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MODULARITY THEOREMS FOR ABELIAN SURFACES

GEORGE BOXER, FRANK CALEGARI, TOBY GEE, AND VINCENT PILLONI

Abstract. We prove the modularity of a positive proportion of abelian sur-
faces over Q. More precisely, we prove the modularity of abelian surfaces which
are ordinary at 3 and are 3-distinguished, subject to some assumptions on the
3-torsion representation (a “big image” hypothesis, and a technical hypothesis
on the action of a decomposition group at 2). We employ a 2–3 switch and a
new classicality theorem (in the style of Lue Pan) for ordinary p-adic Siegel
modular forms.
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1. Introduction

1.1. The main theorems. Our main theorem is as follows (see §9.5).

Theorem A. Let A/Q be an abelian surface with a polarization of degree prime
to 3. Suppose the following holds:

(1) The mod 3 representation:

ρA,3 : Gal(Q/Q)→ GSp4(F3)

is surjective.
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(2) ρA,3|GQ2
is unramified, and the characteristic polynomial of ρA,3(Frob2) is

not (x2 ± x+ 2)2.
(3) A has good ordinary reduction at 3 and the characteristic polynomial of

Frobenius at 3 does not have repeated roots.
Then A is modular. More precisely, there exists a cuspidal automorphic repre-
sentation π for GL4 /Q (the transfer of a cuspidal automorphic representation
of GSp4 /Q of weight 2) such that L(s,H1(A)) = L(s, π), and hence L(s,H1(A))
has a holomorphic continuation to C satisfying the expected functional equation.

In our previous paper [BCGP21], we proved the potential modularity of all
abelian surfaces over totally real fields. (We refer the reader to the introduction
to [BCGP21] for a history of the modularity conjecture for abelian surfaces.) As
a consequence, the main result of [BCGP21] implies that L(s,H1(A)) has a mero-
morphic continuation to all of C, but it does not suffice to prove the conjectured
holomorphicity, for essentially the same reason that Brauer [Bra47] was able to
prove the meromorphic continuation of Artin L-functions but their holomorphicity
remains conjectural. The results of [BCGP21] also allowed one to establish the
modularity of an abelian surface under extremely restrictive conditions, and in par-
ticular to produce [BCGP21, Thm 10.2.6] infinite (thin) sets of modular abelian
surfaces A/Q (up to twist) with End(AQ) = Z. These sets, however, account for
0% of all abelian surfaces over Q counted in any reasonable way. Indeed, even
producing any explicit examples where our modularity theorems applied was some-
what of a challenge [CCG20]. In contrast, we expect that Theorem A applies to a
positive proportion of all abelian surfaces over Q counted in any reasonable way.1

For example, conditions (1)–(3) can be guaranteed by imposing congruence condi-
tions at finitely many primes (including 2 and 3). See Section 10.1 for some more
precise heuristics and examples; in particular we show that Theorem A applies to
the Jacobians of precisely 11743 of the 66158 genus two curves in [LMF24, BSS+16].

The hypothesis (1) (which comes from the Taylor–Wiles method) on the resid-
ual image can be weakened; the allowable subgroups are precisely those listed in
Lemma 6.4.3 (they are all absolutely irreducible).

Although there is some scope for marginal improvement on the local condi-
tions (2) and (3) (as a direct consequence of the modularity theorems proved in
this paper), our expectation is that the best way to relax the local assumptions is
to make use of base change by generalizing our main results to totally real fields,
which we hope to return in the future. While some of our arguments will gener-
alize straightforwardly, the proof of the main classicality theorem will require new
ideas. In [BCGP21], we were able to work over totally real fields F in which p splits
completely, and additionally there was considerable freedom to choose the prime p.
In contrast, in the current paper, we are often forced to take p = 3 or p = 2, and
in order to relax (2) and (3) it will be necessary to allow these primes to behave
arbitrarily in the totally real field F .

We also note the following easy to formulate corollary of Theorem A (again,
see §9.5).

Theorem B. Let X : y2 = f(x) with deg(f(x)) = 5 be a genus two curve over Q.
Suppose that:

(1) ρX,3 : Gal(Q/Q)→ GSp4(F3) is surjective.

1It is very hard to say anything rigorous (even for elliptic curves) if one orders by conductor.
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(2) X has good ordinary reduction at 2.
(3) X has good ordinary reduction at 3.

Then X is modular.

1.2. The 2-3 switch. The starting point of this paper is an analogue of the 3-
5 switch used by Wiles [Wil95] to prove residual modularity, which exploited the
rationality of certain twists of the modular curve X(5)/Q. In our case, we use
a rational moduli space of abelian surfaces to carry out a 2-3 switch. This space
was defined in [BCGP21] as follows: given an abelian surface A with a prime to 3
polarization, one may consider the moduli space P (A[3]) of genus two curves X
equipped with a symplectic isomorphism Jac(X)[3] ≃ A[3] and a fixed rational
Weierstrass point. By forgetting the Weierstrass point, the variety P (A[3]) admits
a degree 6 map to a twist of the Siegel 3-fold of full level three, which is rational
over C but almost never over Q [CC22]. However, P (A[3]) is always rational
by [BCGP21, Thm 10.2.1]. In particular, we may find another abelian surface B/Q
with B[3] ≃ A[3] and such that the map

ρB,2 : GQ → GSp4(F2) ≃ S6

has image isomorphic to S5 (because of the rational Weierstrass point). Condi-
tion (2) of Theorem A ensures that we can find such a B with good ordinary
reduction at 2. After restricting to a quadratic extension F+/Q (which we can
arrange to be totally real), we may assume that ρB,2|GF+ is absolutely irreducible
with image A5 in GSp4(F2). Known cases of the Artin conjecture in dimension
two [PS16b, Sas19] allow us to identify this representation with the mod 2 re-
duction of the symmetric cube of the 2-adic Galois representation associated to a
Hilbert modular form of parallel weight 2, and thus (via known functorialities) to
the mod 2 representation associated to a Hilbert–Siegel eigenform (see also [TY22,
Thm. 4.7]). The goal is now to use modularity lifting theorems to go from the mod-
ularity of B[2] to the modularity of B and thus to the modularity of A[3] ≃ B[3],
and finally to the modularity of A.

One difficulty that we encounter is that we need to prove modularity lifting the-
orems which apply when p = 2 and the residual image is rather small. However by
far the most serious difficulty compared to our previous work is that the argument
above gives modularity of the residual representation ρB,2 in regular weight, but
the representation ρB,2 has irregular weight. The main innovation in our earlier
work [BCGP21] was to prove a modularity lifting theorem in irregular weight; how-
ever, this theorem crucially depended on having residual modularity in irregular
weight as an input.

Deducing residual modularity in irregular weight from regular weight would be
a higher dimensional analogue of showing (for modular forms) that a residual mod-
ular representation ρ : GQ → GL2(Fp) which is unramified at p arises from a Katz
modular form of weight one [Gro90, CV92], and we do not know how to do this.
Instead we use modularity lifting theorems to prove the existence of a p-adic Siegel
modular form associated to the p-adic Tate module of our abelian surface, and
we then prove a classicality theorem for ordinary p-adic Siegel forms in irregular
weight. Such p-adic modular forms are not necessarily classical; indeed their as-
sociated Galois representations need not be de Rham. However, we prove (under
mild technical hypotheses, see Theorem 4.12.4) that if the Galois representation
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is (ordinary and) de Rham, then the form is indeed classical. (Condition (3) in
Theorem A guarantees that we can apply Theorem 4.12.4 to ρA,3.)

1.3. Classicality for ordinary p-adic Siegel modular forms. Our classicality
theorem follows the strategy introduced by Lue Pan in his paper [Pan22a], as
reinterpreted in [Pil24]. Both of these papers (and Pan’s sequel [Pan22b]) are
in the setting of the modular curve. While Pan gives a complete treatment of
arbitrary de Rham representations, we restrict to the ordinary setting, which is
considerably simpler; but there are still many additional complications for higher-
dimensional Shimura varieties. We prove our classicality theorem in the case of the
Siegel threefold (the Shimura variety for GSp4 /Q) and it asserts that if an ordinary
p-adic modular eigenform of weight 2 has an associated Galois representation which
is irreducible and de Rham (and satisfies a few more technical hypothesis), then
it is classical (see Theorem 4.12.4). The strategy for proving this theorem is to
realize the Galois representation in the completed cohomology of the Siegel threefold
(it does not contribute to the classical étale cohomology because its Hodge–Tate
weights are singular) and to relate the Sen operator of this Galois representation
to a Cousin map which measures the obstruction for a p-adic modular form to be
a classical modular form. In our ordinary case, the de Rhamness is equivalent to
the semi-simplicity of the Sen operator which translates into the vanishing of the
Cousin map and therefore implies the classicality of the p-adic modular form.

We now give a more precise account of our strategy. Let ShtorKpKp be a toroidal
compactification of the Siegel threefold of level KpKp over Spa(Cp,OCp), and let
ShtorKp = limKp Sh

tor
KpKp be the perfectoid Siegel threefold over Spa(Cp,OCp), of

prime-to-p level Kp. Let ω2
Kp

be the sheaf of weight 2 Siegel modular forms over
ShtorKpKp and let ω2,sm = colimKp ω

2
Kp

, viewed as a sheaf over Shtor
Kp , whose coho-

mology is colimKp RΓ(Sh
tor
KpKp , ω2

Kp
). Thus, an element of the degree 0 cohomology

of ω2,sm is a weight 2 Siegel modular form of level KpKp for some Kp.
The ordinary part RΓ(Shtor

Kp , ω2,sm)ord is computed by the following complex
(more precisely, this is only true for cuspidal cohomology but we ignore this subtlety
in the introduction) in degrees 0 and 1:

[H0
Id(Sh

tor
Kp , ω2,sm)ord

Cous→ H1
1w(Sh

tor
Kp , ω2,sm)ord] (1.3.1)

where the module in degree 0 in the complex is the space of ordinary p-adic modular
forms of weight 2, and the module in degree 1 is a space of ordinary higher p-adic
modular forms (studied in higher Coleman theory). The differential is the Cousin
map.

Let RΓ(ShtorKp ,Qp) denote the complex of completed cohomology. We prove
(under technical assumptions, Theorem 4.9.9) that the ordinary part of the b-
cohomology

RHomb(λ,RΓ(Sh
tor
Kp ,Qp)

la)ord (1.3.2)
of locally analytic vectors in completed cohomology is concentrated in degree 3.
Here λ is a non-dominant character of the torus of GSp4 where we expect to see (by
interpolation from what happens for dominant characters) the Galois representation
of weight 2 modular forms.

After we tensor (1.3.2) with Cp, by the p-adic Eichler–Shimura theory developed
in this paper, the cohomology admits a 4 step filtration and the graded pieces are
given by the various relevant higher Coleman theories. If we denote by V this
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degree 3 cohomology group, we prove that VCp has a decreasing filtration with
Gr0VCp = H0

Id(Sh
tor
Kp , ω2,sm)ord and Gr1VCp = H1

1w(Sh
tor
Kp , ω2,sm)ord. We use this

to verify that the Galois representation of our p-adic modular eigenform of weight
2 is realized in completed cohomology.

The Sen operator respects the filtration and acts by the scalars 1, 1, 0, 0 on the
respective graded pieces, but possibly acts non semi-simply on VCp . Looking at the
generalized 0 eigenspace for the Sen operator, we get an induced map

Sen : Gr0VCp = H0
Id(Sh

tor
Kp , ω2,sm)ord → H1

1w(Sh
tor
Kp , ω2,sm)ord = Gr1VCp (1.3.3)

measuring the failure of semi-simplicity of the Sen operator.
The main result from which we deduce our classicality theorem is the property

that the Cousin map (1.3.1) and the Sen map (1.3.3) agree up to a non-zero scalar
(Theorem 4.10.12). The key idea behind the proof is that the Sen operator which
acts on the cohomology arises from an operator defined on the complex of sheaves
RHomb(λ,Ola

Shtor
Kp

) on the perfectoid Shimura varieties whose cohomology is the
b-cohomology of locally analytic vectors in completed cohomology. The complex
RHomb(λ,Ola

Shtor
Kp

) is closely related to twisted D-modules on the flag variety (a
form of the Beilinson–Bernstein localization of the Verma module of weight λ),
and the Sen operator to a certain horizontal Cartan action. It turns out that the
relation between the Sen and Cousin maps can already be studied and established
at this more “explicit” geometric representation level (Theorem 3.6.9).

1.4. p-adic Eichler–Shimura theory. A substantial part of this paper is ded-
icated to p-adic Eichler–Shimura theory. In this part of the work, we are able
to work in the generality of Hodge type Shimura varieties. Let us recall first the
classical Hodge–Tate decomposition of modular curves. Let G = GL2, and let
K ⊆ G(Af ) be a compact open subgroup. Let ShK be the modular curve over
Cp of level K, with compactification ShtorK . Let E → ShK be the universal elliptic
curve. In [Fal87], Faltings proved the following Hodge–Tate decomposition for the
étale cohomology of modular curves:

H1(ShK , Sym
kTpE)⊗Zp Cp = H0(Shtor

K , ωk+2)(−k − 1)⊕H1(Shtor
K , ω−k) (1.4.1)

This isomorphism is equivariant for the Hecke action and the local Galois action,
and (−k − 1) indicates a Tate twist. This kind of statement has been generalized
to all Shimura varieties (see for example [LLZ23]).

Both sides of (1.4.1) are classical instances of bigger p-adic objects. On the left
hand side we may consider completed cohomology, and on the right hand side we can
consider higher Coleman theory [BP21]. The main goal of p-adic Eichler–Shimura
theory (as taken up in §4) is to express some relation between both big p-adic spaces,
generalizing Faltings’s theory to non-classical cohomologies. We note that p-adic
Eichler–Shimura theory was initiated in [AIS15] and completely transformed after
the work of Pan [Pan22a] followed by that of Rodríguez Camargo [RC22, RC23]. In
order to state our main results, we need to introduce a certain amount of notation
as well as recall a number of facts from higher Coleman theory. For this reason, we
defer any further discussion to the more technical introduction given in §4.1.

1.5. An outline of the paper. Here is a brief synopsis of the sections in our
paper; see also the introductions to the individual sections for more details.
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§2 is concerned with Lie algebras. We consider the enveloping algebra U(g)

of a finite dimensional Lie algebra g and its Fréchet completion Û(g), as well as
modules over them. Our main result (of independent interest) is Theorem 2.3.32
which compares the Lie algebra cohomology of a unipotent radical of a parabolic
of g of certain algebraic U(g)-modules and of their completions.

§3 is about equivariant twisted D-modules on flag varieties. We develop a some-
what ad hoc language to describe them. One of the main difficulties is to keep track
of the various topologies and finiteness conditions we want to impose. We use the
language of condensed mathematics to deal with functional analysis. We introduce
a version of Beilinson–Bernstein localization and describe it using the results of
Section 2.

§4 contains our main classicality result. We also give some complements on
higher Coleman theory and establish the p-adic Eichler–Shimura theory.

§5 proves an R = T theorem in regular weight when p = 2 under a suitable
oddness hypothesis, following [Tho17]. For technical reasons (due to the small
residual image of our representations), we need to work with unitary groups rather
than symplectic groups.

§6 proves an R = T theorem in regular weight for p > 2 for symplectic repre-
sentations. Curiously enough, when p = 3 and the image of ρ is GSp4(F3) (the
main case of interest), technical reasons now mandate that we work with symplectic
groups rather than unitary groups; see Remark 6.4.5.

§7 proves a multiplicity one result for certain Hida families, which (once again)
for technical reasons is necessary for our classicality argument. This is where the
main modularity theorems Proposition 7.5.10 and Theorem 7.5.11 are proved, using
the classicality result Theorem 4.12.4.

§8 beings by recalling the basic theory of 2-torsion points on an abelian surface,
and then establishes some basic but necessary facts concerning the modular rep-
resentation theory of A5. This section also addresses the residual modularity of
mod-2 representations with image A5 using known cases of the Artin conjecture
for n = 2.

§9 studies the representations ρ : GQp → GSp4(F3) such that ρ∨ ≃ Jac(X)[3] for
a genus two curve X/Qp with good ordinary reduction and a rational Weierstrass
point when p = 2 or 3. We also study the related question of when ρ∨ ≃ A[3]
where A/Qp is an abelian surface with good ordinary reduction and a rational
odd theta characteristic, as well as variants in which ordinary semistable reduction
is allowed — note that even when A = Jac(X), it is possible that A has good
reduction even when X does not. This analysis is then used in §9.4 to carry out
the 2-3 switch and then in §9.5 to complete the proofs of our main modularity
theorems (Theorem A and B).

§10 gives some examples and complements to our main theorem, proving a resid-
ual modularity theorem for mod 2 representations with image A6 or S6, and proving
the automorphy of any abelian surface A/Q which neither has End(AQ) = Z nor
satisfies End(AK)⊗R = End(AQ)⊗R = R⊕R for some quadratic field K (this
excluded case includes the restriction of scalars of a general elliptic curve over K).
We also explain why the full modularity theorem for all abelian surfaces over Q

would follow from a version of Serre’s conjecture for GSp4(Fp) in regular weight.

1.6. The work of Arthur. It should be noted that this paper, as with the pa-
per [BCGP21] (see [BCGP21, 1.4.1]), relies on results stated by Arthur in [Art04]
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which ultimately rely on references [A24], [A25], [A26], and [A27] which have not
(still) yet appeared, as well as cases of the twisted weighed fundamental lemma
announced in [CL10]. However, the situation has improved remarkably in recent
times. As a result of the recent preprint [AGI+] of Atobe, Gan, Ichino, Kaletha,
Mínguez, and Shin, a complete proof of all the missing ingredients from Arthur’s
papers is now available, and thus the only result we use for which a proof is not yet
available is the twisted weighted fundamental lemma.

1.7. Acknowledgments. We would like to thank Jack Thorne for several help-
ful conversations about his paper [Tho17], and about 2-adic automorphy lifting
theorems in general. We would also like to thank Shiva Chidambaram, Lue Pan,
Dave Roberts, Juan Esteban Rodríguez Camargo, Travis Scrimshaw, and Andrew
Sutherland for helpful conversations. Several of the ideas of this paper were dis-
covered when all four authors were visiting the DFG-funded Hausdorff Research
Institute for Mathematics as part of the trimester program “The Arithmetic of the
Langlands Program” in 2023.

1.8. Notation and conventions.

1.8.1. Assorted notation. We write Zn+ ⊂ Zn for the subset of tuples (λ1, . . . , λn)
with λ1 ≥ λ2 ≥ · · · ≥ λn. If L/Qp is a finite extension, we write Lcycl := L(ζp∞)
for the cyclotomic extension.

1.8.2. Coefficients. We let E be a finite extension of Qp with ring of integers O,
uniformizer ̟ and residue field k. We will always assume that E is chosen to be
large enough such that all irreducible components of all deformation rings that we
consider, and all irreducible components of their special fibres, are geometrically
irreducible. (We are always free to enlarge E in all of the arguments that we make,
so this is not a serious assumption.) Given a complete Noetherian local O-algebra Λ
with residue field k, we let CNLΛ denote the category of complete Noetherian local
Λ-algebras with residue field k. We refer to an object in CNLΛ as a CNLΛ-algebra.
If G is a group functor on CNLΛ then we write Ĝ for the group functor on CNLΛ

given by Ĝ(R) := ker(Ĝ(R)→ Ĝ(k)).

1.8.3. Galois representations and p-adic Hodge theory. We assume without further
comment that all Galois representations are continuous with respect to the natural
topologies. We normalize Hodge–Tate weights so that the cyclotomic character has
Hodge–Tate weight−1, and the Sen operator acts via 1 on the Sen module of Qp(1),
so that the (generalized) Hodge–Tate weights are the negatives of the eigenvalues
of the Sen operator. We write ε for the p-adic cyclotomic character.

Let K/Ql be a finite extension for some l (possibly equal to p). As in [BCGP21,
§2.8] we say that a representation GK → GLn(Qp) is pure if the corresponding
Weil–Deligne representation is pure; in the case l = p, this presupposes that the
representation is de Rham. We say that a representation GK → GSp4(Qp) is pure
if the corresponding representation GK → GL4(Qp) is pure. If F is a number field
then we say that a representation GF → GLn(Qp) (or GF → GSp4(Qp)) if it is
pure at all finite places of F .
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1.8.4. Notation for reductive groups. We consider a split reductive group G over
Spec E, with Borel B and torus T . We denote by g, b, h their Lie algebras. We
write B̄ for the opposite Borel of B and write b for its Lie algebra. We let Φ
be the set of roots of G, with positive roots Φ+ and negative roots Φ− = −Φ+.
For α ∈ Φ choose standard basis elements Xα so that (Xα, X−α, Hα) is an sl2-triple,
where Hα := [Xα, X−α]. We write ∆ for the set of simple roots. We let W be the
Weyl group of G, with length function ℓ : W → Z≥0, and write w0 for the longest
element of W . The Weyl group acts on the left on the character group X∗(T ) via
(wλ)(t) := λ(w−1tw). It also acts on the left on X∗(T ), and the natural pairing 〈, 〉
between X∗(T ) and X∗(T ) is W -equivariant.

Let P ⊇ B be a standard parabolic with Levi quotient M . We let p be its Lie
algebra, with unipotent radical up and Levi m, and we write zm for the centre of m.
We have a Borel bm = m∩b ⊆ m. We write u for the unipotent radical of b and up for
the unipotent radical of p. Let Φ+

M be the subset of Φ+ which lie in the Lie algebra
of M , and set Φ+,M := Φ+rΦ+

M ; and write Φ−
M := −Φ+

M , Φ−,M := −Φ+,M . We let
WM be the Weyl group of M , with longest element w0,M , and we let MW ⊆W be
the set of Kostant representatives of WM\W (i.e. those w ∈ W with Φ+

M ⊆ wΦ+;
this is a set of coset representatives of minimal length). There is an involution
of MW given by w 7→ w0,Mww0, and we have l(w0,Mww0) + l(w) = |Φ+,M |. In
particular the Kostant representative of maximal length is wM0 := w0,Mw0.

We let ρ be half the sum of the positive roots, and write ρ = ρM +ρM where ρM

is half the sum of the roots in Φ+,M and ρM is half the sum of the roots in Φ+
M .

We define the “dot action” of W on X∗(T ) by w ·λ := w(λ+ ρ)− ρ. We say that
λ ∈ X∗(T ) is regular if the stabilizer of λ for the dot action is trivial, and otherwise
we say that λ is singular or irregular.

Let w ∈ W . Then we let Pw := w−1Pw, with Lie algebra pw := w−1pw, and
similarly we define upw , mw, and so on.

1.8.5. Notations for a p-adic torus. Let T → Spec Qp be a torus. We let T d be its
maximal split subtorus. The group T (Qp) has a unique maximal compact subgroup
that we denote (abusing notation) by T (Zp). We have an exact sequence

0→ Z̄×
p → Q

×

p
v→ Q→ 0

given by the p-adic valuation, normalized by v(p) = 1. Tensoring this sequence by
X∗(T ) and taking invariants under the Galois group Gal(Qp/Qp) yields an exact
sequence

0→ T (Zp)→ T (Qp)
v→ X∗(T

d)⊗Q (1.8.6)
where the image of v is a lattice.

Let χ : T (Qp)→ Q
×

p be a character. We can compose it with the p-adic valuation
and get a map v(χ) : T (Qp) → Q, which factors as T (Qp)

v→ X∗(T
d) ⊗Q → Q.

We can therefore think of v(χ) as an element of X∗(T d)Q.
If T is a maximal torus contained in a Borel of a quasi-split reductive group G

defined over Qp and if Φ = Φ+ ∪ Φ− is the set of absolute roots, we let T+(Qp) =
{t ∈ T (Qp), v(α(t)) ≥ 0 ∀α ∈ Φ+} and T++(Qp) = {t ∈ T (Qp), v(α(t)) > 0 ∀α ∈
Φ+}.
1.8.7. Notations in the symplectic case. We will often consider the case where G =
GSp2g and P is the Siegel parabolic. In this case we make some more explicit
choices. The group G has a natural model over Spec Z, namely we realize G as the
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subgroup of GL2g acting on the free Z-modules of rank 2g, with basis e1, · · · , e2g
and preserving up to a similitude factor the symplectic form with matrix

J =

(
0 S
−S 0

)

where S is the g × g anti-diagonal matrix with only 1’s on the anti-diagonal. We
denote by ν : GSp2g → Gm the similitude factor.

We let P be the stabilizer of 〈eg+1, · · · , e2g〉. We choose B ⊆ P to be upper
triangular on each diagonal block. We let T be the diagonal torus. An element of T
is labelled t = diag(zt1, · · · , ztg, zt−1

g , · · · , zt−1
1 ). CharactersX∗(T ) of T are tuples:

κ = (k1, · · · , kg;w) ∈ Zg × Z with w =
∑
ki (mod 2), and κ(t) = zw

∏g
i=1 t

ki
i . A

character is M -dominant if k1 ≥ · · · ≥ kg. The set of M -dominant characters is
denoted by X∗(T )M,+. A character is G-dominant if 0 ≥ k1 ≥ · · · ≥ kg. The set of
G-dominant characters is denoted by X∗(T )G,+.

1.8.8. GSp4. We now specialize further to the case G = GSp4. We continue to take
P to be the (“block lower-triangular”) Siegel parabolic stabilizing e3, e4, and B the
Borel inside it which is upper-triangular in each of the diagonal 2 × 2 blocks. We
let Q be the Klingen parabolic containing B (this is the other maximal parabolic
in GSp4) with Levi MQ.

Let κ = (k1, k2;w) ∈ X∗(T )+ be a dominant weight for GSp4, so that 0 ≥
k1 ≥ k2. Given our choice of Borel, the positive roots Φ+ are α = (1,−1; 0), β =
(−2, 0; 0), γ = α+β = (−1,−1; 0), δ = 2α+β = (0,−2; 0). We have ρ = (−1,−2; 0).

The Weyl group W is generated by sα and sβ where sα(k1, k2;w) = (k2, k1;w)
and sβ(k1, k2;w) = (−k1, k2;w), so that w0 = sαsβsαsβ , and w0(k1, k2;w) =
(−k1,−k2;w). We have WM = {Id, sα} and WMQ = {Id, sβ}. The elements of MW
are Id, sβ , sβsα, sβsαsβ . We label them 0w, 1w, 2w, 3w; they respectively have length
0, 1, 2, 3. In particular, 3w = wM0 is the length three element. We use the pairing
between characters and cocharacters coming from the standard pairing on Q3.
Thus, we label cocharacters X∗(T ) as triples (a, b; c) ∈ 1

2Z
3, with a+ c, b + c ∈ Z.

To (a, b; c) we attach the cocharacter t 7→ diag(ta+c, tb+c, t−b+c, t−a+c). We let
µ = (−1/2,−1/2; 1/2) ∈ X∗(T ). We sometimes view µ as an element of zm (the
centre of the Lie algebra m).

