)NENEI € Fst. VN e Ixyn € mAGS%ﬁ}.

Then we set

Mo = @(AI @a [] ME/ago>,

n N>0
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where the product is over the cofinite (by Hypothesis [[Z2T|[2])) set of N for which
a D ker(Se — Sn), and we set

= @(A oa ] RN/m}%N)

N>1

Rpatch .

By for example [GN20, Prop. 3.4.16], we have in particular produced the following
structures.
e Agsp, r+-algebra homomorphisms Soo — Reo — Rpatch _, R
e A finite free Soo-module Mo, together with an isomorphism of Agsp, F+-
modules
Moo ®Soo AGSp4,F+ L> M

e A commutative diagram of S.-algebras

Roe —— Endg_ (M)

l J/_®SOOAGSp4,F+

R——Endy, . (M)

Write qPateh ¢ RPateh and ¢, C R, for the inverse images of q C R (i.e. the kernels
of the composite morphisms R, — RP*® — R — O corresponding to p).

Lemma 7.2.2. The O-module qP**" /((qP2*M)2 q..) is killed by w?, where d is as
in Proposition [Z1.13.

Proof. This is proved in exactly the same way as [NT23, Prop. 4.18]. By Proposi-
tion [.TI3] for each N > 1 the O-module qx/((qn)?, qoo) is killed by w?, so the

cokernel of
IT ase/(a00)® = ] an/(an)?

N>1 N>1
is killed by @? (here the map q.. — qu is the one induced by the morphism
R+ — Ry). By an identical argument to the proof of [NT23| Lem. 4.16, 4.17], the
image of []y~; qn (resp. [Ty, q%) in RPah ig qPatch (regp. (gpatch)2),

It remains to show that the image of [y; Goo/(q%) in qP2ch/(qP2ich)2 agrees
with the image of qso/(qoo)?. This follows from [NT23, Lem. 4.19], exactly as in
the proof of [NT23| Prop. 4.18]. O

Our abstract freeness result is the following, where for the convenience of the
reader we have recalled the running hypotheses and notation in the statement.

Proposition 7.2.3. Assume that p satisfies Hypothesis[7.1.3, and that M satisfies
Hypothesis[7.21. Write q for the kernel of the homomorphism Rs — O correspond-
ing to p. Then My is a finite free (Rs)q-module.

Proof. By Lemma [6.2.23) and our assumption that p|GF . is ordinary, pure and
p-distinguished for all v|p, together with [BCGP21, Lem. 7 1.3] and the assumption
that p is pure, the local ring (R )q.. is regular. Write (Roo)qu for its qoo-adic com-
pletion, and similarly (Rpa“h)gpmh for the qP**“P-adic completion of (RP*M) juccn.
Then the morphism

(Roc)q. = (RPN i
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is surjective, because by Lemma[T.Z.2)the relative cotangent space qPat<h /((qPateh)2 g..)
vanishes (note that localization at qP¥“! in particular inverts p).
Accordingly we can and do lift the morphism Sy, — (Rpa“h)gpmh to a morphism

Soe — (Roo)quo. Since My, is a finite free So.-module, we see that the (Rm)a\m—

module (My)y  has depth dim S, — 1. By the definition of g together with
Lemma G.2.2@)and [BG19, Thm. 3.3.3], we have dim(Ru); = dim S — 1. Since
(Roo)q.. is regular, it follows from Auslander-Buchsbaum that (Ms);_ is a finite
free (Rm)a\w—module. Quotienting by a,,, we conclude that MqA is a finite free

RqA-module7 and equivalently that M is a finite free Rq-module, as required. [

7.3. Higher Hida theory. We now specialize to the case '™ = Q (but still allow
p > 2 to be arbitrary), and continue to assume that p : Gq — GSp,(O) satisfies
Hypothesis In particular since p|q, is ordinary, semistable of weight 2, and p-
distinguished, and we have chosen a p-stabilization, we have determined an ordered
pair (o, Bp) of distinct elements of O such that

Ao, 0 * *

~ 0 )\Bp * *

P=1 0 o e7IAg) 0
0 0 0 D e

where )\, is the unramified character with A\, (Frob,) = .

Our next goal is to explain the construction of the data as in Hypothesis [7.2.1]
which we will use to prove our multiplicity one theorems. This amounts to con-
structing Taylor-Wiles systems out of higher Hida theory modules, which we al-
ready did for usual (i.e. H®) Hida modules in [BCGP21l §7.8, 7.9], and we will
follow the account there where possible. We do make some changes to the setup
however: we specialize to the case '™ = Q, allow p = 2, work with different level
structures at primes where p ramifies, and use a different argument to ensure that
we can work at neat level.

We begin by recalling some of the main results of [BP23]|, specialized to the case
of GSp,. For each w € MW, and neat tame level K?, in [BP23, §1.4, 5.4, we
have defined perfect complexes of Z,[T'(Z,)]-modules, which we denote by M

w,cusp
and M}3. By [BP23, Prop. 5.6.3] the complexes My, ., have amplitude in the
range [0, {(w)], and the complexes M have amplitude in the range [¢(w), 3]. These
complexes have an action of T'(Q,) (extending the T'(Z,)-action) and an action of
the Hecke algebra T? of prime to p level. We now set

H /(M2 o) ®z, O, if £(w) = 0,1,

w,cusp

M, =
H'W)(M32) @z, O, if £(w) = 2,3.

When we want to stress the dependence on the tame level K, we write My .o rvs

M2 n, and M, gr-respectively. We now summarize the main properties of these

modules, writing Iw(p) C GSp,(Z,) for the Iwahori subgroup.

Theorem 7.3.1. The following properties hold:

(1) The modules M., are finite projective O[T (Zy)]-modules.
(2) For any dominant algebraic character A € X*(T)", let

k= —wo,MwW(A+ p) — p.
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There are Hecke equivariant isomorphisms
H" ) (Shigy oo @™ (= D)), if £(w) = 0,1,
H O (Shiy) o, @), if t(w) =2
(8) For any algebraic character A € X*(T) with
Kk = —wo mw(A+ p) — p € X*(T)MF
there are Hecke equivariant isomorphisms

Hi ™ (Shigy, wem (= D)) T (@), if f(w) = 0,1,

My, @0z A E(=A) =

My @07z E(=X) =
Hﬁ;(w)(Shg({);,wﬁ’sm)ord’T(Zp), Zf g(w) =2,3.

(4) We have a perfect duality pairing:
M, Qo[1(2,)] Mwo,Mwwo - O[[T(Z;D)]]
interpolating the classical Serre duality.
(5) If we have a normal subgroup K7 C K% then My kv is a finite projective
O[T (Z,)][K¥/KY]-module and the pullback and trace induce isomorphisms

~ K?/KP
M, xp = MIELS

w KP (M, x?) k2 7 — Moy k2.

Proof. By duality ([BP23] Thm 5.5.2]), point (1) follows from the vanishing theorem
[BP23, Prop. 5.6.3] combined with the fact that when £(w) = 1 the H® with support
vanishes. Point (2) is the classicality theorem [BP23| Cor 4.5.5] combined with the
control theorem [BP23] Thm 5.3.5]. Point (3) is the comparison between higher
Hida and Coleman theories [BP23| Thm 6.2.9] together with Theorem As
already remarked, the duality in point (4) is [BP23, Thm 5.5.2].

We give some justification for point (5) as this is not explained in [BP23|. The
projectivity is a consequence of the other statements and Lemma below. By
the vanishing results just recalled it suffices to show that the corresponding state-
ments for the higher Hida complexes. In other words, pullback and trace induce
quasi-isomorphisms

ML,Kg - RF(Kg/Kfa ;Jq’)v Mw,Kf ®é[[T(zp)]][K§/Kf] O[[T(Zp)ﬂ - M'J),Kga

and the same statement holds for the cuspidal complexes. For this, the key point is
to show that for a suitable choice of cone decomposition ¥, for the integral models
T Sht}?lkf,x — Sht}?;sz,E considered in [BP23] there is an action of K¥/K? on

Sh}?; kr,x, and the natural map

D /1P
OSh}?;K2,E — RF(KQ/Kl s RTF*OShtI?;Kf,E)
is an isomorphism, and the analogous statements for the sheaves OSth?rK . (—D),
P

: KP/KP
and for traces. For this, the facts that Rm,Ogtor = . Ogptor and 7, OShztc/,r !
KpKP,= KpKP,= KpKP.®

Ogprer - are standard and follow from the local description of the toroidal bound-
KpKb.®

ary (see [Lanl7, Prop. 7.5] for example). We just need to explain why there is no

higher K /K? cohomology (note that the action of K% /K? may not be free and p

may divide the order of K¥/K?); however it again follows from the local description

of the toroidal boundary that the stabilizers have order prime to p. (I
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We used the following (presumably standard) lemma above.

Lemma 7.3.2. Let R be a Noetherian local ring with residue field k of character-
istic p. Let G be a finite group with Sylow p-subgroup H, and let M be a finitely
generated R[G]-module. Then the following conditions are equivalent:

(1) M is a projective R[G]-module.

(2) M is a projective (equivalently free) R[H]-module.

(3) M ®}L%[H] R is a free R-module concentrated in degree 0.

(4) M ®}L%[H] k 1s concentrated in degree 0.

Proof. The equivalence of the first two conditions follows from the usual averaging
argument to promote a splitting as R[H]-modules to a splitting as R[G]-modules.
Since R[H] is a local ring, the equivalence of the second, third and fourth condi-
tions is immediate from the existence of minimal free resolutions, and in particular
from [GN20, Lem. 2.1.7, Prop. 2.1.9]. O

Remark 7.3.3. Let us spell out the Hecke action at p. On My, ®o[r(z,)).1 E(=A),
T(Qp) acts via a smooth character, trivial on T'(Z,) (this is the reason for the twist
by A). The isomorphism My, ®o[r(z,)).1 E(—=) = Hl(w)(Sh};’Vr(p)Kp ,w™)°'! matches
the action of ¢ € T (Q,) with the action of the double class [Iw(p)tIw(p)] (note
that on the left hand side, the unitary action of T'(Q,) is twisted by —A).

Remark 7.3.4. Let s be such that k = —wo pw(A + p) — p with XA + p being
G-dominant. Let ¢ be an eigenclass in Hl(w)(Shﬁsvr(p)Kp,w“)ord, corresponding to
an automorphic representation 7. The torus T(Q),) acts on the Jacquet module of
7 via a smooth character ™. Assume furthermore that 7, is a discrete series
representation (which is automatic if X is sufficiently regular), so that we have a

Galois representation pr , : Gq — GSp,(Q,) associated to 7 (see Theorem [L8.T3).
Then p,r7p|gQp is conjugate to a B(Qp)—valued representation, which we can
describe explicitly as follows (see Remark [LTH). If A = (A1, Ag; w), the Hodge—
Tate weights of p, are given in increasing order by
MFA—w 2—A+Xo—w 4+A1—Xa—w 6—A] — A —w
2 ’ 2 ’ 2 ’ 2 '
If we use the upper triangular Borel in B(Q,) in GSp,(Qy), and use the local class
field theory map Q; — G"(‘fp, the character on the diagonal is given by

— A1 —Ag+tw —24A] —Ag+w —4—A1+Ao+w A1+Aot+w—6
tes diag(t— = ,t ozt =t = ), teZ
while p € Q; goes to
. ZA1—Aotw A= Aotw
diag(xa" (1, Lp,p))p— =, xi"((p,L,p, 1))p~ =,
—A14+Ag+ Al+AoFw

xo"(Lp, Lp)p— = xi™((p,p, 1,1))p™ 2 ).

In view of Remark [[.3.4] we now give a more Galois-theoretic parametrization
of the Higher Hida theories. Recall that in Section we defined a complete
local Noetherian O-algebra Agsp,.q = O[(Z) (p))?]. We have two maps Z¥ —
Z; (p) x Z, (p) (given by the projections to each factor), corresponding to x1, x2 :
Z; — Aéspr, and there is an associated homomorphism ¢ : Z; — T'(Agsp, Q)
which is given by

(2) = diag(x1(2), x2(2), 27 'xz ' (2), 2 xa(2) 7).
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On the other hand, consider the universal character
X" T(Zy) — (ZP[[T(ZP)]DX'

Using Lemma and the identification of T' and f, we can view x“pr2
T(Z,) — (Z,]T(Z,)])* as a homomorphism

Xunpl/_% : Z; = T(Zy[T(Zyp)]).

Lemma 7.3.5. There is a unique algebra map f : Zy[T(Zy,)] — Acsp,.q such that
fox mpr=s =4,
Proof. Using Lemma [7.3.6] and the identification of T" and f, 1) corresponds to a

character T(Z,) — (Aasp,,q)*, and the lemma follows from the universal proper-
ties of x*" and of Z,[T(Z,)]. O

We used the following (presumably standard) lemma above.

Lemma 7.3.6. If T/Z is a split torus with dual f, then for any two commutative
rings R, S, there is a natural bijection between group homomorphisms

T(R) — S*
and group homomorphisms
R* — T(S).

Proof. This follows from the case T = G,,, which is obvious. More precisely,

-~

since X, (T) = X*(T) is a free Z-module, we have
Hom(T'(R),S*) = Hom(X,(T) ® R*,S%)
= Hom(X.(T), Hom(R*,S™))
= X*(T) ® Hom(R*,5*)

-~

= X, (T) ® Hom(R*,S*)
= Hom(R*, X.(T) ® S*)
= Hom(R*,T(S)),

as required. O

We now consider the action of the centre of the group GSp,(Ay). The action of
Z(GSp,(Ay)) on the toroidal compactification of our Shimura varieties factors into
an action of Z(Q)\Z(GSpy(Ay)) = {£1}\[[, Z, (as can be seen by considering
complex uniformization). From a modular perspective, Z; acts on the (-adic Tate
module of an abelian surface by scalar multiplication. The fact that we quotient by
{+£1} witnesses the fact that —1 is an automorphism of any abelian surface. This
action extends to an action on the M, k» (as part of the Hecke action on these
modules).

When we have a Z,-module M, equipped with an action of Z(Q)\Z(GSp,(Ay)),
we let MI* be the submodule where the centre acts via the character (z¢)g — zy 2.

More generally, if we have a finite set of primes .S, we let M %5 be the submodule
where the group [[,45 Z;" acts via the character (z¢)sgzs — 22
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Remark 7.3.7. This definition is motivated by Theorem [7371] (). Under the
classicality theorem, this condition corresponds to fixing the central character of
automorphic forms contributing to coherent cohomology to be |.|2.

By abuse of language, we say that the centre acts by |.|? on M,

On the module My k» ®o[r(z,)] Aasp,.Q, the subgroup Z of Z(GSp,(Ay))
acts via z +— 272, Therefore, fixing the central action to be |.|*> amounts to

asking that the group [], £p Z,) acts trivially. We would therefore morally have

that (MwJ{p RO[T(Zp)] AGSp4,Q)|'|2 = Muw,zKr» QO[T(Z,)] AGSp4,Q where ZKP =
Hf#p Z(Zy)K,. Note however that the group ZKP is not neat (a condition we have
imposed so far on our tame level). We now explain a construction which addresses
this issue.

We choose a prime r > 5 such that » Z 1 (mod p) and r Z 1 (mod 4) if p = 2.
We let Iwq(r) denote the subgroup of matrices which are upper-triangular and
unipotent modulo r. If K? is a compact open subgroup with K, = Iwy(r), then
K? is neat by [BCGP21] Lem. 7.8.3| (applied to v = 7).

For any finite set of primes S (possibly empty) not containing p, we let Z°K? =

Lemma 7.3.8. Let KY C K% be compact open subgroups, KY normal in K%, and
the r-components of KV, K% both being Iw1(r). Let S be a finite set of primes, with
reS,andp¢sS.
(1) The module
(M, i; @opr(z,1 Acsp,)'
is a finite projective Agsp, Q2 K5 /Z5KY] module.
(2) The module

112

(My,kr ®@o[1(2,)] Acsp,,Q)
is a finite projective Aasp, Q[ZK5/ZKY] module.

Proof. Since r € S, it follows that the groups Z9K? are neat for i = 1, 2. On the
other hand, we have an identification

2
L1758 — My, zsgr ®o[T(2,)] AGSp,.Q-

(My, k7 @orr(z,)] Aasp,.Q)
so (@) follows from Theorem[T.3.1l Next, we can take S = {r}. Then (M, xr®@o[1(z,)]
AGSP47Q)\~‘2 is obtained from (M, x» ®o[7(z,)] AGsp4,Q)"‘2’S by considering the in-
variants for (Z/rZ)*. Observe that Z5K5 /Z5K} = ZK}/ZKY, so

2
(My,xr ®o[1(2,)] Acsp,q)?

is a finite projective Aasp,,[Z°KY/Z°K%] module. Note that (Z/rZ)* acts via
(Z/rZ)* /{£1} and this group has order prime to p. Therefore the invariants are
a direct factor, as required. (|

7.4. Taylor—Wiles systems. We continue to fix a continuous representation p :
Gq — GSp,(O) satistying Hypothesis [[.1.3l

Definition 7.4.1. A neat prime for p is a prime r > 5 such that

°r#D,
e rZ1 (mod p) and r Z 1 (mod 4) if p = 2.
® plag, is unramified,
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e p(Frob,) is regular semi-simple,
together with a fixed ordering (@1, @y 2, rQ,. %, rQ,. i) of the eigenvalues of p(Frob,.).

By Hypothesis [[.T.3 parts ), (@), and () we can and do choose a neat prime 7.

Definition 7.4.2. We let S be the union of {r} and the set of primes at which p
is ramified (so in particular p € S, because ¢ is ramified at p), and choose sets of
Taylor-Wiles primes Qn as in Proposition [[L.1.T3

For any prime [, we let Iw(l) denote the subgroup of GSp,(Z;) consisting of ma-
trices which are upper-triangular modulo I, and we let Iwy () denote the subgroup
of matrices which are upper-triangular and unipotent modulo I.

Definition 7.4.3. We define an open compact subgroup K? = [[, K; of GSp,(A>P)
as follows:

o If [ ¢S, then K; = GSp,(Z)).

o K, =Twy(r).

o If [ € S~ {r}, then we allow any choice of open compact K; C GSp,(Z;).
We have compact subgroups Kj(Qn), K (Qn) of K? given by

[ ) Ifl ¢ QN; then Kg(QN)l = Kf(QN)l = Klp
o If I € Qn, then K§(Qn)i = Iw(l), K7(Qn )i = Iwi (D).

These groups are neat by [BCGP21l Lem. 7.8.3].
We let
T = Q) O[GSp,(Qu)// GSp4(Zy)]
¢S
be the ring of spherical Hecke operators away from the bad places, and similarly
we set
TN = Q) O[GSp,4(Qu)// GSpa(Z)].
IZSuQnN
We will also make use of some Hecke operators at Iwahori level, which we recall
from [BCGP21], §2.4]. Let [ be a prime. Assume that E is large enough to contain a
square root of I; we fix such a choice I*/2. The reader can easily check that nothing
before [BCGP21, Lem. 2.4.3] makes any use of the running assumption made there
that p # 2; indeed, these results are for the most part over E, and use only that it
is a field of characteristic zero containing ['/2. We define

H="H(l) = 0[G(Qi)//Tw (D)),
Hy=Hai(l) = O[G(Qu)//Twi (D))
With T denoting our usual maximal torus in GSp,, we set
T(Zl)l = (kerT(Zl) — T(Fl)),
and exactly as in [BCGP21] Prop. 2.4.2] we have an injective homomorphism
T(Qp)/ (ker T'(Z;) — T(F;)) — (H1)*. (7.4.4)
The injection ((44) induces an injective homomorphism O[T(Q;)/T(Z;)1] —
H1, and we identify O[T(Q;)/T(Z;)1] with its image in H;.

Definition 7.4.5. Assume that [ =1 (mod p). Given elements @ 1,@2 € k*, we
let mg, &, denote the kernel of the homomorphism O[T (Q;)/T(Z;)1] — k induced
by the character T(Q;)/T(Z;)1 — k* sending T(Z;) — 1, Bio — 1, Bi1 — @y,
Br2 = Q@ 10,2.
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We define the following elements of T'(Q,) which act on M,,:

prl = dla'g(lulvpup)
UP;2 = dla'g(pv 17]927]9)
Upﬁ() = dla’g(papvpap)

We let m®® C T be the maximal ideal corresponding to p; so by definition m®»
contains w, and the polynomials det(X — p(Frob;)) and @;(X) are congruent mod-
ulo m®" for each [ ¢ S. We define m®®@~ C TSYON in the same way. We let

T =T%U,.0,Up1,Up2)

and
TN — TSVeRN [Up)o, Up 1, U;D,?]’

and additionally we let m C T be the maximal ideal
m=(m*" Upo—1,Up1 — ap,Upa— apBp)
and we let m@~ C TON be the maximal ideal
m@N = (M CN T, 0 — 1,Up1 — ap, Upa — apf3p).

For each ¢ € Qn, fix an ordering aq,l,aq,g,a;é,a;% of the eigenvalues of
p(Frobg). Set Any = Agy = [l,eqy Fo (p)?. We now fix a choice of w € W, and
consider the finite free Agsp, q-module

|12

M = HOmAGsp4,Q((MKp ®O[[T(Zp)]] AGSP4»Q) 7AGSp4,Q)m,mT7 (746)

and the finite Agsp,,Q[Aqgy|-modules

. 2
My = Homags,, o (Mkr(qy) @o17(z,)] Aasp, @)1 Aasp,,Q)man m,me

where:

o Mpy» and MKf(QN) denote the modules M, of Theorem [7.31] taking K?
there to be respectively our K? and K7(Qn).

e Agsp,.q is an O[T'(Z,)]-algebra via Lemma [7.3.5]

e The localizations m, m@~ are defined above.

e The localization m, and the localization mg, are with respect to the max-
imal ideals m; of the subalgebras O[T(Q;)/T(Z;)1] of the pro-I Iwahori
Hecke algebras Hi(l) for I € Qn U {r} as in Definition

e The action of Ag, on Mgr(q,) is induced by the actions of O[T(Qq) /T (Zqg)1]
for ¢ € Qn, by regarding Fy (p)? as the maximal p-power quotient of
T(F,)/Z(F,), where Z denotes the centre of GSp,.

e The superscript | - |? denotes that we are fixing the central character.

Lemma 7.4.7. M is a free Agsp, q-module, and My is a free Agsp, QlAqy]-
module.

Proof. Since Agsp,,q[Aqy] is a local ring, this follows from Lemma [Z.3.8(2), since
Iw(q)Z(Zq)/Tw1(q9)Z(Zg) = T (Fq)/Z(Fy). O

The following is essentially [GG12, Lem. 7.1.1], adapted slightly to allow p = 2;
we will use it in the proof of Proposition [[.4.10
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Lemma 7.4.8. Let I' be a profinite group, and let S C R be complete local Noe-
therian rings with mg NS = mg and common residue field k. Let p : T' — GSpy(R)
be a continuous representation. Suppose that p mod mg is absolutely irreducible,
that tr p(T') C S, and that v o p(I') C S*. Then there is a 68\1)4(R)-conjugate of p
whose image is contained in GSp,(S).