We let ĜSp4 be the dual group of GSp4. Our choice of Borel B and torus T
in GSp4 gives a Borel B̂ and torus T̂ in ĜSp4. We use the spin representation
to identify ĜSp4, the Borel B̂ and torus T̂ with the group GSp4, its usual up-
per triangular Borel and diagonal torus. In particular, this fixes an isomorphism
X∗(T ) = X∗(T̂ ) ≃ X∗(T ), given by

(λ1, λ2;w) 7→ [t 7→ diag(t
−λ1−λ2+w

2 , t
λ1−λ2+w

2 , t
−λ1+λ2+w

2 , t
λ1+λ2+w

2 )]

Dually, there is an isomorphism X∗(T ) = X∗(T̂ ) ≃ X∗(T ) for which µ corresponds
to the dominant character (1, 0; 1) of X∗(T̂ ). When we work on the dual side
(typically when we consider Galois representations), we will also denote by B the
upper triangular Borel in GSp4 ≃ ĜSp4. This should not cause any confusion.

1.8.9. Ordinary Galois representations.
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Definition 1.8.10. Let K/Qp be a finite extension, and let ρ : GK → GSp4(Qp)

be a representation with similitude factor ε−1. We say that ρ is ordinary if there
are characters χ1, χ2 : GK → Q

×

p with

ρ ∼=




χ1 ∗ ∗ ∗
0 χ2 ∗ ∗
0 0 ε−1χ−1

2 ∗
0 0 0 ε−1χ−1

1


 .

We say that the ordered pair (χ1, χ2) is a p-stabilization of ρ. We say that ρ is
p-distinguished if the 4 characters χ1, χ2, ε

−1χ−1
2 , ε−1χ−1

1 are pairwise distinct. We
say that ρ is semistable of weight 2 if the subrepresentation

(
χ1 ∗
0 χ2

)

is unramified. (Such a representation is automatically semistable in the usual sense.)
In this case we will sometimes denote the p-stabilization (χ1, χ2) by (α, β) with
α = χ1(FrobK), β = χ2(FrobK).

Similarly, we say that a representation ρ : GK → GSp4(Fp) with similitude
factor ε is ordinary if there are characters χ1, χ2 : GK → F

×

p with

ρ ∼=




χ1 ∗ ∗ ∗
0 χ2 ∗ ∗
0 0 ε−1χ−1

2 ∗
0 0 0 ε−1χ−1

1


 .

We say that the ordered pair (χ1, χ2) is a p-stabilization of ρ. We say that ρ is
residually p-distinguished if the 4 characters χ1, χ2, ε

−1χ−1
2 , ε−1χ−1

1 are pairwise
distinct. We say that ρ is of weight 2 if the subrepresentation

(
χ1 ∗
0 χ2

)

is unramified; in particular the characters χ1, χ2 are unramified. (Conversely,
if χ1, χ2 are distinct and unramified, then ρ is of weight 2.) If ρ is of weight 2, then
we will usually denote the p-stabilization (χ1, χ2) by (α, β), where α = χ1(FrobK),
β = χ2(FrobK).

We make the same definitions for integral representations ρ : GK → GSp4(Zp), in
which case a p-stabilization (χ1, χ2) induces a p-stabilization (χ1, χ2) of the mod p
representation ρ : GK → GSp4(Fp). Note that if ρ is semistable of weight 2, then ρ
is of weight 2. If we regard ρ as a lift of ρ, then we say that (χ1, χ2) is compatible
with (χ1, χ2). Given two ordinary lifts ρ1, ρ2 of ρ, we say that p-stabilizations of ρ1
and ρ2 respectively are compatible if they induce the same p-stabilization of ρ.

Remark 1.8.11. We again (see [BCGP21, Rem. 7.3.2]) apologize for the termi-
nology “of weight 2”; these definitions are convenient later in the paper when we
wish to appeal to results from [BCGP21]. In particular we caution the reader that
if ρ is of weight 2 and pure, then it is pure of weight 1 in the usual sense. Since
we will never use the terminology “pure of weight 1” (or “pure of weight 2”, for that
matter), we hope that this will not lead to any confusion.
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1.8.12. Galois representations associated to automorphic representations. We for
the most part follow the conventions of our earlier paper [BCGP21], to which we
refer for further details. We begin with some brief recollections from [BCGP21,
§2.3]. If K/Ql is a finite extension for some l, then we let recK be the local
Langlands correspondence of [HT01], which assigns to an irreducible complex ad-
missible representation π of GLn(K) a Frobenius semi-simple Weil–Deligne com-
plex representation recK(π) of the Weil group WK . We will write rec for recK
when the choice of K is clear. In the case n = 1, recK is obtained from the
Artin map ArtK : K× ∼−→ W ab

K , which we normalize to send uniformizers to
geometric Frobenius elements. Similarly, we denote the local Langlands correspon-
dence of [GT11] by recGT; this assigns a GSp4-conjugacy classes of GSp4(C)-valued
Weil–Deligne representation of WK to each irreducible smooth complex represen-
tation of GSp4(K). If (r,N) is a Weil–Deligne representation of WK we will write
(r,N)F−ss for its Frobenius semi-simplification.

We fix once and for all for each prime p an isomorphism ı = ıp : C ∼= Qp.
We will sometimes omit these isomorphisms from our notation, in order to avoid
clutter. In particular, we will frequently use that ı determines a square root of p
in Qp (corresponding to the positive square root of p in C). We will often regard
automorphic representations as being defined over Qp, rather than C, by means
of the fixed isomorphism ı : C ∼= Qp. We write recp and recGT,p for the local
Langlands correspondences for Qp-representations given by conjugating by ı.

Suppose that F+ is a totally real field and that π is a cuspidal automorphic
representation of GSp4 /F

+. We will always assume that such a π has central
character | · |2. (We apologize for this assumption, which seemed helpful at some
points when writing [BCGP21], and suffices for applications to abelian surfaces.)
We say that π is algebraic if it is C-algebraic, and we say that it is regular algebraic
if π∞ is an (essentially) discrete series representation. Suppose that π is algebraic.
We say that it has weight (λv)v|∞ where λv ∈ (X∗(T )+Q − ρ) ∩ X∗(T ), if πv has
infinitesimal character −λv − ρ. If π is regular algebraic then λv ∈ X∗(T )+, and
we know that π ⊗⊗v|∞ Vλv has non-trivial (g,K∞)-cohomology where Vλv is the
highest weight λv-representation.

We now come to the definition of ordinarity. Assume furthermore that p splits
completely in F+ (this is sufficient to us). Our fixed isomorphism C ∼= Qp identifies
{w | p} and {v | ∞}. Suppose that w | p. We say that πw is finite slope if it has
non-trivial Jacquet module. The Jacquet module of πw is then a direct sum of
characters χw : T (Qp) → Q̄×

p . We say that πw is ordinary if there is a character
χw occurring in the Jacquet module such that v(χw) = −λw (see Section 1.8.5 for
the definition of v(χw)). We refer to a choice of such a character as an (ordinary)
p-stabilization of πw . We say that π is ordinary if πw is ordinary for all w | p. If π is
ordinary and regular algebraic, then each πw has a unique (ordinary) p-stabilization.

Theorem 1.8.13. Suppose that F+ is totally real and that p splits completely
in F+. If π is regular algebraic of weight λ = ((kv, lv; 2))v|∞, then for each prime p
there is (see e.g. [BCGP21, Thms. 2.7.1, 2.7.2]) a semi-simple representation ρπ,p :
GF+ → GSp4(Qp) satisfying the following properties.

• ν ◦ ρπ,p = ε−1.
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• For each finite place v ∤ p, we have

WD(ρπ,p|G
F

+
v

)ss ∼= recGT,p(πv ⊗ |ν|−3/2)ss.

• If ρπ,p is irreducible, then for each finite place v of F , ρπ,p|G
F

+
v

is pure and

WD(ρπ,p|G
F

+
v

)F−ss ∼= recGT,p(πv ⊗ |ν|−3/2).

• For each v|p, ρπ,p|G
F

+
v

is de Rham with Hodge–Tate weights ((kv + lv)/2−
1,−(kv − lv)/2, (kv − lv)/2 + 1, 2− (kv + lv)/2).
• If p splits completely in F , v | p, and πv is ordinary, then there are poten-

tially unramified characters α, β such that:

ρπ,p|G
F

+
v

∼=




αε1−(kv+lv)/2 ∗ ∗ ∗
0 βε(kv−lv)/2 ∗ ∗
0 0 β−1ε−1−(kv−lv)/2 ∗
0 0 0 α−1ε(kv+lv)/2−2


 .

(1.8.14)

Remark 1.8.15. We can spell out more precisely the characters on the diagonal
in (1.8.19). Let χv : T (Qp) → Q̄×

p be an ordinary p-stabilization of πv. This
induces a p-stabilization of ρπ,p|G

F
+
v

in the sense of Definition 1.8.10 as follows. Let

χ̃v = χvλvρν
− 3

2 |ρν− 3
2 |−1 : T (Qp)→ Z̄×

p .

This character is valued in Z̄×
p by the ordinarity assumption. We can identify χ̃v

with an homomorphism Q×
p → T̂ (Z̄p), where T̂ is the dual torus, which we identify

with T by using the isomorphism GSp4 ≃ ĜSp4 of Section 1.8.8. Then by class
field theory, we interpret χ̃v : GQp → T (Z̄p). This is the character on the diagonal
of ρπ,p|G

F
+
v

.

We will also need to use the Galois representations associated to certain irregular
weight algebraic cuspidal automorphic representations for GSp4 /F

+.

Definition 1.8.16. We say that π has weight 2 if it is algebraic of weight λ =
(1, 1; 2)v|∞ (remember that by our convention, this λ is not G-dominant) and π∞
is a non-degenerate limit of discrete series.

The following theorem is well known. We provide a sketch of proof since we
couldn’t find a precise reference in the literature.

Theorem 1.8.17. Suppose that F+ is totally real and that p splits completely
in F+. Let π be an ordinary weight 2 automorphic representation for GSp4 /F

+.
There is a semi-simple representation ρπ,p : GF+ → GSp4(Qp) satisfying the fol-
lowing properties.

• ν ◦ ρπ,p = ε−1.
• For each finite place v ∤ p, we have

WD(ρπ,p|G
F

+
v

)ss ∼= recGT,p(πv ⊗ |ν|−3/2)ss. (1.8.18)
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• There are potentially unramified characters α, β such that:

ρπ,p|G
F

+
v

∼=




α ∗ ∗ ∗
0 β ∗ ∗
0 0 β−1ε−1 ∗
0 0 0 α−1ε−1


 . (1.8.19)

In fact, the character on the diagonal is described by the recipe explained
in Remark 1.8.15.

Proof. The representation πf will realize in the interior coherent cohomology of
the Hilbert–Siegel Shimura variety by [Har90, Thm. 2.7, Thm. 3.6.2]. By [BP21,
Thm. 1.4.3 (1) (4)], πf defines a point x on an equidimensional eigenvariety which
dominates weight space. Let Spa(A,A+) be an affinoid open subset of the eigen-
variety containing x. By [BP21, Thm. 1.4.3 (2)], there is a Zariski dense set
of classical points in Spa(A,A+), with regular algebraic weight. Let X be the
space of GSp4-valued pseudorepresentations of GF+ (in the sense of Lafforgue,
see [Qua23]). Then by interpolation of the representations in Theorem 1.8.13 there
is a map SpecA → X . Specializing at x produces the semi-simple representa-
tion ρπ,p. By interpolation the representation ∧2ρπ,p contains the character ε−1,
so ρπ,p admits a symplectic pairing with multiplier ε−1. The statement regarding
local-global compatibility away from p follows by a standard argument from p-adic
interpolation (note that the Weil–Deligne representations are only considered up
to semi-simplification). If we assume that π is ordinary, then we can assume that
Spa(A,A+) is an ordinary component of the eigenvariety, and by interpolation our
local-global compatibility statement at p follows (see also [BP21, Thm. 1.4.8], for
a more general statement in the finite slope case). �

Remark 1.8.20. In the situation of Theorem A, we can upgrade the semi-simplified
local-global compatibility (1.8.18) in Theorem 1.8.17 to full local-global compati-
bility. More precisely, if π is of general type and ρπ,p in is pure, then

WD(ρπ,p|G
F

+
v

)F−ss ∼= recGT,p(πv ⊗ |ν|−3/2)

for all v; that is, in addition to (1.8.18), the monodromy operators N on each side
agree. To see this, note firstly that since π is of general type, and cuspidal auto-
morphic representations of GLn are generic, the L-packet containing πv ⊗ |ν|−3/2

is generic; so by part vii of the main theorem of [GT11], the adjoint L-factor
L(s, ad(recGT,p(πv ⊗ |ν|−3/2))) is holomorphic at s = 1. Equivalently,

(ad(recGT,p(πv ⊗ |ν|−3/2))(1))ϕ=1,N=0 = 0. (1.8.21)

On the other hand, since ρπ,p|G
F

+
v

is pure, so is WD(ρπ,p|G
F

+
v

)F−ss (by [TY07, Lem.

1.4(1)]). By [TY07, Lem. 1.4(4)] and its proof, this means that WD(ρπ,p|G
F

+
v

)F−ss

is equipped with the unique choice of N satisfying (1.8.21), as required.

Finally, we will need to use the Galois representations associated to certain
automorphic representations of GLn, which we now very briefly recall. Let F be
an imaginary CM field. Recall that an automorphic representation π of GLn /F is
RACSDC if it is regular algebraic, conjugate self-dual, (i.e. πc ∼= π∨), and cuspidal.
(See e.g. [BLGGT14, §2]) for more details.) Associated to a RACSDC automorphic
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representation π is a continuous semi-simple representation rπ,p : GF → GLn(Qp)
such that rπ,p|GFv

is de Rham for all v|p, and for each finite place v of F we have

ıWD(rπ,p|GFv
)F−ss ∼= rec(πv ⊗ | det |(1−n)/2v )

(see e.g. [BLGGT14, Thm. 2.1.1] and [Car14, Thm. 1.1]). In particular, we have
rcπ,p
∼= r∨π,pε

1−n.

1.8.22. Transfer between GL4 and GSp4. We firstly very briefly recall some re-
sults on Arthur’s classification of discrete automorphic representations of GSp4;
see [BCGP21, §2.9] for a slightly longer treatment with precise references to the
literature. Suppose that F is a number field, that Π is a cuspidal automorphic rep-
resentation of GL4 /F , and that χ : A×

F /F
× → C× is unitary. Then we say that Π

is χ-self dual if Π ∼= Π∨ ⊗ χ ◦ det, in which case the pair (Π, χ) is of symplectic
type if the partial L-function LS(s,Π,

∧2⊗χ−1) has a pole at s = 1 (where S is
any finite set of places of F ) or of orthogonal type if LS(s,Π, Sym2⊗χ−1) has a
pole at s = 1. Exactly one of these alternatives holds, and if (Π, χ) is of symplectic
(resp. orthogonal) type then it descends to a discrete automorphic representation π
of GSp4 /F (resp. GSpinα4 /F for some inner form GSpinα4 of GSpin4) with central
character ωπ = χ. (See for example [GT19, Prop. 6.1.7].) We say that a discrete
automorphic representation π of GSp4 /F is of general type if it arises in this way
for some (Π, χ), in which case we say that Π is the transfer of π, and that π is a
descent of Π. For each place v of F , the L-parameter obtained from recGT(πv) by
composing with the usual embedding GSp4 →֒ GL4 is rec(Πv). In this case π is
necessarily cuspidal, and it is stable. In fact if π′ := ⊗′π′

v with πv, π
′
v in the same

L-packet for all v, then π′ is automorphic, and occurs with multiplicity one in the
discrete spectrum. If π is (regular) algebraic then Π is also (regular) algebraic.

If F is totally real, and π is regular algebraic and not of general type, then
the Galois representations ρπ,p associated to π are reducible by [BCGP21, Lem.
2.9.1]. Since we will always be in a situation where our Galois representations are
irreducible (even irreducible modulo p), we will only need to consider π of general
type in this paper.

1.8.23. Galois representations associated to abelian surfaces. Let F be a number
field, and let A/F be an abelian surface. For each prime p, we may write ρA,p for
the Galois representation associated to H1(AF ,Zp). We often think of ρA,p as a
representation

ρA,p : GF → GSp4(Qp)

with multiplier given by the inverse cyclotomic character ε−1 (compare [BCGP21,
Defn. 2.8.2]). We also let ρA,p denote the Galois representation associated to
H1(AF ,Fp). If A admits a principal polarization of degree prime to p, then we
can and do think of ρA,p as a representation

ρA,p : GF → GSp4(Fp).

We take the coefficient field of ρA,p (respectively, of ρA,p) to be Qp or Qp (resp.
Fp or Fp) depending on what is most convenient. If Tp(A) denotes the p-adic Tate
module of A, then (in our conventions) the Galois representations associated to
Tp(A) and A[p] are the dual representations ρ∨A,p ≃ ρA,p ⊗ ε and ρ∨A,p ≃ ρA,p ⊗ ε
respectively. The representation ρA,p is unramified at all but finitely many places v
of F , and if v|p then ρA,p|GFv

is de Rham with Hodge–Tate weights 0,0,1,1 for every
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choice of embedding F → Qp. Furthermore ρA,p|GFv
is pure at all finite places v

(see e.g. [BCGP21, Prop. 2.8.1]). If A/Fv has good ordinary reduction for some
v|p, then ρA,p|GFv

is crystalline and ordinary of weight 2.

1.8.24. Notions of modularity. Let F be a number field.

Definition 1.8.25. An abelian surface A/F is modular, or equivalently, automor-
phic if there exist C-algebraic cuspidal automorphic representations πi for GLni /F
with 4 =

∑
ni such that

L(s,H1(A)) =
∏

L(s, πi ⊗ | det |(1−ni)/2).

A genus two curve X/F is modular if A = Jac(X)/F is modular.

If A is modular, then L(s,Hi(A)) = L(s,∧iH1(A)) = L(s,Πi) for some automor-
phic representation Πi. This follows from known functorialities in small degrees,
most notably [Kim03, Hen09] (cf. the proof of [BCGP21, Thm 9.3.1]).

Remark 1.8.26 (Warning). In [BCGP21], particularly [BCGP21, Defn. 9.1.8], we
reserved the term modular to specifically refer to the stronger statement that F was
totally real and that A was associated to a cuspidal automorphic representation
of GSp4 /F with certain properties. With such a restriction, there are abelian
surfaces and genus two curves which fail to be modular, for example, when A/Q =
Jac(X)/Q is isogenous to a product of two elliptic curves or an abelian surface
of GL2-type. In retrospect, we feel that this distinction is unhelpful. In the main
theorems of this paper, we (under certain hypotheses) establish the modularity
of A/Q by proving the modularity of ρA,p for some p. More precisely, we assume
that ρA,p is absolutely irreducible, and show that ρA,p ∼= ρπ,p for some weight 2
cuspidal automorphic representation π for GSp4 /Q. This π will be of general type,
and thus transfers to a C-algebraic cuspidal automorphic representation of GL4.

1.8.27. The Eichler–Shimura relation. We let ℓ be a prime. We let

Tℓ = Z[GSp4(Qℓ)//GSp4(Zℓ)]

be the spherical Hecke algebra for GSp4(Qℓ) with Z-coefficients. As a Z-module, it
has a basis consisting of the characteristic functions of the double cosets Tλ =
[GSp4(Zℓ)λ(ℓ)GSp4(Zℓ)] where λ ∈ X∗(T )

+. In particular, we define Tℓ,i =
[GSp4(Zl)βℓ,iGSp4(Zl)], where

βℓ,0 = diag(ℓ, ℓ, ℓ, ℓ),

βℓ,1 = diag(ℓ, ℓ, 1, 1),

βℓ,2 = diag(ℓ2, ℓ, ℓ, 1).

We write Qℓ(X) ∈ T[X ] for the polynomial

X4 − Tℓ,1X3 + (ℓTℓ,2 + (ℓ3 + l)Tℓ,0)X
2 − ℓ3Tℓ,0Tℓ,1X + ℓ6T 2

ℓ,0.

We have the Satake isomorphism

S : Q(
√
ℓ)[X∗(T̂ )]W

∼−→ Q(
√
ℓ)⊗Z Tℓ.

For each representation V of ĜSp4 we let [V ] be the character of T̂ on V . This
defines an element of Q(

√
ℓ)[X∗(T̂ )]W . To each λ ∈ X∗(T ) we can associate

a representation Vλ of ĜSp4 with highest weight λ. The [Vλ] form a basis of
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Q(
√
ℓ)[X∗(T̂ )]W . We consider in particular λ = (− 1

2 ,− 1
2 ;

1
2 ) ∈ X∗(T ), correspond-

ing to the Spin representation ĜSp4 → GL4 (which, as explained above, we use to
identify ĜSp4 and GSp4, so that via the isomorphism X∗(T ) = X∗(T̂ ) = X∗(T ),
(− 1

2 ,− 1
2 ;

1
2 ) goes to (1, 0; 1)). We also consider the dual of the Spin representation,

corresponding to λ = (− 1
2 ,− 1

2 ;− 1
2 ). We write Pℓ,λ(X) = X4−[Vλ]X3+[Λ2Vλ]X

2−
[Λ3Vλ]X + [Λ4Vλ] for the characteristic polynomial of the representation Vλ in ei-
ther of these cases. We write Qℓ(X) = ℓ6Pℓ,(− 1

2 ,−
1
2 ;

1
2 )
(ℓ−

3
2X). Then Qℓ is the usual

Hecke polynomial in Tℓ[X ] whose definition was recalled above. The coefficient of
X3 is −T(− 1

2 ,−
1
2 ;

1
2 )

. We also let

Pℓ(X) := ℓ6Pℓ,(− 1
2 ,−

1
2 ;−

1
2 )
(ℓ−

3
2X). (1.8.27)

The coefficient of X3 in Pℓ is −T(−1
2 ,−

1
2 ;−

1
2 )

.
Let π be a C-algebraic automorphic representation of GSp4/Q whose component

at infinity is a non-degenerate limit of discrete series. Let S be the set of finite
places at which π is not spherical. Let TS := ⊗ℓ/∈STℓ be the spherical Hecke
algebra away from S. We let Θπ : TS → C be the character describing the action
of TS on the one dimensional C-vector space of spherical vectors of ⊗v/∈Sπv. Then
by the definition of rec, the Galois representation ρπ,p : GQ → GSp4(Qp) has the
property for all primes ℓ /∈ S ∪ {p}, ı(Θπ(Qℓ))(X) is the characteristic polynomial
of ρπ,p(Frobℓ) (here Frobℓ denotes a geometric Frobenius element).

Lemma 1.8.28. For all primes ℓ /∈ S ∪ {p}, ı(Θπ(Pℓ))(X) is the characteristic
polynomial of (ρ∨π,p ⊗ ε−3)(Frobℓ).

Proof. Unraveling the definitions, we find that ℓ−6ı(Θπ(Pℓ,(− 1
2 ,−

1
2 ;−

1
2 )
))(ℓ

3
2X) is

the characteristic polynomial of ρ∨π,p(Frobℓ). The characteristic polynomial of
ℓ3ρ∨π,p(Frobℓ) is therefore ℓ6ı(Θπ(Pℓ,(− 1

2 ,−
1
2 ;−

1
2 )
))(ℓ−

3
2X). �

For any neat compact open subgroup K =
∏
ℓKℓ ⊆ GSp4(Af ), let ShalgK →

Spec Q denote the Siegel threefold of level K. We will make use of the following
Eichler–Shimura relation.

Theorem 1.8.29. On RΓ(Shalg
K,Q̄

,Z/pnZ) and RΓc(Sh
alg
K,Q̄

,Z/pnZ), for each place
ℓ 6= p at which Kℓ is hyperspecial, the local Galois representation of GQℓ

is unram-
ified at ℓ and Pℓ(Frobℓ) = 0.

Proof. Let ℓ 6= p be a place at which Kℓ is hyperspecial. We have a natural smooth
integral model ShalgK,Zℓ

→ Spec Zℓ. We first claim that RΓ(Shalg
K,Q̄ℓ

,Z/pnZ) =

RΓ(Shalg
K,F̄ℓ

,Z/pnZ). By [LS18, Coro. 5.20]2,

RΓ(Shalg
K,Q̄ℓ

,Z/pnZ) = RΓ(Shalg
K,F̄ℓ

,RΨZ/pnZ).

Since ShalgK,Zℓ
→ Spec Zℓ is smooth, the map Z/pnZ → RΨZ/pnZ is an isomor-

phism. By Poincaré duality, we deduce that

RΓc(Sh
alg

K,Q̄ℓ
,Z/pnZ) = RΓc(Sh

alg

K,F̄ℓ
,Z/pnZ).

2whose proof considerably simplifies in our case, due to the existence of smooth toroidal com-
pactifications, with normal crossing boundary divisor.
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We now use the Eichler–Shimura relation of [FC90, VII, Thm 4.2], to deduce that
Pℓ(Frobℓ) = 0. It only remains to explain why it is the polynomial Pℓ and not Qℓ
that we need to use. This all boils down to understanding how we attach to a char-
acteristic function of a double coset in the Hecke algebra, a Hecke correspondence.
Using our conventions (which we think are standard, but are the transpose of that
of [FC90]), to the double coset Tλ is associated the Hecke correspondence:

Shalgλ(ℓ)−1Kλ(ℓ)∩K

p2

��

Shalgλ(ℓ)Kλ(ℓ)−1∩Kλ(ℓ)
oo

p1

��

ShalgK ShalgK

For example, for λ = (− 1
2 ,− 1

2 ;− 1
2 ), this is the moduli space parametrizing abelian

surfaces p∗1A and p∗2A, with certain prime-to-ℓ level structure and prime-to-ℓ polar-
ization, together with an isogeny (compatible with level structure and polarization)
p∗1A → p∗2A whose kernel is a maximal isotropic subgroup of p∗1A[ℓ]. The reduc-
tion of the natural integral model of this correspondence modulo ℓ contains the
Frobenius correspondence. �

2. Lie algebra homology

2.1. Introduction. Let g be a reductive Lie algebra over E, let p be a parabolic
subalgebra of g with Levi m and unipotent radical up, and let b be a Borel of g

containing a Cartan h, which we assume is also contained in m. In this section
we study the up-cohomology of objects of category O and of category Ô, a p-adic
analytic version of the BGG category O. The categories O and Ô are equivalent,
via base change from the universal enveloping algebra U(g) to its completion, the
Fréchet–Stein algebra Û(g). We establish in particular the key Theorem 2.3.32,
which shows that in a fixed p-adically non-Liouville weight, the operation of taking
up-cohomology is compatible with completion, i.e. with passage from category O
to category Ô.

We use the language of condensed mathematics throughout, and we begin in
Section 2.2.1 with an overview of the results that we need (mostly from [RJRC22])
on solid E-vector spaces, together with a summary of some results from [Sch13a]
on category Ô.

2.2. Solid functional analysis and representations.

2.2.1. Solid E-vector spaces. Rather than use the classical theory of topological
vector spaces, we work throughout with the condensed mathematics of Clausen–
Scholze [CS]; for the convenience of the reader, here and below we recall some of
the comparisons to the classical definitions. Let E be a finite extension of Qp. By
[CS, lecture 7], the non-archimedean field E can be viewed as a solid abelian group.
It follows that E can be equipped with a structure of an analytic ring, where for
any profinite set S, E�[S] = E ⊗Z Z�[S]. We let Mod(E) be the abelian category
of solid E-vector spaces; this has a tensor product, which we denote by ⊗, and
an internal Hom, which we denote by Hom(−,−). We refer to [RJRC22, §3], for
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a complete treatment of non-archimedean functional analysis from the condensed
perspective. We simply recall what is strictly necessary for us.3

We have a functor V 7→ V from topological spaces to condensed sets, where
V is the condensed set defined by V (S) = C0(S, V ) for any profinite set S. This
functor has a left adjoint X 7→ X(∗)top from condensed sets to topological spaces,
given by evaluating a condensed set X on the point ∗ and endowing X(∗) with
the quotient topology of the map

∐
S,x∈X(S) S → X(∗), where S runs through all

profinite sets. The restriction of the functor V 7→ V to the category of compactly
generated topological spaces is fully faithful, and if V is compactly generated then
V = V (∗)top (more precisely, the counit V (∗)top → V of the adjunction restricts
to the identity functor on compactly generated topological spaces, see [CS, Prop.
1.7]).

By [RJRC22, Proposition 3.7], the functor V 7→ V restricts to a functor from the
category of complete locally convexE-vector spaces to the category of solidE-vector
spaces. All the complete locally convex E-vector spaces that we will encounter will
be considered as solid E-vector spaces unless explicitly specified otherwise.

We introduce certain full subcategories of Mod(E).

Definition 2.2.2.

(1) A Banach space is a solid E-module of the form (limn(⊕IOE/pnOE))[1/p]
for some set I.

(2) A Smith space is a solid E-module which has the form (
∏
I OE)[1/p] for

some set I.
We let B(E) be the category of Banach spaces and S(E) be the category of Smith
spaces.

Remark 2.2.3. The categories of solid and classical Banach spaces (resp. Smith
spaces) are equivalent via the functors V 7→ V (∗)top and V 7→ V . The essential
surjectivity follows from the explicit description of the objects. The full faithfulness
is a consequence of the fact that classical Banach spaces and Smith spaces are
compactly generated. (See for example [RJRC22, Prop. 3.5].)

Proposition 2.2.4. [RJRC22, Lem. 3.10] There is an anti-equivalence of categories
between Smith and Banach spaces given by V 7→ V ∨ := Hom(V,E). Moreover,
(V ∨)∨ = V .

Remark 2.2.5. The functor V 7→ V ∨ is exact in the sense that it sends short
exact sequences of Banach spaces (resp. Smith spaces) to short exact sequence of
Smith spaces (resp. Banach spaces). In fact, any short exact sequence is split.

Remark 2.2.6. If V is in B(E), then V ∨(∗)top is the classical Smith space equal
to the continuous dual Hom(V (∗)top, E) equipped with the compact open topology.

Definition 2.2.7.

(1) A Fréchet space is a solid E-module which can be written as a sequential
limit of Banach spaces.

(2) An LS-space is a solid E-module which can be written as a sequential
colimit of Smith spaces with injective transition maps.

3In order to fix set-theoretical issues, we choose a strongly inaccessible cardinal κ and we only
consider κ-small profinite sets. See [CS, Lecture 1, rem. 1.3]
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(3) An LB-space is a solid E-module which can be written as a sequential
colimit of Banach spaces with injective transition maps.

We let F (E) be the category of Fréchet spaces, we let LS(E) be the category of
LS-spaces, and we let LB(E) be the category of LB-spaces.

Remark 2.2.8. The categories of solid and classical Fréchet spaces are equivalent
under the functors V 7→ V (∗)top and V 7→ V , [RJRC22, Lem. 3.24(1)]. To see this,
we claim that it suffices to show that V 7→ V is an essentially surjective functor
from classical to solid Fréchet spaces. Indeed, since the counit V (∗)top → V is an
isomorphism (because Fréchet spaces are in particular compactly generated), we
will then know that V 7→ V is fully faithful and essentially surjective, and thus
an equivalence; it follows formally from this that the unit V 7→ V (∗)top of the
adjunction is also an isomorphism of Fréchet spaces, as required.

Now, if V = limr Vr is a classical Fréchet space (where the Vr are classical
Banach spaces), then by Remark 2.2.3, V = limr Vr is a solid Fréchet space (note
that V 7→ V commutes with limits, being a right adjoint). Conversely, since by
definition a solid Fréchet space can be written as V = limr Vr where the Vr are
Banach spaces, we have

V = lim
r
Vr

∼−→ lim
r
Vr(∗)top,

which gives the essential surjectivity.
Note in particular that as a consequence of this equivalence, any (solid) Fréchet

space admits a presentation where V = limr Vr with Vr+1(∗)top → Vr(∗)top has
dense image.

Proposition 2.2.9. [RJRC22, Thm. 3.40] We have an anti-equivalence of cate-
gories V 7→ V ∨ := Hom(V,E) between F (E) and LS(E) extending the biduality
between B(E) and S(E). Moreover, (V ∨)∨ = V . The functor V 7→ V ∨ is exact.

Definition 2.2.10.

(1) A map f : V → W of Smith spaces is trace class if there exists a map g :

E → V ∨⊗W such that f is the composite V
IdV ⊗g→ V ⊗V ∨⊗W ev⊗IdW→ W .

(2) A map f : V →W of Banach spaces is compact if its dual is trace class.

Example 2.2.11. Let I be a set and let (ai)i∈I ∈ EI :=
∏
i∈I E be a fam-

ily converging to zero with respect to the net of the complements of finite sub-
sets of I. Let f : OIE [1/p] → OIE [1/p] be the map sending (xi)i∈I to (aixi)i∈I .
Then one sees that f is trace class, represented by the tensor

∑
i aie

∨
i ⊗ ei in

(limn(⊕IOE/pnOE))[1/p]⊗OIE [1/p] (where ei is i-th basis vector of OIE [1/p]).
Definition 2.2.12.

(1) An object V of LS(E) is of compact type if it has a presentation V =
colimn Vn where the maps Vn → Vn+1 are trace class.

(2) An object V of F (E) is of compact type if it has a presentation V = limn Vn
where the maps Vn → Vn−1 are compact.

(3) An object V of LB(E) is of compact type if it has a presentation V =
colimn Vn where the maps Vn → Vn+1 are compact.

Proposition 2.2.13. [RJRC22, Cor. 3.38] A solid E-module is an LB-space of
compact type if and only if it is a LS-space of compact type.

We will use the following lemma in Remark 2.3.8.



MODULARITY THEOREMS FOR ABELIAN SURFACES 21

Lemma 2.2.14. A Smith, Banach, LB or LS-space is flat. A Fréchet space of
compact type is flat over E.

Proof. The flatness of Smith, Banach, LB or LS-spaces is [RJRC22, Lem. 3.21].
Let V be a Fréchet space of compact type. By [RJRC22, Cor. 3.38(1)], we can write
V = limn Vn as an inverse limit of Smith spaces. Following the proof of [RJRC22,
Lem. 3.21], it suffices to show that if W ′ →W is an injection of Smith spaces, then
W ′ ⊗ V →W ⊗ V is injective.

Since we have an injection limn Vn →֒
∏
n Vn, and since Smith spaces are flat

over E (by [RJRC22, Prop. 3.20, Lem. 3.21]), it suffices to show that (
∏
n Vn) ⊗E

W ′ → (
∏
n Vn)⊗E W is injective. For any Smith space X , we have (see [RJRC22,

Prop. 3.12])

(
∏

n

Vn)⊗E X =
∏

n

(Vn ⊗E X),

so it suffices in turn to show that
∏
n(Vn⊗EW ′)→∏

n(Vn⊗EW ) is injective. Since
the Smith spaces Vn are flat, each morphism Vn ⊗E W ′ → Vn ⊗E W is injective,
and we are done. �

2.2.15. Representations of algebraic groups. In this section we recall the classical
notion of representation of an algebraic group, before moving to representations of
analytic groups. We let Modδ(E) be the usual category of E-vector spaces (the
superscript δ stands for discrete). Let G = SpecOG be an affine group scheme over
SpecE. The algebraOG is a Hopf algebra with comultiplication µ : OG → OG⊗OG
and augmentation e : OG → E. We let ModδG(E) be the category of algebraic
representations of G. Its objects are vector spaces V over E, equipped with a
co-action map c : V → V ⊗OG such that:

(1) (associativity) The maps (c ⊗ Id) ◦ c and (Id ⊗ µ) ◦ c: V → V ⊗ OG →
V ⊗OG ⊗OG agree.

(2) (neutral element) The map (Id⊗ e) ◦ c: V → V ⊗OG → V is the identity.

2.2.16. Representations of analytic groups. We recall the following standard defi-
nition.

Definition 2.2.17. An adic space X is called quasi-Stein if it has an open cover
given by an increasing countable union of affinoid spaces of finite type X = ∪nXn
where H0(Xn+1,OXn+1) → H0(Xn,OXn) has dense image. A quasi-Stein space
is Stein if it admits a covering as before having the property that Xn is relatively
compact in Xn+1 ([L9̈0, 2.4]); equivalently, if the closure Xn of Xn in Xn+1 is proper
over Spa(E,OE).

We now let G be a Stein analytic group over Spa(E,OE).
Remark 2.2.18. We have two cases in mind: either G is the analytification of an
affine group scheme over SpecE, or G is a quasi-compact affinoid open subgroup
of such an analytification.

We let OG be the algebra of functions on G, which is an object of Mod(E) (it
is a Fréchet space). It has a structure of a Hopf algebra. We define the category
ModG(E) of representations of G on solid E-vector spaces. Its objects are solid
vector spaces equipped with a co-action map c : V → V ⊗OG satisfying the same
conditions as before. Similarly, we let BG(E) be the category of representations of
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G on Banach modules. We let LBG(E) be the category of representations of G on
LB-spaces.

We let D(G) = Hom(OG, E) = O∨
G be the distribution algebra of G. The dual of

the comultiplication µ : OG → OG⊗OG induces the algebra structure onD(G). If V
is an object of ModG(E), then it is naturally a D(G)-module (via V ⊗D(G)

c→ V ⊗
OG ⊗D(G) → V ). We therefore have a natural functor ModG(E) → Mod(D(G))
from the category of solid G-representations to the category of solid D(G)-modules.

Remark 2.2.19. In some cases, one can go backwards. For example if G is quasi-
compact and V is a Banach space, we have that Hom(D(G), V ) = OG ⊗ V by
[RJRC22, Cor. 3.17] so that any D(G)-module structure on V can be turned into
an action of G on V . If we denote by B(D(G)) the category of D(G)-modules
which are Banach spaces, then the categories BG(E) and B(D(G)) are equivalent.

2.2.20. Representations of locally profinite groups. We now let M be a locally profi-
nite group. We view M as a condensed group. We let E[M ] be the associated
condensed ring and we let E�[M ] be its solidification. If M is compact, then
E�[M ] = (limN OE [M/N ][1/p] where N runs through the compact open subgroups
of M . In general, if M0 ⊆M is a compact open subgroup, then we have the formula
E�[M ] = E[M ]⊗E[M0] E�[M0].

Definition 2.2.21. A representation of M over a solid E-vector space is a solid
E�[M ]-module. The category of M -representations is denoted by ModM (E).

Remark 2.2.22. Equivalently, a representation of M is a solid E-vector space V
and an action map M ×V → V of condensed sets satisfying the usual group action
axioms.

2.2.23. Smooth representations. Let V ∈ ModM (E). We let V sm = colimN⊆M V N

where N runs through all compact open subgroups of M . We say that V is smooth
if the natural map V sm → V is an isomorphism. We let ModsmM (E) be the category
of smooth representations.

We let Mdisc be the group M equipped with the discrete topology. There is
a natural map Mdisc → M of condensed sets. One can consider the category
ModMdisc

(E) of E[Mdisc]-modules. We can define the subcategory ModsmMdisc
(E) of

smooth representations of Mdisc. Its objects are representations V of Mdisc such
that V = colimV Ndisc where N goes through all compact open subgroups of M .

Lemma 2.2.24. The categories Modsm
M (E) and ModsmMdisc

(E) are equivalent.

Proof. We have a natural functor ModM (E)→ ModMdisc
(E), induced by the map

Mdisc → M . This induces a functor ModsmM (E) → ModsmMdisc
(E). We now con-

struct a functor ModsmMdisc
(E) → ModsmM (E). Let V ∈ ModsmMdisc

(E). Let M0 be
a compact open subgroup of M and let Mn be a system of normal compact open
subgroups of M0. We see that VMn is an E[(M0)disc/(Mn)disc]-module. Since
(M0)disc/(Mn)disc = M0/Mn, we deduce that the (M0)disc-module structure on
VMn extends uniquely to an M0-module structure. Passing to the colimit over n,
we deduce that V is an M0-module. Since E[M ] = E[Mdisc]⊗E[(M0)disc] E[M0], we
are done. �

Recall that an abelian category is an Grothendieck abelian category if it has
arbitrary colimits, it has a generator, and filtered colimits are exact (AB5). By
[Sta13, Tag 079H], any Grothendieck abelian category has enough injectives. We

https://stacks.math.columbia.edu/tag/079H
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will now show that ModsmM (E) is a Grothendieck abelian category; note that this
relies on our set-theoretic assumption that we only consider κ-small profinite sets
for some fixed κ.

Lemma 2.2.25. The category ModsmM (E) is a Grothendieck abelian category, and
in particular it has enough injectives.

Proof. This is obvious, except for the existence of a generator. For a totally discon-
nected S and compact open subgroup N ⊆M , we consider VS,N = E�[M ]⊗E�[N ]

E�[S] with N acting trivially on E�[S]. We claim that ⊕S,NVS,N is a generator.
This follows from the property that for any V ∈ModsmM (E), HomModsm

M (E)(VS,N , V ) =

V N (S). �

Here is a slight generalization of the concept of smooth. Let λ : M → E×

be a character, and write E(−λ) for the corresponding representation of M (with
underlying vector space E).

Definition 2.2.26. We say that V is λ-smooth if V ⊗ E(−λ) is smooth. We let
Modλ−sm

M (E) be the category of λ-smooth M -modules.

Note that if λ, λ′ are two characters such that λ ⊗ (λ′)−1 is smooth, then the
categories Modλ−sm

M (E) and Modλ
′−sm
M (E) are canonically equivalent.

2.2.27. Locally analytic representations. We now assume that M arises as the set
of Qp-points of an analytic group G over Spa(Qp,Zp) and we also assume that we
have a fundamental system of quasi-compact open subgroups {Gr}r≥0 of G, where
Gr is a polydisc. We let Gr(Qp) = Mr. The {Mr} form a fundamental system
of compact open subgroups in M . We now define the locally analytic vectors of
V ∈ModM (E). Note that OGr⊗EV has three commuting left actions of Mr: ∗l, ∗r
and ∗V (induced respectively by left translation on the group, right translation on
the group, and the original action on V ). The action ∗V comes from an action of M .
Moreover, the group M acts by conjugations ∗l,r on its system of neighborhoods
of identity {Mr}. We set VMr−an = H0(Mr, (OGr ⊗ V )), where the invariants are
taken for the action ∗l⊗∗V . The space VMr−an still carries a ∗l,r⊗∗V -action of Mr.
The evaluation map at e, OGr′

⊗ V → V induces an injective map VMr−an → V .
We let V la = colimr V

Mr−an. This is an M -representation. We thus have inclusions
V sm → V la → V .

Remark 2.2.28. The functor V 7→ V la can naturally be derived into a functor
V 7→ V Rla. See [RJRC22, sect. 4.4].

2.2.29. The algebra Û(g). Let us assume now that we have an algebraic group
Galg → SpecOE . Its analytification defines a quasi-compact affinoid analytic group
G = G0 → Spa(E,OE). For any r ∈ Q≥0, we let Gr be the quasi-compact analytic
subgroup of G0 of elements reducing to the identity e modulo pr. We have that
OG,e = colimOGr is an LB-space of compact type. We let g be the Lie-algebra
of G. We define Û(g) = O∨

G,e. This is a Fréchet space of compact type.
Since the categories of solid and classical Fréchet spaces are equivalent, we will

freely write Û(g) for the underlying classical E-algebra Û(g)(∗)top of the solid
E-algebra Û(g). We have a natural map g → Û(g) given by X 7→ [f(g) 7→
f ′(g exp(−tX))|t=0], which extends to a map from the enveloping algebra U(g)→
Û(g) with dense image.
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One can describe Û(g) as a completion of U(g) as follows (following [ST02,
lemma 2.4] and [Sch13a, sect. 3.2]). If we fix a basis x1, · · · , xn of g, then U(g) =
⊕(ni)E

∏
xni

i by the PBW theorem. For each r ∈ R>0, we define a norm | |r on
U(g) by putting |∑ anx

n|r = supn|an|r
∑
ni . We let U(g)r be the completion of

U(g) for | − |r and we have Û(g) = limr≥1U(g)r.

Remark 2.2.30. For any r, there exists r′ such that U(g)r′ → D(Gr) andD(Gr′)→
U(g)r. We thus have two presentations of Û(g) = limr U(g)r = limrD(Gr), as an
inverse limit of Banach spaces with compact transition maps and as an inverse limit
of Smith spaces with trace class transition maps.

Since Û(g) is a Fréchet–Stein algebra (see [ST03, sect. 3]), there is an associ-
ated abelian category of coadmissible modules Modcoad(Û(g)), which is defined as
follows.

Definition 2.2.31. A (left) Û(g)-module M is coadmissible if it has a presentation
M = limMr where Mr is a finitely generated Û(g)r-module and Mr+1 ⊗Û(g)r+1

Û(g)r =Mr.

We let Mod(Û(g)) be the category of solid Û(g)-modules.

Theorem 2.2.32. We have a fully faithful exact functor Modcoad(Û(g))→ Mod(Û (g)).

Proof. By for example [Sch13a, Prop. 3.1.1], any coadmissible module is canonically
an object of F (E) of compact type. �

Definition 2.2.33. An admissible module is the dual of a coadmissible module.
Admissible modules are objects of LB(E) of compact type.

2.2.34. Categories of Û(g) and U(g)-modules. We recall the the maps (of classical
rings) U(g) → U(g)r and U(g) → Û(g) are flat (see for example [Sch13a, Thm.
4.3.3]). Let Modfg(U(g)) be the category of finitely generated left U(g)-modules.

Proposition 2.2.35. We have an exact functor:

Û(g)⊗U(g) − : Modfg(U(g)) → Modcoad(Û(g))

M 7→ Û(g)⊗U(g) M

Proof. This follows from the flatness of U(g)→ Û(g). �

Corollary 2.2.36. We have an exact functor:

Û(g)⊗U(g) − : Modfg(U(g)) → Mod(Û(g))

M 7→ M̂ := Û(g)⊗U(g) M

Proof. By combining Theorem 2.2.32 and Proposition 2.2.35, we obtain an exact
functor Modfg(U(g))→ Mod(Û(g)). �
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2.2.37. Category O and category Ô. We assume that g is a reductive Lie algebra
with Borel b and Cartan h, and as usual we write Φ+ (resp. Φ−) for the positive
(resp. negative) roots determined by our fixed Borel subgroup b. We can consider
the abelian categoryO(g, b) (simply denoted O if g and b are clear from the context)
whose objects are finitely generated left U(g)-modules for which the b-action is
locally finite and the h-action is semi-simple (see [Hum08], chapter 1).

Definition 2.2.38. Following [Sch13a, Defn. 3.6.2], we let Ô be the category whose
objects are coadmissible Û(g)-modules M for which the action of Û(h) is diagonal-
izable and the following properties hold:

(1) All weights of M are contained in finitely many subsets of the form λ +
N[Φ−], and

(2) all weight spaces of M are finite dimensional.

Theorem 2.2.39 ([Sch13a], Thm. 4.3.1). We have an equivalence of categories:

O → Ô
M 7→ Û(g)⊗U(g) M.

A quasi-inverse to this functor is given by the functor: M 7→ M ss, which takes M
to the direct sum of its weight spaces.

2.3. Lie algebra cohomology and homology.

2.3.1. Definitions. Recall that Modδ(E) is the usual category of E-vector spaces,
and Mod(E) is the category of solid E-vector spaces. We let D(Modδ(E)) be the
derived category of Modδ(E), and we let D(Mod(E)) be the derived category of
Mod(E). Let g be a Lie algebra (not necessarily reductive) with enveloping Lie
algebra U(g). We let Mod(U(g)) be the category of (discrete) U(g)-modules, and
let D(Mod(U(g)) be its derived category.

We have a functor “homology of g”:

E ⊗LU(g) − : D(Mod(U(g))) → D(Modδ(E))

M 7→ E ⊗LU(g) M

We let Hi(g,M) := H−i(E ⊗LU(g) M).
We also have a functor “cohomology of g”:

RΓ(g,−) : D(Mod(U(g))) → D(Modδ(E))

M 7→ RHomg(E,M)

These functors can be computed by taking the Chevalley–Eilenberg resolution
CE(E) of E, in cohomological degrees [−d, 0] with d = dim(g) (see [Wei94, sect.
7]):

0→ U(g)⊗ Λdg→ · · · → U(g)→ 0.

We can also define functors:

E ⊗LU(g) − : D(Mod(Û(g))) → D(Mod(E))

M 7→ E ⊗LU(g) M
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RΓ(g,−) : D(Mod(Û(g))) → D(Mod(E))

M 7→ RHomg(E,M)

These functors can also be computed by taking the solid Chevalley–Eilenberg
resolution Û(g) ⊗U(g) CE(E) of E (which remains a resolution of E by Corollary
2.2.36):

0→ Û(g)⊗ Λdg→ · · · → Û(g)→ 0.

We sometimes write respectively RHomU(g) or RHomÛ(g) in place of RHomg.

Remark 2.3.2. We have the following trivial relation between homology and co-
homology: RHom(E⊗LU(g)M,E) = RHomU(g)(E,RHom(M,E)). We also have the
following relation between homology and cohomology ([Haz70]):

E ⊗LU(g) (M [−d]⊗E Λdg∨) = RHomU(g)(E,M). (2.3.3)

We have the following well-known lemma.

Lemma 2.3.4. OG,e is an acyclic Û(g)-module.

Proof. This is a simple consequence of the standard relationship between the Chevalley–
Eilenberg resolution and the de Rham complex, cf. [RJRC22, Prop. 5.12]. �

2.3.5. Homology and cohomology of g and m. For the rest of this section we put
ourselves in the situation of Section 1.8.4, so that in particular g is a reductive Lie
algebra with Cartan and Borel h ⊆ b ⊆ g, and p ⊇ b is a standard parabolic with
Levi m ⊇ h. We let d = dim up. From now on until the end of Section 2.3, we fix
a w ∈ MW and consider the conjugates pw,mw, upw , bmw . We note that because
w ∈ MW , bmw = b ∩mw.

We can define the homology functor of upw :

E ⊗LU(upw ) − : D−(Mod(U(g))) → D−(Mod(U(mw)))

M 7→ E ⊗LU(upw ) M

Remark 2.3.6. This functor is defined by taking a projective resolution of M as a
U(pw)-module. By the PBW theorem, U(pw) is free over U(upw), and so this is also
a projective resolution of M as a U(upw )-module. We also have a natural functor
D(Mod(U(mw)))→ D(Mod(U(pw))). If we resolve E via the Chevalley–Eilenberg
resolution

U(upw )⊗ Λiupw → · · · → U(upw)→ E

then we get a complex which computes E ⊗LU(upw ) M in D(Mod(U(pw))) (but on
the cohomology groups, the action of pw factors through an action of mw).

We similarly have a cohomology functor of upw :

RΓ(upw ,−) : D+(Mod(U(g))) → D+(Mod(U(mw)))

M 7→ RHomupw
(E,M)

Remark 2.3.7. Similarly to Remark 2.3.6, this functor is obtained by taking an
injective resolution of M as a U(pw)-module. If one uses the Chevalley–Eilenberg
resolution of E instead, then we obtain a complex which computes the composition
of this functor with the natural functor D(Mod(U(mw)))→ D(Mod(U(pw))).
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We can also define functors:

E ⊗LU(upw ) − : D−(Mod(Û(g))) → D−(Mod(Û(mw)))

M 7→ E ⊗LU(upw ) M

RΓ(upw ,−) : D+(Mod(Û(g))) → D+(Mod(Û(mw)))

M 7→ RHomupw
(E,M)

Remark 2.3.8. Following Remarks 2.3.6 and 2.3.7, these functors are well defined
because Û(pw) is flat over Û(upw ) so that Û(mw) = Û(pw) ⊗LÛ(upw )

E. In order to

see the flatness, by the PBW theorem and the description of Û(pw) given in section
2.2.29, we find that Û(pw) = Û(upw)⊗E Û(mw) and so it remains to note that the
Fréchet space of compact type Û(mw) is flat over E by Lemma 2.2.14.

2.3.9. Finiteness of the algebraic cohomology. Let Z(g) and Z(mw) denote the cen-
tres of U(g) and U(mw) respectively, and let W and Wmw be the Weyl groups of g
and mw. If M is a U(g)-module on which Z(g) acts via a character χ, then we say
that χ is the infinitesimal character of M . Recall the Harish-Chandra isomorphism
HCg : Z(g) → U(h)W,· (where the target is the invariants for the dotted action
of W ), determined by the property that z ⊗ 1 = 1 ⊗HCg(z) in U(g) ⊗U(b) U(h).
Using this isomorphism, any character λ : Z(g) → E is identified with an element
of h∨, well defined up to the dotted action of W .

Remark 2.3.10. Let ι : Z(g) → Z(g) be the map induced by the inverse map
on g, X 7→ −X . We have HC ◦ ι = −w0 ◦HC. If λ ∈ h∨ represents a character
of Z(g), −w0λ represents the character λ ◦ ι.

We similarly have a natural Harish-Chandra isomorphism HCmw : Z(mw) →
U(h)Wmw ,·, and we deduce that there is a natural Harish-Chandra map

HC : Z(g)→ Z(mw). (2.3.11)

This map is characterized by the property that in U(g) ⊗U(pw) U(mw), we have
z ⊗ 1 = 1⊗HC(z).

We also have a map from Z(g) (resp. Z(mw)) to the centre of the derived cat-
egories D(Mod(U(g))) (resp. D(U(mw))) (i.e. the t-centre in the sense of [Mil14]).
The following is known as the Casselman–Osborne theorem.