Proof. By [CHTO08| Lem. 2.1.10], there is some B € @4(R) such that p’ := BpB~1
is valued in GL4(S). Since J~1pJ = (v op)p~*, we have

(BJB) 'p/(BJB*) = (vop)(p')~".
By choosing a symplectic basis for the alternating form determined by BJB?, it
follows that p’ is GSp,(S)-conjugate to a representation p” valued in GSp,(S). By

Schur’s lemma [CHTO08, Lem. 2.1.8|, we see the element in C/}T_,4(R) conjugating p
to p’ is necessarily contained in GSp,(R), as required. ([

Definition 7.4.9. Let Ts (resp. Ts, ) denote the image of T (resp. of TEw)
in Endagg,, o (M) (resp. in Endagg,, o (Mn)). (These are objects of CNLpqg,, o
but under the present hypotheses we do not know that these algebras are nonzero
(because we do not know that p is modular).)

Recall that we have defined the global deformation problems
§= (pv Sv {AGSp4,p} U {O}lES\{p}a {DZ)A} U {DZD}lES\{p})a

Sax = (7, SUQN, {Acsp, »} U {Otiesuan)~ o AP} U LD hie(suan)~(n})-
The deformation ring Rs,, , is a Aasp,,q[Aqy]-algebra via Lemma G168 (i.e. Agy
acts via the characters v,,; o Artq,). For ease of notation, we sometimes (e.g. in
the statement of the following proposition) adopt the convention that Qg = @, so
that for example TSQN =Ts.

Proposition 7.4.10. For each N > 0, the action of Ag, on My makes Ts,, a
Acsp,.Q[Aqy]-algebra, and there is a Acsp,,q[Aqy]-algebra homomorphism Rs,, —
Tsq, with corresponding representation ps,, : Gq — GSp4(T3QN) determined by
the property that det(X — ps,  (Frob)) = Qi(X) for alll ¢ SUQN.

Proof. Since My is a finite free Agsp, g-module, this follows from local-global
compatibility for the Galois representations at a dense set of points of regular
weight. More precisely, it can be proved in exactly the same way as the case
I =0 of [BCGP21], Thm. 7.9.4], using Lemma [T.4.8 in place of [GG12, Lem. 7.1.1].
(The fact that Ts,,  is automatically a Agsp,,q[Aqy]-algebra was not recorded in
[BCGP21]; it follows from local-global compatibility at the places in Qn.) O

In particular, Proposition makes M into an Rs-module, and each My
into an RSQN-module. We can also regard M as an RSQN—module via the natural
map RSQN — Rs. For each N > 1 we fix a surjection A, = Ag,, and write Ay
for the corresponding quotient of A.,. The kernel of this surjection is contained
in (pNZ,)%, since each v € Qy satisfies g, = 1 mod p’¥. At this point we have
established points (1)) of Hypothesis[.2.1] so it only remains to check [@]), which
is the content of Lemma below.

Before proving it, we recall some standard facts about Iwahori Hecke algebras
that were explained in [BCGP21l §2.4] under the unnecessary assumption that p #
2. Indeed the only place in [BCGP21, §2.4] that relies on the assumption p # 2
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is [BCGP21l Lem. 2.4.34], i.e. the statement that the spherical invariants of a
module for the Iwahori Hecke algebra are a direct summand. This is no longer
valid for p = 2, but we will avoid this problem by making use of Lemma [T.3.8 We
do need to make use of the (proofs of) [BCGP21], Lem. 2.4.36, 2.4.37], but for the
convenience of the reader we will recall the necessary arguments as we use them
(making it clear as we do so that they remain valid for p = 2).

Suppose now that ¢ is a prime with ¢ = 1 (mod p), and let H = H(q) be the
corresponding Iwahori Hecke algebra. The Bernstein presentation of # is valid for
all p, so we can write

H = O[X.(T)]@oO[Iw(q)\ GSp4(Z,)/Iw(q)],

where the twisted tensor product is determined by the relations [BCGP21], (2.4.32)].
The centre of H is O[X.(T)]" (where as usual W 2 Dy is the Weyl group of GSp,),

OLX(T)]" = O[GSp4(Qq) // GSP4(Zy)]

given by x — [GSp,(Z,)]z (where we are regarding = as an element of #); this
isomorphism agrees with the usual Satake isomorphism. (Indeed this presentation,
and the compatibility with the Satake isomorphism, are valid over any ring con-
taining an invertible square root of ¢; see for example [Vig05] or the very general
results of [Bou21].)

Since we are assuming that ¢ = 1 in k, we deduce exactly as in [BCGP21| Lem.
2.4.33] that reduction modulo w induces a natural isomorphism

H®o k2 E[X.(T) xW].
Since we are assuming that ¢ = 1 (mod p), and in any case in our applications of
these results in the global setting there is a twist which makes all of the powers of ¢
integral, we will ignore all powers of ¢*/? from now on.

Exactly as in [BCGP21], we let xq, x1, and 25 denote the following three cochar-
acters:
xo : t — diag(t,t,1,1),

x1:t — diag(1/t,1,1,¢),

xo 1 t — diag(1,1/t,t,1).
Then 23z 22 is the cocharacter ¢ — diag(t,t,¢,t) and

O[X.(T)] = Olxo, 21, T2, (v27122) ] = Olwo, 21, T2, (ToT172) ).

The action of W preserves (xg,zox1, ToTa,ZoT122) considered as an unordered
quadruple. Recalling that we are ignoring powers of ¢'/2, under the identification
of k[X.(T)]" with the spherical Hecke algebra we have

Qq(X) =X*- q,1X3 + (Tq72 + 2Tq70)X2 - TqyquJX + Tq2,0
= (X — LL‘Q)(X — l‘oxl)(X — ,T()LL'Q)(X — l‘oxlxg).
Then k[X.(T)]W = kleq, e, (e3/e1)*!] where
ZeiXi = (X — ,To)(X — ,Tol'l)(X — LL‘QLL‘Q)(X — l‘oxll'g).
Now suppose that &, 1, %42 € k* are such that aq,l,aq,g,a;;a;} are pairwise
distinct, and set v := @y 1, 11 = avﬁza;j, Y2 = (W10 2) "L

We let n C O[X.(T)]" be the maximal ideal generated by @ and the e; —
ei(Y0,71,72), and for each w € W we let m,, be the maximal ideal of O[X,(T)]
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generated by w and the w-x; —;. By our assumption on @y, 1, 04,2, the 8 ideals m,,
are pairwise distinct, and exactly as in the proof of [BCGP21], Lem. 2.4.36], we see
that O[X.(T)] is a semi-local ring whose maximal ideals are the m,,. In particular
if M is an O[X,(T)]-module, we can write

Mn = EBwEWme'

Lemma 7.4.11. Suppose that R is a commutative ring, and that G is a finite
group. If H is a subgroup of G then we write ey == Y, .y h € R[G], and let [G]y =
> gec/u 9 € R[G] (the coset representatives being chosen arbitrarily). Then if M
is a finite projective left R[G]-module, we have

(1) MH = ey M.

(2) M€ = [GlgM*H.

(3) If S is any R-algebra, then (M @r S)H = MH @R S.

(4) The natural maps MH — M and M — My induce isomorphisms of R-

modules

Homp(My, R) —~ Homg(M, R)H
Homp(M, R) g — Homp(M*#  R).

Proof. Writing M as a direct summand of a free R[G]-module, we reduce to the
case M = R[G]. Then the first part is an easy calculation, while the second part
follows from the first and the relation [G]gen = eq, which is immediate from the
definitions. The third part is immediate from the first.

Turning to the final part, it is easy to see that the isomorphism Hompg(Mpg, R)
Hompz(M, R)H holds for any finite left R[G]-module, projective or otherwise. It re-
mains to show that if M is projective then Homgr(M, R)y — Homgr(M*, R). We
may again assume that M = R[G], and since R[G] is a free R[H]-module, we can
furthermore assume that H = G. We can identify R[G] with Hompg(R[G], R) by
sending [1] to the map ¢ such that ¢(Zg 24g) = x1. Combining this with the usual
identification of R[G]¢ with R via the trace map, we see that Homp(M, R)¢q is
a free R-module of rank one generated by the image of ¢. By part (), we have
R[G]Y = R - eg. Since ¢(eg) = 1, we are done. O

Lemma 7.4.12. Suppose that &q1,042 € k* are such that aq,l,aq,g,a;g,a;} are

pairwise distinct, and define ideals m,,, n as above.

Let R be an object of CNL@, and let N be an R-module with a smooth action
of GSp4(Qq), with the property that if Ko < K1 are compact open subgroups of
GSp4(Qy), then N2 is a finite projective R[K; | Ka]-module.

Then for each w € W the projection

pr,, : (NGSP4(Zq))n — (le(q))mw (7413)
is an isomorphism.

Proof. Take K1 = GSpy(Z,), K2 = ker(GSpy(Z,) — GSpy(F,)). Set G =
K1/Ks = GSpy(F,), and let H = Iw(q)/K2 = B(F,) < G. Write M = NXz,
so that by assumption M is a finite projective R[G]-module, and we have MY =
NGSPa(Za) gnd MH = NIw(9),

By Nakayama’s lemma and Lemma [CZTT|[B]), we can and do assume from now
on that R = k. Let [GSp4(Z,)] € H be the Hecke operator which is the indicator
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function on GSp,(Z,). By Lemma [[ZTTI[2]) we have

NESPaZ0) = [GSp,(F)] pw,) (N™W) = [GSp4(Zy)|(NT(),
where the second equality follows from the very definition of the Hecke operators.
We claim that (under our assumption that R = k) the Hecke operator [GSp,(Z,)]

is an inverse to pr,,.
To see this, note firstly that by the Bruhat decomposition we have

(GSPy(Zg)] = D w
weW
(where we are using the identification H ®p k = k[X.(T) x W]). We have the
decomposition
(NIW(q))n — @wGW(NIW(Q))mw;

S0 we can write any T € (NIW(‘I))n as ¥ = ), oy Tw for unique elements x,, €
(N™W@) " and in particular if z € (N®SPa(Za)) then pr,(z) = z,. By the
definition of the m,,, we see that the action of W on (NIW(‘?))n is via W1Tw, = Twyw,
for all wy,ws € W.

We can therefore compute that if 2 € (N9SPs(Za))  then [GSp,(Z,)] o pr,, () =
[GSP4(Z)|zw = X rew WTw = D ew Tww = 2, while if y € (N™(@),  then
pry, °o[GSp4(Zy)(y) = Pry (X wew w'y) =y, as required. O
Remark 7.4.14. The second half of the proof of Lemma [7.4.12]is essentially identi-
cal to the proof of [Whi22l, Prop. 5.10] in the special case that G = GSp, and P = B.
Indeed note that while it is assumed there that p 4 #W, all that is used in the proof
is that p t #W,, where L is the Levi factor of P; and for P = B the group W, is
trivial.

We now establish Hypothesis [7.2.1] ().
Lemma 7.4.15. The natural pullback map Mgr — Mrerqu) induces an isomor-
phism of Rs,  -modules (MN)aq, — M.
Proof. First, we have that

2
(MN)AQN = HomAGs%Q((MKé)(QN) QO[T (2,)] AGSP@Q)‘ | vAGSm,Q)mQN,mmeN

by part @) of Lemma [[.4TT] and Lemma [T 47l We claim that the map

. 2 . 2
(Mir @orr(z,)1 Aasp,@)bim. = (Miz(x) ®orrz,) Acsp,.@),)

QN m,,mqy

is an isomorphism. It suffices to see (imposing that the central character acts by
| - 1?) that the map

I-1?,Qnu{r}

meN memg

. 2 T
(Mx» @opr(z,) Acspr@)ia ™ 1 = (Micr (o) ©orr(z,)1 Acsp..q)
is an isomorphism. Here the subscript (| - |2, Qn U {r}) indicates that the central
character acts by | - |? up to primes in Qn U {r} (as in Lemma [[.3.8).
Let K(Qn) =[], K(Qn~): C GSpy(A°>P) be defined by

KP(@Qn) = K} il ¢ Qn,
K(Qn)i = ker(GSp,(Zi) — GSpy(Fy)) ifl € Qn

By Lemma[Z38([), (Mk(qy) Ro[r(z,)] AGSP47Q)|'|2’QNU{T} is a finite projective

meN ,My.

Acsp,.Qlll,c0n GSP4(F)]l-module. We conclude by Lemma [T.4.12] O
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We summarize our results so far in the following proposition; we remind the
reader that at this point we do not know that M, is nonzero. Indeed, even if we
knew that p was modular, it could be that our choice of subgroups K; for [ € S
forces My to be zero. In Proposition we will establish sufficient conditions
under which M; is free of rank 1.

Proposition 7.4.16. Assume that p satisfies Hypothesis [Z1.3, and let S be the
deformation problem (LLH) with S as in Definition [74.2. Write q for the kernel
of the homomorphism Rs — O corresponding to p. Define M as in (L48). Then
M, is a finite free (Rs)q-module.

Proof. By Lemmas [7.3.8 and [7.4.15, our construction of the modules My above
gives the data of Hypothesis [[ZIl The result is then immediate from Proposi-
tion [.2.3] ([

7.5. Multiplicity one. Before establishing our main multiplicity one results we
begin with some background material and preliminary lemmas. We refer to Sec-
tion for the relationship between cuspidal automorphic representations 7 of
GSp, /Q which are of general type, and cuspidal automorphic representations IT
of GL4 /Q of symplectic type.

Assume from now on that F' = Q, and that furthermore 7 has central character
wr = |- |2 We now recall some consequences of the theory of newforms due
to Roberts and Schmidt [RS07]. (This theory assumes that we are working with
representations of trivial central character, but this is harmless, as we can reduce
to this case by twisting 7 by the everywhere unramified character | -|.) Recall that
for each prime [ and each n > 0, the paramodular group of level n is

Z; Z; Z, =7
ny .__ X an[ Zl Z[ Zl
Par(l ) T {g € GSp4(Ql) | V(g) € Zl }m lnzl Zl Zl Zl
"7z, "2, [1"Z, Z,

yFar™) -£ 0 for some n. The minimal such n is

We say that m; is paramodular if (m
the paramodular level Ny, of m.
The following result summarizes the facts that we need about paramodular vec-

tors in cuspidal automorphic representations 7 of GSp, /Q.

Proposition 7.5.1. Suppose that 7 is of general type.

(1) For each prime l, there is a unique paramodular representation in the L-
packet containing m;, namely the unique generic representation.

(2) If m is generic, then (m)P"”(lNﬂl) is one-dimensional.

(8) The paramodular level Ny, coincides with the conductor of the corresponding
L-parameter recgr(m).

(4) If m is regular algebraic and py , is irreducible, then Ny, coincides with the
conductor of prplcq, -

Proof. The first part is [Schi18, Thm. 1.1], the second is [RS07, Thm. 7.5.1], and
the third is [JLRS23, Thm. 2.3.5]. The last claim is [BCGP2I, Thm. 2.7.1(2)|
(see e.g. [Ulm16] for the various equivalent definitions of the conductor of a Galois
representation). O

For the following lemma we return to the setting of Section



MODULARITY THEOREMS FOR ABELIAN SURFACES 175

Lemma 7.5.2. Suppose thatv { p and that x1, x3 are two closed points of Spec RS [1/p]
which lie on a common irreducible component, and are such that the correspond-
ing lifts pz,, Pz, Of ﬁ|gF+ are both pure. Then we have the equality of conduc-

tors a(pa,) = alpas).

Proof. Let z} be the image of x; in the spectrum of the GLy4 lifting ring for mGﬁ'

These points lie on a common irreducible component by the assumption on x1, x2,
and the purity of the p,, ensures that this is the unique irreducible component that
either lies on (e.g. by [BG19, Cor. 3.3.4] and the definition of purity), The result
follows immediately from [BLGGT14, Lem. 1.3.4(2)] (a lemma of Choi). O

We now establish some instances of solvable descent for GSp,.

Proposition 7.5.3.

(1) If1L is a |- |*-self dual regular algebraic cuspidal automorphic representation
of GL4 /Q, then (IL,| - |?) is of symplectic type.
(2) Let F/Q be a solvable Galois extension with F CM. Suppose that

P GQ — GSp4(Qp)
has multiplier €1, that p|g, is irreducible, and that there is a RACSDC
automorphic representation wp of GLy /F such that plgy = prpp @ €.
Then there is a regular algebraic cuspidal automorphic representation mw
of GSp, /Q with central character | - |?, such that p = py .

(8) Let F*/Q be a solvable Galois extension with F+ totally real. Suppose
that p: Ggq — GSp4(Qp) has multiplier e =1, that pla,., is irreducible, and
that there is a regular algebraic cuspidal automorphic representation g+
of GSpy /F*, with central character | - |*, and such that pla, . = pr . p-

Then there is a regular algebraic cuspidal automorphic representation m
of GSp, /Q with central character | -|?, such that p = py .

Proof. We begin with part (). If the pair (II,| - |?) is not of symplectic type, then
it is of orthogonal type, so it descends to an automorphic representation 7* of
some GSping /Q, with central character | - |>. The central character of 7% can be
read off from its L-parameter. Under our assumption that II is regular algebraic
(i.e. C-algebraic), it follows from [Pat15, Lem. 3.2(3), 3.4] that the central character
must be odd, which means in particular that it cannot equal |-|2. This contradiction
implies that (II, | - |?) is of symplectic type, as claimed.

By part (), in each of parts ([2) and (B) it suffices to show that there is a | - |*-
self dual regular algebraic cuspidal automorphic representation IT of GL4 /Q with
p = prp. Indeed by (@) such a II is of symplectic type, and we can take 7 to
be a descent of II. Then part (2) is a standard consequence of solvable descent
for GL4, and in particular is a special case of [BLGGTI4 Lem. 2.2.2] (bearing
in mind [BLGGTI4, Lem. 2.2.1], which takes care of the twist by €). Finally
for part (@), since pr,...p 18 irreducible, we see that mp+ is of general type. Its
transfer IIp+ is | - |*-self dual, and the result follows from another application
of BLGGT14, Lem. 2.2.2]. O

We now return to our running hypotheses, so that p : Gq — GSp,(O) is a
continuous representation satisfying Hypothesis [[L1.3] r is a fixed neat prime for p,
and S is the deformation problem (ZIH) with S as in Definition Write q for
the kernel of the homomorphism Rs — O corresponding to p.
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Lemma 7.5.4. Every irreducible component of Spec Rs containing q has dimension
at least dim Agsp, Q-

Proof. We claim there is a presentation

R;DA[[xlu'"7x7‘ﬂ/(f17'-'7f’r+14) %RS

for some r > 0. Indeed since {p} C S, the map [Ball2, (4.2.1)] is injective, and
the existence of such a presentation is a consequence of [Ball2| Prop. 4.2.5, Rem.
4.2.6]. Now by Hypothesis () and Lemma @), plcq, lies on a unique
irreducible component of Spec RpA which has dimension dim Agsp,,q + 14 and the

result follows.
O

We now put ourselves in the setting of Section [(4] and if [ € S \ {r}, then we
take

K; = Par(1*¥19a)). (7.5.5)

Define M as in (TZ6). Let g’ be the kernel of a homomorphism Rs — O cor-

responding to a lift p’ : Gq — GSp,(O) of p, and assume that ¢’ and q lie on a

common irreducible component of Spec Rs[1/p] (in particular, we could take q’ = q,

but we will also consider other choices below). Then by the definition of M, we
have

dimE(M/q/M)[l/p] =dimpg ((MKP)mp)mT7|,|2 XRo E) [q/]. (7.5.6)
Definition 7.5.7. If R € Z>;, we say that a Qp—point of Spec Agsp,,q is of R-

regular classical weight if the corresponding characters 61,02 : Iq, — Q; are
algebraic with respective Hodge—Tate weights h1, ho satisfying ho —hy, 1 —2he > R.

Lemma 7.5.8. For all sufficiently large R, if the point of Spec Agsp,,q determined
by q" is of R-regular classical weight, and Mg is nonzero, then dimg(M/q'M)[1/p] =
1.

Proof. We claim that dimg (M /g’ M)[1/p] is equal to

" dimpp (>0 ) KW E) U1 =) U 2=l 5 fra=al g fra=al s (7.5.9)
T

where the sum is over the cuspidal automorphic representations 7 of weight deter-
mined by q’ with central character |-|?, with 7., respectively holomorphic if [(w) = 0
or 3, and generic if I(w) = 1 or [(w) = 2, and which satisfy pr , = p'; and «,, §,, are
the lifts of @p, 8, determined by ¢’, and similarly for o/, a/., (where the 8, ; act
as in (7.44)). Indeed (5.6 and Theorem [T.3.1] [2)) reduce this to the correspond-
ing assertion about the (cuspidal or otherwise) coherent cohomology of Shimura
varieties, which holds by a standard argument using [Har90, BHR94, [HZ01]. More
precisely, the results of Harris—Zucker allow us to reduce to the case of interior
cohomology, and the argument is then identical to that of the proof of [BCGP21]
Thm. 3.10.1].

Since 7 is absolutely irreducible, so is p’, so any such 7 is of general type. We
need to show that there is a unique 7 with a nonzero contribution to (T5.9]), and
that this contribution is 1. By strong multiplicity one, it suffices to show that for
each prime [, there is a unique m; in the L-packet corresponding to p’ |GQz which
contributes, and that it contributes with multiplicity one. For [ # p,r, this follows
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from our choice of K?, together with Proposition [[.5.1]and Lemma [.5.21 For [ = p
it follows from ordinarity and the assumption that ¢’ is in R-regular classical weight
that m, is an irreducible unramified principal series representation, and that the
simultaneous eigenspaces for the U, ;-operators are 1-dimensional (see [BCGP21,
Prop. 2.4.24, 2.4.26]). Finally for [ = r, since p’ and p lie on a common irreducible
component of Spec Rs[1/p], we know that p|c, has unipotent ramification, so 7,
has Iw(r)-fixed vectors. Since 5(Gq,) is regular semi-simple, we again conclude
that the simultaneous (3,1, 3, 2-eigenspaces are 1-dimensional, as required. O

We now prove our multiplicity one criterion. For the convenience of the reader,
we incorporate our running hypotheses into the statement of the result.

Proposition 7.5.10. Suppose that p : Gq — GSp,(O) satisfies the following
conditions.