Theorem 2.3.12 ([CO75], [Mil14]). The functor RΓ(upw ,−) : D+(Mod(U(g)))→
D+(Mod(U(mw))) is Z(g)-homogeneous, in the sense that for z ∈ Z(g), we have

RΓ(upw , z) = HC(z).

In particular, if M is a g-module with infinitesimal character λ ∈ h∨, then Hi(upw ,M)
is a Z(mw)⊗Z(g) λ-module.

Theorem 2.3.13. Let M ∈ O(g, b). Then Hi(upw ,M) ∈ O(mw, bmw).

Proof. Using the Chevalley–Eilenberg resolution, the cohomology is computed by
the complex 0 → M → M ⊗ u∨pw

→ · · · . We see that all modules occurring in
this complex have locally nilpotent action of u∩mw (the unipotent radical of bmw)
and semi-simple h-action, and furthermore each h-eigenspace has finite dimension.
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This also holds for the cohomology groups. It follows that the cohomology groups
admit a (possibly infinite) increasing filtration where each graded is a simple object
in category O(mw, bmw). Indeed, if a cohomology group is non-zero, we can find a
highest weight vector since u ∩ mw acts locally nilpotently, so we get a map from
a Verma module. We can repeat the process with the quotient. Since all simple
objects of category O have a generalized infinitesimal character, it follows from the
Casselman–Osborne Theorem 2.3.12 that there are only a finite number of possible
infinitesimal characters of the simple subquotients, and therefore only finitely many
possible highest weight vectors of all irreducible subquotients. Since h acts semi-
simply with finite-dimensional eigenspaces, we deduce that the filtration is finite
and that the cohomology groups belong to O(mw, bmw), as required. �

We write Dperf(U(mw)) for the category of perfect complexes of U(mw)-modules.
Since U(mw) is Noetherian and has finite global dimension (see e.g. [Wei94, Ex.
7.7.2]), these are equivalently the complexes whose cohomologies are finitely gener-
ated U(mw)-modules, and are nonzero in only finitely many degrees.

Corollary 2.3.14. If M ∈ O(g, b), then RΓ(upw ,M) and E ⊗LU(upw ) M belong to
Dperf(U(mw)), and their cohomologies belong to O(mw, bmw).

Proof. This is immediate from Theorem 2.3.13 and Remark 2.3.2. �

2.3.15. Cohomology of Verma modules.

Definition 2.3.16. For any λ ∈ h∨, we write Mλ := U(g) ⊗U(b) λ for the corre-
sponding Verma module for g, and M(mw)λ := U(mw) ⊗U(bmw ) λ for the Verma
module for mw. We write L(mw)λ for the simple object in O(mw, bmw) with highest
weight λ.

Definition 2.3.17. Let λ ∈ h∨. We let W<λ be the subset of W consisting of
elements w′ which satisfy: w′ · λ = λ −∑α∈Φ+ nαα, where nα ∈ Z≥0, and nα > 0
for some α.

Remark 2.3.18. If λ ∈ h∨ is such that w′ · λ − λ /∈ ZΦ for w′ 6= 1 (a generic
condition on λ), then W<λ = ∅.
Theorem 2.3.19. Let λ ∈ h∨, and let w ∈ MW . Assume that up is abelian.

(1) The groups Hi(upw ,Mλ) belong to the category O(mw, bmw).
(2) These homology groups vanish if i > d− ℓ(w).
(3) There is an injective “highest weight” map

M(mw)w−1(w·λ+2ρM ) →֒ Hd−ℓ(w)(upw ,Mλ).

(4) The cokernel of the map M(mw)w−1(w·λ+2ρM ) →֒ Hd−ℓ(w)(upw ,Mλ) and the
homology groups Hi(upw ,Mλ) for i < d− ℓ(w) have Jordan– Hölder factors
among the L(mw)w−1(w′·λ+2ρM ) with w′ ∈ wW<λ.

Remark 2.3.20. In particular, if W<λ = ∅, then Hi(upw ,Mλ) is concentrated in
degree d− ℓ(w) and Hd−ℓ(w)(upw ,Mλ) =M(mw)w−1(w·λ+2ρM ).

Proof of Theorem 2.3.19. By Corollary 2.3.14 , the homologies belong to the cate-
gory O(mw, bmw). Since Mλ is free as a U(ū)-module and so also as a U(upw ∩ ū)-
module, there is an isomorphism

H∗(upw ,Mλ) = H∗(upw ∩ u, H0(upw ∩ ū,Mλ)). (2.3.21)
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(Here we used that upw is abelian, since u is abelian by assumption.) Write N :=
H0(upw ∩ ū,Mλ). The homology (2.3.21) is computed by the Chevalley–Eilenberg
complex:

0→ ∧d−ℓ(w)(upw ∩ u)⊗N → · · · → N → 0

and so in particular vanishes in degree bigger than d−ℓ(w) = dim(upw∩u). Moreover
the highest weight occurring in this complex is

λ+ w−1w0,Mρ+ ρ = w−1(w · λ+ 2ρM ) (2.3.22)

(the equality holding because we have assumed that w ∈ MW ), which occurs exactly
once in ∧d−ℓ(w)(uPw ∩ b)⊗N . It follows that there is a natural map:

M(mw)w−1(w·λ+2ρM ) → ∧d−ℓ(w)(upw ∩ u)⊗N
which induces the (necessarily injective) map of part (3)

M(mw)w−1(w·λ+2ρM ) →֒ Hd−ℓ(w)(upw ,Mλ).

It remains to prove (4). By the Casselman–Osborne Theorem 2.3.12, together
with (2.3.3), we see that the possible infinitesimal characters of simple subquo-
tients in the homology belong to the set {w−1(w′ · λ + 2ρM ), w′ ∈ MW}. Thus
the simples which can occur are the L(mw)w−1(w′·λ+2ρM ). Moreover in order for
L(mw)w−1(w′·λ+2ρM ) to occur as a subquotient of Hi(upw ,Mλ) for i < d − ℓ(w) or
of Hd−ℓ(w)(upw ,Mλ)/M(mw)w−1(w·λ+2ρM ) we must have that w−1(w′ · λ+ 2ρM ) is
of the form w−1(w · λ + 2ρM ) −∑nαα with nα ≥ 0 and some nα 6= 0. Therefore
w′ ∈ wW<λ. �

Remark 2.3.23. One can show that the highest weight map computes the Euler
characteristic of H∗(upw ,Mλ) in the Grothendieck group, see Proposition 2.4.11.

2.3.24. Strictness. We now state our main theorem on the comparison of algebraic
and solid cohomology of Lie algebras (Theorem 2.3.32).

Definition 2.3.25. We say x ∈ E is p-adically non-Liouville, or simply non-
Liouville, if lim infr∈Z>0 |x− r|1/r 6= 0.

Remark 2.3.26 (Inconsistencies in the literature concerning the definition of
non-Liouville). There are a number of conflicting definitions in the literature of
what it means for α ∈ Qp to be p-adically non-Liouville. The original definition
in [Cla66, Def 1] is equivalent to the existence of a real number d such that

|α− r| ≫ |r|−d, r ∈ Z, r →∞. (2.3.27)

This is the most direct analogue of the definition over R — Liouville’s original
argument shows that any α ∈ Q ⊂ Qp satisfies (2.3.27) with d = [Q(α) : Q]. There
is a weaker definition of non-Liouville given in [Ado76], which is equivalent to

∀B ∈ (0, 1), |α− r| ≫ B|r|, r ∈ Z, r →∞. (2.3.28)

Definition 2.3.25, following Pan [Pan22a, Rem 5.2.11] (see also [MA13, Def. 1]) is
weaker still, and is equivalent to

∃B ∈ (0, 1), |α− r| ≫ B|r|, r ∈ Z, r →∞. (2.3.29)

Despite these differences, both [Ado76] and [Pan22a] attribute their respective defi-
nitions to [Cla66]. The definition given in Kedlaya’s book [Ked10, §13] is equivalent
to the one in [Ado76]. The reason we use the definition in [Pan22a] is because (for
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a number of arguments) our results are true if and only if λ is non-Liouville in
the sense of Definition 2.3.25, although we do not stress this point. As a practical
matter, however, the reader should feel free to take any definition they like, since:

(1) In applications, the strongest assumption from [Cla66] is satisfied.
(2) In proofs, only the weakest assumption from [Pan22a] will be assumed.

Definition 2.3.30. We say that a weight λ ∈ h∨ is p-adically non-Liouville if
〈λ+ρ, α∨〉 is p-adically non-Liouville for all α ∈ Φ+. Again, we will often abbreviate
“p-adically non-Liouville” to “non-Liouville”.

Remark 2.3.31. Any integer is p-adically non-Liouville, and if (g, h, b) arises as
the Lie algebras of (G, T,B) with G a reductive group, then any algebraic weight
λ ∈ X∗(T ) ⊆ h∨ = X∗(T )E is p-adically non-Liouville.

We let OnL(g, b) ⊆ O(g, b) be the direct factor abelian subcategory consisting
of objects whose weights are p-adically non-Liouville.

Theorem 2.3.32. Let M ∈ OnL(g, b). The canonical map

Û(mw)⊗U(mw)(E⊗LU(upw )M) = Û(pw)⊗U(pw)(E⊗LU(upw )M)→ E⊗L
Û(upw )

(Û(g)⊗U(g)M)

is a quasi-isomorphism.

Proof. This is proved below as Theorem 2.8.2. �

Corollary 2.3.33. For all i, Hi(upw , M̂
∨) = ̂Hi(upw ,M)

∨
is an admissible Û(mw)-

module (where as usual we write M̂ :=M ⊗U(g) Û(g).

Proof. The Chevalley–Eilenberg complex CE(E)⊗E M̂ which computes E⊗L
Û(upw )

M̂ has the shape: 0 → Λd ⊗ M̂upw → · · · → M̂ → 0. This is a complex of
Fréchet spaces, and its cohomology groups are also Fréchet spaces by Theorem
2.3.32. Moreover, we have that H−i(CE(E)⊗E M̂) = ̂Hi(upw ,M). We recall from
Remark 2.2.5 that Hom(−, E) is an exact functor between Fréchet and LB-spaces.
We see in the first place that Hom(CE(E)⊗EM̂, E) = Hom(CE(E), M̂∨) computes
RΓ(upw , M̂

∨) and thatHi(Hom(CE(E)⊗EM̂, E)) = Hom(H−i(CE(E)⊗EM̂), E).

Since Hom(H−i(CE(E)⊗E M̂), E) = ̂Hi(upw ,M)
∨

by Theorem 2.3.32, we are done
by Theorem 2.3.13. �

2.4. Algebraic local cohomology and twisted Verma modules. Now we fix
a split reductive group G/E with Lie algebra g. We work over the field E, viewed
as a discrete field (we ignore its natural p-adic topology for the moment). We want
to introduce twisted Verma modules as local cohomology on the flag variety.

Remark 2.4.1. We will make a small variation on the classical presentation since
we will use the six-functor formalism in coherent cohomology of Clausen and Scholze
[CS], and endow the Bruhat cells with the structure of analytic stacks. We feel that
this perspective clarifies the discussion. We note that most of our statements are
classical (see for example [AL03]), and our proofs can easily be translated into more
classical language.

To any affine scheme Spec A, we can attach an analytic stack AnSpec(A,Mod(A))
where Mod(A) is the category of condensed A-modules which are solid Z-modules.
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This procedure glues to define a functor from the category of schemes to the cate-
gory analytic stacks, which we denote by X 7→ X̃.

For any Zariski open subset Spec A[1/f ], the corresponding map

i : AnSpec(A[1/f ],Mod(A[1/f ]))→ AnSpec(A,Mod(A))

is proper (!) and can be regarded as a closed immersion. The inclusion i has an open
complement j : U → AnSpec(A,Mod(A)). We can describe U as the ind-scheme
equal to the formal completion of A along the ideal (f). Via the morphism j∗, the
(derived) category of quasi-coherent sheaves on U identifies with the subcategory
of D(Mod(A)) of modules which are derived (f)-complete (i.e. modules M which
satisfy lim×f M = 0).

We now let FL := B\G. We consider the classical Bruhat stratification FL =∐
w∈W Cw where Cw = B\BwB. We let Xw = Cw be the Schubert variety. We

now equip each Xw with the structure of an analytic stack X̃ ′
w which admits a map

to X̃w. Let Yw be the open complement of Xw in FL. Then Yw defines an analytic
stack Ỹw, the map Ỹw → F̃L is proper, and we let X̃ ′

w be its open complement. Its

structure sheaf is the completion ÔFL
IXw

where IXw is the ideal of Xw in OFL.
The corresponding category of modules are the OFL-modules which are Z-solid
and derived complete modules for the IXw -adic topology. In other words, we are
considering the formal scheme equal to the formal completion of FL along Xw,
which we view naturally as an object of the category of analytic stacks. From that
perspective, the map X̃ ′

w → F̃L is an open immersion.
This induces a structure of analytic stack C̃′

w on each Schubert cell Cw. Indeed,
we have classically Cw = Xw r∪w′≤wXw′ and we let C̃′

w = X̃ ′
w r∪w′≤wX̃

′
w′ . Note

that C̃′
w is naturally closed in X̃ ′

w. We now simplify our notations, and denote by
FL, Cw, Xw the analytic stacks we just defined.

Example 2.4.2. We can illustrate how this works for SL2. In this case, we have
FL = P1. We have that CId has structure sheaf EJT−1K and category of modules
the solid EJT−1K-modules which are derived complete for the T−1-adic topology.
We have that Cw0 has the structure sheaf E[T ] and modules are the E[T ]-modules
which are solid Z-modules.

Example 2.4.3. We can also describe Cw in general. Write E[Tα] for the un-
derlying ring of the root group Uα. Then Cw has structure sheaf E[Tα, α ∈
w−1Φ− ∩Φ+]JTα, α ∈ w−1Φ− ∩ Φ−K and category of modules the solid Z-modules
which are E[Tα, α ∈ w−1Φ−∩Φ+]JTα, α ∈ w−1Φ−∩Φ−K-modules and are (Tα, α ∈
w−1Φ− ∩ Φ−)-derived complete.

We can in fact consider the action of an analytic stack in groups Ĝ⋊ B on FL
(via the the product Ĝ⋊ B → G and the obvious G-action on FL), which is such
that the Cw (with their analytic structures) are the Ĝ ⋊ B-orbits. We begin with
some definitions.

Whenever we have a classical affine algebraic group H we view it as an analytic
stack using the functor H 7→ H̃ . In other words, it is equipped with the structure
sheaf OH and category of modules the condensed OH -modules which are solid Z-
modules. Similarly, we define Ĥ (the completion at identity) with structure sheaf
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ÔH,e (the completed structure sheaf at the identity) and modules the solid Z-
modules which are ÔH,e-modules and are derived complete modules for the mOH,e-
adic topology. Note that Ĥ is the complement of H r {e} (where again H r {e}
is equipped with its structure sheaf OHr{e} and category of modules all the solid
Z-modules which are OHr{e}-modules). Note also that Ĥ is open in H and Hr{e}
is closed.

The relevance of the group Ĝ is clarified by the following lemma.

Lemma 2.4.4. The category of representations of Ĝ is naturally equivalent to the
category of U(g)-modules on solid E-vector spaces.

Proof. Write π : Ĝ→ Spec E, so that a representation of Ĝ is a solid E-module M ,
together with a comodule map M → π∗M satisfying the usual cocycle condition.
We have π∗M = R limnM ⊗EOG/mnOG,e

, so that the map M → π∗M is equivalent
to the data of compatible maps M →M ⊗E OG/mnOG,e

, which dually corresponds
to a map U(g)⊗E M →M . �

The following computation will be used repeatedly.

Lemma 2.4.5. Let Uα be a root group, with underlying ring E[Tα]. Then we have
RΓc(Uα,OUα) = E[Tα] and RΓc(Ûα,OUα) = E[Tα, T

−1
α ]/E[Tα][−1]. Moreover,

E ⊗LU(uα) RΓc(Uα,OUα) = E(α)[1] and E ⊗LU(uα) RΓc(Ûα,OUα) = E(−α)[−1].
Proof. When regarded as above as an analytic stack, Uα is proper over Spec E so
that RΓc(Uα,OUα) = E[Tα]. We can then compute RΓc(Ûα,OUα) = E[Tα, T

−1
α ]/E[Tα][−1]

by using the triangle:

RΓc(Ûα,OUα)→ RΓ(Uα,OUα)→ RΓ(Ûα r {e},OUα)
+1→ .

Next, E ⊗LU(uα) RΓc(Uα,OUα) is computed by the (Chevalley–Eilenberg) complex
in degrees −1 and 0: E[Tα]⊗ uα → E[Tα] with basis vector uα of uα acting by the
derivation ∂Tα . It is thus E(α)[1]. Similarly, E ⊗LU(uα)

RΓc(Ûα,OUα) is computed
by the complex in degrees 0 and 1: E[Tα, T

−1
α ]/E[Tα] ⊗ uα → E[Tα, T

−1
α ]/E[Tα].

It is thus E(−α)[−1]. �

We check that the semi-direct product Ĝ ⋊ B is well defined (i.e. there is an
action of B on Ĝ). First, there is an action of B on G by conjugation (with G
equipped with its structure sheaf OG and category of modules the solid Z-modules
which are also OG-modules). We observe next that Ĝ is the complement of Gr{e}.
It is clear that B preserves G r {e} and thus it also acts on its open complement
Ĝ.

We see that each Cw is a Ĝ⋊B-orbit in FL. Therefore, we have an equivalence
of categories between Ĝ⋊B-equivariant sheaves on Cw and representations of the
stabilizer Stab(w) of w, given by the fiber functor F 7→ F |w. An inverse of this
functor is given by V 7→ π∗(OĜ⋊B ⊗ V )Stab(w) where π : Ĝ ⋊ B → Cw is the
uniformization map. One can describe the stabilizer Stab(w) of the point w under
this map.

Lemma 2.4.6. We have Stab(w) = B̂ ∩Bw\[(B̂w × B̂)⋊B ∩Bw] where the map
(B̂w × B̂) ⋊ B ∩ Bw → Ĝ ⋊ B is given by (b, b′, b′′) 7→ (b(b′)−1, b′b′′) and the map
B̂ ∩Bw → (B̂w × B̂)⋊B ∩Bw is given by b 7→ (b−1, b−1, b).
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Proof. This is straightforward; see Lemma 3.3.6 for the proof of a very similar
statement. �

Lemma 2.4.7. Let F be a Ĝ⋊B equivariant sheaf on Cw. Then F is isomorphic
as a B̂w0w-equivariant sheaf to F |w ⊗E OCw (where the B̂w0w-equivariant sheaf
structure on F arises from regarding B̂w0w as a subgroup of Ĝ; and B̂w0w acts on
F |w through T̂ and via its natural action on OCw).

Proof. By Example 2.4.3 ̂Bw0 ∩ Uw0w ×B ∩ Uw0w (viewed as a substack – but not
a subgroup – of Ĝ ⋊ B) maps isomorphically to Cw via the uniformization map
x 7→ wx. It follows that the product map gives an isomorphism of analytic stacks
(not of groups):

Stab(w)× ( ̂Bw0 ∩ Uw0w ×B ∩ Uw0w)→ Ĝ⋊B.

This isomorphism is equivariant for the Ûw0w-action by translation on the right on
̂Bw0 ∩ Uw0w×B ∩Uw0w and Ĝ⋊B. It is also equivariant for the T̂ -action (the one

by right translation on Ĝ⋊B, and by right translation on Stab(w) and conjugation
on ̂Bw0 ∩ Uw0w ×B ∩Uw0w). We construct a map F |w → F , by sending v ∈ F |w
to (ss′ 7→ sv) viewed as an element of π∗(OĜ⋊B⊗F |w)Stab(w) = F for s ∈ Stab(w)
and s′ ∈ ̂Bw0 ∩ Uw0w×B∩Uw0w. This induces an isomorphism F |w⊗EOCw → F

which satisfies the expected properties. �

Let (κ, ν) ∈ X∗(T )2E with the property that κ + ν ∈ X∗(T ). We define a
character of Stab(w) as follows: we let B̂w act via κ, we let B̂ act via ν, and we
let B ∩ Bw act via κ + ν. This defines a Ĝ ⋊ B equivariant sheaf Lκ(ν) over Cw.
We sometimes drop ν from the notation since we are mostly interested in the Ĝ-
equivariant action (the B-action rigidifies the construction and will be used in the
construction of intertwining maps). We let jw : Cw → FL be the inclusion. Let
dFL be the dimension of FL. We can now define the twisted Verma modules:

Definition 2.4.8. We define the twisted Verma moduleM(g)wλ = HdFL−ℓ(w)(FL, (jw)!Lλ+w−1ρ+ρ(ν)).

This is a representation of Ĝ⋊B. By Lemma 2.4.4, the Ĝ-action amounts to a
g-module structure. We will usually write Mw

λ for M(g)wλ .

Proposition 2.4.9. The g-module Mw
λ belongs to O(g, b). It has the following

properties:
(1) Its highest weight is λ.
(2) It is isomorphic to the direct sum

⊕kα≥0,α∈w−1Φ−∩Φ+,kα<0,α∈w−1Φ−∩Φ−E(λ+ w−1ρ+ ρ)
∏

T kαα

and in particular the action of bw0w is completely explicit.
(3) M Id

λ is the Verma module of highest weight λ.
(4) Mw0

λ is the dual Verma module of highest weight λ.
(5) The elements [Mw

λ ] of the Grothendieck group are independent of w.

Proof. This is proven in the course of the proof of [BP21, Lem. 3.2.2]. Let us give
some details. Given Lemma 2.4.7, and the projection formula, the key computa-
tion is that RΓc(Cw,OCw) = ⊕kα≥0,α∈w−1Φ−∩Φ+,kα<0,α∈w−1Φ−∩Φ−E

∏
T kαα . This

follows from Lemma 2.4.5. We deduce that Mw
λ is a finitely generated U(g)-module
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and that the action of h is semi-simple with the same character as that of the
Verma module M Id

λ . This implies that Mw
λ belongs to category O and that [Mw

λ ]
is independent of w (see [Hum08, 1.15]). �

One can compute easily the homology of upw on Mw0w
λ as follows. We continue

to write d = dimE(up).

Proposition 2.4.10. We have

E ⊗LU(upw ) M
w0w
λ =M(mw)

(wM)−1w0,Mw

(wM)−1(wM ·λ+2ρM )
[d− ℓ(wM )]

where w = wMw
M for wM ∈ WM and wM ∈ MW .

Proof. We have a map

π :
∏

α∈w−1Φ+∩Φ+

Uα
∏

α∈w−1Φ+∩Φ−

Ûα →
∏

α∈w−1Φ+
M∩Φ+

Uα
∏

α∈w−1Φ+
M∩Φ−

Ûα

of analytic stacks with fiber

F :=
∏

α∈w−1Φ+,M∩Φ+

Uα
∏

α∈w−1Φ+,M∩Φ−

Ûα.

This map is P̂w⋊B∩Pw-equivariant (the action of P̂w⋊B∩Pw factors through an
action M̂w ⋊ BMw on the target). The space

∏
α∈w−1Φ+∩Φ+ Uα

∏
α∈w−1Φ+∩Φ− Ûα

is the Bruhat cell Cw0w in B\G. The space
∏
α∈w−1Φ+

M∩Φ+ Uα
∏
α∈w−1Φ+

M∩Φ− Ûα

is the Bruhat cell C′
(wM)−1w0,MwMwM in BMw\Mw. We deduce that

E ⊗LU(upw ) M
w0w
λ = RΓc(C

′
(wM )−1w0,MwMwM , π!Lλ+w−1w−1

0 ρ+ρ ⊗LU(upw ) E).

It therefore suffices to compute the sheaf π!Lλ+w−1w−1
0 ρ+ρ ⊗LU(upw ) E. This is a

M̂w ⋊BMw -equivariant sheaf, so it is determined by its fiber at w.
It follows from the basic computations of Lemma 2.4.5 that RΓc(F,OF ) is con-

centrated in degree ℓ(wM ) and equals

⊕kα≥0,α∈w−1Φ+,M∩Φ+,kα<0,α∈w−1Φ+,M∩Φ−E
∏

α

T kαα .

We then compute that

E ⊗LuPw
RΓc(F,OF ) = H0(uPw ∩ b̄, Hd−ℓ(wM)(uPw ∩ b, Hℓ(w)

c (F,OF ))[d − 2ℓ(wM )]

= E(
∑

w−1Φ+,M∩Φ+

α−
∑

w−1Φ+,M∩Φ−

α)[d− 2ℓ(wM )].

It follows that π!Lλ+w−1w−1
0 ρ+ρ⊗LU(upw )E is an invertible sheaf in degree 2ℓ(wM )−d

of weight
λ+ w−1w−1

0 ρ+ ρ+
∑

w−1Φ+,M∩Φ+

α−
∑

w−1Φ+,M∩Φ−

α.

It follows that Mw0w
λ ⊗LU(upw ) E is concentrated in degree 2ℓ(wM ) − d + ℓ(wM ) −

ℓ(w) = ℓ(wM )− d, and is the twisted Verma of weight

λ+ w−1w−1
0 ρ+ ρ+

∑

w−1Φ+,M∩Φ+

α−
∑

w−1Φ+,M∩Φ−

α−
∑

w−1Φ+
M∩Φ−

α
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= λ+
∑

w−1Φ+,M∩Φ+

α = (wM )−1(wM · (λ + ρ) + 2ρM ). �

Proposition 2.4.11. Let w ∈ MW . In the Grothendieck group of category O for
mw, we have

[
E ⊗LU(upw ) M

Id
λ

]
= (−1)d−ℓ(w)

[
M(mw)

Id
w−1(w·λ+2ρM )

]
.

Proof. In the Grothendieck group of O(g, b) we have [M Id
λ ] = [M

w0w0,Mw
λ ] and

by Proposition 2.4.10 we have E ⊗LU(upw ) M
w0w0,Mw
λ = M(mw)

Id
w−1(w·λ+2ρM )[d −

ℓ(w)]. �

2.5. Some SL2-computations. We now make some explicit calculations in the
case G = SL2. We let H,X, X̄ be the standard basis of g with E ·H ⊕ E ·X = b

and [X, X̄] = H . Let λ : h → E be a character (identified with its value λ(H) ∈
E), and write E(λ) for the underlying representation. The Verma module Mλ =
U(g)⊗U(b)E(λ) has basis the {X̄n}n≥0 (or more precisely, X̄n⊗ 1 where 1 ∈ E(λ)
is a basis vector).

We let M∨
λ be the dual Verma module (the dual in category O). Concretely,

M∨
λ is the subspace of the algebraic dual HomE(Mλ, E) which has basis the vectors
{(X̄n)∗}n≥0 where (X̄n)∗(X̄m) = 1 if m = n and (X̄n)∗(X̄m) = 0 if m 6= n. For
g ∈ g and f ∈M∨

λ , we have that gf = f(tg−).
Lemma 2.5.1. We have that X̄ · (X̄n)∗ = (n+1)(λ−n)(X̄n+1)∗ and X · (X̄n)∗ =
(X̄n−1)∗.

Proof. These follow from the corresponding formulas in Mλ: X · X̄n = n(λ − n +
1)X̄n−1 and X̄ · X̄n = X̄n+1. �

Corollary 2.5.2.

(1) There is a unique map of U(g)-modules, I : Mλ → M∨
λ which sends X̄n

to n!λ(λ − 1) · · · (λ − (n − 1))(X̄n)∗. Any other map of U(g)-modules is a
E-multiple of this map.

(2) If λ /∈ Z≥0, the map Mλ →M∨
λ is an isomorphism. If λ ∈ Z≥0, we have a

long exact sequence:

0→M−2−λ →Mλ →M∨
λ →M∨

−2−λ → 0.

The map M−2−λ → Mλ sends the basis vector X̄n of M−2−λ to X̄n+λ+2

in Mλ. The map M∨
λ →M∨

−2−λ is dual to the map M−2−λ →Mλ.

Proof. Giving a map Mλ → M∨
λ of U(g)-modules amounts to giving a map of b-

modules, E(λ) → M∨
λ . Since M∨

λ has a unique vector of weight λ, namely (X̄0)∗,
the space of maps is one dimensional, generated by the map X̄0 7→ (X̄0)∗. Then we
see by Lemma 2.5.1 that X̄n 7→ X̄n.(X̄0)∗ = n!λ(λ − 1) · · · (λ − (n − 1))(X̄n)∗. If
λ /∈ Z≥0, this map is an isomorphism. Otherwise, let Lλ be the finite dimensional
irreducible representation of highest weight λ (and dimension λ + 1). There is a
surjective map Mλ → Lλ → 0, fitting in an exact sequence:

0→M−2−λ →Mλ → Lλ → 0

The dual in category O of this exact sequence gives:

0→ Lλ →M∨
λ →M∨

−2−λ → 0

and combining these exact sequences concludes the proof. �
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2.6. Intertwining maps. Let β be a simple root. Let us consider the correspond-
ing parabolic Pβ , and the partial flag variety FLβ := Pβ\G. We have a map
πβ : FL→ FLβ which is a P1-fibration.

For each w ∈ W , we let Dw = Pβ\PβwB be the corresponding Bruhat cell. As
in Example 2.4.3, it is equipped with the following analytic stack structure. Its
structure ring is E ⊗Z Z[Tα, α ∈ w−1Φ−,Mβ ∩ Φ+]JTα, α ∈ w−1Φ−,Mβ ∩ Φ−K. Its
modules are solid Z-modules which are E ⊗Z Z[Tα, α ∈ w−1Φ−,Mβ ∩ Φ+]JTα, α ∈
w−1Φ−,Mβ ∩ Φ−K-modules and are (Tα, α ∈ w−1Φ−,Mβ ∩ Φ−)-derived complete.
Assume from now on that ℓ(sβw) = ℓ(w)+ 1; then we have π−1

β (Dw) = Cw ∪Csβw.
Each Dw is a Ĝ⋊ B-orbit. We let Stab(w)β be the stabilizer of w. We again have
an equivalence between Stab(w)β-representations and Ĝ ⋊ B-equivariant sheaves
on Dw.

Lemma 2.6.1. Stab(w)β = ̂B ∩ Psβw\[(P̂sβw × B̂)⋊B ∩ Psβw].
Proof. The same as Lemma 2.4.6. �

Lemma 2.6.2. Let F be an Ĝ ⋊ B-equivariant sheaf on Dw. There is a T̂ -
equivariant isomorphism F |w ⊗ODw → F .

Proof. This is the same as Lemma 2.4.7. �

Given any pair of characters (λ, ν) ∈ X∗(T )2E with λ+ ν ∈ X∗(T ), one can con-
struct representationsMλ(ν) andM∨

λ (ν) of Stab(w)β as follows: the underlying rep-
resentation of P̂sβw factors through M̂sβw, and is respectively given by M(msβw)λ

or M(msβw)
∨
λ ; and we let B̂ act via ν. The product of these actions integrates to

an action of B ∩ Psβw.
By Corollary 2.5.2, we see that we have intertwining maps: I :Mλ(ν)→M∨

λ (ν).

Lemma 2.6.3. We have

RΓc(Dw,ODw) = ⊕kα≥0,α∈w−1Φ−,Mβ∩Φ+,kα<0,α∈w−1Φ−,Mβ∩Φ−E
∏

T kαα .

Proof. This follows from Lemma 2.4.5. �

Proposition 2.6.4. Assume that ℓ(sβw) = ℓ(w)+1. There is an intertwining map
of g-modules:

Mw
λ →M

sβw
λ .

This map is given (as h-modules) by the map

Mλ+w−1sβρ+ρ ⊗E RΓc(Dw,ODw )

I⊗Id→ M∨
λ+w−1sβρ+ρ

⊗E RΓc(Dw,ODw ).

(1) If 〈λ + ρ, w−1β∨〉 ∈ Z>0, we have a long exact sequence:

0→Mw
sw−1β ·λ

→Mw
λ →M

sβw
λ →M

sβw
sw−1β ·λ

→ 0

which is the tensor product of the long exact sequence of Corollary 2.5.2
with RΓc(Dw,ODw ) (as h-modules). Furthermore Mw

sw−1β ·λ
≃M sβw

sw−1β ·λ
.

(2) Otherwise, the intertwining map is an isomorphism Mw
λ ≃M

sβw
λ .
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Proof. Consider the map π : FL → FLβ and the maps πw : Cw → Dw and πsβw :
Csβw → Dw. We construct a map: πw,!Lλ+w−1ρ+ρ(ν) → πsβw,!Lλ+w−1sβρ+ρ(ν).
For this, we observe that both are Ĝ⋊B-equivariant sheaves on Dw. We compute
the corresponding Stab(w)β -representations. For this we can work over the fiber
at w by proper base change. By Proposition 2.4.9, (3) and (4) we deduce that the
fiber πw,!Lλ+w−1ρ+ρ|w corresponds to the representation Mλ+w−1sβρ+ρ(ν), and the
fiber πsβw,!Lλ+w−1sβρ+ρ|w corresponds to the representation M∨

λ+w−1sβρ+ρ
(ν). As

noted above, we get a map between these representations by using the intertwining
map I defined in Corollary 2.5.2. Moreover, by Lemma 2.6.2, both sheaves are
trivial, and are respectively T̂ -equivariantly isomorphic to Mλ+w−1sβρ+ρ ⊗E ODw

and M∨
λ+w−1sβρ+ρ

⊗E ODw . We now take cohomology with compact support so
that the cohomologies RΓc(Dw, πw,!Lλ+w−1ρ+ρ) and RΓc(Dw, πsβw,!Lλ+w−1sβρ+ρ)
are indeed given by the claimed formulas (use the projection formulas).

To see (1) and (2), observe that 〈λ + ρ, w−1β∨〉 ∈ Z>0 then again by Corollary
2.5.2 (noting that λ there is 〈λ + w−1sβρ + ρ, w−1β∨〉 = 〈λ + ρ, w−1β∨〉 − 1), we
actually have a long exact sequence of sheaves:

0→ πw,!Lsw−1β ·λ+w
−1ρ+ρ(ν)→ πw,!Lλ+w−1ρ+ρ(ν)→

πsβw,!Lλ+w−1sβρ+ρ(ν)→ πsβw,!Lsw−1β ·λ+w
−1sβρ+ρ(ν)→ 0

inducing the expected long exact sequence on cohomology. Otherwise, the inter-
twining map of sheaves is an isomorphism, inducing an isomorphism on cohomol-
ogy. �

2.7. Topology. In this section we consider E-vector spaces V equipped with a
weight space decomposition V = ⊕ν∈X∗(T )Vν where each Vν is finite dimensional
and equipped with a norm | − |ν . We can define the norms | − |ν by choosing a
basis for Vν , and decreeing the basis vectors to have norm 1.

Fix a basis {ei} of X∗(T ); then we have a function |− | : X∗(T )→ N measuring
the size of ν as follows: any ν can be written as

∑
niei and we put |ν| = 1+

∑ |ni|
(where in contrast to the rest of this section, |ni| is the archimedean norm of ni).

Let r ∈ R>0. We define a norm | − |r on V by letting |∑ vν |r = supν |vν |νr|ν|.
We write V̂r for the Banach space completion; concretely,

V̂r = {(vν) ∈
∏

Vν | lim sup
ν
|vν |νr|ν| = 0}.

We let Tnat be the natural topology on V defined by the family of norms {| −
|r}r≥1, making V a locally convex E-vector space. We let V̂nat be limr→∞ V̂r, the
completion of V for Tnat. This is a Fréchet space.

This applies in particular to V = U(g). Fixing a PBW basis gives a decom-
position of U(g) into weight spaces and defines the natural topology. We have
Û(g) = Û(g)nat. It follows that any object M of O, being a finitely generated
U(g)-module, inherits a canonical topology Tcan which is a locally convex topology.
For any such M , its completion is M̂ =M ⊗U(g) Û(g).

Lemma 2.7.1. Any map M → N in category O is strict for the canonical topology.

Proof. See for example [Sch13a, Prop. 3.1.1]. �

We can consider the twisted Verma module Mw
λ , which admits the basis

⊕kα≥0,α∈w−1Φ−∩Φ+,kα<0,α∈w−1Φ−∩Φ−E
∏

T kαα .
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We use this basis to define the natural topology Tnat as above. It follows that
twisted Verma modules have two topologies Tnat and Tcan. It is immediate that in
case w = Id, the canonical topology and the natural topology coincide. We will
next show that they coincide more generally if λ is p-adically non-Liouville (see
Definitions 2.3.25 and 2.3.30).

Lemma 2.7.2. Suppose x ∈ E is p-adically non-Liouville and x 6∈ Z>0. Then
there exists a constant C > 0 such that

∏n
r=1 |x− r| ≥ Cn for all n.

Proof. If x 6∈ Zp, there is a constant C > 0 such that |x − r| ≥ C for all r (e.g.
take C = minr∈Zp |x − r|) so the result is clear in this case. So assume x ∈ Zp.
By assumption, there is a constant B > 0 such that |x − r| ≥ Br for all r ∈ Z>0

(see (2.3.29)). For a given n, let pm−1 ≤ n < pm and choose 0 < r0 ≤ pm with
r0 ≡ x (mod pm). Then, for 0 < r ≤ n with r 6= r0, |x − r| = |r0 − r|, and so we
may estimate

n∏

r=1

|x− r| = |x− r0| ·
n∏

r=1,r 6=r0

|r0 − r|

≥ Bn · |(pm)!| ≥ Cn
for some C > 0. �

Lemma 2.7.3. If λ is a non-Liouville number, the maps of Corollary 2.5.2 are
strict for the natural topology.

Proof. When λ ∈ Z≥0, the statement is obvious. We now assume that λ /∈ Z≥0,
so we need to show that the isomorphism I : Mλ → M∨

λ which sends X̄n to
n!λ(λ− 1) · · · (λ− (n− 1))(X̄n)∗ is strict. By Lemma 2.7.2 (and the trivial bound
|n!| ≥ p−n), we see that for n > 0, we have |n!λ(λ− 1) · · · (λ− (n− 1))| ≥ Cn for a
positive constant C. This easily implies strictness. �

Lemma 2.7.4. If λ is a non-Liouville weight, the sequence of Proposition 2.6.4 (1)

0→Mw
sw−1β ·λ

→Mw
λ →M

sβw
λ →M

sβw
sw−1β ·λ

→ 0

or the isomorphism Mw
λ →M

sβw
λ of Proposition 2.6.4 (2) are strict for the natural

topology.

Proof. This follows from Lemma 2.7.3. �

Lemma 2.7.5. Let 0→ V1 → V2 → V3 → 0 be a short exact sequence of E-vector
spaces. Assume that V2 has two locally convex topologies T and T ′. Assume that
the induced topologies T1 and T ′

1 on V1, as well as the induced topologies T2 and T ′
3

on V3 coincide. Then T and T ′ coincide.

Proof. The topologies T and T ′ are given by families of lattices {Li}i∈I and
{Li′}i′∈I′ subject to certain conditions (in particular, for any i, j ∈ I, there is
a k ∈ I such that Lk ⊆ Li ∩ Lj). By symmetry, it suffices to prove that for any
i′ ∈ I ′, there is i ∈ I such that Li ⊆ Li′ . Any lattice L in V2 sits in an exact
sequence 0→ L1 → L→ L3 → 0, with L1 = L∩V1. By assumption, there is i1 ∈ I
such that Li1,1 ⊆ Li′,1 and i3 ∈ I such that Li3,3 ⊆ Li′,3. Picking i ∈ I such that
Li ⊆ Li1 ∩ Li3 , we find that Li ⊆ Li′ . �

Proposition 2.7.6. If λ is a non-Liouville weight, the canonical and natural topolo-
gies on Mw

λ coincide.
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Proof. We use induction on the length of w. We know this is true if w = Id. We
assume that this is true for w and all λ′, and want to prove it for M sβw

λ , where
ℓ(sβw) = ℓ(w) + 1. If the intertwining map Mw

λ → M
sβw
λ is an isomorphism, it is

strict for both the canonical and natural topologies (by Lemmas 2.7.1 and 2.7.4),
so we are done.

Otherwise, we have a long exact sequence:

0→Mw
sw−1β ·λ

→Mw
λ →M

sβw
λ →M

sβw
sw−1β ·λ

→ 0.

This long exact sequence is again strict for the natural and canonical topologies.
Since the natural and canonical topologies agree on Mw

sw−1β ·λ
and Mw

λ , and also on

M
sβw
sw−1β ·λ

≃Mw
sw−1β ·λ

, we are done by Lemma 2.7.5. �

2.8. Proof of Theorem 2.3.32.

Lemma 2.8.1. Let α be a root. Consider the complexes C1 : E[Tα]⊗ uα → E[Tα]

and C2 : E[Tα, T
−1
α ]/E[Tα]⊗ uα → E[Tα, T

−1
α ]/E[Tα]. Let Ĉ1nat and Ĉ2nat be the

completions of these complexes for the natural topology. For i = 1, 2, the natural
map Ci → Ĉinat is a quasi-isomorphism. In particular, the differentials in Ĉinat
are strict.

Proof. This is a standard computation; for instance, Ĉ1nat computes the de Rham
cohomology of the analytic affine line, but in any case it is a simple explicit calcu-
lation as in Lemma 2.4.5. �

We now restate Theorem 2.3.32, for the reader’s convenience.

Theorem 2.8.2 (Theorem 2.3.32). Let M ∈ OnL(g, b). The canonical map

Û(mw)⊗U(mw) (E ⊗LU(upw ) M)→ E ⊗L
Û(upw )

(Û(g)⊗U(g) M)

is a quasi-isomorphism.

Proof. A standard argument using the five lemma shows that we may replace M by
a resolution, and thus we reduce to the case that M =Mλ for some non-Liouville λ.
In fact, it is more convenient to handle all of the twisted Verma modules M =Mw′

λ

by induction on ℓ(w′w−1w0).
We begin with the base case w′ = w0w. Lemma 2.8.1 implies easily that the

Chevalley–Eilenberg complex computing E ⊗LU(upw ) M
w0w
λ is a strict complex for

the natural topology, so that the formula of Proposition 2.4.10

E ⊗LU(upw ) M
w0w
λ =M(mw)

(wM)−1w0,Mw

(wM)−1(wM ·λ+2ρM )[d− ℓ(wM )]

passes to completions for the natural topology. The result now follows since the
canonical and natural topologies coincide (onMw0w

λ , and onM(mw)
(wM )−1w0,Mw

(wM )−1(wM ·λ+2ρM )
)

by Proposition 2.7.6.
For the inductive step, we can suppose that there is some β such that ℓ(sβw′w−1w0) =

ℓ(w′w−1w0)−1. Then ℓ(sβw′) = ℓ(w′)±1. Let us assume that it is ℓ(w′)+1, so that

we have the intertwining map Mw′

λ → M
sβw

′

λ (the other case is almost identical,

using the intertwining map M sβw
′

λ →Mw′

λ , and we leave it to the reader).
If the intertwining map is an isomorphism, we are done. Otherwise, we have

a long exact sequence: 0 → Mw′

s(w′)−1β ·λ
→ Mw′

λ → M
sβw

′

λ → M
sβw

′

s(w′)−1β ·λ
→ 0.
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By induction, the theorem holds for M sβw
′

λ and M
sβw

′

s(w′)−1β ·λ
. Since Mw′

s(w′)−1β ·λ
→

M
sβw

′

s(w′)−1β ·λ
is an isomorphism, it also holds for Mw′

s(w′)−1β ·λ
, and thus (again by the

five lemma) for Mw′

λ , as required. �

We will use the following result in Section 3.6.

Proposition 2.8.3. Assume β is a simple root with w = wM0 sβ ∈ MW and
〈λ, β∨〉 6∈ Z≥0. Then

E ⊗LU(upw ) M
Id
λ =M(mw)

Id
w−1(w·λ+2ρM )[1]

Proof. By the hypothesis that 〈λ, β∨〉 6∈ Z≥0, there is an isomorphism M Id
λ

∼−→
M

sβ
λ by Proposition 2.6.4 (2). The result then follows from Proposition 2.4.10

(taking w there to be w0,Mw). �

Remark 2.8.4. We note that the condition that wM0 sβ ∈ MW is equivalent to β
not being a root of mwM

0
.

3. Equivariant sheaves on the flag variety and localization

3.1. Introduction. This entire section is concerned with geometric representation
theory. We fix a split reductive group G, a Parabolic P with Levi M , and a Borel
B ⊆ P . We consider the partial flag variety P\G and its Bruhat decomposition
P\G =

∐
w∈MW P\PwB into B-orbits, indexed by the subset MW of Kostant

representatives of the Weyl group W of G.
In Section 3.2 and Section 3.3 we consider equivariant sheaves on the partial

flag variety as well as (dagger neighbourhoods of) Bruhat cells, for the action of
G, its Lie algebra g, or a Borel subgroup B, depending on the context. We also
establish the connection between these equivariant sheaves and twisted D-modules
and introduce the horizontal Levi action. We begin with some generalities on
equivariant sheaves on adic and dagger spaces, before turning to the specific cases
that we need. We repeatedly make use of the standard equivalence (given by
passage to the fibre at a point x ∈ X) between H-equivariant sheaves on a space X
on which the group H acts transitively, and the representations of the stabilizer
group StabH(x); however, since we are working with topological (or rather solid)
sheaves, we have to go to some lengths to make precise the categories that we
are working with, and their interactions with these equivalences. (The particular
categories that we work with are ultimately dictated by the use of geometric Sen
theory in Section 4.)

Remark 3.1.1. All the sheaves we consider will be sheaves on topological spaces,
valued in the category of solid E-vector spaces (where E is a finite extension of Qp).
These form an abelian category. Our topological spaces will usually be adic spaces
or dagger spaces, and our sheaves will also be “quasi-coherent” and often be twisted
D-modules. This means that the objects we manipulate would naturally fit in the
formalism of quasi-coherent sheaves on adic spaces of [And21], and the formalism of
analytic geometry and the de Rham stack of [RC24]. The much simpler perspective
we adopt is sufficient for our purposes.

This preliminary material is used in Section 3.4 to produce, for any w ∈ MW ,
a functor HCS (for “Higher Coleman sheaf”) from category O for mw (the Lie
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algebra of w−1Mw), to the category of (g, B)-equivariant sheaves on the dagger
neighborhood of the Bruhat cell P\PwB. In section 4 we will use these sheaves
to produce sheaves on (open subsets of) Shimura varieties whose cohomology with
support is Higher Coleman theory of [BP21].

In Section 3.5 we define our localization functor on the partial flag variety. This
functor goes from category O for g to twisted D-modules on the flag variety. In
Theorem 3.5.11 we describe the localization in terms of Higher Coleman sheaves.
Namely, in p-adically non-Liouville weight, the restrictions to the Bruhat cells of
the cohomology sheaves of the localization of a Verma module M of g are given
by the Higher Coleman sheaves associated to the uPw -homology of M . (It is here
that we use Theorem 2.3.32.) Furthermore we give an explicit filtration on these
sheaves in Corollary 3.5.20.

Finally in Section 3.6 we specialize to the case G = GSp4 and prove the crucial
Theorem 3.6.9, which describes the cohomology of the horizontal Cartan action on
the localization in a special case of interest to us.

3.2. Equivariant sheaves on partial flag varieties. In this section we discuss
several kind of equivariant sheaves.

3.2.1. Equivariant sheaves over adic spaces. Let C be a rank one field extension
of E. In applications, C is either E or Cp. LetX be an adic space which is locally of
finite type over Spa(C,OC). Its structure sheaf OX is naturally a topological sheaf,
whose value on a quasi-compact open subset is a Banach space. It follows that we
can think of OX as taking values in the category Mod(E). All the sheaves we will
encounter will be sheaves of solid E-vector spaces. By a solid OX -module we mean
a sheaf valued in the category Mod(E) equipped with an OX -module structure.
We emphasize that we do not impose any kind of quasi-coherence condition in the
definition of solid OX -modules.

Definition 3.2.2.

(1) A sheaf F of solid OX -modules is an orthonormalizable Banach sheaf if
there exists a Banach space V over E such that F = OX ⊗E V .

(2) A sheaf F of solid OX -modules is a summand of orthonormalizable Banach
sheaf if it is a direct summand of an orthonormalizable Banach sheaf.

(3) A sheaf F of solid OX -modules is a Banach sheaf if there is a covering
X = ∪iSpa(Ai, A+

i ) and a Banach space Vi over E such that F |Spa(Ai,A
+
i )

is a direct summand of the sheaf OSpa(Ai,A
+
i )⊗EVi.

(4) A sheaf F of solid OX -modules is an LB-sheaf if there is a covering X =
∪iSpa(Ai, A+

i ) and LB-spaces Vi over E such that F |Spa(Ai,A
+
i ) is a direct

summand of the sheaf OSpa(Ai,A
+
i )⊗EVi.

Banach sheaves define a category B(X) and LB-sheaves define a category LB(X).

Let G be an analytic group acting on X . We have two maps act, p : G×X → X ,
which are respectively the action and projection maps. We let BG(X) be the
category of G-equivariant Banach sheaves, whose objects are objects F of B(X)
together with an isomorphism act∗F → p∗F (in the category B(G×X)) satisfying
the usual cocycle condition. We let {Gn}n∈Z≥0

be a system of neighborhoods of
the identity e in G, given by quasi-compact open subgroups.
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Definition 3.2.3. The category LBG(X) is the category whose objects are objects
F of LB(X) together with an isomorphism act∗F → p∗F (in the category LB(G×
X)) satisfying the usual cocycle condition, and further satisfying the following
finiteness condition:

(1) There exists a covering X = ∪jUj such that F |Uj = colimr≥0 Fj,r is a
filtered countable inductive limit of orthonormalizable Banach sheaves with
injective transition maps.

(2) For all j, there exists a quasi-compact open subgroup Gr(j) ⊆ G which
stabilizes Uj and we can upgrade Fj,r to an object of BGr(j)

(Uj), in such a
way that the inductive system {Fj,r} is an inductive system in BGr(j)

(Uj).
(3) The two Gr(j)-actions on F |Uj (the one induced by the inclusion Gr(j) →֒

G, and the one obtained by taking the colimit of the Fj,r) are the same.

We let g be the Lie-algebra of G. The action of G on X induces an action of g
by derivations on OX . We let Mod′g(X) be the following category: its objects are
solid OX -modules F together with a map g ⊗E F → F inducing an action of g
on F by derivations in the following sense:

(1) For any X,Y ∈ g, we have [X,Y ] = XY − Y X in End(F ).
(2) For any (X, a, f) ∈ g×OX ×F , we have X(af) = X(a)f + aX(f).

Definition 3.2.4. We let Modg(X) be the subcategory of Mod′g(X) generated
under colimits by objects F which have the following property: for any quasi-
compact open subset U of X , there exists r such that the action g⊗F (U)→ F (U)
can be integrated to an action D(Gr)⊗F (U)→ F (U).

Lemma 3.2.5. The categories Modg(X) and Mod′g(X) are Grothendieck abelian
category, and in particular have enough injectives.

Proof. We begin with the case of Mod′g(X), where the only non-obvious point is the
existence of a set of generators. For this we may take the sheaves j!(U(g)⊗R⊗OU )
for R a generator of the category of solid E-modules, j : U →֒ X a quasi-compact
open subset and r ∈ Q≥0. We now turn to Modg(X), where we first make a
comment on the condition that the action g ⊗F (U) → F (U) can be integrated
to an action D(Gr) ⊗F (U) → F (U) for some r. Let D(Gr+) = limr′>rD(Gr′).
Then D(Gr+) ⊗U(g) D(Gr+) = D(Gr+) by [RJRC22, Lem. 5.13]. As a result, the
extension of the g-action to an action of D(Gr+) for some r is a property of F (U)
and not some extra data: it means that F (U) ⊗U(g) D(Gr+) = F (U) for some
r. By construction Modg(X) is an abelian subcategory of Mod′g(X) stable under
colimits, and filtered colimits are exact since they are exact in Mod′g(X). Then a
set of generators is given by the sheaves j!(D(Gr)⊗R⊗OU ) for R,U as above. �

We define the subcategory LBg(X) of Modg(X) as follows.

Definition 3.2.6. The objects of LBg(X) are LB-sheaves F on X together with
a map g⊗E F → F inducing an action of g on F by derivations. We furthermore
impose that the g-action can locally be integrated to a locally analytic action. Here
is the precise condition:

(1) There exists a covering X = ∪jUj such that F |Uj = colimr≥0 Fj,r is an in-
ductive limit of orthonormalizable Banach sheaves with injective transition
maps.
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(2) For r large enough, we can upgrade Fj,r to an object of BGr (Uj), in such
a way that the transition maps Fj,r → Fj,r′ are equivariant for the maps
Gr′ → Gr.

(3) The two g-actions on F |Uj (the one induced by differentiating the action
of Gr and passing to the colimit, and the one which is part of the original
data) are the same.

3.2.7. Equivariant sheaves over topological and ringed spaces. We also need to con-
sider the situation where a locally profinite group M acts continuously on a locally
spectral topological space X .

Lemma 3.2.8. Let V be a quasi-compact open subset of X. There is a compact
open subgroup N of M such that N · V = V .

Proof. The map act :M ×X → X is continuous. It follows that act−1(V ) is open,
so that for any x ∈ V , there exists a compact open subgroup Nx of M and an open
neighborhood Vx ⊆ V of x such that Nx · Vx ⊆ V . Since V = ∪x∈V Vx, and V is
quasi-compact, there is a finite collection of elements {xi}i∈I such that V = ∪iVxi .
We deduce that N = ∩iNxi works. �

Definition 3.2.9. We let ModM (X) be the category consisting of:
(1) A Mod(E)-valued sheaf F on X .
(2) An abstract action of M on F (that is for any m ∈ M , an isomorphism

m−1F → F satisfying compatibility conditions for various m).
(3) For any quasi-compact open subset V ⊆ X , for one (equivalently for any)

compact open subgroup NV of M stabilizing V , the abstract action of NV
on F (V ) extends to a E�[NV ]-module structure.