(1) p is unramified at all but finitely many primes.
(2) vop=el.
(3) p(GQ¢,ee)) 18 integrally enormous.
(4) p is pure.
(5) pleq, is ordinary, semistable of weight 2, and p-distinguished.
Suppose furthermore that either p = 2, and there is a solvable CM extension F/Q
and an ordinary RACSDC automorphic representation m of GLy /F such that:
(A1) T = lay
(A2) p(GF) is nearly adequate.
(A3) p(GF) contains a reqular semi-simple element.
(A4) There exists an infinite place v of F™ such that the polarized pair (plgy,1)
is strongly residually odd at v.
(A5) B(Gqu)) = p(Gq).
Or alternatively, suppose that p > 2, and there exists an ordinary cuspidal auto-
morphic representation m of GSp, /Q with central character |- |* such that:
(B1) 5, ,~ .
(B2) b is GSp,-reasonable, in the sense of [Whi22| Defn. 3.19].
(B3) P is tidy, in the sense of [BCGP21l, Defn. 7.5.11].
(B4) p(Gq) ~ Sp4(F,) contains a regular semi-simple element.
(B5) There is a compatible choice of p-stabilizations of m, and p|GQp such that
p,r7p|gQp lies on a unique component of Spec RpA and p|GQp lies on the same
component.

Let r be a neat prime for p, and define S,S, M as in Definition[7.4.9 and (LI1.5),
[T40) respectively, where we make the choice of level structure (LHH). Let q be
the prime of Rs determined by p. Then My is a free (Rs)q-module of rank 1.

Proof. Note firstly that in either case p satisfies Hypothesis (with F'* there
equal to Q), because p is absolutely irreducible by whichever of and
applies, and if p = 2 then p(Gq;)) = p(Gq) by We showed in Section [7.4]
that the Rs-module M is part of a set of data satisfying Hypothesis [L2T] so M,
is a free (Rs)q-module by Proposition [[.2.3]

Recall that we have a surjection Rs — Tgs, where the Hecke algebra Tg is
defined in Definition [(.Z.9] and acts faithfully on M by definition. We next show
in the case p = 2 that the induced map R¥[1/p] — Ts[1/p] is an isomorphism. In

the case p > 2 we prove the weaker statement that the image of the corresponding
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map on spectra contains an irreducible component containing ¢. In either case it
follows that My is nonzero, and we will conclude by showing that its rank is one.

We begin with the case p = 2. After possibly replacing F'™ with a quadratic
extension, we can and do assume that all places of '™ lying over S split in F, as
well as any place lying under a place at which 7 is ramified. After making a further
solvable extension of totally real fields, we can furthermore assume that F/F* is
everywhere unramified and for each place v[2 of F, p|g,, is trivial and we have
[F, : Q2] > 7; so by Remark 5.6.7 restriction induces a map from the deformation
problem ’D2A of Section to the deformation problems D% of Proposition
Let T be the set of places of F'* which lie over places in S, and let RT°™d be
the global deformation problem for p|c,, defined in Definition B.ZTTl This is by
definition a A-algebra, where A is as in (B.7.3]). Then we have a morphism of A-
algebras RT:°"d — Rs (the A-algebra structure on Rs comes from the natural
map Agsp,, r+ — Aasp,,qQ), defined by applying the construction of Corollary [5.1.6
to (p®e™")|g,, . (Note that this construction indeed gives a morphism of deforma-
tion problems rather than just framed deformation problems, because conjugating
a lift of p by a matrix B € 68\;)4 (R) corresponds to conjugating the corresponding
lift of TBl6 s by (B,vo (B)) € G3(R).)

By our assumptions, we can apply Theorem B.7.14 and conclude in particular
that RT°'d is a finite A-algebra. We have the commutative diagram

A s RT,ord

|

Aasp,.Q Rs Ts,

and since RT°'Y — Rgs is a finite morphism (by a standard argument exactly as
in the proof of [BLGGT14, Lem. 1.2.3]), we deduce that Rs is a finite A-algebra,
and thus a finite Agsp, q-algebra. Combining this finiteness with Lemma [7.5.4 it
follows that every irreducible component of Spec Rs[1/2] dominates an irreducible
component of Spec Agsp,,q[1/2], and thus that there is a dense set of closed points
of Spec Rs[1/2] of R-regular classical weight. Let p' : Gq — GSp,(Q,) be the
lift of p corresponding to such a point; then Theorem B.7.14 shows that p'|g, is
automorphic. By solvable descent (see Proposition [[.53] [@2))), we deduce that p’
corresponds to a point of Spec Ts. Since this applies to a dense set of points, we
see that the surjection R¥4[1/2] — Ts[1/2] is an isomorphism, as claimed.

We now turn to the case p > 2. We choose a solvable totally real extension F*/Q

—kerp

disjoint from Q “? in which p splits completely, and so that for every prime [ # p
for which either p|gq, or prplcq, ramifies, if v |l is a prime of F', then:

e ¢, =1 (mod p), and if p = 3, then ¢, =1 (mod 9)

* Dlg,, is trivial.

o If p/ is any lift of ﬁ|GQq then p’|GF + is unipotently ramified. (In particular

p|GF+ and ;),,4)|C;F+ are unipotently ramified.)

For the third point, see Lemma [5.6.2] which we stated for p = 2, but whose proof

makes no use of this assumption. We put ourselves in the setting of Section [6.3]
with the automorphic representation 7 there being the base change mp+ of our 7
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to T, and R the set of places lying above the primes | # p where either p|GQz or
Pr.plGq, ramifies. Then Hypothesis .3.1]is satisfied.
We have a diagram

Acsp,, r+ — Rs,

L

Agsp,.Q Rs Ts

where Rg is a finite Rg,-algebra (again, this follows exactly as in [BLGGT14] Lem.
1.2.3], using Lemma [T 4.8 in place of [CHT0S, Lem. 2.1.12]).

Consider a minimal prime @ of Rs contained in the prime corresponding to p.
By assumption the map Rs, — Rs/Q factors through the quotient Rs, 7y
defined in section [6.3] which is finite over Aggp, p+ by Theorem [6.3.41 It follows
that Rs, /Q is finite over Agsp,,q- As it also has dimension at least that of Aasp,.q
by Lemma[7.5.4] it follows that Spec Rs, /Q — Spec Agsp, q is surjective. Arguing
exactly in the previous case we use Theorem [6.3.4] and Proposition @) at a
dense set of closed points of R-regular classical weight to show that @) contains the
kernel of Rs —+ T's, and consequently M, is nonzero, as claimed.

It remains to show that M, is of rank 1. Let 7 be the generic point of any irre-
ducible component of Spec Rs[1/p] containing p. Since Mj is a nonzero free (Rs)q-
module, it suffices to show that M, has rank 1 over (Rs),. Since the rank can
only increase under specialization, it suffices to show that there is some other
p i Gq — GSp4(Qp) corresponding to a closed point of the component deter-
mined by 7, given by an ideal g’ such that Mg is free of rank 1 over (Rs)q .

To see this, note that we have seen above that Spec Rs[1/p] has a dense set of
closed points of R-regular classical weight. Let ¢’ correspond to such a point (on
the component 7); then we are done by Lemma [T.5.8 O

Theorem 7.5.11. Suppose that p satisfies the hypotheses of Proposition [7.5.10,
and that in addition either:

(1) the Zariski closure of p(Gq) contains Spy; or
(2) the Zariski closure of p(Gq) contains SLg x SLqa, and p is irreducible but
becomes reducible on some index two subgroup Gg.

Then p is modular.

Proof. This is immediate from Proposition [[.5.10] and (Z.5.6) (with q' = q), Theo-
rem [T.3.1] B) and Theorem 124 bearing in mind Remark O

8. A 2-ADIC MODULARITY THEOREM FOR ABELIAN SURFACES

In this section, we prove a modularity theorem (Theorem B3.2)) for abelian sur-
faces A/Q which are ordinary at 2 and whose mod-2 representation 5 : Gq —
GSp,(F2) ~ Sg has a very particular form. Specifically, we demand that the im-
age I' of Gq contains a copy of A5 C GSp,(F3) with index at most two which acts
absolutely irreducibly on F3, and additionally require that the image of complex
conjugation is non-trivial and lands in A5 C I'. After passing to the totally real
field F* (at most quadratic) such that p|g,, has image A5, we may identify p
with the symmetric cube of a 2-dimensional representation with image As, and this
allows us to deduce that p is residually modular (in regular weight) using known
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cases of the Artin conjecture for totally real fields together with symmetric cube
functoriality. In light of our previous modularity lifting theorems (in particular The-
orem [[.5.T7]), the remaining work required to show that A is modular is to show
that the representation p is nearly adequate in the sense of Definition and
strongly residually odd in the sense of Definition [5.2.1l Using our results from §5.2]
and §5.3) this reduces to some facts concerning the modular representation theory
of As in characteristic 2.

In §87] we recall some standard facts about 2-torsion of abelian surfaces and fix
once and for all a choice of isomorphism S5 — GSp,(F2). In §82] we carry out the
necessary group-theoretic arguments concerning the mod-2 representation theory
of As. Finally, in §83] we prove that the representations p we are considering
are residually modular (although not a priori in singular weight), and then use
Theorem [T.5.11] to prove the desired modularity theorem.

8.1. The 2-torsion of an abelian surface. We begin by recalling some standard
facts concerning the relationship between Weierstrass points on a genus two curve
and the 2-torsion on its Jacobian. One source for the facts cited in this section is
the introduction to [BEvdGO0§|.

Let A be the Jacobian of a genus two curve X over a field of characteristic # 2.
There is a Weil pairing on A[2] which defines a symplectic pairing (, ). If one denotes
the Weierstrass points (over the algebraic closure) by r; for ¢ = 1,...,6, then for
i # j the element r; — r; has order 2, and is thus a non-trivial element of A[2].
The 2-torsion points r; —7; for ¢ < j are distinct, and they are precisely the nonzero
elements of A[2]. Moreover, with respect to the Weil pairing, one has:

(ri =rjyre —r) = #{i,j} 0 {k, 1} (mod 2) (8.1.1)

fori##j, k#1.

In [BPPF19, 5.1], the following identification ¢ : S¢ — Sp,(F2) = GSp4(F2) is
given: let U := F§ with the bilinear form (z,y) = Z?:l z;y;, let U° C U denote
the trace zero subspace, and let L be the span of (1,1,...,1) € UY. Let Sg act in
the obvious way on = FS. Then A[2] ~ U°/L where the Weil pairing is the pairing
inherited from U. To see that this isomorphism is compatible with the action
on the Weierstrass points, it suffices to identify U with the Fs-space generated
by r; for i = 1,...,6. Certainly the r; — r; land in U, and so it suffices to show
that the divisor Y (r;) is congruent modulo 2 to a principal divisor. If one writes
an affine model for X as y?> = (x —r1)(z —ra) -+ (x — 16) and {1,2,3,4,5,6} =
{i,7,k} U{¢, ', k'} is any partition, then

ri—ri i —rp g —re = (@—r)+(@—r)+@—ry)— (y)

is principal. Finally, the compatibility of the Weil pairing is a consequence of
equation (BI)).

Under this identification, there are two conjugacy classes of subgroup S5 C S,
which one can denote Ss(a) and S5(b), where S5(b) is the subgroup which has a
fixed point (we use here the same notation as [BPPT19, §5.1]), that is, S5(b) is the
standard copy of S5 in Sg (and below As(b) denotes the copy of As in S5(b)). It
follows that X has a rational Weierstrass point, if and only if p 4 , factors through
a conjugate of S5(b).

The Sg-representation U is the natural permutation representation. Hence U as
an As(b) representation is also the direct sum of the trivial representation and the
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standard representation. The Brauer character of U satisfies
x(1)=5+1, x((1,2,3,4,5)) = x((1,3,5,2,4)) =0+ 1, x((1,2,3)) =2+1.

Consequently, if we let V' = A[2] as an As-representation, the Brauer character
of Vis

x(1) =4, x((1,2,3,4,5)) = x((1,3,5,2,4)) = -1, x((1,2,3)) = 1.

Lemma 8.1.2. The representation V & Fy is the unique irreducible modular rep-
resentation of As over Fo of dimension 4.

Proof. This follows directly from the Brauer character table of As; see Lemma[82.1]
([

We can make the identification ¢ : S¢ — Spy(F2) = GSp,(F2) completely
explicit:

Lemma 8.1.3. An explicit isomorphism Sg — GSp,(F2) is given by:

1010 10 01
01 01 0 1 0O
(12)(34)(56) +— 00 1 0 ,(12) — 001 ol
0 0 0 1 0 0 01
0 0 11
1100
(12345) — 111 0ol
1 01 1

Proof. Let ey = 11 — 1o, €2 = 13 — 14, €3 = r3 — 75, and e4 = 11 — rg. Then
the e; € U° span U°/L ~ A[2], and the corresponding Weil pairing agrees with our
usual choice of symplectic form J. ([

8.2. The modular representations of A;. We now establish some easy group-
theoretic lemmas and also prove some facts concerning mod-2 representations of As.
Everything here is elementary, but is included for completeness. We begin by
describing the irreducible modular representations of A5 in characteristic 2.

Lemma 8.2.1. Let k be a subfield of Fy which contains Fy. Then the irreducible
representations of As over k are as follows; moreover, these representations are all
absolutely irreducible, and in particular all absolutely irreducible representations of
As over Fy are defined over Fy.

(1) The trivial representation k.

(2) A two-dimensional representation U obtained by choosing an identifica-
tion Ay ~ SLa(Fy) and then taking the tautological representation of SLa(Fy)
over k.

(8) The conjugate U of U by Gal(F4/F3) acting on k.

(4) A four-dimensional representation V. which is defined over Fa, which may
be identified with U @ U®, and also with Sym®(U). This lifts to the unique
irreducible representation of As in characteristic zero of dimension four.
The representation V' has a regular semi-simple element of order 5.
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Furthermore: there are exactly two blocks of As, consisting of the trivial block and
a block of defect zero consisting only of V. In particular, V defines a projective
module for k[As]. The Brauer character table of As is given as follows (where C is
a 5th root of unity):

The Brauer character table of As

As dim (1,2,3,4,5) (1,3,5,2,4) (1,2,3)

| 1 1 1
U 2 ¢+ ¢! ¢+¢2 —1
uroo2 0 G4 C+¢t -1
Vo4 -1 —1 1

Proof. The group As has 4 conjugacy classes of order prime to 2, and thus has 4
distinct irreducible representations over k. The trace of (1,2,3,4,5) on U is ¢ +
¢~!. For the Brauer character table, see [Kar95, Ch 4, Example 8.5] or [Ser77al,
Example 18.6]. From this table, the identifications V = U ® U? and V = Sym?*(U)
follow. (One can also deduce these identifications from the Steinberg tensor product
theorem.) The facts concerning the blocks can be read off from the decomposition
matrix and Cartan matrix given in [Kar95, Ch 4, Example 8.5]. The projectivity
of V is also immediate from [Ser77a, Prop. 46], since 4 = dim(V) is the largest
power of 2 dividing |As| = 4 - 15. The fact that the order 5 elements act with
distinct eigenvalues on V' is also apparent from the character table. (I

Lemma 8.2.2. The representation V of G = As is nearly adequate (in the sense
of Definition[2.3.3).
Proof. By definition, we need to show that

(1) V is weakly adequate.
(2) HY(G,k) = 0.
(3) HY(G,adV) =0.

The first claim follows directly from [GHTI1T, Prop 9.1] since A5 = SLa(Fy)
and 4 = 22 > 3. (We also give a simple direct proof in Lemma below.)
The second claim is immediate from the fact that As is perfect. For the third
claim, recall that V' is projective, and thus adV ~ V ® V is also projective (e.g.
using that a projective module is a direct summand of a free module, and ten-
sor products commute with direct sums and preserve freeness.) Hence we deduce
that H"(G,ad V) =0 for n > 0. O

Remark 8.2.3. From the exact sequence 0 — k — ad — ad /k — 0, we deduce
that H1(G, ad /k) ~ H*(G, k) ~ k since the Schur multiplier of A5 is Z/2Z. Thus V
is not adequate in the sense of [Thol7, Defn. 2.20].

Lemma 8.2.4. Suppose that FT is totally real and that p : Gp+ — GSpy(F2) is
an absolutely irreducible representation with image G = As(b). If v is an infinite

place such that p(c,) is non-trivial, then (plgp, 1) is strongly residually odd at v in
the sense of Definition [5.2.1l.

Proof. non-trivial involutions A in As(b) C GSpy(F2) =~ Sg are characterized by
being squares of order 4 elements. This is most obvious by thinking about con-
jugacy classes in Sg and noting that non-trivial involutions in As have the cycle
shape (#)(*x); this conjugacy class is also preserved by the outer automorphism
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so this description does not depend on any choice of isomorphism from GSp,(F2)
to Se. Judiciously choosing a suitable order 4 element o of GSp,(F2), we find that
any such A is conjugate in GSp,(F2) to

2

01 00 1 001

Ao (L O 01 :0110:(12J2)
000 1 0010 0 L)’
0010 000 1

so that in the notation of Section 5.2.4] SyJs = Jy - Jo = I which is manifestly
not alternating. (In the explicit isomorphism Sg ~ GSp,(F2) of Lemma BT3
we have o = (1423)(56) and o? = (12)(34).) Hence the result follows from
Lemma [5.27 (See also Remark 5.2.8]) O

Proposition 8.2.5. Suppose that FT is a totally real field, and that p : Gp+ —
GSpy(F2) has image As(b). Suppose that there is an infinite place v of F* such that
plcy) # 1. Then for any imaginary CM quadratic extension F/F¥, the polarized
pair (plap,1) determined by p is nearly adequate and strongly residually odd at v.
Furthermore, p(Gp) contains a reqular semi-simple element.

Proof. The representation of G = As(b) in GSp,(F32) is irreducible and so coin-
cides with the representation V of dimension 4 in Lemma B2 part (@), and so
in particular has a regular semi-simple element of order 5. By Lemma 822 V is
nearly adequate. Since G is perfect, we have p(Gr) = G, so the polarized pair
(Plap, 1) is indeed nearly adequate. Finally, it is strongly residually odd at v by
Lemma [R.2.4 O

We end this section with our promised direct proof that V is weakly adequate.
Recall firstly that if W is a representation of a finite group G over a field k of
characteristic 2, then in addition to the usual short exact sequence

0= AW =W oW — Sym? W — 0, (8.2.6)
there is a short exact sequence
0— W(1) = Sym?*W — A2W — 0, (8.2.7)

where the first map is the inclusion of the subspace spanned by the z®@x for x € W,
and the second map is the one induced by z®y — zAy. We can and do identify W (1)
with the Frobenius twist of W.

Lemma 8.2.8. The socle of VRV isk® V.

Proof. Consider (B2.6]) and (B2ZT) with G = As and W = V. Then V = V(1),
and since V' is projective, we see that V ® V splits as a direct sum of V and an
extension of A2V by itself. Since U,U? and consequently V are all self-dual, and
since V ® V = Hom(V, V) contains exactly one copy of k in its socle by Schur’s
lemma, it suffices to prove that the socle of A2V is k.

Now considering (82.6) and (8ZT) with W = U we see that U ® U admits a
filtration with successive graded pieces k, U, k. Similarly, U ® U? has a filtration
with graded pieces k, U, k. Tensoring these together, we see that the Jordan—Holder
factors (with multiplicity) of A%V are k,k, U, U°.

Since A2V is Gal(F4/F32)-invariant, if either U or U? occurs in the socle of A%V,
then they both do. Since A2V is self dual, however, if U and U° appear in the
socle of A2V, then they also appear in the cosocle, and therefore occur as direct
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summands. If this occurs, then since H'(As, k) = 0, the representation A2V would
be semi-simple, contradicting the presence of exactly one copy of k in its socle. This
contradiction completes the proof. ([

The following lemma gives our second proof that V is weakly adequate (the first
was in the proof of Lemma B2.7)).

Lemma 8.2.9. The representation V of As is weakly adequate.

Proof. Let M be the subspace of End(V) = Hom(V,V) 2 V ® V generated by
the semi-simple elements of As. Note that M is an As-module: if [h] is semi-
simple, then so is g.[h] = [ghg~!]. To prove that V is weakly adequate, it suffices
(by definition) to verify any of the equivalent conditions of Lemma 531} we shall
verify condition (B]), namely, that M = End(V). If M — End(V) is not surjective,
then End(V) has a simple quotient @ such that the composite map M — @ is
zero. The map from End(V) to any simple quotient factors through the cosocle
of End(V'), hence it suffices to show that M surjects onto the cosocle of End(V).
Since V is self-dual, this cosocle is isomorphic to k @& V by Lemma The
corresponding map End(V) — k is the trace map, and any non-trivial element
of A5 of odd order has nonzero trace on V', so M surjects onto k.

It remains to show that M meets the direct summand V', which we will do by
showing that each element of A5 of order 3 contributes to this summand, using
the description of this summand coming from B27) with W = V. Let e, e
be the standard basis of U, and let e, e be the corresponding basis of U?, so
that the e; @ e for ¢ = 1,2 give a basis v; ; for V. The two elements of order 3
in As correspond to the diagonal matrices (w,w™!) € SLa(Fy), where w3 = 1, and
each v; ; is an eigenvector for these matrices (with eigenvalues 1, 1,w,w™1). The
same is true for the v; ; ® v; ;, and these give a basis modulo A%V for the direct
summand V C V ® V, so we are done. O

8.3. A 2-adic ordinary modularity theorem. In this section we will establish
our 2-adic modularity theorem (Theorem [83.2]). We begin by proving the following
lemma which establishes residual modularity in our situation; a closely related
result was also obtained by Tsuzuki and Yamauchi, see [T'Y22] Thm. 4.7].

Lemma 8.3.1. Let F'™ be a totally real field, and let
p: GF+ — GSp4(F2) ~ Sﬁ
be a continuous Galois representation with the following properties:
(1) The image of p is either Ss(b) or As(b).
(2) The image of each complex conjugation has order 2 and lands in As(b).

Then there exists a solvable extension of totally real fields ET/F™T, and an imagi-
nary CM quadratic extension E/E™, such that:

e 5(Gg) =p(Gg+) = As(b), and

o there is an ordinary RACSDC representation m of GLy /E withTr 2 = blay-

Proof. Let ET/F* denote the extension of degree at most 2 corresponding to the
kernel of the composite Gp+ — S5(b) — Z/2Z. Then p(Gg+) = As, and ET is
totally real by the assumption on complex conjugations. Making a further solvable
base change, we can and do assume that for each place v|2, ﬁ|GE . is trivial.
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Let
0:Ggr — SLQ(F4) ~ As

denote the residual 2-dimensional Galois representation associated to this As-extension.
(There are two such representations which are permuted by the outer automor-
phism; choose either.) Note that 7 = Sym® g by Lemma 211 ().

By a theorem of Tate [Ser77b, Thm 4], the composite g : Gg+ — A5 — PGLy(C)
lifts to a representation

0: G+ = GLy(C)

with finite image (which will be some central extension of As). Since the image
of complex conjugation under g is non-trivial in PGL2(C), the image in GL3(C)
is non-scalar and hence ¢ is odd. By the odd Artin conjecture for GLy (i.e. by
the main results of [PS16b] [Sas19]), ¢ is modular. More precisely, o is the Galois
representation associated to an ordinary Hilbert modular eigenform f of paral-
lel weight 1 (the ordinarity being a consequence of local-global compatibility, and
the assumption that ﬁ|gE . is trivial for all v|2.). In particular f is contained in

a Hida family. Specializiﬁg this Hida family to parallel weight 2, and making a
further solvable base change if necessary, we obtain an ordinary cuspidal automor-
phic representation wg+ of GLy /E™T of weight 0 and trivial central character, with
Tr2 = §|GE+ .