(4) For any U ⊆ V , and for one (equivalently any) quasi-compact open sub-
group NV,U stabilizing U and V , the restriction maps F (V ) → F (U) are
E�[NV,U ]-equivariant.

If in (3), the action of NV is smooth, we say that F is smooth. We thus have a
subcategory category ModsmM (X) of ModM (X).

Lemma 3.2.10. The categories ModsmM (X) and ModM (X) are Grothendieck abelian
categories, and in particular they have enough injectives.

Proof. All claims are obvious, except for the existence of generators. Let us first
prove the existence of a generator in ModM (X). Let U be a quasi-compact open
in X and let N be a compact open subgroup stabilizing U . Let R be a gener-
ator of the category ModN (E). We consider the sheaf L(U) = ⊕m∈M/N jmU,!R
where jmU : mU → X is the open immersion. It is endowed with the obvious M -
equivariant action. Let F be an object of ModM (X). A map L(U)→ F amounts
to a map R → F (U) in the category ModN (E). It follows that ⊕UL(U) is a gen-
erator of ModM (X). We construct similarly a generator of ModsmM (X) by the same
construction, but replacing R by a generator of ModsmN (E). �

Let us briefly indicate some possible variations. If X is equipped with a sheaf of
algebras in solid E-vector spaces OX , which belongs to ModM (X), one can consider
the category ModM (OX) ofM -equivariantOX -modules. If theM -equivariant sheaf
OX is smooth, we also have a category ModsmM (OX). In this case, we can also
introduce a twist by a character λ : M → E×. We say that an object F of
ModM (OX) is λ-smooth if F⊗E(−λ) is smooth. The category of λ-smooth objects
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is denoted by Modλ−sm
M (X). The categories ModM (OX), Modλ−sm

M (OX) are again
Grothendieck abelian categories, and in particular they have enough injectives.

3.2.11. Dagger spaces. We need to enlarge the category of adic spaces and also
consider certain limits of adic spaces (for example dagger spaces in the sense of
[GK00]). Let Z be a locally closed subset of X . We let Z†,X be the locally ringed
space limZ⊆U U where U runs through the open subsets of X containing Z. As a
topological space, Z†,X = Z. It carries the structure sheaf OZ†,X = i−1

Z OX where
iZ : Z → X is the inclusion. This sheaf also takes values in the category Mod(E).

Remark 3.2.12. The locally ringed space Z†,X depends on Z and on the embed-
ding Z →֒ X . If X is clear from the context, we simply denote Z†,X by Z†.

3.2.13. Notations for the flag variety. We let G be a connected split reductive group
over E and we let P be a parabolic subgroup. We let FL = P\G be the partial
flag variety (an analytic adic space).

Remark 3.2.14. In section 4, we will use the notation FLrat for this analytic
space, and we will let FL be its base change to Spa (Cp,OCp).

We let UP be the unipotent radical of P , with Levi quotient M = P/UP . We let
B ⊆ P be a Borel with maximal torus T and unipotent radical UB. We let BM be
the induced Borel on M and UM be the unipotent radical of BM . We use gothic
letters for the Lie algebras of all groups introduced so far, so that for example g is
the Lie algebra of G and b is the Lie algebra of B; the one exception is that following
standard conventions, the Lie algebra of T is denoted by h. For any x ∈ FL, we
let Px be x−1Px, and let UPx be its unipotent radical. We adopt similar notation
for other groups or Lie algebras, and in addition for x replaced by an element w of
a Weyl group; so for example for w ∈ W (the Weyl group of G) we have Pw, UPw

and so on.
From now on G is viewed as an analytic group over Spa(E,OE) (this is a Stein

space and is not quasi-compact unless G = {1}).
We fix a reductive model for G over OE . Its analytification defines a quasi-

compact open subgroup G0 ⊆ G. For any r ∈ Q≥0, we let Gr be the quasi-compact
analytic subgroup of G0 of elements reducing to the identity e modulo pr. Here are
some slightly non-standard conventions and constructions:

• If H is an analytic subgroup of G, we let Hr = Gr ∩H .
• If H is an analytic subgroup of G, we let He := limr≥0Hr where the limit

is taken in the category of locally ringed spaces. Thus He = {e}†,H . As
a space, He has only one point (the identity e of G), but it carries the
structure sheaf OH,e whose dual is the distribution algebra Û(Lie(H)).

3.2.15. G-equivariant sheaves. In section 3.2.1, we have introduced the categories
BG(FL) and LBG(FL). We also have the categories of representations BPw(E) =
BPw(Spa(E,OE)) and LBPw(E) = LBPw(Spa(E,OE)) for each w ∈W .

Proposition 3.2.16. Taking the fiber at w = P\Pw ∈ FL gives equivalences of
categories between BG(FL) and BPw (E) and between LBG(FL) and LBPw(E).

Proof. We have an isomorphism P\G ∼−→ Pw\G, x 7→ w−1 ·x, which takes w ∈ FL
to e ∈ Pw\G; so we can and do reduce to the case w = e. Given a G-equivariant
sheaf V , we take its fiber at e = P\P ∈ FL, which is a representation of P .
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Conversely, let π : G → FL, g 7→ eg be the uniformization map. The sheaf π∗OG
is G-equivariant (via the action of G by right translation on itself) and carries a P -
action (via the action of P by left translation on G). Given an object V of LBP (E),
we consider (π∗OG⊗V )P . These two functors define the equivalences of categories
of the proposition (and in particular match the various finiteness conditions); we
leave the details to the reader. �

Example 3.2.17. We have a filtration uP ⊆ p ⊆ g of finite dimensional P -
representations. Via our equivalence of categories, this corresponds to a filtration
of G-equivariant coherent sheaves: u0P ⊆ p0 ⊆ g0 = OFL ⊗ g. The fibers of this fil-
tration at a point x ∈ FL are uPx = x−1uPx ⊆ px = x−1px ⊆ E(x)⊗ g. Moreover,
we have an isomorphism g0/p0 = TFL.

Example 3.2.18. Let λ ∈ X∗(T )M,+. There is an associated highest weight
representation of M and via our equivalence of categories, this corresponds to a
G-equivariant coherent sheaf Lλ. Here is an equivalent geometric construction
of this sheaf. Let π : UP \G → FL. This is a G-equivariant M -torsor. Then
Lλ = (π∗OUP \G)[BM = −w0,Mλ], with the right translation action of G.

Remark 3.2.19. In the Siegel case, the tautological exact sequence over FL is
(for St = E2g the standard 2g-dimensional representation of G):

0→ L(0,··· ,0,−1;1) → OFL ⊗ St→ L(1,0,··· ,0;1) → 0.

3.2.20. g-equivariant sheaves and the horizontal action. Let U be an open subset
of FL. By Definition 3.2.6, we have a category of g-equivariant sheaves LBg(U).

On any object of LBg(U), the g-action extends linearly to an OU ⊗g-action. We
recall that we have the moving parabolic Lie-algebra p0 ⊆ OU ⊗ g.

Lemma 3.2.21. We have that p0 ⊆ OU ⊗ g acts OU -linearly and G-equivariantly
on any object of LBg(U).

Proof. We have that p0 is a G-equivariant subsheaf of OFL ⊗ g. Moreover, it acts
trivially on OFL since TFL = g0/p0. �

Definition 3.2.22. We let LBg(U)u
0
P be the full subcategory of LBg(U) of objects

which are annihilated by u0P .

For any F ∈ LBg(U)u
0
P , we have aG-equivariant map m0 = p0/u0P → EndOU

(F )
which can be extended to an algebra map:

U(m0)→ EndOU
(F ). (3.2.23)

Let Z(m) be the centre of U(m).

Lemma 3.2.24. We have an injective algebra homomorphism Z(m) →֒ H0(FL, U(m0)).

Proof. The G-equivariant sheaf U(m0) is associated via Proposition 3.2.16 to the
P -representation U(m) (the fiber at e). We have a natural inclusion Z(m) →֒ U(m),
and Z(m) identifies with the P -invariant subspace of U(m). It follows that we get
an injective map of sheaves OFL ⊗ Z(m)→ U(m0), inducing the expected map on
global sections. �

Definition 3.2.25. We define the horizontal action as the map Θhor : Z(m) →
EndOU (F ) obtained by composing the map of Lemma 3.2.24 and the map

H0(U,U(m0))→ EndOU (F )
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obtained from (3.2.23).

3.2.26. (g, G)-equivariant sheaves. We now consider (g, G)-equivariant sheaves. We
sometimes find it helpful to interpret these as Ge ⋊ G-equivariant sheaves, where
the action of G on Ge is via conjugation, see Remark 3.2.28 below. We remark
there is a group homomorphism Ge ⋊G→ G, (ge, g) 7→ geg.

Definition 3.2.27. The category LB(g,G)(FL) has objects consisting of a G-
equivariant sheaf F ∈ LBG(FL) together with a map g⊗F → F of G-equivariant
sheaves (where g⊗F carries the diagonal G-action), giving a Lie algebra action on
F :

(1) For any X,Y ∈ g, we have [X,Y ] = XY − Y X in End(F ).
(2) For any (X, a, f) ∈ g×OFL ×F , we have X(af) = X(a)f + aX(f)4.

We furthermore impose that the g-action can locally be integrated to a locally
analytic action. Here is the precise condition:

(1) There exists a covering FL = ∪jUj such that F |Uj = colimr≥0 Fj,r is an
inductive limit of Banach sheaves with injective transition maps.

(2) For all j, there exists a quasi-compact open subgroup Gr(j) ⊆ G which
stabilizes Uj .

(3) For r large enough, we can upgrade Fj,r to an object of BGr⋊Gr(j)
(Uj), in

such a way that the inductive system {Fj,r} is now in BGr⋊Gr(j)
(Uj).

(4) The two Gr(j)-actions on F |Uj (the one induced by the inclusion Gr(j) →֒
G, and the one obtained by taking the colimit of the Fj,r) are the same.

(5) The two g-actions on F |Uj (the one induced by differentiating the action
of Gr and passing to the colimit, and the one which is part of the original
data) are the same.

Remark 3.2.28. In particular, the g-action on an object F of LB(g,G)(FL) can be
upgraded to a Û(g)-action on F . We can thus think of an object F of LB(g,G)(FL)
as a Ge ⋊G-equivariant sheaf satisfying certain finiteness conditions.

Remark 3.2.29. In section 4, we will also consider the category LB(g,G)(FLCp)
for the flag variety over Cp, whose definition is the obvious variant of the definition
3.2.27. There is a base change map LB(g,G)(FL)→ LB(g,G)(FLCp).

Definition 3.2.30. We define LB(g,Pw)(E) to be the category whose objects consist
of an object V of LBPw(E), together with a Pw-equivariant morphism g⊗V → V in
the category LBPw(E), inducing a Lie algebra action of g on V : for any X,Y ∈ g,
we have [X,Y ] = XY −Y X in End(V ). We further impose the following finiteness
condition:

(1) V = colimr Vr is an inductive limit of Banach spaces with injective transi-
tion maps.

(2) There exists s such that for all r large enough, Vr can be upgraded to an
object of BGr⋊Pw,s(E) and the maps Vr → Vr′ are equivariant for the map
Gr′ ⋊ Pw,s → Gr ⋊ Pw,s.

(3) The action of Pw,s on V obtained on the limit is the one induced by re-
striction from Pw to Pw,s.

(4) The action of Gr on Vr induces an action of g, and the action of g on V
coincides with the original action of g.

4We have a map g → TFL and thus an action of g by derivations on OFL.
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Similarly to Proposition 3.2.16, we have the following equivalence of categories.
As usual, this equivalence is obtained by passage to a fiber; note in particular that
we are not simply restricting the g and G-actions, and indeed the action of g is
obtained as the difference between the given g-action and the derivative of the
G-action.

Proposition 3.2.31. Taking the fiber at w induces an equivalence of categories
between LB(g,G)(FL) and LB(g,Pw)(E).

Proof. As in the proof of Proposition 3.2.16, we can without loss of generality
take w = e. We consider the uniformization map m : Ge⋊G→ FL, (ge, g) 7→ egeg.
The stabilizer Stab(e) of e is the subgroup of elements (ge, g) ∈ Ge ⋊G, such that
geg ∈ P . This is also the semi-direct product Ge ⋊ P with Ge = {(g−1

e , ge)}
and P = {(1, p)}. A (g, G)-equivariant sheaf V gives a (g, P )-module by tak-
ing the fiber at e. Conversely, given a Stab(e)-representation V , we consider the
sheaf V = (m∗(OGe⋊G)⊗V )Ge⋊P . It has an action of Ge given by gef(g

′
e, g

′) =
f(g′eg

′ge(g
′)−1, g′) and an action of G given by g.f(g′e, g

′) = f(g′e, g
′g). We check

that this induces an equivalence between LB(g,G)(FL) and LB(g,P )(E). For ex-
ample assume that V is an object of LB(g,P )(E), thus V = colimr Vr where each
Vr carries an action of Gr ⋊ Ps for s and r large enough. We can consider the
map Gr ⋊Gs → FL, (g, g′) 7→ eg′g. The image is a neighborhood U of e and the
stabilizer of e is Gr ⋊ Ps. We deduce that V|U = colimr(m∗(OGr⋊Gs)⊗ Vr)Gr⋊Ps

which proves that V is indeed an object of LB(g,G)(FL). The reverse computation
is left to the reader. �

Remark 3.2.32. We can use the group homomorphism Ge⋊G→ G, (ge, g) 7→ geg
to turn a G-equivariant sheaf into a Ge ⋊ G-equivariant sheaf. This defines a
natural fully faithful functor LBG(FL)→ LB(g,G)(FL). We can also interpret this
functor as saying that a G-equivariant sheaf is naturally a (g, G)-equivariant sheaf
by differentiating the G-action. There is also a forgetful functor LB(g,G)(FL) →
LBG(FL).

Via the equivalences of categories of Propositions 3.2.16 and 3.2.31, the functor
fromG-equivariant sheaves to (g, G)-equivariant sheaves amounts to associating to a
P -representation the (g, P )-representation with trivial g-action. Indeed, the (g, G)-
equivariant sheaf corresponding to a (g, P )-representation V is F = (m∗OGe⋊G ⊗
V )Ge⋊P . If V has trivial g-action, then f(geg′e, (g

′
e)

−1g) = f(ge, g), and we deduce
that f(ge, gg′e) = f(geg(ge)

′g−1, g), which means that the two g-actions (the obvious
one and the one coming from the G-action) coincide. The converse implication is
similar. The forgetful functor from (g, G)-equivariant sheaves to G-equivariant
sheaves corresponds to the forgetful functor associating to a (g, P )-representation
the underlying P -representation.

Definition 3.2.33. We let LB(g,G)(FL)u
0
P be the full subcategory of LB(g,G)(FL)

of objects which are annihilated by u0P .

We let LB(g,P )(E)uP be the full subcategory of LB(g,P )(E) whose objects have
the property that the uP -action coming from differentiating the P -action coincides
with the uP -action coming from the g-action. (We will shortly see that this is
equivalent to the category LB(g,G)(FL)u

0
P .)

Any object of LB(g,P )(E)uP carries an action Θ of Z(m) defined as follows. The
differentiation of the P -action gives an action dρP of p. On the other hand the
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action ρg of g restricts to an action of p. We then let z ∈ m act via the formula

z · v = dρP (z̃) · v − ρg(z̃) · v
for any lift z̃ of z in p (this is independent of the lift). This induces an action of U(m)
and restricts to an action of Z(m). This action commutes with the (g, P )-action.

Proposition 3.2.34. The equivalence of categories between LB(g,G)(FL) and LB(g,P )(E)

of Proposition 3.2.31 induces an equivalence between LB(g,G)(FL)u
0
P and LB(g,P )(E)uP .

The actions Θhor and Θ of Z(m) correspond to each other.

Proof. Let V ∈ LB(g,P )(E)uP . On the sheaf (m∗OGe⋊G⊗V )Ge⋊P , we want to see
that the action of u0P is trivial. We have ((geg)

−1u(geg)).f(ge, g) = f(uge, g) for
u ∈ (UP )e. On the other hand, our assumption implies that the action of (u, 1) ∈
Pe⋊G ⊆ Ge⋊G is trivial on V (since the actions of (u, u−1) and (1, u−1) coincide).
This tells us that f(uge, g) = f(ge, g), as required. The converse implication follows
similarly. The actions of Θhor and Θ correspond by construction. �

Remark 3.2.35. Let Rep(M) be the category of algebraic representations of M .
Then the natural functor Rep(M) → LB(g,P )(E) (induced by inflation from M
to P , and letting g act trivially, see Remark 3.2.32) factors through LB(g,P )(E)uP ,
and the obvious action of Z(m) on Rep(M) induces the action Θ.

Remark 3.2.36. We have a natural functor

H0(u0P ,−) : LB(g,G)(FL)→ LB(g,G)(FL)u
0
P ,

which can be defined as follows. Via our equivalence of categories, it corresponds to
the natural functor H0(uP ,−) : LB(g,P )(E)→ LB(g,P )(E)uP . In this last formula,
the uP action is the diagonal one. More precisely, on any object V of LB(g,P )(E),
we can differentiate the P -action to obtain a p-action. We therefore have an action
of g⋊ p and uP embeds diagonally via u 7→ (−u, u) as a normal sub-Lie algebra.

3.2.37. Twisted differential operators and the sheaf Cla.

Definition 3.2.38. Let D̃la = OFL⊗Û(g)/u0POFL ⊗ Û(g) be the ring of universal
twisted differential operators.

Remark 3.2.39. We have that Dla = OFL⊗Û(g)/p0OFL ⊗ Û(g) is the usual ring
of differential operators.

Remark 3.2.40. One also has an “algebraic” version of D̃la. Namely, we let
D̃alg = OFLalg⊗U(g)/u0,algP OFLalg⊗U(g) be the ring of (algebraic) universal twisted
differential operator on the E-scheme FLalg.

We have three commuting actions of G on OG ⊗OFL:

(1) h ∗1 f(g, x) = f(h−1g, x),
(2) h ∗2 f(g, x) = f(gh, x),
(3) h ∗3 f(g, x) = f(g, xh).

We write ∗1,3 for the composition of the ∗1 and ∗3 action, and similarly for ∗1,2,3
and so on.

Definition 3.2.41. We let Cla = (OG,e ⊗OFL)
u0
P where the invariants are for the

∗1,3-action.
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Elements of Cla are functions f(g, x) with g ∈ Ge, x ∈ FL, satisfying f(uxg, x) =
f(g, x) for ux ∈ UPx,e.

In particular Cla has a ∗1,3-action of g and a ∗1,2,3 action of G, and it is easy
to check that this gives it the structure of an object of LB(g,G)(FL)u

0
P . It has an

extra linear ∗2-action of g. Its fiber at e is the module Clae = OUP \G,e. Under the
equivalence of 3.2.31, the (g, P )-module structure is the conjugation action of P
and the right translation action of g. The linear ∗2-action of g also induces the
right translation action on the fiber.

Remark 3.2.42. The subsheaf (Cla)p0 ⊆ (OG,e ⊗OFL)
u0
P is some kind of infinite

jet bundle over OFL.

We have a map Θhor : Z(m) → EndOFL(Cla). We also have a map ∗2 : Z(g) →
EndOFL(Cla) induced by the ∗2 action of g. These maps are related as follows:

Lemma 3.2.43. We let ι : Z(g)→ Z(g) be the map induced by the inverse on G.
For any z ∈ Z(g), we have ∗2(ιz) = Θhor(HC(z)), where HC is the map (2.3.11).

Proof. The endomorphisms of Cla, ∗2(ιz) and Θhor(HC(z)) are G-equivariant and
OFL-linear. Therefore it suffices to understand what happens on the fiber at e,
namely OUP \G,e. We first observe that on OG,e the two actions ∗1 and ∗2 of G
induce two actions of Z(g) and these actions are related by ∗2(z) = ∗1(ιz). For
the second point, by the definition of the map HC, for any z ∈ Z(g), we have that
HC(z) = z + z′ where z′ ∈ U(g)uP . It follows that ∗1(z) and HC(z) act in the
same way on OUP \G,e = H0(uP ,OG,e). �

We have a left action of g on OG,e, defined by g.f(·) = f ′(exp(−tg)·)|t=0. This
induces a natural pairing Û(g)⊗OG,e → E, (g, f) 7→ (g.f)(e). This pairing induces
a pairing (OG,e⊗OFL) ⊗ (Û(g)⊗OFL) → OFL. It passes to a pairing on the
quotient:

D̃la ⊗ Cla → OFL.

Proposition 3.2.44. We have that RHomOFL
(Cla,OFL) = D̃la.

Proof. We will prove that RHomOFL
((OG,e⊗OFL),OFL) = Û(g)⊗OFL. Since Cla

is locally a direct summand in (OG,e⊗OFL) and D̃la is locally a direct summand in
Û(g)⊗OFL, this implies the claim. We take a presentation OG,e = colimr Vr where
the Vr are Smith spaces. We deduce that

RHomOFL
(OG,e ⊗OFL,OFL) = RlimrRHomE(Vr,OFL)

= Rlimr(V
∨
r ⊗OFL)

= limr(V
∨
r ⊗OFL)

= Û(g)⊗OFL

Here, the first equality is formal, the second equality is a consequence of the nucle-
arity of Banach spaces [RJRC22, Cor. 3.7], the third equality follows from Mittag-
Leffler [RJRC22, Lem. 3.27] and the last equality follows from [RJRC22, Lem.
3.28]. �

Remark 3.2.45. Using [RJRC22, Lem. 3.10], one can prove conversely that
HomOFL

(D̃la,OFL) = Cla. Conjecture 3.41 of [RJRC22] would imply that fur-
thermore HomOFL

(D̃la,OFL) = RHomOFL
(D̃la,OFL).
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3.2.46. The admissible objects. We let Adm(g,P )(E) be the subcategory of LB(g,P )(E)

whose objects are admissible Û(g)-modules. This is an abelian category. We let
Adm(g,G)(FL) be the subcategory of LB(g,G)(FL) which corresponds to Adm(g,P )(E).

Example 3.2.47. We see that Cla is an object of Adm(g,G)(FL).
3.3. Equivariant sheaves on Bruhat cells. We will now consider the stratifica-
tion of FL into its B-orbits (i.e. Bruhat cells).

3.3.1. (g, Q)-equivariant sheaves. Recall that MW denotes the Kostant representa-
tives of WM\W , and for w ∈ MW we let Cw = P\PwB be the Bruhat cell. More
generally, let Q be a standard parabolic, i.e. B ⊆ Q, and write MQ for the Levi

quotient of Q. We write Cw,Q := P\PwQ j→֒ FL for the corresponding Q-orbit
in FL. We write C†

w,Q = limCw,Q⊆U U where U runs through the neighborhoods

of Cw,Q in FL. By definition C†
w,Q is the space Cw,Q equipped with the sheaf

OC†
w,Q

= j−1OFL.
We consider the semi-direct product Ge⋊Q. We have a product map Ge⋊Q→

G, (g, q) 7→ gq. The group Ge ⋊Q acts on C†
w,Q.

Definition 3.3.2. We let LB(g,Q)(C
†
w,Q) be the category whose objects consist of

the following list of data:

(1) An LB-sheaf F over C†
w,Q: this is a sheaf of OC†

w,Q
-modules such that

there is a covering Cw,Q = ∪iUi by quasi-compact opens, and for each i a
family {Ui,j}j of quasi-compact opens of FL with Ui,j ∩ Cw,Q = Ui and
∩jUi,j = Ui, and Banach sheaves Fi,j over Ui,j such that {Fi,j |Ui}j form
an inductive system and F |Ui = colimj Fi,j |Ui .

(2) We have a Q-equivariant map g⊗F → F of LB-sheaves providing a Lie
algebra action of g on F .

(3) For each i, there exists s(i) such that each Ui,j is stable under the action
of Gj ⋊Qs(i) and Fi,j is an object of BGj⋊Qs(i)

(Ui,j) and the maps Fi,j →
Fi,j′ are equivariant for the maps Gj′ ⋊Qs(i) → Gj ⋊Qs(i).

(4) The induced action of Ge ⋊Qs(i) on F |Ui coincides with the restriction of
the (g, Q)-action.

Remark 3.3.3. Similar to remark 3.2.29, we also can define a categoryLB(g,Q)((C
†
w,Q)Cp)

with a base change functor LB(g,Q)(C
†
w,Q)→ LB(g,Q)((C

†
w,Q)Cp).

3.3.4. An equivalence of categories. We consider the uniformization:

m : Ge ⋊Q → C†
w,Q

(g, q) 7→ wgq.

We let StabQ(w) be the stabilizer of w for this action, so that

StabQ(w) = {(g, q) ∈ Ge ⋊Q, gq ∈ Pw}.
We have an injective homomorphism

StabQ(w) →֒ Pw ×Q
given by (g, q) 7→ (gq, q), which induces an isomorphism

StabQ(w)e
∼−→ Pw,e ×Qe. (3.3.5)



MODULARITY THEOREMS FOR ABELIAN SURFACES 51

From now on we will frequently identify Pw,e×Qe with StabQ(w)e via (3.3.5), and
in particular we will frequently regard Qe as a subgroup of Ge⋊Q via (3.3.5) (and
the inclusion StabQ(w) ⊂ Ge ⋊ Q), i.e. as the subgroup of elements (q−1, q) with
q ∈ Qe.
Lemma 3.3.6.

(1) The group StabQ(w) is generated by its subgroups StabQ(w)e = Pw,e ×Qe
and Pw ∩Q.

(2) There is an isomorphism (Pw∩Q)e\
(
(Pw,e×Qe)⋊(Pw∩Q)

) ∼−→ StabQ(w).

Proof. Consider an element (g, q) ∈ StabQ(w) ⊆ Ge⋊Q, so that gq ∈ Pw. Then g ∈
Ge∩PwQ = Pw,eQe, so we can write g = pq′ with p ∈ Pw,e, q′ ∈ Qe. Then q′q ∈ Q,
and since gq ∈ Pw and p ∈ Pw, we in fact have q′q ∈ Pw ∩Q. Thus we can write

(g, q) = (p, 1)(q′, q′−1)(1, q′q) ∈ Ge ⋊Q

with (p, 1) ∈ Pw,e, (q′, q′−1) ∈ Qe and (1, q′q) ∈ Pw ∩ Q, completing the proof of
the first part.

It follows from the first part that we have a surjective homomorphism

StabQ(w)e ⋊ (Pw ∩Q)→ StabQ(w)

given by (g, q) 7→ gq. The kernel of this homomorphism is StabQ(w)e ∩ (Pw ∩Q) =
(Pw ∩Q)e, and the second part is immediate. �

Corollary 3.3.7. A representation (V, ρ) of StabQ(w) is the data of a representa-
tion (V, ρ1) of Pw,e, a representation (V, ρ2) of Qe and a representation (V, ρ3) of
Pw ∩Q, satisfying:

(1) ρ1 and ρ2 commute.
(2) Adρ3(a)(ρ1(b)ρ2(c)) = ρ1(aba

−1)ρ2(aca
−1).

(3) ρ3 = ρ1ρ2 on (Pw ∩Q)e.

Proof. This is immediate from Lemma 3.3.6. �

Example 3.3.8. We consider the sheaf Cla|C†
w,Q

. We see that the fiber Claw is

OUPw\G,e, and the action of StabQ(w) is given by (g, q)f(g′) = f(q−1g−1g′q). In
other words, it has a Pw,e-action by left translation, aQe-action by right translation,
and a Pw ∩Q-action by conjugation.

If r, s ≥ 1, we can consider the semi-direct product Gr⋊Qs. We let StabQ(w)r,s
be the stabilizer of w for the action of Gr ⋊ Qs; again, this is the subgroup of
Gr ⋊Qs of elements (g, q) such that gq ∈ Pw.

Lemma 3.3.9. If r ≥ s, we have an isomorphism:

(Pw ∩Q)r\
(
(Pw,r ×Qr)⋊ (Pw ∩Qs)

) ∼−→ StabQ(w)r,s.

Proof. This follows exactly as in the proof of Lemma 3.3.6. �

We now define a category LBStabQ(w)(E) as follows.

Definition 3.3.10. The category LBStabQ(w)(E) has objects consisting of the fol-
lowing list of data:

(1) An LB-space V = colimr Vr over E,
(2) An action of StabQ(w) on V .
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(3) For each r, there exists s such that Vr ∈ BStabQ(w)r,s(E) and the maps Vr →
Vr′ are equivariant with respect to the maps StabQ(w)r′,s → StabQ(w)r,s.

(4) This induces on V an action of StabQ(w)e and Pw ∩ Qs which coincides
with the restriction of the StabQ(w)-action of V .

Proposition 3.3.11. Taking the fiber at w gives an equivalence between the cate-
gories LB(g,Q)(C

†
w,Q) and LBStabQ(w)(E).

Proof. As usual, by taking the fiber at w, we obtain a StabQ(w)-module. Con-
versely, we attach to an object V of LBStabQ(w)(E) the sheaf (m∗(OGe⋊Q)⊗̂V )StabQ(w).

�

Remark 3.3.12. We have a restriction map LB(g,G)(FL)→ LB(g,Q)(C
†
w,Q). The

category LB(g,G)(FL) is equivalent to LB(g,Pw)(E) by Proposition 3.2.31, and this
restriction map corresponds to the map LB(g,Pw)(E) → LBStabQ(w)(E) which is
induced by the inclusion StabQ(w) →֒ Ge ⋊ Pw where q ∈ Qe 7→ (q, 1), p ∈ Pw,e 7→
(p−1, p), r ∈ Pw ∩Q 7→ (1, r).

Remark 3.3.13. For any object F of LB(g,Q)(C
†
w,Q), one can differentiate the

Q-equivariant structure and thus obtain a Q-equivariant map actq : q ⊗F → F .
One may want to compare this map with the map actg : g ⊗ F → F which is
given by the g-equivariant action. The difference actq − actg|q : q ⊗F → F is a
Q-equivariant linear map. It is therefore entirely determined by its fiber at w. If
F corresponds to a StabQ(w)-representation V via the equivalence of Proposition
3.3.11, then the q-action actq − actg|q is induced by the Qe-action on V .

We let LB(g,Q)(C
†
w,Q)

u0
P be the subcategory of objects which are killed by u0P .

We let LBStabQ(w)(E)uPw be the full subcategory of objects with trivial action of
the subgroup (UPw )e →֒ Pw,e. The objects of LBStabQ(w)(E)uPw carry an action Θ
of Z(mw).

Proposition 3.3.14. The equivalence of categories between the categories LB(g,Q)(C
†
w,Q)

and LBStabQ(w)(E) induces an equivalence between LB(g,Q)(C
†
w,Q)

u0
P and LBStabQ(w)(E)uPw .

Via this equivalence, the action of Θhor of Z(m) corresponds to the action Θ of
Z(mw) via conjugation by w−1.

Proof. This follows from Proposition 3.3.11, exactly as in the proof of Proposi-
tion 3.2.34. �

Remark 3.3.15. Let µ ∈ X∗(Mab
Q ) be an algebraic character. There is a functor

LB(g,Q)(C
†
w,Q) → LB(g,Q)(C

†
w,Q), F 7→ F ⊗ E(µ), corresponding to twisting the

Q-action by µ. There is a map StabQ(w) →֒ Ge ⋊ Q → Q → Mab
Q , so that

any character µ ∈ X∗(Mab
Q ) induces a character of StabQ(w). The operation of

twisting the Q-action by µ corresponds to the operation of twisting a StabQ(w)-
representation by µ.

3.4. Algebraic and locally analytic representations. In this section we will
explain how to define a functor from a subcategory of the algebraic category
O(mw, bmw) to representations of StabQ(w). We begin with some more general
considerations.
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3.4.1. Completion of category O. In this subsection we consider a reductive group
G with Borel B and maximal torus T . Its Lie algebra is g with Borel b and Cartan
h. We recall that O(g, b) is the corresponding BGG subcategory of U(g)-modules.
Let B ⊆ Q ⊆ G be a parabolic with Levi M . Let q ⊆ g be its Lie algebra, with
Levi m. We let O(g, q) be the parabolic BGG category, which is the subcategory
of O(g, b) of objects whose restriction to m is a direct sum of finite dimensional
representations.

We start with the following definition which is nothing but Definition 3.2.6 spe-
cialized to X = Spa(E,OE).

Definition 3.4.2. We let LBg(E) be the category of g-representations on LB-
spaces. More precisely, its objects are LB spaces over E, V which are Û(g)-modules
and satisfy the following conditions:

(1) We have V = colimr Vr and for r large enough Vr ∈ BGr(E). Moreover, the
transition maps Vr → Vr′ for r ≤ r′ are equivariant for the map Gr → Gr′ .

(2) The actions of Gr on Vr induce the action of g on the limit.

Proposition 3.4.3. There is an exact contravariant functor:

O(g, b) → LBg(E)

M 7→ [M ⊗U(g) Û(g)]∨ = M̂∨

Proof. This follows from Theorem 2.2.39. Indeed, our functor is the composition
of the functor O → Ô which is an equivalence of abelian categories, and then of
the duality functor (which is an exact anti-equivalence of categories, and turns a
coadmissible Û(g)-module into an admissible Û(g)-module), and finally the forgetful
functor to the category of LB-spaces equipped with a g-action. It remains to justify
that [M ⊗U(g) Û(g)]

∨ belongs to LBg(E). To see this, note that Û(g) ⊗U(g) M =

limrM ⊗U(g) D(Gr), so that M̂∨ = colimr Vr where Vr = (M ⊗U(g) D(Gr))
∨ is a

Banach space. Moreover, there is an action of Gr on Vr . �

Remark 3.4.4. We can explicate what this functor is doing on Verma modules.
Let λ ∈ X∗(T )E be a character of b. Let M = U(g)⊗U(b)λ. We see that M̂∨ is the
submodule ofOG,e of functions f which satisfy f(gb) = λ(b)f(g) for (g, b) ∈ Ge×Be,
with the action of g being that given by the action of Ge as (gf)(x) = f(g−1x).
More generally, let V be a finite dimensional representation of b with dual V ∨. Let
M = U(g) ⊗U(b) V . We see that M̂∨ is the submodule of the space of functions
f : Ge → V ∨ which satisfy bf(gb) = f(g).

We let X∗(M) be the character space of M .

Definition 3.4.5. Let λ ∈ X∗(M)E . We let O(g, q)λ−alg be the full subcategory
of O(g, q), whose objects are those V which have the property that in the weight
decomposition V = ⊕ν∈X∗(T )EV [ν] for the action of h5, we have ν − λ ∈ X∗(T ).
This is an abelian category.

Lemma 3.4.6. If V ∈ O(g, q)λ−alg, then the q-action on the twisted module V (−λ)
integrates to an action of Q.

5By definition, V [ν] = {m ∈ V, h.m = ν(h)m}. In the direct sum, we suppose V [ν] 6= 0.
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Proof. We observe that V (−λ) is a union of finite dimensional representations of
q. We claim that on any finite dimensional representation (W,dρ) of q, the action
integrates to an action (W,ρ) of Q as long as the action of h integrates to an action
of T (which is the reason why we are introducing a twist). Indeed, the Lie algebra
action gives a map U(q)⊗W →W and since W is finite dimensional, we can dualize
this map to a map W →W ⊗ÔQ,e where ÔQ,e is the completion of the local ring at
e. We claim that this map factorizes through W ⊗OQ and gives the coaction map;
this establishes the lemma. This claim must be well known but we could not find
a reference so we sketch the argument. Using the Levi decomposition Q =M ⋉UQ
it suffices to treat the case of M and UQ separately.

To see that the action of the unipotent radical UQ of Q integrates we can just
consider a root groups Uβ ≃Ga inside UQ with Lie algebra uβ generated by uβ, and
the rule V → V ⊗ E[T ], v 7→ exp(Tuβ)v defines an action of Uβ (we use here that
the action of uβ is locally nilpotent). On the other hand, the action of h on V (−λ)
integrates to an action of T . Similarly, the action of Mder integrates (from the
action of m). Indeed, for a semi-simple group, the categories of finite dimensional
representations of the group and of its Lie algebra are equivalent. This actions of
Mder and T combine together to an action of M . �

3.4.7. A particular class of representations of StabQ(w). We now go back to our
original setting. Let QMw = Pw ∩Q/UPw∩Q.

Lemma 3.4.8. If w ∈ MW then QMw is a parabolic subgroup of Mw containing
BMw .

Proof. Clearly, QMw contains Pw∩B/UPw∩Q which is a Borel subgroup of Mw. Any
closed subgroup of a reductive group containing a Borel is a parabolic subgroup. �

Let λ ∈ X∗(MQ)E .

Definition 3.4.9. We let Adm(mw,QMw )(E)λ be the following category. Its objects
are admissible Û(mw)-modules V = colimr Vr which admit an action of QMw , com-
patible with the action of QMw by conjugation on D(Mw,e). We further demand
the following conditions :

(1) For q ∈ QMw , g ∈ mw, and m ∈ V , we have Ad(q)(g).m = q.g.q−1.m.
(2) there exists s ∈ Z>0 and an action of QMw,s on each Vr, inducing an action

of V = colimr Vr which coincides with the restriction of the action of QMw

to QMw,s.
(3) Let us denote by ρQMw

the action of QMw on V . This action differentiates
to an action dρQMw

of qMw . We let ρmw be the action of mw. Then we ask
that dρQMw

= λ+ ρmw |qMw
.

Remark 3.4.10. The category Adm(mw,QMw )(E)λ is an abelian category by gen-
eral results on coadmissible and admissible modules over Fréchet–Stein algebras
(see [ST03], sect. 3).

The category Adm(mw,QMw )(E)λ is a full subcategory of LBmw(E). In particu-
lar, since QMw is connected, the action of QMw in the third condition is uniquely
determined by the mw-action and λ.

Remark 3.4.11. By Proposition 3.2.31 (applied with G replaced by Mw), we see
that objects of Adm(mw,QMw )(E)λ define Mw-equivariant Dλ-modules on the flag
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variety X = QMw\Mw, where Dλ := OX ⊗ Û(mw) ⊗q0
Mw

λ is a ring of twisted
differential operators.

Proposition 3.4.12. There is a natural fully faithful functor: Adm(mw,QMw )(E)λ →
LBStabQ(w)(E)upw .

Proof. It suffices to exhibit an equivalence of categories between Adm(mw,QMw )(E)λ
and a full subcategory of LBStabQ(w)(E)upw . To this end, recall that by Lemma
3.3.6, StabQ(w) = (Pw ∩ Q)e\

(
(Pw,e × Qe) ⋊ (Pw ∩ Q)

)
. Accordingly, we may

consider the full subcategory of representations of StabQ(w) which factor through
(QMw)e\

(
((Mw)e ×Mab

Q,e

)
⋊ QMw and have the property that Mab

Q,e acts through
the character λ. In other words, we consider the full subcategory of LBStabQ(w)(E)
whose objects V satisfy the following properties:

(1) The action of Pw,e factors through an action ρ1 of Mw,e. Moreover V ,
viewed as an object of LBmw(E), is admissible.

(2) The action of Qe factors through Mab
Q,e acting via λ.

(3) The action of Q ∩ Pw factors through an action ρ3 of QMw .

Clearly, this is equivalent to Adm(mw,BMw )(E)λ. �

We now consider the parabolic BGG category O(mw , qMw) for mw and the par-
abolic q ∩ mw = qMw . We think of h →֒ b as giving the Cartan of mw. We now
apply the material of Section 3.4.1 to O(mw, qMw).

By Proposition 3.4.3 (applied to O(mw, qMw)), we have a completion functor
O → LBmw(E), which restricts to a functor O(mw, qMw)λ−alg → LBmw(E).

Proposition 3.4.13. We can uniquely upgrade the completion functor

O(mw, qMw)λ−alg → LBmw(E)

V 7→ V̂ ∨

to a fully faithful functor

O(mw, qMw)λ−alg → Adm(mw,QMw )(E)λ

V 7→ V̂ ∨(λ).

Its essential image is the subcategory of Adm(mw,QMw )(E)λ of objects which are
in the image of the functor O(mw, qMw)λ−alg → LBmw(E) when viewed as mw-
representations.

Remark 3.4.14. As the notation V̂ ∨(λ) suggests, we make a twist of the action of
qMw on V̂ ∨ by λ so that it extends to an action of QMw . (See also Lemma 3.4.6.)

Proof of Proposition 3.4.13. Let V ∈ O(mw, qMw)λ−alg. We consider V̂ ∨. This
space carries an action of Pw,e (factoring through Mw,e). We can also define an
action of (MQ)e on V̂ ∨ via scalar multiplication by the character λ. Clearly these
two actions commute. The product of the two actions defines an action of (MQ)e ∩
Pw,e factoring through QMw,e. We claim that we can extend it to an action of
Q ∩ Pw factoring through QMw . It follows from Lemma 3.4.6 that we have an
action on V (−λ). We thus get an action on V̂ (−λ) = V (−λ)⊗U(mw) Û(mw), since
Mw acts on Û(mw) and U(mw) via the adjoint representation. �
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Remark 3.4.15. Clearly the categories O(mw, qMw)λ−alg and O(mw, qMw)λ+µ−alg

are equivalent if µ ∈ X∗(MQ). However, the functorO(mw, qMw )λ−alg → Adm(mw,QMw )(E)λ
depends on the choice of λ (as clearly the target category depends on λ). We have
a functor Adm(mw,QMw )(E)λ → Adm(mw,QMw )(E)λ+µ, V 7→ V ⊗ E(µ). We have
the following commutative diagram of functors (telling us that V̂ ∨(λ) ⊗ E(µ) =

V̂ ∨(λ + µ)):

O(mw, qMw )λ−alg
//

��

Adm(mw,QMw )(E)λ

��

O(mw, qMw)λ+µ−alg
// Adm(mw,QMw )(E)λ+µ

3.4.16. Higher Coleman sheaves.

Definition 3.4.17. We now define a contravariant exact functor

HCSQ,w,λ : O(mw, qMw)λ−alg → LB(g,Q)(C
†
w,Q)

u0
p

(where “HCS” stands for “higher Coleman sheaf”) as as the composite

O(mw, qMw)λ−alg → Adm(mw,QMw )(E)λ → LBStabQ(w)(E)upw → LB(g,Q)(C
†
w,Q)

u0
p ,

where the first functor is the one defined in Proposition 3.4.13, the second is the
fully faithful functor of Proposition 3.4.12, and the third is the equivalence of Propo-
sition 3.3.14.

In the case Q = B we write HCSw,λ for HCSB,w,λ.

Proposition 3.4.18. Let M ∈ O(mw , bMw)λ−alg. Let µ ∈ X∗(T ). We have
HCSw,λ(M)⊗ E(µ) = HCSw,λ+µ(M).

Proof. This follows from Remark 3.4.15. �

We have an action of Z(mw) on O(mw, bMw)λ−alg. We also have an action Z(m)

on LB(g,B)(C
†
w)

u0
p via Θhor. These two action are related by the following lemma.

We let ι : Z(m) → Z(m) be the map induced by the inverse map on M , and let
w : mw → m be conjugation by w.

Proposition 3.4.19. Let us consider the map w : Z(mw)→ Z(m). Then we have
that HCSw,λ(z) = Θhor(ιwz) for any z ∈ Z(mw).
Proof. This follows directly from the construction, bearing in mind Proposition 3.3.14.

�

3.5. Localization on the partial flag variety.

3.5.1. Statement of the localization problem. Recall that in Section 3.2.37 we de-
fined an object Cla ∈ LB(g,G)(FL). This is a D̃la-module and it carries an action
∗2 of g which commutes with the D̃la-module structure.

We define a localization functor:

Loc : D−(U(g)) → D(D̃la)

M 7→ RHomg,∗2(M, Cla)
where D(D̃la) is the derived category of solid D̃la-modules. We will sometimes drop
the subscript ∗2 from the notation, and simply write RHomg(M, Cla).
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Recall that if M is an object of Modfg(U(g)) then we let M̂ =M ⊗U(g) Û(g) and
M̂∨ = Hom(M̂, E). The following lemma gives another description of Loc(M) for
M ∈ Modfg(U(g)).

Lemma 3.5.2. Assume that M ∈Modfg(U(g)). Then we have:

RHomg,∗2(M, Cla) = RHomg,∗2(M̂, Cla)
= RHomg,∗2(E, M̂

∨ ⊗ Cla).
Proof. For the first equality, we use that Cla is a Û(g)-module so that RHomU(g),∗2

(M, Cla) =
RHomÛ(g),∗2

(M ⊗LU(g) Û(g), Cla). It follows from Corollary 2.2.36 that M ⊗LU(g)

Û(g) = M̂ [0].
For the second equality, we have an obvious map

RHomg,∗2(E, M̂
∨ ⊗ Cla)→ RHomg,∗2(M̂, Cla) = RHomg,∗2(M, Cla).

By resolving M by free modules it suffices to check that this map is a quasi-
isomorphism for M = U(g). But then we have

RHomg,∗2(U(g), Cla) = Cla[0] = RHomg,∗2(E,OG,e ⊗ Cla)
where the first equality is obvious. For the other equality, we think ofOG,e⊗Cla as a
submodule ofOG,e⊗OG,e⊗OFL which is the germs of functions f(g′, g, x) at (e, e) in
G×G×FL. The g-action is induced from g′′.f(g′, g, x) = λ−1(b)f((g′′)−1g′, gg′′, x)
for g′′ ∈ Ge. We consider the automorphism of OG,e ⊗ Cla given by the map
f(g′, g, x) 7→ [(g′, g) 7→ f(g′, gg′, x)]. Via this automorphism, the g-action becomes
g′′.f(g, g′, x) = f((g′′)−1g′, g, x) for g′′ ∈ Ge, and is therefore only on the first factor.
We can now use the flatness of Cla over E and Lemma 2.3.4 to conclude. �

We recall that Z(g) lies in the centre of D−(U(g)). We also have defined a map
Θhor : Z(m)→ EndOFL(Cla) in section 3.2.37.

Lemma 3.5.3. For any z ∈ Z(g), we have Loc(z) = Θhor(HC(ιz)).

Proof. This follows from Lemma 3.2.43. �

Corollary 3.5.4. Let M ∈ Mod(U(g)) be a module with infinitesimal character
λ ∈ X∗(T )E (modulo dotted W -action). Then on Loc(M), the horizontal action of
Z(m) factors through an action of Z(m)⊗HC,Z(g) (−w0λ).

Proof. We recall that for the mapHCg : Z(g)→ U(h), we haveHCg◦ι = −w0HCg.
The rest follows from Lemma 3.5.3. �

Remark 3.5.5. Let us describe Spec Z(m) ⊗HC,Z(g) (−w0λ), or equivalently
the idempotents in this finite E-algebra (note however that in singular weight
Z(m)⊗HC,Z(g) (−w0λ) is not reduced). The possible characters of Z(m)⊗HC,Z(g)

(−w0λ) range through the set {w · (−w0λ), w ∈ MW}. Since w · (−w0λ) =
−w0,M (w0,Mww0 · λ+ 2ρM ) we deduce that

Spec Z(m)⊗HC,Z(g) (−w0λ) = {−w0,M (w · λ+ 2ρM ), w ∈ MW}.
It follows that if M has infinitesimal character λ, then

Loc(M) = ⊕w∈MWLoc(M)−w0,M (w·λ+2ρM )

where Loc(M)−w0,M (w·λ+2ρM ) is the direct factor which corresponds to the idem-
potent in Z(m)⊗HC,Z(g) (−w0λ) given by −w0,M (w · λ+ 2ρM ).
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We conclude our generalities on our localization problem by showing that it is
pre-dual to an obvious variant of the classical localization problem as in [BB83]
(which is of course formulated in the algebraic context, and involves a fixed choice
of (generalized) infinitesimal character). In order to do so, we recall the Chevalley–
Eilenberg resolution of E (with d = dim g):

0→ U(g)⊗ Λdg→ · · · → U(g)→ E → 0.

By Lemma 3.5.2, for a finitely generatedU(g)-moduleM , Loc(M) = RHomg,∗2(M, Cla)
is computed by the following complex of LB-sheaves (in degree [0, d]):

0→ Cla ⊗ M̂∨ → · · · → Cla ⊗ M̂∨ ⊗ Λdg∨ → 0. (3.5.6)

Proposition 3.5.7. For M ∈ Modfg(U(g)), we have RHomOFL
(RHomg,∗2(M, Cla),OFL) =

D̃la ⊗LU(g) M .

Proof. The same computation as in Proposition 3.2.44 shows that the derived OFL-
dual of the complex:

0→ Cla ⊗ M̂∨ → · · · → Cla ⊗ M̂∨ ⊗ Λdg∨ → 0

is the complex:

0→ D̃la ⊗ M̂ ⊗ Λdg→ · · · → D̃la ⊗ M̂ → 0. �

3.5.8. B-action. We can also exploit the B-equivariant structure on Loc(M). To
this end, suppose that M ∈ O(g, b)λ-alg, so that M(−λ) has an action of B (see
Remark 3.4.6). Then by Proposition 3.4.3, M̂∨(λ) ∈ LB(g,B)(E). We deduce
that the complex (3.5.6) computing Loc((M(−λ)) = RHomg,∗2(M(−λ), Cla) is a
complex in LB(g,B)(FL). More precisely, Cla ⊗ M̂∨ ⊗ Λig∨ carries the induced
g-action from the ∗1,3-action on Cla and the B-action which is the tensor product
of the B-action on Cla and the B-action on M̂∨ ⊗ Λig∨. There is another g-action
which is the tensor product of the ∗2 action on Cla and the g-action on M̂ (and
which is used to construct the differentials in the complex).

3.5.9. Main theorem. ForM ∈ O(g, b)λ-alg, the cohomology sheaves of Loc(M(−λ))
are (g, B)-equivariant sheaves that we want to describe. As a first step we intend
to describe their restrictions to C†

w for each w ∈ MW .

Remark 3.5.10. In principle the cohomology sheaves could be sheaves of solid
E-vector spaces which need not arise from nice sheaves of topological spaces (in
more classical language, the cohomology could be non-separated). However, under
the assumption that λ is non-Liouville, we see as a consequence of the following
theorem that they are actually separated objects and again belong to the category
LB(g,B)(C

†
w).

Theorem 3.5.11. Let M ∈ O(g, b)λ−alg and assume that λ is non-Liouville. Then
we have:

Hi(Loc(M(−λ)))|C†
w
= HCSw,λ(Hi(uPw ,M)).

Proof. By the definition of the functor HCS the sheaf HCSw,λ(Hi(uPw ,M)) cor-
responds via the equivalence of categories of Proposition 3.3.11 to the Stab(w)-

representation ̂Hi(up,M)
∨
(λ). By Corollary 2.3.33, we can identify this with
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ExtiuPw
(E, M̂∨(λ)), and by Proposition 3.5.14 below, this can in turn be identi-

fied with
Extig,∗2

(M̂(−λ),OUPw\G,e). (3.5.12)
By definition we have

Hi(Loc(M(−λ)))|C†
w
= Extig,∗2

(M(−λ), Cla|C†
w
). (3.5.13)

Morally, it remains to show that passage to the fiber at w identifies the right hand
side of (3.5.13) with 3.5.12. However, we have to be a little careful with this
comparison, because we have not developed a theory which allows us to consider
arbitrary sheaves of solid E-vector spaces.

To this end, we consider the Chevalley–Eilenberg complex computing Extig,∗2
(M(−λ), Cla|C†

w
).

Under the equivalence of categories of Proposition 3.3.11 (given by taking the fiber
atw), this complex corresponds to the following complex of Stab(w)-representations,

0→ OUPw\G,e⊗M̂∨(λ)→ OUPw\G,e⊗M̂∨(λ)⊗g∨ → OUPw\G,e⊗M̂∨(λ)⊗Λ2g∨ → . . .

which computes RHomg,∗2(M̂(−λ),OUPw\G,e), as required.
(This cohomology is computed in the category of solid E-vector spaces. Again,

the cohomology groups could be very pathological (from the classical perspective).
For clarity, we can make explicit the action of Stab(w) on OUPw\G,e⊗M̂∨(λ)⊗Λig∨.
This action consists of:

• An action of (Pw)e induced by the action on OUPw\G,e via p.f(−) =

f(p−1−).
• An action of Be, which is the tensor product of the action on OUPw\G,e via
b.f(−) = f(−b) and of the restriction to Be of the B-action on M̂∨(λ) ⊗
Λig∨.
• An action of B ∩Pw which is the tensor product of the action on OUPw\G,e

via b.f(−) = f(b−1 − b) and the action of B ∩ Pw on M̂∨(λ)⊗ Λig∨.
The differentials in the complex involve the g-action which is the tensor product

of the ∗2 action on OUPw\G,e and the g-action on M̂∨(λ) ⊗ g∨.) �

Proposition 3.5.14. If M ∈ O(g, b)λ-alg, then we have a quasi-isomorphism
RHomg,∗2(M(−λ),OUPw\G,e) = RHomuPw

(E, M̂∨(λ)).

Proof. Indeed we have

RHomg,∗2(M(−λ),OUPw\G,e) = RHomg,∗2(E, M̂
∨(λ)⊗OUPw\G,e)

= RHomg⊕uPw
(E, M̂∨(λ)⊗OG,e)

= RHomuPw
(E, M̂∨(λ)).