Let E/E* be an imaginary quadratic CM extension, and let m be the base
change of T+ to E. Then the symmetric cube Sym® 7 (which exists by [KS02]) is
an ordinary RACSDC automorphic representation of GL4 /E. Since p = Sym?® 7,
we are done. O

We now prove the main result of this section.

Theorem 8.3.2. Suppose that A/Q is an abelian surface such that

(1) As(b) S D4 2(Gq) € S5(b).

(2) The image of complex conjugation has order 2 and lands in As(b).

(3) A has good ordinary or semistable reduction at 2, and pa2lcq, s ordinary

and 2-distinguished.

Then A is modular. More precisely, there is a weight 2 cuspidal automorphic rep-
resentation w for GSp, /Q which is ordinary at 2, and satisfies prp = pap for
all p.

Proof. As recalled in Section [[8.23] the representation p4 o unramified at all but
finitely many primes, is pure, and v o pso = e~'. By Lemma B3] there is an
imaginary CM field £ and an ordinary RACSDC automorphic representation m
of GLy /E such that E/Q is solvable, py(Gg+) = As5(b), and Tr2 = Dy lcy-
Making a further solvable extension, we can and do assume that furthermore £/E*
is everywhere unramified, and all of the places v|2 of ET split in F, as do all places
lying under a place at which 7 is ramified, and all places lying over a place at
which A does not have good reduction.
By Theorem [T.5.11] it therefore suffices to check that:

(a) the Zariski closure of p4,2(Gq) contains Sp,.

)
(¢) pa2(Gq(c,)) is integrally enormous.
) Pa2(GE) is nearly adequate.

) Pa2(GE) contains a regular semi-simple element.
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(f) There exists an infinite place v of E* such that the polarized pair (54 5|c, 1)
is strongly residually odd at v.

Since A5(b) C Pa2(Gq), it follows from [Zar00, Thm. 2.1] that End(4g) = Z.
By [Ser00, Thm 3] (see also [Pin98, Thm 5.14]), this implies that the Zariski closure
of pa2(Gq) contains Sp,, which verifies condition [(a)l To see that P, 5(Gqe)) =
Pa2(Gq) (condition (b)), we note that the assumptions (@) and (@) imply that
Pa2(Gq) contains at most one normal subgroup of index 2, and that such a sub-
group corresponds to a real quadratic field, and in particular not to Q(é). For
condition [(c)] note that As(b) C 4 2(Gq), so we see that 5, 5(Gq) contains a reg-
ular semi-simple element (of order 5), and then by Corollary [[.T.4 we deduce that

pA,2(GQ(cy)) is integrally enormous. Conditions and are immediate
from Proposition O

9. LocAL GEOMETRY OF CURVES WITH A WEIERSTRASS POINT

The goal of this section is to complete the proofs of our main modularity theorems
(Theorem [A] and [B]) using a 2-3 switch. By Theorems [Z.5.11] and B:3.2] we have
established the following (we omit the full list of hypotheses):

(1) A 2-adic ordinary modularity theorem in weight 2 under a hypothesis on
the residual image: the image I" of Gq in GSp,(F2) contains a copy of As
with index at most two acting absolutely irreducibly, and moreover complex
conjugation is non-trivial and lies in A5 C T

(2) A 3-adic ordinary modularity lifting theorem in weight 2.

We combine these two results as follows. Given an abelian surface A/Q with good
ordinary reduction at 3 (satisfying our supplementary hypotheses), we construct a
second abelian surface B/Q with A[3] = BJ[3], such that B also has good ordinary
reduction at 3, and so that the result described in point (I) can be applied to
establish the modularity of B. This implies that the 3-adic representation associated
to A is residually modular and hence that A is modular using point (2).

The construction of B uses the rationality of a certain twisted moduli space P(p)
of principally polarized abelian surfaces (introduced in [BCGP21l, §10.2], see Defi-
nition below). The space P(p) is closely related to the moduli space MY (p)
of genus two curves X with a fixed Weierstrass point and fixed level 3 structure
P = Pjac(x),3- Concretely, the Torelli map My (p) — P(p) is an isomorphism onto
its (open) image. This relationship suggests a natural approach to understanding
points on P(p) with suitable local properties at p = 2 and p = 3, including having
good ordinary reduction when p = 3 and good reduction when p = 2. Namely, we
can consider genus 2 curves over F;, and Q,, with a rational Weierstrass point with
the corresponding local properties. We carry out this analysis in §9.1 for p = 2 and
§9.3] for p = 3.

This would suffice to prove some version of our main theorem (with a more
restrictive hypothesis at 2 but still applying to a positive proportion of genus 2
curves). However, we can push these arguments further by exploiting the fact that
the Jacobian of a genus 2 curve can have good reduction even when the original
curve does not. Moreover, a principally polarized abelian surface need not even
be a Jacobian. We carry out such auxiliary constructions (for p = 2) in §0.20 It
also follows from the results of that section that weakening the hypothesis at 2
any further would require some new ideas. Note that many of the arguments
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in this section could potentially become much simpler (and stronger) once our
modularity lifting theorems are generalized to totally real fields (since passing to
finite extensions makes finding local points much easier). It seemed potentially
useful, however, to push our current methods as far as possible until such results
are available.

Finally, in §9.4] we carry out the details of the 2-3 switch using the results in the
previous three sections and then complete the proof of our main theorems in §9.5

9.1. Genus 2 curves locally at 2. In this section, we discuss some explicit com-
putations with genus 2 curves (with or without rational Weierstrass points) over Fy
and also over local fields. Note that if B/Q2 is an abelian surface with good reduc-
tion, then pp 5(Froby) € GSp,(Fs) has similitude character e~ !(Froby) = —1, and
thus the image of pg 5(Frobs) in the group PGSp,(F3) does not land in PSp,(F3).

Remark 9.1.1 (Reminder concerning conventions). If B is an abelian surface
over a field of characteristic prime to p, our convention (see Section [[J.23) is
that 7, B and B[p] correspond to py , and p} ,. Note, however, that since these
representations are self-dual up to twist, the associated projective representations
are independent of this choice.

Definition 9.1.2. Let B/Q, be an abelian surface for which the associated Galois
representation on 7, B is ordinary. We say that B is p-distinguished if the corre-
sponding representation pp, : Gq, — GSp,(Q,) is p-distinguished in the sense
of Definition For example, if B has good ordinary reduction, then B is p-
distinguished if and only if the characteristic polynomial Q(z) of Frob, on T;B,
¢ # p, has pairwise distinct roots, or equivalently if Q(z) is not a square. If By/F,
is ordinary, we say that By is p-distinguished if the characteristic polynomial Q(z)
of Frobenius has pairwise distinct roots. If X/Q,, is a genus 2 curve, we say that X
is p-distinguished if Jac(X) is p-distinguished.

We begin with some basic group—theoretic facts, which can easily be extracted
from |[CCNT85, pp. 26-27]:

Lemma 9.1.3. There are 10 conjugacy classes of elements in PGSp,(F3)\PSp,(F3).
Their orders and the characteristic polynomials of any lift to GSp,(F3) are given by
the following table. Here the name of the conjugacy class (with the first number indi-
cating the order of the element) follows the same convention as the Atlas |[CCNT85]:

(9) P(z) € F3[z] Size
2C 2t + 222+ 1 36

2D 2t 4+ 2241 540
4C zrE 2P +222Far+1 540
4D zt +1 1620
6G 2t + 222+ 1 1440
6H 2t + 222+ 1 1440
61 4+ 2241 4320

84 ztEad+22Fr+1 6480
104 a2 Fr+1 5184
12C 24+ 23 +222F2+1 4320
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There are, in particular, 9 different possible characteristic polynomials of ele-
ments of GSp,(F3) \ Sp4(F3). There is a natural permutation representation

PGSp4 (Fg) — 840

coming from the action on the 40 points (F3 —0)/{41}, and there is also a unique
transitive action PGSp,(F3) — Sa7 whose stabilizer is the mazimal subgroup 2* :
S5 C PGSpy(F3); see [CCNT85, p. 26]. The conjugacy class of g € PGSp4(F3) ~
PSp,(F3) is determined by the conjugacy classes of its images in Sqo and So7, and
even the image in Sy suffices except for the following classes:

g 540 527

AC (4,4,4,4,4,4,4,4,4,4)  (1,2,2,2,4,4,4,4,4)
4D (4,4,4,4,4,4,4,4,4,4) (1,1,1,1,1,2,4,4,4,4,4)
6G  (2,2,6,6,6,6,6,6)  (1,1,1,2,2,2,3,3,3,3,6)
6H (2,2,6,6,6,6,6,6) (3,3,3,3,3,6,6)

Lemma 9.1.4. Consider the genus 2 curves C; over Q:
Cry?+ @+ 1)y=a+2
Co:? +(@P+1y= —2°+2°+222 + o -1
Cs:y? + (2® +2)y =2 + 22" + 2% — 162% — 8z — 1

Then the C; have good ordinary reduction at 2 and a rational Weierstrass point.

Moreover, the C; are 2-distinguished. The corresponding characteristic polynomials
of Frobs are as follows:

Py :oat +22% + 322 4 4 + 4,
Pyt 42?2 44,
Ps:at — 2% 44,

and the conjugacy classes of po, 3(Frobg) in PGSpy(F3) have type 10A, 61, and 6H
respectively.

Proof. These three curves have conductors 249, 975, and 1947 respectively (they
are taken from the LMFDB [LMF24]). The characteristic polynomials of Frobenius
at 2 can be obtained by an explicit point count; they are irreducible over Q, which
proves they are 2-distinguished. One can determine directly from the characteristic
polynomial that the conjugacy class of pg, 3(Frobs) must be 104 for i = 1; 2D
or 6/ for i = 2; and 2C, 6G, or 6H for i = 3. Given a genus two curve with a ratio-
nal Weierstrass point, one can write down the general degree 40 polynomial whose
splitting field is PGSp,(F3) (see [CCR20, §3]), and then compute a degree 27 resol-
vent. From this one can determine the correct conjugacy class using Lemma
(For Cy, the image in Sy is already enough to determine that the element has
order 6 and so must be 61.) O

Remark 9.1.5. The computations in this section and the next are all done using
magma [BCP97], and the explicit code with documentation can be found at [BCGP25]).

We now consider what happens as we loop over all ordinary genus two curves
over Fs.

Lemma 9.1.6. Let Xo/F2 be an ordinary smooth genus two curve.
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(1) The action of Frobs on Jac(Xo)[3]/{x1} has conjugacy class of type 6G,
6H, 61, 8A, or 10A.

(2) If Xo has a smooth lift X/Zs with a Qq-rational Weierstrass point, then
the action of Frobs on Jac(Xy)[3]/{x1} has conjugacy class of type 6H,
61, or 10A.

(3) If p: Gq, — GSpy(F3) is an unramified representation with similitude ',
and the image of p(Frobs) in PGSp,(F3) has conjugacy class of type 6H, 61,
or 104, then there is an ordinary smooth genus 2 curve X /Zo withp = py 3,
such that X has a Qa-rational Weierstrass point, and is 2-distinguished.

Proof. We may write any smooth genus two curve Xy over Fy in the form

y? + h(z)y = f(x), (9.1.6)

where deg(f(z)) < 6 and deg(h(z)) < 3. We may enumerate all such equations.
We do not concern ourselves with identifying either isomorphism classes of curves
or of their Jacobians, and so in particular when we talk of “curves” below we really
mean curves with a given Weierstrass equation as in ([@.L6]). Let A = Jac(Xy). We
find that:

(1) There are 2!! possible pairs of h(z) and f(z).
(2) There are 768 curves which are smooth of genus 2.
(3) There are 384 ordinary curves, of which:
(a) 32 have p4 3(Frobz) in PGSp,(F3) of type 6G,
(b) 16 have p4 3(Frobz) in PGSp,(F3) of type 6H,
(c) 48 have p4 3(Frobg) in PGSp,(F3) of type 61,
(d) 96 have p4 3(Frobz) in PGSp,(F3) of type 84,
(e) 192 have p4 5(Froby) in PGSp,(F3) of type 10A.
(4) The are are 384 non-ordinary curves, of which:
(a) 48 have p4 5(Frobs) in PGSp,(F3) of type 6G,
(b) 144 have p 4 5(Frobs) in PGSp4(F3) of type 12C,
(c) 48 have p4 3(Frobg) in PGSp,(F3) of type 4D,
(d) 48 have p, 3(Frobg) in PGSp,(F3) of type 84,
(e) 96 have p4 3(Frobg) in PGSp,(F3) of type 10A.
(5) If Xy is ordinary and is additionally the reduction of a smooth curve over Zs
with a Qg-rational Weierstrass point, then p4 5(Frobs) in PGSp,(F3) has
type 6H, 61, or 10A.

We first explain how to distinguish between the various conjugacy classes in parts (3]
and (@), and then we explain part (&]).

(1) By point counting, we can compute the characteristic polynomial Q(z)
of Frobenius. The characteristic polynomials of the conjugacy classes 8A
and 10A are not congruent modulo 3 to the characteristic polynomial of
any other class in PGSp,(F3) \ PSp,(F3), so in these cases we are done.
This is also enough to determine the counts in part ().

(2) The conjugacy classes {2C,6G,6H}, {2D,61}, and {4C,12C} are complete
sets of conjugacy classes in PGSp,(F3)~\PSp,(F3) with the same character-
istic polynomial. We now show how to distinguish the elements of order 2
(respectively, 4) from the elements of order 6 (respectively, 12) (none of the
elements of order 2 or 4 of this type actually occur). If g € PGSp,(Fs)
is any element, and we choose a lift in GSp,(F3), then g? is independent
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of the choice of lift. If g is of type 2C' or 2D, the square of any lift is
scalar and given by I and —I respectively, and so ¢g* will be trivial. If
we start with g € PGSp,(F3) of order 6, however, then for any lift, the
element g* € GSp,(F3) will not be trivial, since it will have order divisible
by 3. This allows us to distinguish the classes of types 2C' and 2D from the
classes of order divisible by 3 by computing Jac(Xo)(F16)[3]. Similarly, if ¢
is of type 4C or 12C, then, for any lift, the element ¢® € GSp,(F3) will be
trivial if and only if g has type 4C. We have the following table (where as
above Q(z) denotes the characteristic polynomial of Frobenius):

Q(z) mod 3 (g) dimker(¢g® —1)

zt 4+ 222 +1 2C 4

2+ 222+ 1 6G 2

2+ 222+ 1 6H 2

4 a?+1 2D 4

ot 42?41 61 2
et 22 Fe+1 40 4
tEad 4222 Fr+1 120 2

We find in all the 96 ordinary cases and 192 non-ordinary cases when
Q(x) mod 3 is a polynomial corresponding to one of the conjugacy classes
in this table, there is an isomorphism

Jac(Xo)(Fas6)[3] ~ (Z/3Z)>.

This rules out the case that 4 3(Frobz) in PGSp,(F3) has order either 2
or 4. When Q(x) mod 3 is either 2% + 22 +1 or 2* + 23 + 222 F x + 1, this
suffices to determine the conjugacy class exactly for the 48 ordinary curves
lying in {2D, 61}, and the 144 non-ordinary curves lying in {4C,12C}.

(3) For the remaining 48 ordinary curves and 48 non-ordinary curves where the
conjugacy class is either of type 6G or 6 H, we first compute the degree 40
polynomial corresponding to the PGSp,(F3) representation, and then com-
pute the degree 27 resolvent, and then use the table in Lemma

(4) To establish point (@), we need to show that all of the ordinary curves
where pp 3(Frobs) has conjugacy class 6G or 84 do not lift to a smooth
curve X/Zo with a rational Weierstrass point. By Lemma below,
the Jacobian of such a curve X has a rational 2-torsion point, so that in
particular, the polynomial Q(z) (mod 2) would need to have 1 as a root.
However, the 32 curves of type 6G and the 96 curves of type 84 have the
property that Q(z) = 2%(2? + x + 1) (mod 2), so no such lift can exist.

It remains to note that if p(Frobs) is of type 6 H, 61, or 10A, then an appropriate X
exists by Lemma [0.1.4] O

Definition 9.1.7. Say that an abelian variety A/Q, has semistable ordinary re-
duction if it has semistable reduction and the abelian part of the special fibre of
the Néron model is ordinary. (In particular, good ordinary reduction is a special
case of semistable ordinary reduction.)

Recall from Section [B] that we have fixed an identification Sg = GSp,(F2).
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Lemma 9.1.8. Let B/Qq be an abelian surface with semistable ordinary reduction.
Suppose that the image of pg 5 lands inside S5(b) C S¢ = GSpy(F2). Then:

(1) The image of pp 5 is a 2-group.
(2) There exists a rational 2-torsion point P € B[2](Q2).
In particular, this holds if B = Jac(X), and X/Qsz has good ordinary reduction and

a rational Weierstrass point.

Proof. The ordinary assumption implies that the image of Gq, in GSp,(F2) =
Aut(BJ[2]) lands (up to conjugation) in the Siegel parabolic:

¥ ok ¥x %
* ok k%
00 x N GSp, (F2). (9.1.9)
0 0 x =x

To see this, it suffices to show that Gq, preserves an (isotropic) subspace (Z3)? in-
side T»(B). If B has good ordinary reduction, the subspace is the kernel of the mod-
2 reduction. More generally, if B has semistable reduction, we can use the descrip-
tion of the Tate module given in [GRR72, Exp.9, IX]. There is a Gq,-equivariant
filtration T»(B); C Ta(B)y C Ta2(B) of (saturated) Zz-modules of ranks ¢ > 0
and t + 2a where 2(t + a) = 4. Moreover, by the orthogonality theorem [GRRT2,
Thm 2.4, Exp.9, IX], T»(B)i = Tx(B)s. If B is purely toric, then t = 2 and T»(B)
gives the desired space. If t = 1, then the abelian part of B is an abelian variety, and
the kernel of reduction gives a rank one Ggq,-stable submodule of T5(B)/T2(B),
and the inverse image of this in T5(B) is the desired submodule.

This group (@I is a subgroup of GSp, (F2) order 48 which is isomorphic to Sy x
So, and is the normalizer of the element:

1010
010 1
00 1 0 (9.1.10)
000 1

There are two (non-conjugate) subgroups of order 48 in Sg; one given by the
centralizer of (#x)(xx)(**) in Sg and the other by the centralizer of (xx); they
are permuted by the outer automorphism. Under our fixed isomorphism, the el-
ement (Q.IT0) is conjugate to (xx)(xx)(x*) by Lemma BT3 (In fact the other
conjugacy class of subgroups of order 48 is given by the Klingen parabolic.) But
now the assumption that the image of pp 5 lands inside S5(b) implies that the im-
age of Gq, lands inside the intersection of S5(b) with the centralizer of an element
of the form (xx)(#x)(xx). If that intersection is not a 2-group, then it contains an
element of order 3. But the conjugacy class of elements of order 3 inside the nor-
malizer of (kx)(x*)(**) consists of elements with cycle shape (sxx)(xxx), whereas
the conjugacy class of elements of order 3 in S5(b) C Sg consists of elements with
cycle shape (x*x), and thus the intersection is a 2-group, proving (Il). Hence the
image of P 5 is certainly contained within the 2-Sylow of GSp,(F2), so the action
of Gq, fixes a 2-torsion point, proving part (2). O

9.2. Abelian surfaces with semistable ordinary reduction at 2. In this sec-
tion, we study abelian surfaces A/Qs with either good ordinary or semistable or-
dinary reduction at 2.
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Let F' be a number field or a local field of characteristic zero, and suppose
that p : Gr — GSp,(F3) has similitude character £~!. We now recall some rational
varieties associated to p constructed in [BCGP21] §10.2].

Definition 9.2.1. Let P = P(p) be the fine moduli space over F parametrizing
principally polarized abelian surfaces A with a given symplectic isomorphism A[3] ~
7" and a fixed odd theta characteristic.

Let MY (p) be the fine moduli space over F' parametrizing genus two curves X/F

with a fixed Weierstrass point and a fixed symplectic isomorphism Jac(X)[3] ~p".

More explicitly (see [BCGP21l, Defn. 10.2.2]) the space P(p) can be defined as
follows: we let B be the moduli space of principally polarized abelian surfaces A
with a given symplectic isomorphism A[3] ~ 5, and let B(2) — B be the Sg =
PSp,(F2)-cover corresponding to a full level 2 structure. Then P is the intermediate
cover corresponding to the subgroup S5(b) C Sg. In particular we note that a
principally polarized abelian surface A/F gives rise to a point in P(p)(F) if, in
additional to having a symplectic isomorphism A[3] ~ p", the image of p 42 18
conjugate to a subgroup of S5(b).

The space P(p) is smooth and rational [BCGP21, Thm 10.2.3]. The Torelli
map MY (p) — P(p) is an open immersion, and hence MY (p) is also smooth and
rational, and dense in P(p).

An unramified representation

p: GQ2 — GSp4(F3)

with similitude character =1 is given up to conjugation and unramified twist by
a conjugacy class in PGSp,(F3) \ PSp,(F3). Given such a class, the goal of this
section is (when possible) to find a point A € P(p)(Q2) which either has good ordi-
nary or semistable ordinary reduction and is in addition 2-distinguished. Naturally,
one such source of representations comes from a point X € MY (p)(Q2) where X
has good ordinary reduction at 2, however, this turns out not to exhaust the list
of possibilities. There are three reasons for this. The first is that A = Jac(X)
can have good reduction even when X does not. The second is that A can have
bad reduction and yet p, 5 can still be unramified (although such A will neces-
sarily be semistable). The third is that some of the most accessible points of P
lie on the complement of the image of M¥ (p), namely, direct products of elliptic
curves. We exploit a number of these phenomena to find points for various different
representations p.

Since we shall only consider p : Gq, — GSp,(F3) which are unramified, we
begin with following, which is a (specialization of a) standard result:

Lemma 9.2.2. Let A/Q2 be an abelian variety. Suppose that p 4 5 is unramified.
Then A has semistable reduction.

Proof. The assumption that p, 5 is unramified implies that the action of inertia
on T5(A) is unipotent, so the claim follows from Grothendieck’s semi-stability The-
orem |[GRR72, Exp.9, IX]. O

The ultimate goal of this section is to prove the following theorem:

Theorem 9.2.3. Let p: Gq, — GSp4(F3) be unramified with similitude charac-
ter=1. There exists a point A € P(p)(Q2) which has semistable ordinary reduction
and is 2-distinguished if and only if the conjugacy class of the image of p(Frobs)
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in PGSp,(F3) ~ PSp,(F3) is not of type 4C' or 12C. Moreover, one can addition-
ally take A to have good reduction if and only if the conjugacy class of the image
of p(Frobs) in PGSp,(F3) ~ PSp,(F3) is of type 4D, 6H, 61, or 10A. This is
summarized by the table below.

(g) C PGSp,(F3) ~ PSp,(F3) good ordinary semistable ordinary

2C X
2D
4C
4D
6G
6H
61
8A
10A
12C

ANEN

XU X NN X A X X
BN N NN

Proof. (Most of) the proof is carried out in the remainder of this section, and we
give the proof by the order in which the argument occurs, namely:

(1) When (g) is one of the conjugacy classes 6H, 61, and 104, the result follows
directly from the fact that there exist genus two curves X/Qs with a ratio-
nal Weierstrass point, good ordinary reduction, and with 2-distinguished
Jacobians, by Lemma Q.T0(3]).

(2) When (g) has the form 4C or 12C, the result follows by Lemma [0.27]

(3) When (g) has the form 8 A, the good reduction case is covered by Lemmal[J.2.6]
and the semistable reduction case by Lemma

(4) When (g) has the form 2D or 4D, the semistable reduction case follows from
Lemma [0.2.8 which also covers the good reduction case for the conjugacy
class 4D.

(5) When (g) has the form 2C or 6G, the good reduction case follows from
Lemma and Lemma (together with an examination of Ta-
ble @.2.3]).

(6) The semistable reduction case for the conjugacy class 2C' is Lemma 0214

(7) The semistable reduction case for the conjugacy class 6G is Lemma [0.2.17

(8) The good reduction case for the conjugacy class 2D is Lemma @219 O

Definition 9.2.4. An ordinary Weil polynomial of weight one for p is a degree 4
polynomial X% + aX? + bX? + paX + p? € Z[X] all of whose roots have absolute
value p/? and for which (b,p) = 1.

If A/Q2 has good ordinary reduction, then certainly the characteristic polyno-
mial Q(x) of Frobenius at 2 will (by the Weil conjectures) be an ordinary Weil
polynomial of weight one for p = 2.

There are 16 possible ordinary Weil polynomials of weight one for p = 2, listed
in factored form in Table @0.2.5] together with the list of corresponding conjugacy
classes in PGSp,(F3) \ PSp,(F3) (as described in Lemma [B.1.3) whose conjugacy
class admits a lift to GSp,(F3) with the given characteristic polynomial over Fs[z].

Lemma 9.2.6. There does not exist a principally polarized abelian surface A/Qq
with good ordinary reduction at 2 such that ps 3(Frobg) has conjugacy class 84,
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Q(z) Q(z) mod 3 (9)

2t —a2?+4 zt—22 +1 2C, 6G, 6H
xt — 33 + 522 —6x+4 2t —a2?+1
2t + 323 + 522+ 6z +4 2t —a2?+1

2t 22+ 4 22+ 1 2D, 61

(22 —z2+2)? e+ 23+ 227+ 22 +1 40, 120
2t 4’ -2+ 2044 424+ 2202+20+1

(2% + 2 +2)? et +223 + 222 + x4+ 1 40,120
-3 -2 2044 422 4+222+zx+1

vt =327 +4 2t +1 4D
(22 +2+2)(2% — 2 +2) 41
23+ 4+ 20 +4 a2+ 20 +1 8A
22—+ —2c+4 2423+ 2% 4+ +1 SA
2t — 203 + 322 —dx + 4 a2 +1 10A
2+ a3+ 322+ 20 +4 a2 41
2+ 223 + 327+ 4+ 4 4283+ +1 104
at — a3+ 322 -2 +4 23+ +1

TABLE 9.2.5. Mod 3 reduction of ordinary Weil polynomials of
weight one for p = 2

and P o has image inside S5(b). If one further insists that A is 2-distinguished,
then P4 3(Frobg) can not have conjugacy class 4C' and 12C.

Proof. Consider first the case of 4C and 12C. Up to unramified twist, the charac-
teristic polynomial of 54 5(Froby) is then
(z? — x +2)? mod 3.
If Q(x) = (22 — 2 4+ 2)? mod 3 is an ordinary Weil polynomial, this forces (by
Table [@.2Z.7) either the equality Q(z) = (2% — z +2)? or
Qz)=a'+2° -2 +2x+4=2%@*+ 2+ 1) mod 2.

The first case is ruled out by the 2-distinguished condition. For the second, it
implies that the action of Frobs on A[2](F2) has order 3. But this contradicts

Lemma
Now consider 8A4. The characteristic polynomial up to twist is

(x+1)(z —1)(2* + = + 2) mod 3,
in which case (see Table [@.Z0)) there is a unique possibility
Q)=a*+2* +2* +2x+4=2%@*+ 2+ 1) mod 2,
and we are again done by Lemma O

We can upgrade this lemma as follows:

Lemma 9.2.7. Suppose that A/Q2 is a principally polarized abelian surface with
(potentially) semistable ordinary reduction and such that:

(1) D4 5 is unramified.

(2) ﬁAig(Frobg) has projective conjugacy class 4C or 12C.
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(3) Pao has image inside some conjugate of S5(b).
Then A has good reduction at 2 and is not 2-distinguished.

Proof. The conditions imply that p4 3(Froby) has, up to unramified twist, charac-
teristic polynomial
(z? + 2z + 2)? mod 3.

If a is a root of this polynomial, then —« is clearly not a root. But that implies that
no two roots have ratio 2 = —1 mod 3. In particular we see that H?(Gq,, Pasz) =0,
so all lifts of p, 5 are unramified. In particular ps3lcq, is unramified, and by
Néron—-Ogg—Shafarevich, we deduce that A must have good ordinary reduction
at 2. The result now follows from Lemma O

We now move on to the classes 2D, 4D, and 8 A, which we can construct directly
using products of elliptic curves.

Lemma 9.2.8. Let X/Qq be an elliptic curve with split multiplicative reduction
and such that the Tate parameter q is a perfect 6th power. Let Y/Qa be an elliptic
curve with good ordinary reduction with characteristic polynomial Q(x) = x*>+x+2
and with py o trivial. Let X' and Y’ denote the unramified quadratic twists of X
and Y respectively. Let A= X xY, andlet B=Y xY’, and C = X x X'. Then A,
B, and C are principally polarized abelian surfaces with the following properties:

(1) A and C have semistable ordinary reduction, and B has good ordinary
reduction.

(2) Q(A[3]), Q(B[3]), and Q(C[3]) are unramified at 2.

(3) P z(Frobs) has projective conjugacy class 8A, pp 5(Frobs) has projective
conjugacy class 4D, and 50)3(Fr0b2) has projective conjugacy class 2D.

(4) Paz> P2 and po o have image inside Ss5(b) C GSpy(F2) up to conjugacy.

(5) A, B, and C are 2-distinguished.

Proof. First we note that both X and Y exist; there exists a Tate curve for any ¢ €
Q2 with v(g) > 0, and one can take Y to be y? + xy +y = 23 — 22 — 62 — 4, which
is actually the base change to Qg of an elliptic curve E over Q of conductor 17
with E[2] ~ (Z/2Z)? as a Gg-module.

The surfaces A, B, and C have a principal polarization coming from the prin-
cipal polarization on each elliptic curve. They clearly all have semistable ordinary
reduction, and B in addition has good ordinary reduction. The assumption that
the Tate parameter g is a cube implies that the action of Gq, on X[3] is isomorphic
to ps @ Z/3Z as a Galois representation, and hence is unramified. Moreover, we
deduce that there is also an isomorphism X'[3] ~ Z/3Z & ps, since the unique
unramified quadratic character is the cyclotomic character. The second claim then
follows since Y and Y’ have good reduction.

The element py 3(Froby) € GLy(F3) has characteristic polynomial 2% + x +
2 mod 3, and py 3(Frobs) has characteristic polynomial (#2—1) from the description
above. Thus 74 3(Frobz) has characteristic polynomial

(22— D)(2*+z+2) =2 +2°+ 2% — 2+ 1 mod 3.

The only elements with this characteristic polynomial modulo 3 have conjugacy
class 84 in PGSp,(F3). For B, we see that Q(z) = (22 + = + 2)(2? — x + 2),
and thus (from Table @.2.5)) the only possibility is that pg 3(Frobs) has projective
conjugacy class 4D. For C, we see that the characteristic polynomial of Frobenius
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on C[3] is (2 —1)? mod 3 and that Frobenius clearly has order 2, so the projective
conjugacy class is 2D.

We now show that the mod 2 reductions are conjugate to a subgroup of S5(b).
The assumption that ¢ is a square implies that py - (and its quadratic twist) are
trivial. On the other hand, by construction, py 5 and thus its quadratic twist are
also trivial. So D4 o, P 2, and p¢ 5 are also trivial and the claim follows.

It remains to show that A, B, and C are 2-distinguished. In each case, we can
compute directly the unit Frobenius eigenvalues on the semi-simplification of the
Tate module. If o denotes the unit root of 22 4+x 42 = 0, then for A, B, and C they
are given by {1,a}, {a, —a}, and {1, —1} respectively. Since a # 1 and a # —«,
these pairs all consist of distinct numbers and we are done. O

9.2.9. The cases 2C, 6G, and 6H. We now turn to the cases of 2C, 6G, and 6H,
where (see Table 0.Z3]) the characteristic polynomial of p 4 3(Frobg) is

2t — 2?4+ 1= (22 +1)*mod 3 (9.2.10)
We have the following:
Lemma 9.2.11. If A/Q2 has good ordinary reduction and
Q(z) =2* +32% +52* £ 6z +4 = 2%(2* +  + 1) mod 2,
then the image of p o is not conjugate to a subgroup of Ss(b).
Proof. This follows from Lemma [0.1.8], exactly as in the proof of Lemma[@.2.61 [

Lemmal[0.2. TTlimplies that, in the good reduction case with conjugacy classes 2C,
6G, and 6H, the only possibility for Q(z) is z* — 2% + 4.

Lemma 9.2.12. Let A/Fy be an abelian surface with Q(z) = (z* — 2% + 4).
Then the action of Froby on A[3](F2) is not semi-simple and the projective im-
age of p 4 3(Froba) has conjugacy class 6H .

Proof. Note firstly that the abelian surface A = Jac(C3) where Cj is as in Lemma[0.T.4]
satisfies the hypothesis and conclusions of the lemma. Let B be another abelian
surface with Q(z) = z* — 22 + 4; it suffices to show that A[3] = B[3]. There is
an inclusion Z[¢] C End(A) where ¢ is the Frobenius endomorphism which satis-
fies ¢ — ¢ +4 = 0. Let ¢ = ¢?> + 1, s0o ¢V = 3 — 1 and ¥V o p = [6]. Note
that Frobs acts non-semi-simply on A[3]. Since Frobs on A[3] has characteristic
polynomial (z2+1)2 mod 3, and 22 +1 mod 3 is irreducible, it follows that the only
proper Gal(Fy/F2)-equivariant submodule of A[3] is ker(z) N A[3].

Since Q(z) determines A up to isogeny, there is an isogeny x : A — B. Either y
has order prime to 3 or ker())NA[3] C ker(x), in which case there is a factorization:

A-—X.B

T

A-X.B

where the 3-part of the degree of ' is less than that of x. By induction, there
exists an isogeny of A to B of order prime to 3, which implies that A[3] and B[3]
are isomorphic, as required. (Il

Lemma 9.2.13. Suppose that A/Qs is an abelian surface such that:
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(1) Paslcq, is unramified.
(2) P 3(Frobs) has projective conjugacy class 2C or 6G.
(3) The image of p4 5 is conjugate to a subgroup of S(b).

Then A/Qsz has semistable ordinary reduction with purely toric reduction.

Proof. Suppose that A had good reduction. Condition (2)) implies that Q(z) =
2* — 22 + 1 mod 3. By Lemmas and 0212, assumptions (), and @) (tak-
ing into account Table [I.2H) imply that ﬁA73(Frob2) has projective conjugacy
class 6H, contradicting condition (). Thus A cannot have good reduction. By
Lemma[0.2.9] A has semistable reduction. As in the proof of Lemma there is
a Gq,-equivariant filtration T5(A); C T5(A)s C T3(A) of (saturated) Zz-modules
of ranks ¢ and ¢t + 2a where 2(¢ + a) = 4. Since A does not have good reduction,
we have ¢ > 0. If ¢ = 1, then T5(A);/3 is a Galois invariant line inside A[3], but
this is not compatible with the fact that p A73(Fl"0b2) has characteristic polyno-
mial (22 + 1)2, and (2% + 1) has no roots over F3. So t = 2 and A has purely toric
(and hence semistable ordinary) reduction. O

On the other hand, we have the following variation on Lemma [0.2.§

Lemma 9.2.14. There exists a principally polarized abelian surface A/Qq satisfy-
ing the following:

(1) A has semistable ordinary reduction.

(2) Pas is unramified.

(3) Paz(Frobs) has projective conjugacy class 2C,

(4) Paa has image inside S5(b) C GSp,(F2) up to conjugacy.
(5) A is 2-distinguished.

Proof. Let X/Qg be an elliptic curve with split multiplicative reduction and such
that the Tate parameter ¢ € Q. is a perfect cube, and that ¢ € 5-(QJ)?. With these
choices py 3 is the trivial representation while py , is unramified and py 5(Frobs)

. . 11
18 conjugate to (0 1).
We now take A = X ® Z? where Gq, acts on Z? via an unramified quotient

with Frobs acting by
0 -1
(1 0 ) (9.2.15)

or in other words A is descended from (X x X)q,, where Frobenius is twisted by
the automorphism (a, b) — (b, —a).

Certainly A is semistable ordinary. Since X is principally polarized and since
the map Gq, — GL2(Z) associated to (@210 is self-dual, it follows that A is
isomorphic to its dual and hence is also principally polarized. Moreover we have,
up to conjugation,

0 10 0
_ 10\ (0 -1\ [-1 00 o0
”Av3(Fr°b2>_<o 1>®<1 0>_ 0 00 -1

0 01 0
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with order 4 and projective image 2C. On the other hand,

010 1
_ 11\ _ (0 -1\ _[10 1 0
pAﬂ(HOb?):(o 1)®(1 0): 000 1

0010

The centralizer of this element has order 16, which means (with respect to the
isomorphism in Lemma B3] although this conjugacy class is preserved by the
outer automorphism) that it is conjugate to (x*)(*x*) in Sg and so is conjugate to
an element of S5(b). O

This leads us to 6G as the last remaining semistable case of Theorem[@.2.3] There
is a construction in this case along the lines of Lemma [0.2.14] although the details
are more cumbersome. Instead, we use a different idea motivated by Lemma 0. 213
Consider the genus two curve

Y:y?+y=2a"—2'+23
with good reduction at 2 (it has conductor 797). We have Q(z) = z*—2?+1 mod 3,
and so (the projective image of) Py,c(y),3(Frobz) has conjugacy class 2C, 6G, or 6 H.
By computing the corresponding degree 40 and degree 27 polynomials, we find that

it has conjugacy class 6G. This does not contradict Lemma because Q(z) =
2% 4+ 222 4+ 1 and Y is not ordinary. We may write Y/Q as

Y :y? =2+ ax® + ba? + cx + d, (9.2.16)
with

48 704 3072 821504
(a,b,c,d) = (—, —_— —> .
5 25 125 ° 3125

We can think of MY (p) explicitly as the moduli space of genus two curves X given
by y* = 2° + Az® 4+ Bx? + Cx + D with a (symplectic) isomorphism By,q(x) 3 =~
Pac(y),3- I [CCR20, Thm 2|, an explicit parametrization P (s, t,u, v) — My (p)
is given; that is, A, B, C, and D are explicit polynomials in (s,¢,u,v) whose
specialization to (1,0, 0,0) gives the parameters (a, b, ¢, d) of equation (@2.16]). By
Lemma[0.2.13] any specialization of this family which does not have good reduction
is necessarily semistable ordinary with purely toric reduction. Moreover, it will
also necessarily be 2-distinguished; the pair of eigenvalues of Frobenius on the
unramified quotient will be Galois invariant and yet be roots of (2% + 1) mod 3.
Thus in practice we can choose random points on this family to find one which
does not have good reduction, and then we are done. The specialization of this
family to the point (0,0,4,1) is the curve y?> = 2% + Az3 + Bx? + Cx + D, with
(after scaling down by (436,836, 1636, 3235) from the formulas in [CCR20])

A = 672315215064342/5,

B = —197745818620367722373332/25,

C = —3038748471428312132304651799323/125,

D = 405130036222076498453650257209001453372/3125.

Thus we have produced a curve of the required form. As a sanity check, the
conductor has the form 22- N where (2, N) = 1, and the Euler factor at 2 is 2% + 1,
and one can indeed compute the 3-torsion division polynomial of degree 40 and
its resolvent of degree 27 and find that they give an extension unramified at 2
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with p(Frobs) of conjugacy class 6G (as they should). On the other hand, after
reducing this modulo a large enough power of 2 (2'2 in this case), we get a more
manageable example (except now a different global representation):

Lemma 9.2.17. Let X be the curve
v+ (—2® —x — 1)y = 2° — 4a* + 472 — 4327 — 22 + 8.

Then A = Jac(X)/Qz has purely toric reduction, and is 2-distinguished. Fur-
thermore A[3] is unramified, D4 o has image conjugate to a subgroup of Ss(b),
and p4 3(Frobg) has conjugacy class 6G.

Proof. We may compute directly using division polynomials that A[3] is unramified
at 2 and p 4 3(Frobz) has conjugacy class 6G. Since X has a Q2 (even a Q) Weier-
strass point, the image of p 4 5 is conjugate to a subgroup of S5(b). The conductor
at 2 of A is 22, so by Lemma [I.2.13] A has purely toric reduction, and the eigen-
values of Frobenius on the unramified quotient are +i, so A is 2-distinguished. [

9.2.18. The case 2D. We finish the proof of Theorem [3.2.3 by ruling out 2D in the
case of good ordinary reduction.

Lemma 9.2.19. There does not exist an abelian surface A/Qg with good ordinary
reduction and p 4 5(Frobs) projectively conjugate to 2D.

Proof. From Table [1.2.5] we see that such an A must satisfy Q(z) = 2* + 22 +4 =
(r — 1)%(x + 1) mod 3. From Lemma (in particular the curve Cy), we see
that there exists a smooth ordinary X/Fs with the same Q(x), and thus Jac(X) is
isogenous to A/Fa. Let x : Jac(X) — A be an isogeny, which we may assume is not
divisible by [3]. Since py,q(x) 3(Frobz) is conjugate to 61, the minimal polynomial
of Frobs on A[3] is (z—1)?(x+1)2. Thus the only Galois invariant subspaces of A[3]
contain either the intersection of A[3] with the kernel of p = ¢ — 1 or ¢y = ¢+ 1
respectively. Thus (as in Lemma [0.22.12) we may reduce to the case when x has
degree prime to 3, which implies that 74 5(Froby) is conjugate to ﬁJaC(XLg(Frobg)
of class 61. O

9.3. Genus 2 curves locally at 3. In this section, we carry out some computa-
tions similar to §9.1] except now over F3. (The magma files for these computations
can also be found in [BCGP25|, as noted in Remark @.TH])

Recall that an irreducible monic polynomial Q(z) € Z[x] with roots of absolute
value ¢'/2 (for g some power of p) corresponds (by Honda—Tate theory) to an
isogeny class of simple abelian varieties A of dimension degT@) -[E : F]Y/? over F,,
where F = Q(a) = Q[z]/Q(z) and E is a certain division algebra whose centre
is F and whose invariants (also determined by Q(x)) are trivial away from primes
dividing p and oo. However, if one also assumes that Q(x) is ordinary in the sense
that it has degree 2¢g and for g of the embeddings F — Gp, the valuation of « is
zero, this forces F' to be totally complex and the invariants of E to be trivial at v|p,
which implies that £ = F and dim(4) = g.

Specializing to the case g = 2, recall (Definition [I.2.4) that by an ordinary Weil
polynomial of weight one for p, we mean a degree 4 polynomial X* + a X3+ bX?2 4

paX +p? € Z[X] all of whose roots have absolute value p'/? and for which (b, p) = 1.

Lemma 9.3.1. Table contains the following data concerning all pairs con-
sisting of a smooth genus two curve together with an explicit Weierstrass equa-
tion X : y*> = f(z) with f(x) € Fs[x]. The columns indicate:
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o All 40 ordinary Weil polynomials Q(x) of weight one for p = 3. By Honda—
Tate theory, these correspond to isogeny classes of ordinary abelian sur-
faces A/Fs5.

e The reduction of Q(x) mod 3.

o Whether the isogeny class of A/F3 contains the Jacobian of an ordinary
curve X/Fg with a rational Weierstrass point.

o Whether the isogeny class of A/Fs contains the Jacobian of an ordinary
curve X/F3.

e How many such X have a Jacobian with the corresponding Q(x).

Of the 37 possible f(x) of degree < 6, we find that:

(1) There are 1296 curves which are smooth of genus 2.

(2) There are 864 ordinary curves.

(8) Exzactly 10 of these ordinary curves are not 3-distinguished; equivalently,
the polynomial Q(z) is a square. Moreover, these are precisely the curves
for which:

Jac(X)(F3)[3] ~ x ® (Z/32)?
as a Gy,-representation, where x* = 1. None of these curves have a ratio-
nal Weierstrass point.

If one enumerates curves together with a generalized Weierstrass equation

y* + h(z)y = f(@),
where deg(f(x)) < 6 and deg(h(z)) < 3, all the relative ratios remain unchanged.

Proof. This is a straightforward computation, although we explain point @]). If
there is an isomorphism Jac(X)(F3)[3] ~ x ® (Z/3Z)? as a Gg,-representation,
then Q(z) = 22(x + 1)? (mod 3). Similarly, if Q(z) is a square then it is a square
modulo 3, and thus Q(x) = 22(z £+ 1)? (mod 3).

We may make a quadratic twist to reduce to the case x = 1 and Q(z) = 2%(z —
1)2. We are reduced to checking that if Jac(X) is in the isogeny class corresponding
to Q(z) with Q(z) = 2%(x — 1)? (mod 3), then Q(z) is a square if and only if
Jac(X)(F3)[3] = (Z/3Z)?. One checks this directly for each of the 4 +24 +1+8 +
48 + 8 + 48 = 141 curves X corresponding to such a Q(x). One further checks that
the 5 such X where Q(z) is a square do not have rational Weierstrass points. [

Remark 9.3.2. The fact that some Q(z) in Table do not arise from any X
means that there exist ordinary abelian surfaces over F3 which are not isogenous
to Jacobians of genus two curves. The simple (although not absolutely simple)
examples in our table (with Q(z) = 2* — 522 +9 and Q(z) = z* — 422+ 9) actually
generalize to similar examples over F for any odd ¢, see [How04].

Given a finite flat ordinary mod 3 representation p¥ : Gq, — GSp,(F3), we
would like to realize it as the 3-torsion in the Jacobian of a genus 2 curve with good
ordinary reduction and a rational Weierstrass point. We shall do this (under some
restrictions) in Lemma [0.3.7] using the following lemma.

Lemma 9.3.4. Let p > 2 be prime, and let O be the ring of integers in a finite
extension of Q, with residue field F. Let G1/O be a principally quasi-polarized finite
flat group scheme of rank 4. Suppose that Aog/F is a principally polarized abelian
surface with Aglp] ~ G1,r compatibly with the quasi-polarization. Then there exists
a lift of Ag to a principally polarized abelian surface A/O with Alp] ~ G .
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Q(z) Q(z) mod 3  Jac(Xwp) Jac(X) #X

9 — 522 4 g4 x? + 2zt X X 0

9 — 222 + 4 22 4+ 4 v v 30

94 22 424 22 424 X v 24

9+ 422 + 24 2?4+ 2t v v 24

9 — 9z + 72?2 — 323 + z* 2% 4+ z* v v 24
9+ 9z + 72?4+ 323 + 2* 2% 4 2* v v 24
9 —4x? + z* 222 4 24 X X 0
(B—x+2?)(3+x + 2?) 222 + 24 X v 24
(3 =2z +2?)(3 + 2z + 2?) 222 + 2* v v 36
(3 -2z +2?)(3 —z + 2?) 222 + 24 X X 0
(34 2z +22)(3 + 2 + 2?) 222 + 24 X X 0
9 — 2 + g4 222 + 2 X v 24

9 — 9z + 522 — 3% + z* 222 4 24 v v 24
9+ 9z + 522 + 3% + z* 222 4 24 v v 24
(3 —x+a2)2 2?2 + 23 + 2* X v 4
B-—z+2H)(B+2x+2%) 22+23+2" v v 24
(3 + 2z + 2?)? 2? + 2 + 2t X v 1

9 — 6x + a2 — 223 + z* 22+ 23 + 2t X v 8
9 — 6z + 422 — 223 + 22 2 + 2%+t v v 48
9+ 32 — 222 4 23 + z¢ i v v 8
9 + 3z + 22 + 2% 4 2* 22 4+ 23 + 2t v v 48
(3 — 2z + 2?)? 2?2 + 223 + 24 X v 1
(B—2x+2?)3+x+22) 2%+ 223+ 2t v v 24
(B3+x+2%)? 22 + 223 + 4 X v 4

9 — 3z — 222 — 23 + 24 2% 4 223 + 24 v v 8
9—3x+a% — 23+ 2t 2% 4+ 223 + 24 v v 48
9 + 6x + a2 + 223 + z* 22 4 223 + 24 X v 8
9+ 6z + 4x? + 223 + 2 2 + 223 + z? v v 48
9— 122 + 822 —4a3 + 2% 222 4+ 228 4+ 2 X v 6
9 — 3z — 2% — 2% 4 2 222 + 223 + 24 v v 24
9 — 3z + 222 — 2% + z* 222 + 223 + 24 v v 48
9 — 3z + 522 — 23 + z* 222 4 223 + z* v v 24
9+ 6x + 222 + 223 + 2* 222 + 223 + 2* v v 36
9+ 6z + 5z + 2% + 2t 227 +22° + 2! X v 24
9 — 62 + 222 — 223 + z* 222 4+ 2% + 24 v v 36
9 — 6z + bx? — 223 + z? 222 4+ 2% + 24 X v 24
943z — 2% + 23 + 2* 222 4+ 2% + 24 v v 24
9+ 3z + 222 4+ 23 + ¢ 222 4+ 2% + 24 v v 48
9+ 3z + 5a? + 2 + z* 202 + 23 + 24 v v 24
9+ 12z + 822 + 423 + 2 227 4+ 23 + 2t X v 6

TABLE 9.3.3. Data from Lemma [9.3.1]
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Proof. By [Wed(Q1l, (2.17)], there is a lift of Ay[p>°] to a principally quasi-polarized
p-divisible group G/O with G[p] =~ G;. By Serre-Tate theory [Kat81, Thm 1.2.1],
there exists a principally polarized formal abelian surface A/O with Ap = Ao
and A[p>=] ~ G. Since deformations of polarized abelian surfaces are effective, we
are done. (]

Remark 9.3.5. While we do not use this fact, we note that if Ag in Lemma [9.3.4]is
of the form Jac(Cp) for a smooth genus 2 curve Cy/F, then necessarily A = Jac(C)
for a lift C' of Cy to O. To see this, note that since deformations of curves are
effective, it suffices to show that taking the functor taking a formal lift of Cj to its
Jacobian is an isomorphism to the deformation problem of lifting Jy = Jac(Cp) to a
principally polarized abelian variety. Since both deformation problems are formally
smooth of dimension 3, it is enough to show that the morphism on tangent spaces
is injective. This is classical; see [Lan21l, §2.1] for an exposition.

Corollary 9.3.6. Let p¥ : Gq, — GSp,(F3) be a finite flat representation with
similitude character €. Assume that p” is ordinary, so it is an extension of an
unramified 2-dimensional representation V. by its Cartier dual.
Suppose that there exists an ordinary principally polarized abelian surface Ag/Fs

with the following properties:

(1) There is an isomorphism of Gy, -representations V =~ Ag[3]t, and

(2) The image of D, o is conjugate to a subgroup of S5(b).
Then there exists a genus 2 curve X/Qg with a Qs-rational Weierstrass point such
that J = Jac(X) has good ordinary reduction, and Pys = p. Moreover, if Ag
is 3-distinguished, then so is J.

Proof. The p-divisible group Ag[3°°] is the direct product of an étale part V and
its Cartier dual. By abuse of notation, we may also consider V as an unramified
representation of Gq, (equivalently, the generic fibre of an étale 3-divisible group).
We are assuming that V' is isomorphic to the unramified quotient of 5.

We can therefore apply Lemma to Ay where G taken to be the (unique)
finite flat group scheme with generic fibre . Let A be the resulting lift of Ay.
Since p4, o has image inside a conjugate of S5(b), so does p4 o (since A has good
reduction, these two representations are the same). Hence A gives a Qs-rational
point of P(p) (see Definition @21]). By a version of Krasner’s Lemma due to
Kisin [Kis99, Thm. 5.1], all the properties listed hold in any open ball around A €
P(p), and hence there exists a Qg-point J = Jac(X) in the corresponding (dense)
open subscheme MY (p), and we are done. (]

We use this to deduce the following:

Lemma 9.3.7. Let p: Gq, — GSp4(F3) be an ordinary representation with simil-
itude factor =1, and suppose that p" is finite flat. Then there exists a genus two
curve X/Qs with a rational Weierstrass point such that py..(x) s = p, and Jac(X)
has good ordinary reduction and is 3-distinguished.

Proof. Write q(z) € Fs[x] for the characteristic polynomial of the Frobenius on the
unramified 2-dimensional quotient of p¥. Note that g(z) determines the unramified
quotient V of 7 unless it has repeated roots, in which case there are two possible V;
one semi-simple and one non-semi-simple. By Corollary @.3.6] it suffices to find
for each such V an Ay/F3 satisfying the hypotheses of Corollary We first
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consider Jacobians Ag = Jac(Xj) of smooth ordinary genus 2 curves Xo/F3 with
an Fs-rational Weierstrass point such that the characteristic polynomial Q(x) of
Frobenius at 3 on T3 X lifts 22q(x).

There are six possibilities 2% +1 and 2% £ x4 1 for g(x), and the existence of such
an Xy follows immediately from Lemma [0.3.1] in particular from Table We
can also give explicit examples of such curves X : 42 = f(z) as follows, noting that
(after taking into account unramified quadratic twists) we only need to consider
four of the six cases.

Q(z) q(z) f(z)
2 4+ 323 + 722492+ 9 2 +1 o +2r+1
2t + 323 + 522+ 92 +9 x? -1 P43+ r+1
=t 4202 —324+9 22—z -1 D+t +x

4+ 22 +3r4+9 2P+ +1 P+t +24+1

In the ambiguous case where g(z) has repeated roots, it follows from Lemma[@.3.Ti[3])
that in all examples which arise (including the final example above) the represen-
tation V is not semi-simple. Hence it remains to consider the case when Frobs acts
on V by a scalar. In this case, we shall construct Ag directly. After an unrami-
fied quadratic twist (if necessary), we may assume that V is trivial. Let F_;/F3
and F3/F3 denote the elliptic curves with a3 = —1 and as = 2 respectively.
Note that they are both ordinary and they each have a rational point over Fs.
Let Ag = F_1 X E3. Then Ay/F3 is principally polarized and 3-distinguished,
since Q(z) = (2 + = 4 3)(«* — 2z + 3). Moreover, pp_, 5(Frobs) has order 2
and pg, o(Frobz) has order 3. It follows that 54 o(Frobs) has order 6 and charac-
teristic polynomial (z—1)2(2?+x+1) mod 2. This uniquely identifies the conjugacy
class as the element (ssk)(xx) € S5(b) C GSp,(F2), since the characteristic polyno-
mial of the other conjugacy class of order six elements (#xxx*x) € Sg ~ GSp,(F2)
is equal to (2% +z +1)%
One can verify these claims directly using Lemma R.1.3] where, for example,

100 1 00 0 1
00 10 0010
12)345) = [ 1 | o> (28346)— [ L o T,
000 1 1010

Alternatively, the claim about conjugacy classes is equivalent to the claim that the
eigenvalues of the semi-simple element (x#%) € A5(b) are 1, 1, w, w~" for a primitive
third root of unity w and not w and w™' with multiplicity two; equivalently that
the Brauer character of V on (s*x) evaluates to 1 + 1 + w + w™! = 1 rather
than 2w + 2w™! = —2, and this follows from Lemma B2l (The 4-dimensional
representation of As(a) coming from GSp,(F2), in contrast, is isomorphic over Fy
to U ® U°.) See also [BPPT19, Lemma 5.1.7]. O

Remark 9.3.8. Although Ayg/F3 = E_; x Es is principally polarized, it is not a
Jacobian of an ordinary curve X/F3 (by Lemma @), and so the X whose
existence is proven in Lemma must have bad reduction at 3, even though the
Jacobian of X has good reduction at 3. From Table [0.3.3] we see there are exactly
five isogeny classes of principally polarized ordinary abelian surfaces Ag/F3 which
are 3-distinguished and with Q(z) = 2?(2? + 2 +1) = 22 + 2% + 2* mod 3. It turns
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out that in four out of these five examples, it is not possible to find an Ay/F3 in the
corresponding isogeny class with Ag[3](F3) = (Z/3Z)?. This can be proved by an
argument similar to Lemma [.2.12 for each of the five isogeny classes there exists
a Jacobian By/F3 with By[3](F3) = Z/3Z. Suppose there exists an isogeny x :
By — Ag with Ag[3](F3) = (Z/3Z)?. The kernel of x must contain By[3](F3).
Now suppose that the characteristic polynomial Q(z) of Frobenius satisfies Q(1) =
+3 mod 9, which occurs in precisely four of these cases. It follows that (up to
isogenies of degree prime to 3) the map x will factor through 1 — ¢ where ¢ is
the Frobenius morphism, and since this reduces the power of three dividing the
degree, we reduce to the case when x has degree prime to three and we obtain a
contradiction. In the remaining case (which we exploited above), we have Q(z) =
(3 =2+ 2?)(3 + 22 + z?) and so Q(1) = 0 mod 9, and now such an isogeny is
possible.

9.4. A 2-3 switch. We begin with the following approximation lemma.

Lemma 9.4.1. Let Z be a rational variety over Q. Let S be a finite set of places
of Q, and for each v € S, let Q, be a non-empty open subset of Z(Q,) (for the
v-adic topology). Then there exists a rational point P € Z(Q) with P, € Q, for
allv € S, and such that P avoids any fized thin subset of Z(Q).

Proof. Apart from the statement that we may avoid any fixed thin subset of Z(Q),
this is a special case of [Ser08, Lem. 3.5.5], and our proof is an obvious variation
on the arguments of [Ser(8) §3.4, §3.5]. We may assume that S is nonempty. After
shrinking Z if necessary, we may assume that Z — P, is an open immersion. Here
we use that Z is smooth; this guarantees that, for any open U C Z, Q, NU(Q,) C
U(Qy) is non-empty. Since Y = Pg \ 7 is closed, Y (Q,) C P%(Q,) is closed, and
so Q, C Z(Qy) C P{(Qy) is open. Since

Po(Q) N, CPu(Q)NZ(Quw) = Z(Q),

we can and do assume that Z = Pg,.

The number of points in Pg(Q) which are of height at most H and are contained
in Q, for all v € S grows at the rate of a positive constant times H™ (the precise
constant depending on the open sets {2,}), whereas the number of points in any
fixed thin set is bounded by O(H"~'/?log H) by [Ser08, Thm. 3.4.4], and the result
follows. O

We now construct a suitable abelian surface through which to do our 2-3-switch.

Lemma 9.4.2. Suppose that
p:Gq — GSpy(Fs)

has similitude €71, that 7’|aq, is ordinary and finite flat, and that plag, is un-
ramified.
(1) The following conditions are equivalent:
(a) The image of p(Frobs) in PGSp,(F3) ~ PSp,(F3) is not conjugate
to 4C or 12C (see Lemma [T 13).
(b) Plcq, = Pz, where A is the Jacobian of a genus 2 curve Y/Qga with
a rational Weierstrass point, and where A has either good ordinary or
semistable ordinary reduction at 2 and is 2-distinguished.
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(2) Assume that the equivalent conditions in ([l hold. Then there exists a genus
two curve X/Q with a rational Weierstrass point, with B = Jac(X) having
the following properties:

(a) Pps =P

(b) B has good ordinary or semistable ordinary reduction at 2, and is 2-
distinguished.

(¢) B has good ordinary reduction at 3.

(d) The representation

P2 Gq — GSpy(F2)

has image S5(b), and the image of complex conjugation has conjugacy
class () ().
Moreover, End(Bg) = Z.

Proof. We recall from Definition @21} that MY (p) and P = P(p) are the fine
moduli spaces over Q parametrizing respectively genus 2 curves X with a ratio-
nal Weierstrass point together with a symplectic isomorphism pj,.(x) 3 = P, and
principally polarized abelian surfaces with a fixed odd theta characteristic and a
symplectic isomorphism p4 3 = p.

We claim that condition ([Ia) is equivalent to condition (D) by Theorem
More precisely, that theorem shows that ([a)) implies there exists a point A €
P(p)(Q2) with either good ordinary or semistable ordinary reduction (and which
is 2-distinguished), whereas condition (D)) shows that there is a point A = Jac(Y) €
P($)(Qz2) which lies in the image of M¥ (p). The variety P(p) is smooth and the
map MY (p) — P(p) is an open immersion. Moreover, all the properties listed hold
in any open ball around any such point A by [Kis99, Thm. 5.1]. Hence given A €
P(p)(Qz2) there exists a point B € P(p)(Qz) with the same properties but lying in
the image of MY (p).

Having established this equivalence, we now turn to the proof of part [2]), so we
in particular assume that condition (b)) holds. We now use Lemma 0411 (applied
to Z = M¥(p)) to produce a suitable point X/Q. Our set S will consist of the
primes 2, 3, co. The corresponding thin set inside Z(Q) C P(Q) is the union of the
rational points in the images of P;(Q), where P — P is the cover corresponding
to imposing that the image of pp 5 lands inside a strict subgroup G C S5(b). There
are finitely many such G and the degree of Pg over P is [S5(b) : G] > 1, so this is
indeed a thin set.

(1) Suppose that p = 2. Condition (D) implies that there exists a point X
in Z(Qg2) with the required properties (Jac(X)/Qz with good ordinary
reduction or semistable ordinary reduction and 2-distinguished in charac-
teristic zero). By |[Kis99, Thm. 5.1|, there exists an open ball Qs C P(Qz2)
around X consisting of points which also have good ordinary reduction and
are 2-distinguished.

(2) Suppose that p = 3. Then there exists a suitable point X € Z(Qs) by
Lemma As above, we take €3 to be a suitable open ball around X.

(3) For p = oo, we choose Qs C Z(R) to be a sufficiently small open ball
around any point with the correct local properties, namely y? = f(z) for
any separable f(z) € R[z] of degree 5 with exactly one real root.

The existence of X and B then follows from Lemma [0.4.1 Since the image
of pg 5 is S5(b), it follows from [Zar00] that End(Ba) =7 O
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Remark 9.4.3. The application of Lemma [9.3.7] in the proof of Lemma [9.4.2] can
obviously additionally be used to show that B can be chosen to be 3-distinguished,
but we shall not use this fact, so we have not explicitly recorded it.

Remark 9.4.4. Suppose that p: Gq — GSp,(F3) has multiplier e !, and Plaq, is
ordinary and (dual to) finite flat. Then, exactly as in the proof of Lemma[@.4:2] (now
ignoring the conditions at 2) obtains infinitely many genus two curves X/Q with a
rational Weierstrass point and such that A = Jac(X) has good ordinary reduction
at 3, such that py 3 = p. This was implicitly assumed in the proof of [BCGP21]
Theorem 10.2.1].

9.5. Proof of Theorems [A]l and [Bl In this section, we prove Theorem [A]l which
we restate as Theorem [0.5.2] below, except that the hypothesis on the image of p A3
has been relaxed. (Note that if p4 5 is surjective, then End(AG) = 7 is automatic,
so Theorem really does imply Theorem [Al) We begin, however, with the
following modularity lifting theorem.

Theorem 9.5.1. Suppose that p > 2, and that A/Q and B/Q are abelian surfaces
such that:
(1) Pap=PByp-
(2) A and B both have good ordinary reduction atp, and PA,p|GQp is p-distinguished.
(8) B is modular; more precisely, there is a weight 2 cuspidal automorphic
representation m for GSp, /Q of level prime to p, which is ordinary at p
and satisfies prp = pB p-
(4) The Zariski closure of pa,(Gq) contains Spy.
(5) Pa,p is GSpy-reasonable, in the sense of [Whi22, Defn. 3.19].
(6) D, is tidy, in the sense of [BCGP21, Defn. 7.5.11].
(7) Pap(Gq,)) contains a regular semi-simple element.
(8) Pap(GqQ) ~ Sps(Fp) contains a regular semi-simple element.
Then A is modular. More precisely, there exists a cuspidal automorphic repre-

sentation m for GLs /Q (the transfer of a cuspidal automorphic representation
of GSp4 /Q of weight 2) such that L(s, H*(A),s) = L(s, ).

Proof. We deduce the theorem from Theorem [[.5.11] (taking p there to be p A
By our assumption (), it suffices to check that hypotheses (1)—(5) and [(B1)
of Proposition hold.

Most of these conditions hold either explicitly by our assumptions, or by the
purity of Galois representations associated to abelian surfaces. The only remaining
conditions are:

(a) p(GQ(¢,)) is integrally enormous.

(b) We can choose p-stabilizations of pa p|cq, and ppplcq, such that the rep-
resentations vaP|GQp lies on a unique irreducible component of Spec RpA
and pa plGq, lies on the same component.

Part[(a)]follows from Corollary[Z.T.4l For Part|[(b)] we firstly choose a p-stabilization
of pBplGq,  and thusof P [cq, = Pa plcq, - Then at least one of the p-stabilizations
of paplcq, is compatible with this fixed choice, and we conclude by Lemma
and the assumption that A and B both have good ordinary reduction at p. O

We are now ready to prove our main theorem.
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Theorem 9.5.2. Let A/Q be an abelian surface with a polarization of degree prime
to 3. Suppose that the following conditions hold:

(1) The image of the mod 3 representation:

Paz: Gal(Q/Q) — GSp,(Fs)

is one of the 15 subgroups listed in Lemmal[6.4.3, and End(Ag) = Z.

(2) Paslcq, is unramified, and the image of b 4 5(Froba) inside PGSpy(F3)
PSp,(F3) does not have conjugacy class AC' or 12C (see Lemma [91.3).
Equivalently, the characteristic polynomial of p 4 3(FI’Ob2) is not (2 & x +
2)2.

(3) A has good ordinary reduction at 3 and is 3-distinguished.

Then A is modular. More precisely, there exists a cuspidal automorphic repre-
sentation m for GLy /Q (the transfer of a cuspidal automorphic representation

of GSp4 /Q of weight 2) such that L(s, H*(A)) = L(s, 7).

Proof. By Lemma[9.4.21 [2) (which applies to p 4 3, since condition (Lal) of Lemma[9.4.2)
holds by our assumption (2])), there exists a genus two curve X/Q with a rational
Weierstrass point, with B = Jac(X) having the following properties:

® Pa3=Pp3

e B has semistable ordinary or good ordinary reduction at 2, and is 2-
distinguished.

e B has good ordinary reduction at 3.

e The representation

Pp2: Gq — GSpy(F2)

has image S5(b), and the image of complex conjugation has conjugacy
class () (xx).
° End(Bd) =7

We shall first apply Theorem (a 2-adic modularity theorem; we take A
there to be our B) to deduce that B is modular. To recall, the hypotheses of
Theorem are as follows:

(i) As5(b) € Dp2(Gq) € 95(b).
(ii) The image of each complex conjugation has order 2 and lands in As(b).

(ii) pB2lGq, is ordinary and 2-distinguished.

All of these conditions are guaranteed by the properties of B listed above, noting
that (sx)(**) is a non-trivial conjugacy class contained in As(b). Thus B is mod-
ular. More precisely, there is a weight 2 cuspidal automorphic representation 7w
for GSp, /Q which in particular satisfies pr 3 = pp,3; furthermore 7 is necessarily
of level prime to 3 and is ordinary at 3 by local-global compatibility.

We now wish to use Theorem at p = 3 to deduce that A is modular,
so we need to check the conditions of that theorem. We established that B is
modular above, and thus condition (B)) holds. The isomorphism 74 3 = 75 3 holds
by the construction of B, hence we have condition (). Both A and B have good
ordinary reduction at 3 and A is furthermore 3-distinguished (by assumption for A
and by construction for B), and thus we have condition (2). We are assuming
that End(Ag) = Z, so condition () holds by [Ser00, Thm 3|. Finally conditions (),
(@), (@) and () hold by Lemma and our assumptions on A. O
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Theorem 9.5.3. Let X be a smooth genus two curve over Q. Suppose that:
(1) The image of Pyac(x),3 * GQ — GSpy(F3) is one of the 15 subgroups listed
in Lemma[6.4.3, and End(Jac(X)g) = Z.
(2) X has good ordinary reduction at 2.
(8) X has good ordinary reduction at 3.
(4) Jac(X) is 3-distinguished.
Then X is modular.

Proof. Let A = Jac(X) (so that A is in particular principally polarized). It suffices
to verify the conditions (I)~(B) of Theorem [1.5.21 Condition () is identical to our
first condition. Since we are assuming that X has good ordinary reduction at 2
and 3, so does A. Condition () follows from Lemma[@.T6|[I)). Finally condition (3]
is immediate from our assumptions. Hence A (and thus X) is modular. O

We now deduce Theorem Bl which we restate here, again with a weakening of
the assumption that py 5 is surjective.

Theorem 9.5.4. Let X : y?> = f(x) with deg(f(x)) = 5 be a smooth genus two
curve over Q. Suppose that:
(1) The image of px 3 : Gq — GSp,(F3) is one of the 15 subgroups listed in
Lemma[6.4.3 and End(Jac(X)g) = Z.
(2) X has good ordinary reduction at 2.
(8) X has good ordinary reduction at 3.

Then X is modular.

Proof. By Theorem[@.5.3) it suffices to show that Jac(X) is 3-distinguished. Since X
has a rational Weierstrass point (by our assumption that f(z) has degree 5), this
follows immediately from Lemma @3TI(3]). O

Note that Theorem [Al and Theorem do not require that A has good reduc-
tion at 2, only that p, 5 is unramified at 2. Here we answer a question of Drew
Sutherland, who asks if the conditions of our main theorem are easy to verify com-
putationally if Q(A[3]) is unramified at 2 but A has bad reduction at 2. It turns
out that the answer is surprisingly simple.

Theorem 9.5.5. Let A/Q be an abelian surface with a polarization of degree prime
to 3. Suppose the following holds:
(1) The image of the mod 3 representation:

Paz: Gal(Q/Q) — GSp,(Fs)
is one of the 15 subgroups listed in Lemma[6.].3, and End(Ag) = Z.

(2) Paslcq, is unramified.

(3) A has good ordinary reduction at 3 and the characteristic polynomial of
Frobenius at 3 does not have repeated roots.

(4) A has bad reduction at 2.

Then A is modular.
Proof. We shall apply Theorem It suffices to show that, under the assump-

tion that A has bad reduction at 2, that the action of Froby on A[3] does not have
characteristic polynomial (2 + z + 2)2. By Lemma [0.2.2] we deduce that A has
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semistable reduction. Hence, as in the proof of Lemma [0.1.8] we deduce the exis-
tence of a Gq,-equivariant filtration T»(B); C T2(B)y C T>(B) of (saturated) Zs-
modules of ranks ¢t > 0 and ¢ + 2a where 2(t + a) = 4. If t = 1, then A[3] has
a Gq,-stable line. But 22 & x + 2 has no eigenvalues in F3, which concludes the
proof in this case. Assume that ¢ = 2, so A has purely multiplicative reduction. It
follows that A has split multiplicative reduction over some minimal unramified ex-
tension K/Qg. There is a corresponding action of Gal(K/Qz) on G, X G, which
gives the descent data to Qz; this determines a finite order element of GL3(Z), and
such elements can only have orders 1, 2, 3, 4, or 6. (The characteristic polynomial
of this element will be, up to normalization, the L-factor of A at p = 2.) On the
other hand, the action of Gq, on T5(B) ® Qs factors through Gal(K/Q2). By
considering the action on the unramified quotient A[3], we deduce that Gal(K/Qz)
has order divisible by 8, since z* + 1 = (22 + x + 2)(2? —  + 2) mod 3. This is a
contradiction. (]

Remark 9.5.6. An alternative argument is to note that if the characteristic poly-
nomial of Froby on p4 3 is (#? £ 2 + 2)?, then the ratio of any two eigenvalues is
never equal to 2 = —1 mod 3, and s0 74 3/Gq, has no ramified lifts.

10. COMPLEMENTS

This final section includes a number of results which are complementary to the
main theorems of our paper (and in particular are not used elsewhere).

In §T0.T] we explain how our main theorems apply (relative to a certain natural
way of enumerating genus two curves) to slightly over 10% of all such curves,
and we compare this to the data in the LMDFB [LMF24]. In §10.2] we prove the
automorphy of any abelian surface A/Q which falls into 32 of the 34 possible Galois
types. In §10.3) we prove some residual modularity theorems (Serre’s conjecture) for
mod-2 representations p : Gq — GSp,(F2) with image Ag or Sg. Finally, in §10.4
we point out that a sufficiently strong version of Serre’s conjecture for GSp, in
regular weight would be enough to prove the modularity of all abelian surfaces A/Q.

10.1. Examples. Suppose one samples genus two curves

X 1y + h(z)y = f(2)

with h(x), f(z) € Z[z] of degrees < 3 and < 6 in any way in which the distributions
modulo 2 and 3 are equidistributed, and considers curves X with the following
properties:

(1) X has good reduction at 2,

(2) X has good ordinary reduction at 3,

(3) Prac(x),3(Frobs) does not have characteristic polynomial z* +2% 4222+ 241,

equivalently, is not projectively conjugate to 4C' or 12C),

(4) The characteristic polynomial Q3(x) of Frobs has distinct eigenvalues.

Then from Lemmas and these X form a subset of density
768 — 144 . 864 — 10 _ E§8_54: 5551 — 01189 ..
211 37 16 8 2187 46656

(Note that 13/16 is the density of allowable elements for px 3(Frobz), and 3/8 is the
density of curves with good reduction at 2.) Since End(Ag) = Z holds for a set of
density one, we see in particular that Theorem applies to a positive (although
not so large, slightly over 10%) proportion of all genus 2 curves. (The main theorem
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of [Wil95] also applies to a positive but strictly less than one proportion of all genus 1
curves by any natural counting.)
Another point of comparison is with the curves in the database [LMF24]: There
are 66158 genus two curves X in [LMF24, [BSST16]:
(1) Of those, 63107 have End Ag = Z, where A = Jac(X).
(2) Of those, 22158 have good reduction at 2 and 3. (In the range of the
data, a genus 2 curve X has good reduction at p (for any p) if and only
if A = Jac(X) has good reduction at p.)
(3) Of those, 21552 have surjective mod 3 representations.
(4) Of those, 14856 have ordinary reduction at p = 3.
(5) Of those, our theorem applies to 11384 curves, where the distribution of
various conjugacy classes and 3-distinguishedness conditions is indicated in

Table [[0.11

TABLE 10.1.1. 74 5(Froby) distributions of A = Jac(X) where X
has good reduction at 2, good ordinary reduction at 3, p, 5 is
surjective, and X is taken from [BSS™T16|, together with a count
of those to whom Theorem applies.

P 4.3(Frobs) ordinary at 2 non-ordinary at 2
3-dist not 3-dist 3-dist not 3-dist

2C/6G/6H 1048 8 840 7

4D 0 0 890 2

2D/61 825 1 0 0

8A 1233 9 854 6

10A 3407 48 2287 4

4C/12C 0 0 3369 18

All 6513 66 8240 37

Theorem applies 6513 0 4871 0

If one allows 74 3 to be any of the 15 subgroups listed in Lemma [6.4.3] there
are three additional curves, precisely one of which we can deduce is modular by
Theorem [1.5.21 This is the curve 7889.b.55223.1 of conductor 73 - 23. The repre-
sentation p 4 5 in this case (with image of order 2304) is induced from a representa-
tion pp 3 : Gp — GLa(F3), where E is a modular elliptic curve over F' = Q(v/=7)
with [LMF24] label 2.0.7.1-322.1-a1 and conductor of norm 322 =2-7-23.

There are 41324 curves in the [LMEF24] database with p, 5 surjective, Endg(A) =
Z, and such that A has good reduction at 3. Of those, 19772 of these curves have
bad reduction at 2. We find that for precisely 360 of these curves, A is ordinary at 3
and p 4 5 is unramified at 2. Of those, 359 are 3-distinguished and thus modular by
Theorem In particular, Theorem [A] applies to precisely 11384 + 359 = 11743
of the 66158 curves in the [LMF24]. (One can verify modularity for more of the
curves in [LMF24] by including quadratic twists.) The smallest conductor of such
an A with bad reduction at 2 is 1982; the corresponding A is the Jacobian of the

curve

v+ (x4 1)y = —2° + 2 — 23 + 2%
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10.2. Automorphy for abelian surfaces with small Sato—Tate group. In
this section, we prove the automorphy (in the sense of Definition [[825]) for 32 of
the 34 Galois types (in the sense of [FKRS12|) of abelian surfaces A over Q. We
closely follow [BCGP21) §9.2] and use freely the notation of that section, as well
as the results summarized there from [FKRS12, [Johl7]| (see also [Tay20]). We say
that a Galois representation is “finite up to twist” if it is a twist by a character of
a representation with finite image.

Recall that the Galois type of A/Q is A precisely when End(Ag) = Z, and A/Q
has type B[C3] if there exists a quadratic field K/Q so that End(A) = Z but
End(Ak) ® Q is either Q ® Q or a real quadratic field. (In [BCGP21] §9.2], we call
an abelian surface A/Q “challenging” precisely when it is one of these two types.)

The main theorem of this section is as follows.

Theorem 10.2.1. Let A/Q be an abelian surface. Suppose that the Galois type
of A is neither A nor B[C3]. Then A is modular.

Remark 10.2.2 (Abelian surfaces of Galois type B[C3]). A natural source of
abelian surfaces of type B[Cs] are those of the form Resy,q(E) for a non-CM el-
liptic curve E which is not isogenous to its Gal(K/Q)-conjugate. If K/Q is real
quadratic, then E is automorphic for GLs /K by |[FLHSI5| and then A is auto-
morphic for GL4 /Q. The modularity of elliptic curves E over imaginary quadratic
fields K is known in many cases (but not yet all) by [CN23]. On the other hand,
for A of type B[C5], the endomorphism algebra End(Ax) ® Q could also be a real
quadratic field E rather than Q x Q, in which case A/K will be a simple abelian
surface of GLo-type. This happens, for example, when A is the Jacobian of the
genus 2 curve

4 (2P 4+ 1)y =2%4+22% — 2

with E = K = Q(v/5) [LMF24, genus 2 curve 12500.a.12500.1]. The modularity
of such abelian surfaces remains open in general even for real quadratic fields K.

Proof of Theorem [I0.21]. Following the discussion in [BCGP21l, §9.2] and [BCGP21],
Prop 9.2.1], all abelian surfaces A/Q can be divided up into a number of possible
Galois types, which, writing {pa,,} for the compatible system of Galois represen-
tations {H 1(’46’ Gp)}, fall into the following categories independently of p:

(1) strongly irreducible (type A),
(2) reducible (type B[C4], C, E[C},,], some D, some F),
(3) potentially abelian but not reducible (of type the remaining D and F cases),
(4) induced from a quadratic extension K/Q but not potentially abelian, in
which case either:
(a) the two 2-dimensional representations over K are equivalent up to
twist (type E[D,]), or
(b) the two 2-dimensional representations over K are not equivalent up to
twist (type B[C3]).

We will prove automorphy in all cases except those of type A and those of
type B[Cs).

In the reducible cases, it follows from [FKRS12| that the compatible system
associated to A can be written as a direct sum of two irreducible, odd, regular,
weakly compatible systems of Galois representations over Q. These are modular
by [KWO09]. In case E[D,], we see (as in the proof of [BCGP21, Prop 9.2.1])
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that there exists a quadratic extension K/Q and an odd irreducible regular weakly
compatible system S = {s,,} of Gq such that p, ~ sp®1ndg2 = Indgi Spla®
1! for some fixed finite order character 1». Once more S is automorphic for GLs /Q
by [KW09|, and then A is is automorphic for GL4 /Q, as required.

It remains to consider the cases where p,, is (absolutely) irreducible but poten-
tially abelian. Since the representations p, have similitude character e~! and p,
is not finite up to twist (since it has distinct Hodge—Tate weights), this last case
follows from Lemma below. O

In the remainder of this section we prove Lemma [I0.2.5] which was used in the
proof of Theorem [I0.2.1] We begin with some preliminary lemmas, the first of
which concerns representations which have potentially abelian image.

Lemma 10.2.3. Let F' be a number field, and let p : Gp — GLn(Q,,) be a con-
tinuous irreducible representation which is de Rham at all places dividing p and
potentially abelian over a finite Galois extension L/F. Then there exist integers a,

b, with ab = n, and b pairwise distinct characters x; : G — Q; such that
b
pla, = @(Xi)éea'
i=1
The action of Gal(L/F) on the characters x; via xZ(g) = xi(0cgo™") induces a map
Gal(L/F) — Sy

with transitive image. Let Gal(L/K;) be the stabilizer of x;. Then there exists an

o~

irreducible representation V; of Gk, such that Vi|g, = (x:)®%, and
P~ Indgii Vi.

If p is not finite up to twist, then:

(1) the characters x; are associated to algebraic Hecke characters of non-parallel
weight.

(2) b>1.

(3) If a =1, then each K; contains an imaginary CM field.

Proof. Since the x; eigenspace is mapped to the x7 eigenspace under the action
of p(o) for any lift of o € Gal(L/F) to Gp, the group Gal(L/F) acts transitively
on the characters (since otherwise the direct sum of the eigenspaces for x7 for any
given ¢ would be a non-trivial Gp-invariant subspace of p, and we are assuming
that p is irreducible). Similarly, the multiplicity of each x; is independent of 4.
Let V' be the vector space underlying the representation p, and let V; denote the
subspace on which G, acts by x;. Since G preserves the decomposition V = @ V;,
it follows that V; extends to a representation of Gk, where Gal(L/K;) stabilizes x;.
By the orbit-stabilizer theorem, [K; : F] = b. By Frobenius reciprocity, there is a
non-trivial map V' — Indgf( Vi, which (because V is irreducible) is an isomorphism,
and hence V; must also be irreducible.

Assume for the remainder of the proof that p is not finite up to twist. Each
character y; is de Rham and thus is either a finite order character times an integer
power of the cyclotomic character or has non-parallel weight. In the first case,
after twisting p by a power of the cyclotomic character, we may assume that y;
has finite image. But then V; and hence p also have finite image, contrary to our
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assumption. If b = 1, then the projective image of p restricted to G, is trivial, and
hence the image of the projective representation Pp is finite. From the vanishing

of H*(F, Q; ) [Ser77bl Thm. 4], it follows Pp lifts to a genuine representation p :

Gr — GL,(Q,) which has finite image. Since p is irreducible, p >~ p®x for some ¥,
and thus p is finite up to twist, once more contrary to our assumption.

If a = 1, then the action of Gk, on V; is via a character 1; which restricts to x;
over GGr,. We have already shown that yx; has non-parallel weight, and thus 1; also
corresponds to an algebraic Hecke character of non-parallel weight, which implies
that K; contains an imaginary CM field. O

Lemma 10.2.4. Let I be a number field, and let p : Gr — GL2(Q,) be a contin-
uwous irreducible representation which is de Rham at p and potentially abelian over
a finite extension. Then either:
(1) p is finite up to twist, or
(2) p is automorphic for a cuspidal automorphic representation 7 for GLg /F
which is the automorphic induction of an algebraic Hecke character.

Proof. Suppose that p|g, becomes reducible over a Galois extension L/F, and
write plg, ~ x1Bxz2- If x1 = X2, then p is finite up to twist by Lemma[I0.2.3] Thus
we may assume that x1 # x2, and then by Lemma [[0.2.3 we see that K = K;/F
is cyclic of degree 2 and p = Indgf( 1, where 1, corresponds to an algebraic Hecke
character ¢ of G . O

Lemma 10.2.5. Let p: Gq — GSpy(Q,,) be a continuous irreducible representa-
tion which is de Rham at p. Suppose that:

(1) There exists a Galois extension L/Q so that the image of p|a, is abelian.

(2) If v is the similitude character, then v(c) = —1, where ¢ is complex conju-
gation.

(3) p is not finite up to twist.

Then p is modular.

Proof. By Lemmal[[0.2.3] there is a decomposition p|g, =~ @?:1()@)@“ with ab = 4.
Since p is not finite up to twist, it follows from Lemma [[0.2.3] that b > 1. Suppose
that b = 2. Then p ~ Indg® V; where [K; : Q] = 2 and dim(V;) = 2. Note that
since Gal(L/K;) is the stabilizer of a point with respect to the map Gal(L/Q) — Sa,
the field F' = K; does not depend on i. We know that V7 and V5 are irreducible and
potentially abelian, so by Lemma[[0.2.4] either both V; are automorphic for GLy /F,
in which case p is modular, and we are done; or both V; are finite up to twist, which

we assume from now on.
. G
If we write V = Ind ;2 V;, then

A2V = Indg2 det(V;) @ Asairq(Vi),

where Asaip/q(Vi)la, =~ V1®Va (this only characterizes the representation over Gq
up to quadratic twist but it is all that we will use in this argument). Since V admits
a symplectic form which is Galois invariant up to a similitude character, we know
that A2V must contain a character. We deduce either that det(V;) extends to Q
or Asai(F/Q)(V;) is reducible. Suppose firstly that det(V;) is the restriction to G¢
of a character x of Gq. The image of x lands in O} for some finite extension E/Q,,
and so x factors through a quotient of Gq of the form Zy &7 for some finite group 7.
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Define a new character ¢ : Gq — O}, by sending topological generators o of each
of these Z, factors to any square root of x(c), so that x =2 has finite order. Then
det(V; ® ¢|E:,1v) has finite order, and V; ® z/1|511$ is finite up to twist, so V; ® z/1|511$
has finite image. Since

V= Indg? Vi=1 ®Indg?(vi ® 1/’|Ehlw)’

and V; ® Y| ai has finite image, we see that p is finite up to twist, contradicting our
assumptions.

Hence we may assume that the Asai representation contains a character as a
constituent, and in particular its restriction V3 ® V5 to G does as well, and thus
(since the V; are irreducible over F') we have V] ~ Vo ® ¢ for some ¢. This implies
that the projective representations associated to Vi and V5 are isomorphic. Since V;
and V5 are Gq-conjugate, it follows that the projective representation associated
to V; extends to Q, and thus (by Tate’s theorem) V; itself lifts (up to twist) to a
representation V of Gq. It then follows that

sz@Indg‘;X

where now F/Q is an imaginary quadratic field, x is an algebraic Hecke character,
and V is a representation of Gq of finite image. If V is induced, then V and p
are automorphic, so we may assume that V is not induced. The Ggq-module V
admits a unique symplectic form invariant up to a similitude character which is
given by det(V'), but V does not admit any corresponding orthogonal form, since V'
is not induced. On the other hand, we also see that W = Indg? x admits a sym-
plectic form which is invariant up to similitude character det(W), and an orthog-
onal form which is invariant up to similitude character det(W)ng/q, where 1z q
is the quadratic character associated to the imaginary quadratic field F/Q. We
deduce that the unique symplectic form on p = V ® W has similitude charac-
ter det(V') det(W)np,q, which is odd if and only if det (V') is odd, since det(W)nr,/q
is even. Thus the oddness assumption implies that V' is an odd Artin representa-
tion, and thus V' is modular by known cases of the Artin conjecture [PS16bl [Sas19],
and the automorphy of p follows.

Finally, suppose that b = 4, so a = 1. By Lemma [I0.2.3] there exists a degree 4
field K/Q such that p ~ Indgi X, where x corresponds to an algebraic Hecke
character of non-parallel weight, so that K/Q contains an imaginary CM field.
In particular, either K is itself an imaginary CM field, and thus contains a real
quadratic subfield E = KT, or K contains an imaginary quadratic subfield E.
In either case, we see that o = Indgi x corresponds to a cuspidal automorphic
representation of GLs /E, and by another application of automorphic induction we

deduce that p = Indg‘; o is automorphic. O

Remark 10.2.6. Various rationality considerations (see [FKRS12]) imply that, if p
is a potentially abelian Galois representation associated to an abelian surface A/Q,
then p is actually potentially abelian over a solvable extension of Q, which can
be used to simplify the argument in this case, On the other hand. Lemma
is conjecturally still true without either the oddness assumption, or the finiteness
up to twist condition, although presumably extremely difficult. In the first case, it
would include the automorphy of representations of the form V®Indg§ x where x is
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an algebraic Hecke character of a CM field ' and V is an even Galois representation
with projective image As, which would imply the automorphy of such a V.

Similarly, assume oddness holds but drop the finiteness up to twist condition.
The group S is a subgroup of PGSp, (C); this Sg can also be seen inside PGSp, (F3).
Let L/Q be any Sg extension such that complex conjugation is odd. Then there
is a projective representation Gq — Gal(L/Q) ~ S; — PGSp,(C). Any lift to an
Artin representation p : Gq — GSp,(C) will be odd, but the modularity of p is
unknown for any representation with projective image Sg regardless of the image
of complex conjugation. Fortunately, neither case is relevant for the automorphy
of abelian surfaces over Q.

10.3. Residual modularity theorems (modulo 2). The goal in this section is to
prove some residual modularity theorems for mod-2 representations with image Ag
or Sg. We will need the following variation of Lemma [0.3.4] for the prime p = 2.

Lemma 10.3.1. Let O be the ring of integers in a finite extension K of Qo with
residue field F. Let G1/O be a 2-torsion finite flat group scheme of order 16 = 24,
together with an isomorphism X : G1 — GY such that \¥ = —\. Suppose that Ay /F
is a principally polarized ordinary abelian surface with Ag[2]/F ~ G1/F. Then there
exists a lift of Ao to a principally polarized abelian surface A/O with Alp] ~ G1.

Remark 10.3.2 (Remarks on the proof and the statement of Lemma [T0.3.1]).
Let p = 2. By Serre-Tate theory, we are reduced to finding an appropriate lift-
ing Ap[p] to a Barsotti-Tate group, together with a lifting of A to make Ag[p™]
a quasi-polarized BT. By a result of Grothendieck [III85], there is no issue in lift-
ing Ag[p™] as a Barsotti-Tate group, so the subtlety is imposing the polariza-
tion. We proved an analogous statement in Lemma (without any ordinary
hypothesis) using results from [Wed01]. Wedhorn’s argument in [Wed01) (2.17)]
involves certain constructions in which one obtains a polarization by an averag-
ing procedure involving dividing by 2 — this naturally causes issues when p = 2.
One difficulty is that, when p = 2, one needs to decide what it means for a pair-
ing on a finite flat group scheme G to be alternating rather than skew symmetric.
If G = as/F2, then G is Cartier self-dual via the map ase X as — G, given on points
by (z,y) — 1+ xy. This is alternating on points (since 22 = 0 for z € az(4)) but
one does not want to regard it as an alternating pairing. Instead, following [LHI3|
§3.2] (where the idea is attributed in part to de Jong), one could define a pair-
ing G x G — Gy, of finite flat group schemes to be strongly alternating if, fpqc
locally on the base, there is is a central extension

15GnoG—=G—1 (10.3.3)

such that the pairing arises from the commutator pairing on this extension.

One strategy would be to determine the precise conditions for any G = G; of
exponent 2 admitting an isomorphism A : G; —~+ GY with A\Y = X (since p = 2 there
is no choice of sign) to give rise to a corresponding Heisenberg group extension G of
the form (I0.33), and then to prove a version of this lemma without any ordinary
hypothesis on Ay/F, but with a suitably modified definition of what it means
for G/O to be quasi-polarized.

Alternatively, instead of addressing any of the more subtle issues which might
arise in the general case, we exploit the assumption that Ag/F is ordinary. In this
case, the assumption that a commutative finite flat group scheme G is an extension
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of an étale group scheme by a multiplicative (dual to étale) group scheme simplifies
the situation considerably: There is a connected-étale sequence

155G =>G =G =1,

where G is multiplicative and so its Cartier dual is étale. Now any isomorphism A :
G ~ G clearly has the property that the induced map

A .

G’ = G~GY = (GY)Y = ((GY)V)* (10.3.4)

is trivial, and so any such A will automatically be alternating on the generic fibre. In
particular, we only work with the assumption that there exists an isomorphism A :
G1 — GY with \Y = —) (the sign makes no difference for finite flat group schemes

annihilated by 2), even though one expects this may will be the “wrong” definition
in the non-ordinary case.

Proof of Lemma[I0.3l The assumption that Ag/F is ordinary implies that the
corresponding 2-divisible group splits into toroidal (ind-multiplicative) and (ind)-
étale parts which are Cartier dual to each other. Over O/n}% or over O, these
factors have unique lifts, and the lifts of Ay[2°°] are equivalent to the category of
extensions of these factors ([Mes72, Prop 2.1]). But over O, 2-divisible groups are
determined by their generic fibres, and so the lifts are classified in terms of Galois
cohomology. More precisely, if V denotes the free (rank 2) Zs module corresponding
to the Pontryagin dual of the (ind)-étale part of Ap[2°°], and W = V'V the Zs-dual
of V', then the extensions of interest are computed by the group

Hi(K,W @ W(1)).
The result [[1I85] then implies the surjectivity of the reduction map:
Hi(K,W@W (1)) » Hj (K, W @ W(1)),

where W = W/2. Now we wish to impose the condition that there exists a suitable
polarization . There is an exact sequence of flat Zs-modules

0= SW)=WeW = A2(W) =0,

where S(W) is the submodule generated by = ® z for all € W. The vector
space S(W) ® K is isomorphic to Sym?(W) ® K, but this is not used below. By
purity, the (generalized) eigenvalues of Frobenius on W ® W cannot have absolute
value 1 and so in particular are # 1. It follows that for M equal to any of S(W),
W ® W, or A2W, we have H2(K, M(1)) = 0, and H}(K, M(1)) = H'(K, M(1)).
We say that a class 7 in Hj(K,W ® W (1)) C H'(K,W @ W (1)) is alternating
if it lies in the image of H'(K,S(W)(1)), and we denote the alternating classes
by Hp(K,W @ W (1)), We similarly write H (K, W @ W(1))*!" for the same
condition modulo 2. (The reason this is the correct choice is ultimately explained
by equation (I0:34) below.) We have a commutative diagram as follows.

Hi(K,S(W)(1)) —— H}(K,W @ W(1)) —— H}(K, \*(W)(1)) ——0
Hj(K,S(W)(1)) —— H}(K,W @ W (1)) —— H (K, \>(W)(1))

Because the H? groups vanish, the kernel of each vertical map consists of classes
divisible by 2. Now take an alternating class 7 € H (K, W ® W(1)A, Tt lifts
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ton € H(K,W ®W (1)), which then maps to a class v € H (K, \*(W)(1)) whose
reduction 7 is trivial. But that implies that v is divisible by 2, and thus, writing v =
2, and lifting v to 5 € H} (K, W@W (1)), we see that n—27 € H} (K, WW (1))A!,
and hence there is a surjection

Hi(K,W @ W(1)A — Hi(K,W @ W(1))A".

It now suffices to show that H(K,W ® W (1))A classifies possible principally
quasi-polarized Barsotti-Tate groups G/O lifting Ay[2°°], equivalently, a BT G/O
together with an isomorphism A : G — GV with \Y = —\, whereas H}(K,W ®
W (1))A classifies finite flat group schemes over O lifting A¢[2] together with an
isomorphism X\ : G — GV with \Y = —\. In both settings, the corresponding lifts
are determined by extensions of (fixed) étale by multiplicative group schemes, and
these extensions are determined by their generic fibres. In either case, A induces a
skew-symmetric pairing J on the generic fibre which (as explained in the discussion
surrounding (I0.3.4)) using the ordinary hypothesis) is alternating. Moreover, the
generic fibre of the connected part (respectively, étale part) is isotropic with respect
to this pairing. That implies that the action on the generic fibre factors through
the generalized symplectic group, and in particular that the extension class of the
étale by multiplicative part is alternating in the sense described above. (This is
equivalent to the computation that

EHEHEN -

if and only if A is symmetric.) Conversely, once the image of the Galois repre-
sentation lies in the generalized symplectic group compatible with the connected
part being isotropic, the Barsotti-Tate group (or finite flat group scheme) admits
a suitable \. We deduce that G; corresponds to a class in H}(K,W @ W (1))Al,
and that there exists a lift of Ap[2°°] to a principally quasi-polarized BT G/O
with G[2] ~ G, and we conclude as in the proof of Lemma [0.3.7) O

We also offer the following alternative proof using stacks, for those who are
gripped to the pages of this manuscript and don’t wish it to end:

Alternate proof of Lemma[I0.31] Let us consider the p-divisible group u%oo dQ,/ Zg

equipped with its standard polarization over Fp. By Serre—Tate theory, the moduli
space of polarized extension of 0 — uf,oo -G — Qp/Zf) — 0 on local Artinian

W (F,)-algebras is represented by
G2, = Spf W (F,)[X1, Xo, X3].

Identify F = F, and let ¢ be the g-th power Frobenius which topologically generates
Gal(F,/F). The p-divisible group Aq[p*™] is isomorphic over F,, to pi2. & Q,/Z2.
This implies that the moduli stack of deformations (as polarized extensions) of
Ap[p™] to local W (F)-Artinian algebras is represented by

G3, /47

where ¢ acts naturally on W (F,) and the action on the Serre-Tate parameters is
induced by the action of Frobenius on T, AS'®@T,(AZ)P. Let W (F,)/p" = W,,(F,).
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We can think of éfn/qﬁz as the ind-stack colim Spec W, (F,)[X1, X2, Xgﬂ/(bz and
each Spec W,,(F,,)[X1, X2, X3]/¢Z is the inverse limit on 7 of:

Spec W, (Fy)[X1, Xo, X3]/¢%/1 %

where r is large enough so that the action on the Serre-Tate parameters of ¢? is
trivial modulo p”. The map

Spec W, (Fyr)[X1, X2, X3] — Spec W, (Fyr ) [ X1, X2, X3]/¢%/1 %
is formally étale as the group Z/q¢"Z is étale. The moduli of polarized extensions
0— py — G — (Z/pZ)* -0

on local Artinian W (F,)-algebras is the quotient stack CA-}f’n / CA-}f’n where each copy
of G, acts on itself through the map (1+z,1+y)— (1+2)?(1+y). (The moduli
of all extensions is given by G4 ) G , and the inclusion of the polarized extensions
into all extensions corresponds in the previous argument to the inclusion of S(W)
into W ® W.) The map (AS‘rfn — CA-,‘rf’n/CA-,‘rf’n is formally smooth. We now consider the
map

G3, /9% — G2, /G342, (10.3.4)
The map (I0.34) sends a deformation (as a polarized extension) of Ay to a de-

formation (as a polarized extension) of Ag[p]. The map ([034) is moreover the
inductive limit of the maps

G2y, )/ 07 = G2l F)/ Gl () 67 (10.3.4)

In turn, these maps (I03.4)) are the inverse limit of the maps:
Gl oy /6772 = Gl w00/ Gl ) /077

This last map is formally smooth because the groups G%Wn(FqT) and Z/q"Z are
both formally smooth.

By assumption, we begin with G1/0O, which is a point Spf O — G3 /G /qﬁz
and our goal is to lift this to an Spf O-point of G3 -y gbz Let w be a uniformizer
of 0. Assume that we have found a lift of G1lgpec(o/wr) t0 G — Spec(O/w"®);
we shall upgrade it to a lift on Spec(O/w**1) of G1lspec(0/wr+1), and then we are
done by induction.

There exists, n,r such that we have a commutative diagram (given by the solid
arrows):

Spec(O/wh) ——— G lw, @, /%72

Spec(O/w" ) —— G, |, v,y /G lw, (5,01 /6742

By formal smoothness, we can produce the lift given by the dotted arrow, complet-
ing the proof. O
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10.3.5. Moduli of X with fized Jac(X)[2]. Let F be a global or local field of char-
acteristic zero, and let
p:Gr — GSpy(F2)

be a continuous representation. Under the identification (Lemma BT3) of Sg
with GSp,(F2), there exists a corresponding degree 6 separable polynomial f(x)
such that p is isomorphic to the 2-torsion representation on the Jacobian of y? =
f(z). Let K = Flx]/f(x) ~ ][] Fi, which is a degree 6 étale F-algebra. Given § € K,
the multiplication by 8 map K — K naturally has a characteristic polynomial of
degree 6 with roots we denote by of. If we fix a basis for K over F, for example
given by the powers of z, this map is compatible with extensions of F. If we iden-
tify K with F®, then by the primitive element theorem, the o will be distinct for 6
outside a finite number of hyperplanes (which are defined over the splitting field
of f(x) and compatible with field homomorphisms F' — F’). If the o are distinct,

then
X :9y? = H(:z: —ab),

will be a smooth genus two curve over F' with Jac(X)[2] ~ p. We have therefore
constructed a smooth rational variety Z(p) C P% over F given by the complement of
finitely many hyperplanes, whose F-rational points give smooth genus two curves X
with 2-torsion given by p. Moreover, the construction of Z(p) (having fixed K) is
compatible with both extensions of F' and completions at primes of F. There is a
map from Z(p) to the corresponding moduli stack Ma(p), but to avoid any issues
concerning fields of moduli versus fields of definition it is fine for our purposes to
work directly with Z(p).

Lemma 10.3.6. Let 5 : Gq — GSp,(F2) be a continuous representation unram-
ified at 3. Assume that there exists a finite flat model W/Zs for p over Zo which
is isomorphic to its Cartier dual and which is ordinary, that is, the extension of
an étale group scheme by a multiplicative group scheme. Suppose that p(Frobs) is
non-trivial. There exists an abelian surface A/Q such that:

(1) A has good ordinary reduction at 3 and is 3-distinguished.

(2) A has good ordinary reduction at 2. There is an isomorphism of finite flat
group schemes A[2]/Zy ~ W, and the characteristic polynomial Q(zx) of
Frobenius at 2 satisfies

Q(x) Z2*+2° + 22> ¥ + 1 mod 3. (10.3.7)

(3) Pas is surjective.
(4) Pap =P

Proof. Let Z = Z(p). The conditions we are imposing at 2 and 3 are open con-
ditions in Z(Qz) and Z(Qs) respectively. The condition that 5, 3 is surjective
holds outside a thin set. Since Z is smooth and rational, by Lemma [0.4.7] once we
find suitable points on Z(Q2) and Z(Qs), we obtain an A which has the required
properties.

Let us consider Z(Q3). With F = Q, let K denote the degree 6 étale F-algebra
corresponding to p as described above. Since we are assuming that p is unramified
at 3, we certainly have that K is unramified at 3, so the possible completions K ® Q3
are determined by a partition of 6. There are exactly 11 such partitions, the
partition 6 = 1+ 1+ 1+ 1+ 14 1 corresponding to the case when p(Frobg) is
trivial, which we are excluding. For the remaining 10 partitions, we now produce
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an explicit X : y? = f(x) with good ordinary reduction at 3 which is 3-distinguished.
We actually write down X/Q with these properties. Note that for 42 = f(x) where
one of the Weierstrass points is at oo, the corresponding partition corresponds to
the factorization of f(x) over Q3 plus another copy of Q3. In other words, the
partition corresponds to the degrees of the (unramified) fields of definition of the 6
Weierstrass points of X over Qs.

f(x) partition N
4x° + 322 + 6423 + 22 4 4z [1,1,1,1,2] 1051
4a° — Tx? + 4z [1,1,1,3] 709
4 — 11x* + 623 + 322 — 20 + 1 [1,1,2,2] 1415
25 + 42° — 62* — 322% + 22 + 642 + 28 [1,1,4] 389
28 4 225 4 52t + 42° — 42 — 8 [1,2,3] 847
28 4+ 22° + 32 — 2% + 22+ 1 [1,5] 349
20 + 42t + 623 — 8x2 +1 [2,2,2] 7165
28 + 2% + 22°% + 52% + 22 + 1 [2,4] 353
28 4+ 22° + 5% — 102% + 1022 — 4z + 1 [3,3] 4889
20 4+ 42° — 62 + 223 + 2% — 20+ 1 [6] 1343

Let us now turn to the prime 2. By Lemma [I0.3.1] the required abelian sur-
face A/Zs will exist provided that there is an Ag/Fo with Ap[2] =~ W/F;y (also
satisfying equation (I0.3.7)). The finite flat group scheme W/Zs is an extension
of an étale group scheme V by its Cartier dual Vv(l), and in particular W/Fy is
determined by V. There are three possibilities for V:

(1) V is trivial as a Gp,-module,

(2) GF, acts on V via a (non-semi-simple) element of order 2,

(3) G, acts on V via a (semi-simple) element of order 3.

It now suffices to find an Ay/Fs of each form.

One subtlety is that, given p, the finite flat group scheme W/Zj is not determined
by p. Consider the following two examples:

(1) The action of Gg, on V is trivial, and the extension class of V = (Z/2Z)?
by its Cartier dual Vv(l) = (u2)? is a direct sum of two extensions corre-
sponding to the unramified class in H}(Q, p2) =2 /Z2X2.

(2) The action of G, on V has order 2, and the group scheme is V @ Vv(l).

In both cases, the representation p is unramified of order 2, and the non-trivial
elements in the images are given by

1 010 1100
01 01 01 00
001 0’ 00 1 1|
0 0 01 0 0 01

respectively. Under the isomorphism of Lemma[R1.3] these are equal to (12)(34)(56) €
Se and (12)(35)(46) € Sg, and so are conjugate. (They are not, however, conjugate
inside the Siegel parabolic C'((12)(34)(56)) = S4 x Sz described in Lemma [0.1.8)
We now consider the following examples of genus 2 curves given by the equa-
tions y? = f(z) where f(z) is listed in the table below. One can check that the
corresponding minimal models have good ordinary reduction at 2 and compute the
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corresponding polynomial Q(x). Since these curves are defined over Q, one can
also compute the global conductor, which is indicated in the table by N.

f(x) partition Q(x) N
—4x® 4+ 2* 4+ 623 — 322 — 4z [1,1,1,1,1,1] x* — 22 +4 3451

28 — 1204 + 223 + 1622 + 8z + 1 (2,2,2] 2t + 223 + 322 + 4 +4 2225
28 — 425 +22% +22% + 2% — 20 + 1 3, 3] 2t + 323 + 522 + 62 +4 713

Here the partition indicates the factorization of f(z) over Qg; the corresponding
Galois extension is cyclic and unramified of degree 1, 2, and 3 (in that order). It
follows immediately in the first and last cases that A[2]/Zs is the split extension
of V by Vv(l), where Gy, acts on V through a cyclic group of order 1 and 3
respectively. In the second case, we still need to check (in light of the example
above) that G, acts on V through a cyclic group of order 2. In this case, a
smooth model C/Z, is given by the equation

y2 4+ (23 4 1)y = =32 + 422 + 2z,

from which we find that Jac(C)(F2) ~ Z/14Z. If V was trivial, then Jac(C)(F2)
would contain (Z/2Z)? as a subgroup, which it does not. Hence we deduce that
the action of Gg, on V is through a cyclic group of order 2 (which suffices for our
purposes, but is not sufficient to determine W as an extension). Thus we obtain a
suitable Ag/F2 in all possible cases. ]

Remark 10.3.8. Note that the method of proof of Lemma[l0.3.6) fails when p(Frobs)
is trivial. This would imply that X has 6 Weierstrass points over F3, but if X has

good reduction at 3 these points are distinct, and they are exactly the ramification

points over the map to P'. But P!(F3) has only 4 < 6 points, so this is impossible.

It seems unlikely one can avoid this using X for which A = Jac(X) has good reduc-

tion but X does not; at least the idea of using a product of elliptic curves does not

work, since if #F[2](F3) = 4, then by the Hasse bounds #E(F3) = 4 and a3 = 0,

and F is supersingular.

By combining this with our main modularity theorem for abelian surfaces, we
deduce the following;:

Theorem 10.3.9. Let 5 : Gq — GSp,(F2) be a continuous representation which is
unramified at 3 and such that p(Frobs) is non-trivial. Suppose as in Lemma[10.3.0
that there exists a finite flat model W/Zo for p over Zo which is isomorphic to its
Cartier dual and which is ordinary. Then p is ordinarily modular of weight 2 and
level prime to 6.

Proof. Consider the abelian surface A/Q with p, o = p whose existence follows
from Lemma It suffices to show that A is modular. Condition (I03.7)
guarantees (by Lemma [0.T.3)) that 74 5(Frobs) is not of conjugacy class 4C or 12C
in PGSp,(F3) ~ PSp,(F3). Moreover, A has good ordinary reduction and 3, is 3-
distinguished, and p, 5 is surjective. Thus A satisfies the conditions of Theo-
rem and hence A is modular. O

Remark 10.3.10. If one proved a version of Lemma [I0.3.1] in the non-ordinary
case, one could improve the statement of Theorem [10.3.9 But note that in either
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case the required assumption on p is stronger than merely the assumption that p
is finite flat, that is, arises as the generic fibre of some W/Zs without any duality
assumption. For example, if p|q, is unramified with image of order 5, then p is
both ordinary and finite flat, and yet there does not exist any abelian surface A/Zs
with A[2] =~ p. The issue is that the only finite flat W/Zs with generic fibre p
are either étale or multiplicative, and so certainly not Cartier self-dual. This is
analogous to the fact that an unramified representation p : Gq, — GL2(F2) with
image of order 3 is ordinary and finite flat in the usual sense but does not come from
the 2-torsion of an elliptic curve with good reduction, although after one extends
the coefficients of p to F4 it does come from the 2-torsion of an abelian surface
with endomorphisms by Z[(1 + v/5)/2] with good reduction at 2 (for example, the
modular abelian surface Jy(23)/Z2.) Note that this subtlety only arises (over Q)
for p = 2, since for p > 2 any finite flat W/Z,, is determined by its generic fibre and
so the Cartier self-duality of W/Z, follows from the corresponding property of p.

10.4. Consequences of Serre’s Conjecture in regular weight. The odd Artin
conjecture for odd 2-dimensional complex representations of Gq is a consequence
(IKW0Q9, Cor 10.2]) of Serre’s Conjecture for odd 2-dimensional mod-p representa-
tions of Gq (this implication was proved by Khare in [Kha97|, using the weight
lowering results [Gro90, [CV92]). It seems worthwhile remarking here that as a con-
sequence of our main theorems, an analogous deduction is valid for abelian surfaces
over Q.

Lemma 10.4.1 (Serre’s Conjecture in regular weight implies modularity). Suppose
that for every residual representation:

p:Gq — GSpy(Fy)

satisfying the following conditions:
(1) p has multiplier 71,
(2) P is absolutely irreducible,
(8) the semi-simplification of E|GQP s a direct sum of characters,

there exists an ordinary cuspidal automorphic representation ™ of GSp, /Q of reg-
ular weight, level prime to p, and central character | - |?, such that

(a1

7.

Then all abelian surfaces A/Q are modular.

pﬂ',p

Remark 10.4.2. There are several possible natural variations on the hypotheses
of this Lemma; for example, one could only demand the statement for p sufficiently
large. We have simply chosen one such version for illustrative purposes.

Proof of Lemma[10-4.1] By Theorem[I0.2.T] we may assume that A is “challenging”
in the terminology of [BCGP2I, §9], ie. that either End(Ag) = Z, or that A
has Galois type B[C3], so there exists a quadratic extension K/Q so that E =
End(Ax)®Q = End(A6)®Q is either Q®Q or a real quadratic field. By [BCGP21],
Lemma 9.2.5], there is a density one set of primes p > 2 such that A is ordinary at p
and residually p-distinguished in the sense of [BCGP21l, Def 7.3.1], and moreover
that p =, , satisfies the hypotheses listed in the statement of this lemma, as well
as being vast in the sense of [BCGP21] Defn. 7.5.6] (and in particular reasonable in
the sense of [Whi22| Defn. 3.19]) and tidy in the sense of [BCGP21], Defn. 7.5.11].
Furthermore, we may assume that if A has Galois type B[C5] then p splits in E.
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We now deduce the modularity of A as a consequence of Theorem [[.5.11] for p =
pa,p- It suffices to check the conditions of that theorem; and in particular it suffices
to check that hypotheses (1)—(5) and|[(B1)H(B5)|of Proposition[Z.5.T0hold (the other
condition of Theorem [[.5.11] being immediate from the definition of “challenging”).
Since A is an abelian surface with good ordinary reduction, and is additionally
residually p-distinguished, the only conditions that need to be checked are that:

(a) pap(Gq(c,=)) is integrally enormous,
(b) Pa,(Gq) ~ Spy(F}) contains a regular semi-simple element,
(c) There are choices of p-stabilizations such that pmp|gQp lies on a unique ir-

reducible component of Spec R]DA and p A,p|GQp lies on the same component.

Suppose firstly that A has Galois type B[C2]. Then for sufficiently large primes p
(splitting in E) the mod p representations

ﬁA)p : GK(CpOO) — SLQ(OE/p) = SLQ(FP) X SLQ(FP)
Pap: Gr — {(A,B) € GLy(F,) x GLy(F,), det(A) = det(B)}

are surjective. (This follows from [BCGP21, Lem. 9.1.10(3)], and for F = Q & Q
goes back to [Ser72].) Thus we may additionally assume that p is chosen so that K ¢
Q(Cp=) and pa,p(Gq(c,=)) is precisely SLa(Fy,) 1 Z/2Z. As explained in the proof
of [BCGP21, Lemma 7.5.18], for p > 3, the set 74 ,(Gq(¢,)) ™ P(Ga(c,e)) =
SLo(F,) 1 Z/2Z ~ SLo(F),)? always contains a regular semi-simple element with
eigenvalues (Cs, (3 ', —Cs, —Cz '). Thus condition [(a)] follows from Corollary [T.T.4l
For p > 5, p4,(Gq) contains (A, B) = (diag(1,6),diag(2,3)), which is regular
semi-simple and which does not lie in Sp,(F,), which verifies condition @ in this
case as well.

Finally if End(Ag) = Z, then for sufficiently large p we have p, ,(Gq) =
GSpy(Fp) and P4 ,(GQ(c,) = Spa(Fp). Hence both b, ,(Gq) ~ Spy(Fp) and
Pap(Gq(c,~) contain regular semi-simple elements for large enough p (for exam-
ple, the same elements that were used above). This verifies condition @ in this
case, and p4 »(Gq(c,)) is integrally enormous by Corollary [Z.T.4] verifying condi-
tion

For condition we firstly choose a p-stabilization of 7,, and thus of p A1P|GQP'
Then at least one of the p-stabilizations of p A7P|GQp is compatible with this fixed
choice. Having made this choice, since p A1p|GQp is residually p-distinguished it

follows from [BCGP21] Prop. 7.3.4] that Spec RpA[l/p] is irreducible, and we are

done. (I
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