Here the first equality follows from the same argument as in Lemma 3.5.2, the
second equality uses that RHomuPw

(E,OG,e) = OUPw\G,e[0] and the flatness of
M̂∨(λ) (as it is a colimit of Smith spaces), and the last equality follows from
Lemma 2.3.4. �

3.5.15. Localization of finite dimensional representations. Let λ ∈ X∗(T )+. Let Vλ
be the irreducible finite dimensional representation of G of highest weight λ viewed
as an object of O(g, b)0−alg. Let λ ∈ X∗(T )+,M . We let Lλ be the irreducible finite
dimensional representation of M of highest weight λ. We also let d = dim(uP ). We
recall the following theorem of Kostant:
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Theorem 3.5.16. We have that Hi(uP , Vλ) = ⊕w∈MW,ℓ(w)=d−iLw·λ+2ρM .

Proof. See for example [oGVAG09, Thm. 4.2.1] (together with (2.3.3) to pass from
cohomology to homology). �

Proposition 3.5.17. We have Loc(Vλ) =
⊕

w∈MW Loc(Vλ)−w0,M (w·λ+2ρM ) and
Loc(Vλ)−w0,M (w·λ+2ρM ) = L−w0,M (w·λ+2ρM )[−d+ ℓ(w)].

Proof. Since there is a G-action on Vλ, we see that Loc(Vλ) is in fact computed
by a complex in LB(g,G)(FL) (and not just in LB(g,B)(FL)). Via the equiva-
lence of categories of Proposition 3.2.31, this complex corresponds to the com-
plex RHomg,∗2(Vλ,OUPw\G,e) in L(g,P )(E), and as in Proposition 3.5.14, we find
that this is quasi-isomorphic to RHomuPw

(E, Vλ
∨). It follows that the cohomol-

ogy groups are simply given by the representations of M : ExtiuPw
(E, Vλ

∨) =

Hi(uP , Vλ)
∨. By Kostant’s Theorem 3.5.16, these correspond to ⊕w,ℓ(w)=d−iL−w0,M (w·λ+2ρM ),

as required. �

Remark 3.5.18. Proposition 3.5.17 is clearly compatible with Theorem 3.5.11,
since

Loc(Vλ)|C†
w

= ⊕w′∈MWL−w0,M (w′·λ+2ρM )[ℓ(w
′)− d]|C†

w

= ⊕di=0HCSw,λ(Hi(uPw , Vλ))

but it also gives more information as it describes all the extensions between the
sheaves on the Bruhat strata.

3.5.19. Localization of Verma modules in the non-Liouville case. Let λ ∈ X∗(T )E
be non-Liouville. We view the Verma module Mλ of weight λ as an object of
O(g, b)λ−alg. Thanks to Theorem 3.5.11, we see that understanding Loc(Mλ(−λ))|C†

w

boils down to understanding the cohomology of some Verma modules, as in Theo-
rem 2.3.19. We also assume for simplicity that uP is abelian (this assumption holds
in our applications to Shimura varieties).

Corollary 3.5.20. Assume that λ ∈ X∗(T )E is non-Liouville and that uPw is
abelian. Then the following hold:

(1) All the cohomology groups Hi(Loc(Mλ(−λ)))|C†
w

belong to the image of the
functor HCSw,λ : O(mw, bMw)λ-alg → LB(g,B)(C

†
w).

(2) The cohomology groups are zero if i > d− ℓ(w).
(3) There is a surjective “highest weight” map:

Hd−ℓ(w)(Loc(Mλ(−λ)))|C†
w
→ HCSw,λ(M(mw)λ+w−1w0,Mρ+ρ).

(4) The kernel of the highest weight map, and the cohomology groups Hi(Loc(Mλ(−λ)))|C†
w

for i < d − ℓ(w), admit finite filtrations with sub-quotients ranging among
the sheaves Lw,−w0,M (w′·λ+2ρM )⊗E(λ−w−1w′ · λ−w−1w0,Mρ− ρ), where
w′ ∈ wW<λ.

Proof. This is immediate from Theorem 3.5.11 and Theorem 2.3.19, bearing in
mind (2.3.22) and Proposition 3.4.18. �

Remark 3.5.21. In particular, if λ is non-Liouville and antidominant (i.e. that
W<λ = ∅), we see that the cohomology is concentrated in degree d− ℓ(w) and that
the highest weight map is an isomorphism on this cohomology.
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3.5.22. Localization of Verma modules in general. Let λ ∈ X∗(T )E . For sake of
completeness, in this section we give the following general result (without any non-
Liouville assumption on λ) which is a weaker form of Corollary 3.5.20. We still
assume for simplicity that uP is abelian. This result was obtained by Juan Esteban
Rodriguez-Camargo in his PhD thesis.

Theorem 3.5.23 (Rodriguez-Camargo). Let Mλ ∈ O(g, b)λ−alg be the Verma mod-
ule of weight λ. Let w ∈ MW . The following is true:

(1) Hi(Loc(Mλ(−λ)))|C†
w

vanishes unless i ∈ [0, d− ℓ(w)].
(2) We have a surjective “highest weight” map

Hd−ℓ(w)(Loc(Mλ(−λ)))|C†
w
→ HCSw,λ(M(mw)λ+w−1w0,Mρ+ρ).

(3) If w = wM0 , the above map is an isomorphism.

Proof. We remark that

Loc(Mλ) = RHomg(Mλ, Cla) = RHomb(E(λ), Cla). (3.5.24)

Thus, the fiber of Loc(Mλ) atw is the Stab(w)-representation Extb,∗2(E(λ),OUPw \G,e),
and the result is immediate from Proposition 3.5.25 below. �

Proposition 3.5.25. The cohomology groups Extib,∗2
(E(λ),OUPw \G,e) vanish out-

side degrees [0, d− ℓ(w)]. Moreover, there is a canonical surjective map

Ext
d−ℓ(w)
b,∗2

(E(λ),OUPw \G,e)→M(mw)
∨
λ+w−1w0,Mρ+ρ.

If w = wM0 , this map is an isomorphism.

Proof. We recall that by Proposition 3.5.14 (and its proof), we have:

RHomb,∗2(E(λ),OUPw \G,e) = RHomuPw⊕b(E,OG,e(−λ))
= RHomuPw

(E, M̂∨
λ ).

Now, the cohomology RΓ(uPw ∩ b̄, M̂∨
λ ) is concentrated in degree 0. (Indeed, recall

from Remark 3.4.4 that M̂∨
λ = (OG/U,e(−λ))h. As a uPw ∩ b̄-module, this module

can be written in the form OUPw∩B̄,e⊗V where V is an LB-space of compact type
with trivial action. We observe that Hi(uPw ∩ b̄,OUPw∩B̄,e) = 0 if i > 0.)

We therefore have:

RΓ(uPw , M̂
∨
λ ) = RΓ(uPw ∩ b,RΓ(uPw ∩ b̄, M̂∨

λ ))

= RΓ(uPw ∩ b, H0(uPw ∩ b̄, M̂∨
λ )),

and we see in particular that the cohomology vanishes above degree d − ℓ(w) =
dim uPw ∩ b.

We now consider the surjective “restriction” map OG,e → OPw(B∩ŪPw ),e induced
by the inclusion Pw(B ∩ ŪPw) →֒ G. We deduce a map:

RHomuPw⊕b(E(λ),OG,e)→ RHomuPw⊕b(E(λ),OPw(B∩ŪPw ),e).

We claim that this this map is surjective in degree d − ℓ(w), and that it is an
isomorphism if w = wM0 . To see this, we first take b and uPw ∩b-cohomology which
gives a surjective map (the cohomology is still in degree 0):

(OUPw∩B̄\G/B,e(−λ))h → (OUPw∩B̄\Pw/B∩Pw,e(−λ))h.
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Taking the cohomology of uPw ∩ b, we see that the above surjective map induces a
surjective map in top degree cohomology (which is an isomorphism if w = wM0 ).

It remains to identify the target of the surjection with M(mw)
∨
λ+w−1w0,Mρ+ρ.

We cannot immediately deduce this, because the computation above is not mw-
equivariant (because the decomposition of uPw = uPw ∩ b ⊕ uPw ∩ b̄ is not mw-
invariant). In order to identify the mw-module structure of RHomuPw⊕b(E(λ),OPw(B∩ŪPw ),e)
we compute the cohomology in a different way, by first considering uPw -cohomology,
and then b-cohomology.

Certainly

RHomuPw
(E,OPw(B∩ŪPw ),e) = OUPw\Pw(B∩ŪPw ),e[0],

so it remains to show that

Ext
d−ℓ(w)
b,∗2

(E(λ),OUPw \Pw(B∩ŪPw ),e) = (OMw/UMw ,e
(−λ− w−1w0,Mρ− ρ))h.

We will then be done, because the right hand side is M̂(mw)
∨
λ+w−1w0,Mρ+ρ by Re-

mark 3.4.4 and the proof of Proposition 3.4.13.
We now show the claim. Note that b = b ∩ pw ⊕ b ∩ ūPw . We first compute

RΓ∗2(b ∩ ūPw ,OUPw\Pw(B∩ŪPw ),e) = OUPw\Pw ,e[0] = OMw ,e[0].

We now observe that OMw,e is a b∩pw-representation, with b∩uPw acting trivially.
We deduce that

Ext
d−ℓ(w)
b∩pw,∗2

(E(λ),OMw ,e) = Homb∩mw,∗2(E(λ),OMw ,e ⊗ ∧d−ℓ(w)(uPw ∩ b)∨)

= (OMw/UMw ,e
(−λ− w−1w0,Mρ− ρ))h. �

3.6. Localization and higher Coleman sheaves at singular weight. In this
section we study localization at a singular weight for G = GSp4 and P is the Siegel
parabolic associated to the cocharacter µ = (−1/2,−1/2; 1/2) ∈ X∗(T )E . We freely
use our notation for GSp4 (see 1.8.8). We consider the Klingen parabolic Q ⊇ B
attached to the simple root β. We denote by MQ the associated Levi which is a
group of semi-simple rank 1. It is important for us that wM0 sβ ∈ MW ; this implies
that the stratum CwM

0 ,Q is the union of two B-orbits CwM
0

and CwM
0 sβ . We wish

to study the localization Loc(M(g)λ(−λ))|C
wM

0 ,Q
for λ = (1, 1;w). We notice that

in this singular weight the horizontal action is not semi-simple. We are going to
study this action and describe the semi-simple part.

3.6.1. Geometry of the strata. We consider the Q-orbit CwM
0 ,Q on FL, which is the

union of the two Bruhat strata CwM
0

and CwM
0 sβ .

Note that the map Q → CwM
0 ,Q, q 7→ wM0 q induces an isomorphism PwM

0
∩

Q\Q→ CwM
0 ,Q. The projection Q→MQ induces a map (PwM

0
∩Q)\Q→ (PwM

0
∩

MQ)\MQ. SinceMQ has semi-simple rank one and (PwM
0
∩MQ) is a Borel subgroup,

we can identify (PwM
0
∩MQ)\MQ with P1, with ∞ the image of wM0 sβ and 0 the

image of wM0 . We therefore have a natural map π : CwM
0 ,Q → P1, with π−1({∞}) =

CwM
0 sβ and π−1(A1) = CwM

0
; moreover,B∩sβBs−1

β acts transitively on π−1(Gm) =
CwM

0
∩ CwM

0
sβ .
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3.6.2. Sheaves on the union of strata. The inclusionGe⋊B →֒ Ge⋊Q induces an in-
clusion StabB(w

M
0 ) →֒ StabQ(w

M
0 ), which induces the restriction map LB(g,Q)(C

†

wM
0 ,Q

)→
LB(g,B)(C

†

wM
0

). Similarly, conjugation by sβ gives an inclusion StabB(w
M
0 sβ) →֒

StabQ(w
M
0 ), which induces the restriction map LB(g,Q)(C

†

wM
0 ,Q

)→ LB(g,B)(C
†

wM
0 sβ

).
We also note that the image of Q ∩ PwM

0
in MwM

0
is the Borel BM

wM
0

(and

the image of Q ∩ PwM
0 sβ in MwM

0 sβ is the Borel BM
wM

0
sβ

). Therefore, the source

category O(mwM
0
, qM

wM
0

) for producing sheaves on CwM
0 ,Q (see Definition 3.4.17) is

tautologically equal to O(mwM
0
, bM

wM
0

).

Proposition 3.6.3. Let ν ∈ X∗(MQ)E.

(1) Conjugation by sβ induces an equivalence of categories sβ : O(mwM
0
, bM

wM
0

)ν-alg →
O(mwM

0 sβ , bMwM
0

sβ
)ν-alg.

(2) For any M ∈ O(mwM
0
, bM

wM
0

)ν-alg, we have

HCSQ,wM
0 ,ν(M)|C†

wM
0

= HCSwM
0 ,ν(M),

HCSQ,wM
0 ,ν(M)|C†

wM
0 sβ

= HCSwM
0 sβ ,ν(sβM).

Proof. The first point is obvious, and the second is immediate from the definition of
the functorsHCS (i.e. from the construction in the proof of Proposition 3.4.12). �

3.6.4. Singular localization. Write jwM
0

: C†

wM
0
→֒ C†

wM
0 ,Q

, jwM
0 sβ : C†

wM
0 sβ

→֒
C†

wM
0 ,Q

for the inclusions. We take λ = (1, 1;w) ∈ X∗(T ). Recall that ρ =

(−1,−2; 0), so that λ+ρ = (0,−1;w) is invariant under sβ. However, this character
is not integral. Let us define η = (0,−1; 1) which differs from λ+ ρ by a character
of the centre, and is still invariant under sβ.

Applying Proposition 3.6.3 with ν = η, we have a short exact sequence of (g, Q)-
equivariant sheaves:

0→ (jwM
0
)!HCSwM

0 ,η(M(mwM
0
)λ)→ HCSQ,wM

0 ,η(M(mwM
0
)λ)→ HCSwM

0 sβ ,η(M(mwM
0 sβ )sβλ)→ 0

(3.6.5)
We want to study Loc(M(g)λ(−λ))|C†

wM
0

,Q

= RHomb,∗2(λ, Cla|C†

wM
0

,Q

).

Proposition 3.6.6. We have an exact triangle:

(jwM
0
)!HCSwM

0 ,λ(M(mwM
0
)λ)→ Loc(M(g)λ(−λ))|C†

wM
0

,Q

→ HCSwM
0 sβ ,λ(M(mwM

0 sβ )sβλ)[−1]
+1→

Proof. This is immediate from consequence of Theorem 3.5.11 together with The-
orem 2.3.19 and Proposition 2.8.3. �

There is a horizontal action Θhor of Z(m) on Loc(Mλ(−λ))|C†

wM
0 ,Q

. By Propo-

sition 3.4.19 (see also Remark 4.6.8 below), this action is via µ0 := 〈−w0λ, µ〉 on
both HCSwM

0 ,λ(M(mwM
0
)λ) and HCSwM

0 sβ ,λ(M(mwM
0
)sβλ) (and in particular the

action of µ doesn’t split the triangle). Taking the derived invariants for µ − µ0

yields a triangle:



64 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

(jwM
0
)!HCSwM

0 ,λ(M(mwM
0
)λ)⊕ (jwM

0
)!HCSwM

0 ,λ(M(mwM
0
)λ)[−1]→

RHomb,∗2;µ((λ, µ0), Cla|C†

wM
0 ,Q

)→

HCSwM
0 sβ ,λ(M(mwM

0
)sβλ)[−1]⊕HCSwM

0 sβ ,λ(M(mwM
0
)sβλ)[−2]

+1→

(3.6.7)

Taking the H1 yields the following short exact sequence of (g, B)-equivariant
sheaves:

0→ (jwM
0
)!HCSwM

0 ,λ(M(mwM
0
)λ)→ Ext1b,∗2;µ((λ, µ0), Cla|C†

wM
0

,Q

)→ HCSwM
0 sβ ,λ(M(mwM

0
)sβλ)→ 0

(3.6.8)
The main result of this section is the following:

Theorem 3.6.9. The two extensions of (g, B)-equivariant sheaves (3.6.8) and
(3.6.5) differ by a twist of the B-action by the character λ − η and multiplication
by a scalar in E×.

Remark 3.6.10. This arguments in the remainder of this section admit a simpler
analogue in the GL2-context; see [Pil24, §6].

3.6.11. Preparations for the proof of Theorem 3.6.9. We have commuting actions of
b (via ∗2) and µ (via the horizontal action) on Cla. We begin by isolating a certain
sub-Lie algebra of b⊕ Eµ whose cohomology on Cla|C†

wM
0

,Q

is in degree 0.

We use the usual standard basis elements Xβ, X−β, Hβ with Hβ = [Xβ , X−β].
We set h′ := ker(β), so that b-cohomology can be obtained by first taking h′ ⊕ uQ-
cohomology, and then taking EXβ ⊕ EHβ-cohomology. We write λ′ = λ|h′.

Lemma 3.6.12. Cla,λ′,µ0 := Exth′⊕uQ,µ((λ
′;µ0), Cla|C†

wM
0 ,Q

) is concentrated in de-

gree 0.

Proof. We can do the computation separately on each of the strata C†

wM
0

and C†

wM
0 sβ

,

so we reduce to showing that the cohomology on the fibers at wM0 and wM0 sβ
of Cla vanishes in positive degrees. These fibers are respectively OUP

wM
0

\G,e and

OUP
wM

0
sβ

\G,e, and the required vanishing follows from a consideration of the actions

of p̄wM
0
∩b = b and p̄wM

0 sβ ∩b = h⊕ uQ respectively. (Note that µ = diag(0, 0, 1, 1),
so that wM0 µ = diag(1, 1, 0, 0) and sβw

M
0 µ = diag(0, 1, 0, 1), and therefore h′ ⊕ E ·

wM0 µ = h′ ⊕ E · sβwM0 µ = h.) �

We thus see that

RHomb,∗2;µ((λ, µ0), Cla|C†

wM
0

,Q

) = RHomEXβ⊕EHβ
(λ, Cla,λ′,µ0)

(where the restriction of λ to EXβ ⊕ EHβ takes Xβ 7→ 0). This cohomology is
represented by the following Chevalley–Eilenberg complex K• (in degrees 0, 1 and
2):

Cla,λ′,µ0

(
Xβ Hβ − λ(Hβ)

)

→ Cla,λ′,µ0⊗E(−β)⊕Cla,λ′,µ0



Hβ − λ(Hβ)
−Xβ





→ Cla,λ′,µ0⊗E(−β).
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Since
HCSwM

0 ,λ(M(mwM
0
)λ) = Ext0b(λ, Cla|C†

wM
0

),

we deduce that s∗βHCSwM
0 ,λ(M(mwM

0
)λ) ⊗ E(−β) = Ext0sβb(sβλ, Cla|C†

wM
0

sβ
) ⊗

E(−β). On this sheaf, h acts via sβλ − β = λ (this is a crucial place where
we use that the weight is singular), and µ still acts via µ0. Thus, we can consider
the map

Ext0sβb(sβλ, Cla|C†

wM
0

sβ
)⊗ E(−β) → K1|C†

wM
0

sβ
= Cla,λ′,µ0 |C†

wM
0

sβ
⊗ E(−β)⊕ Cla,λ′,µ0 |C†

wM
0

sβ

s 7→ (s, 0),

which induces a map

Ext0sβb(sβλ, Cla|C†

wM
0

sβ
)⊗ E(−β)→ Ext1b,∗2;µ((λ, µ0), Cla|C†

wM
0

sβ
). (3.6.13)

We will show below that (3.6.13) is an isomorphism. We begin by studying its
restrictions to C†

wM
0
∩ C†

wM
0
sβ and to C†

wM
0 sβ

; it is immediate from the definitions

that the former restriction is a map in LB(g,B∩Bsβ
)(C

†

wM
0
∩C†

wM
0
sβ), and the latter

is a map in LB(g,B∩Bsβ
)(C

†

wM
0 sβ

).

Lemma 3.6.14.

(1) The restrictions of the left and right hand sides of (3.6.13) to C†

wM
0
∩C†

wM
0
sβ

are isomorphic, and their endomorphism algebras in LB(g,B∩Bsβ
)(C

†

wM
0
∩

C†

wM
0
sβ) are the scalars E.

(2) The restrictions of the left and right hand sides of (3.6.13) to C†

wM
0 sβ

are isomorphic, and their endomorphisms in LB(g,B∩Bsβ
)(C

†

wM
0 sβ

) are the
scalars E.

Proof. To begin, we note that it follows from theQ-equivariance ofHCSQ,wM
0 ,η(M(mwM

0
)λ)

that

s∗β(HCSQ,wM
0 ,η(M(mwM

0
)λ)⊗E(λ− η+β)) = HCSQ,wM

0 ,η(M(mwM
0
)λ)⊗E(λ− η).

It follows that

Ext0sβb(sβλ, Cla|C†

wM
0

sβ
)|C†

wM
0

∩C†

wM
0

sβ
= s∗βHCSwM

0 ,λ(M(mwM
0
)λ)⊗ E(−β) |C†

wM
0

∩C†

wM
0

sβ

= HCSwM
0 ,λ(M(mwM

0
)λ) |C†

wM
0

∩C†

wM
0

sβ
.

On the other hand

Ext1b,∗2;µ((λ, µ0), Cla|C†

wM
0

sβ
)|C†

wM
0

∩C†

wM
0

sβ
= HCSwM

0 ,λ(M(mwM
0
)λ) |C†

wM
0

∩C†

wM
0

sβ

(by Proposition 3.6.3 and the proof of Proposition 3.6.6.)
We now check that the endomorphisms of the sheafHCSwM

0 ,λ(M(mwM
0
)λ) |C†

wM
0

∩C†

wM
0

sβ

in the category LB(g,B∩Bsβ
)(C

†

wM
0
∩ C†

wM
0
sβ) are scalars.



66 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

Since B ∩ Bsβ acts transitively on CwM
0
∩ CwM

0
sβ by section 3.6.1, an endo-

morphism is determined by its behavior at any fiber. More precisely, let x ∈
CwM

0
∩ CwM

0
sβ . We consider the uniformization map

Ge ⋊ (B ∩Bsβ ) → C†

wM
0
∩ C†

wM
0
sβ

(g, b) 7→ xgb.

Let Stab(x) be the stabilizer of x for this action. We have Stab(x) = {(g, b), gb ∈
Px}. Exactly as in the proof of Lemma 3.3.6, this group is

(Px ∩B ∩Bsβ )e\[((Px)e × (B ∩Bsβ )e)⋊ (Px ∩B ∩Bsβ )].
The fiber we consider is the completion of a dual Verma module for mx (by Defini-
tions 3.4.17 and 4.6.6), and the first part of the lemma follows from the property
that the endomorphisms of a Verma module are the scalars (together with Theo-
rem 2.2.39).

The second part is proved in the same way, as follows. We first observe that

Ext0sβb(sβλ, Cla|C†

wM
0

sβ
)⊗ E(−β)|C†

wM
0

sβ

= HCSwM
0 sβ ,λ(M(mwM

0 sβ )sβλ)

= Ext1b,∗2;µ((λ, µ0), Cla|C†

wM
0 sβ

)

We reduce to showing that the endomorphisms of HCSwM
0 sβ ,λ(M(mwM

0 sβ )sβλ) in

the category LB(g,B∩Bsβ
)(C

†

wM
0 sβ

) are scalars which again follows from the property
that endomorphisms of Verma modules are scalar. �

Proposition 3.6.15. The map (3.6.13) is an isomorphism.

Proof. By Lemma 3.6.14 it suffices to show that (3.6.13) is nonzero on the fiber at
one point of CwM

0 sβ and at one point of CwM
0
∩CwM

0
sβ. It suffices in turn to prove

that the map

Cla,λ′,µ0 Cla,λ′,µ0
Hβ−λ(Hβ)

induces an injective map on the fibers at wM0 sβ and at one point of CwM
0
∩CwM

0
sβ.

By definition, the kernel of this map on the fiber at a point x is

Homh⊕uQ,∗2;µ((λ, µ0), Clax ).
We first consider the fiber at x = wM0 sβ , where Cla

wM
0 sβ

= OUP2w
\G,e. We have

uP
wM

0
sβ

= EXβ ⊕ EX−α ⊕ EX−δ, uQ = EXα ⊕Xδ ⊕Xγ .

For any s ∈ Φ we write Us for the corresponding 1−parameter subgroup. We
pick a coordinate xs on Us with the property that the corresponding vector field
is Xs. Then elements of Homh⊕uQ,∗2(λ, Clax ) are germs of analytic functions on
U−βU−γT , which can be written as

f(x−β , x−γ , t) =
∑

k−β ,k−γ∈Z≥0

x
k−β

−β x
k−γ

−γ λ(t).

We need to show that if (Θhor(µ)−µ0)f = 0, then f = 0. By definition, Θhor(µ)
acts on the left via the action of −(wM0 sβ)

−1µ ∈ h. It follows that

Θhor(µ) = 〈(wM0 sβ)
−1µ, β〉x−β∂x−β

+ 〈(wM0 sβ)
−1µ, γ〉x−γ∂x−γ − 〈(wM0 sβ)

−1µ, λ〉
= x−β∂x−β

− w

2
.
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(We are using here that (wM0 sβ)
−1µ = (− 1

2 ,
1
2 ;

1
2 ), β = (−2, 0; 0), γ = (−1,−1; 0),

λ = (1, 1;w).) Thus Θhor(µ) acts by k−β− w
2 on xk−β

−β x
k−γ

−γ λ(t). Since µ0 = −1− w
2 ,

we deduce that Θhor(µ)− µ0 is injective.
We now consider the point wM0 sβg−β ∈ CwM

0
∩CwM

0
sβ, where g−β = exp(X−β).

We see that

(wM0 sβg−β)
−1µ = (wM0 sβ)

−1µ+ 〈(wM0 sβ)
−1µ, β〉X−β .

An element of Cla,λ
′,µ0

2wg−β
can still be expressed as a germ of an analytic function on

U−βU−γT , and can thus be written as

f(x−β , x−γ , t) =
∑

k−β ,k−γ∈Z≥0

x
k−β

−β x
k−γ

−γ λ(t).

We now find that Θhor(µ) = x−β∂x−β
− w

2 + ∂x−β
, so that

Θhor(µ)x
k−β

−β x
k−γ

−γ λ(t) = (k−β −
w

2
)x
k−β

−β x
k−γ

−γ λ(t) + k−βx
k−β−1
−β x

k−γ

−γ λ(t),

and we again deduce that Θhor(µ) − µ0 is injective. �

Proof of Theorem 3.6.9. By Proposition 3.6.15, the sheaf Ext1b,∗2;µ((λ, µ0), Cla|C†

wM
0 ,Q

)

is obtained by gluing HCSwM
0 ,λ(M(mwM

0
)λ) and s∗βHCSwM

0 ,λ(M(mwM
0
)λ)⊗E(−β)

along C†

wM
0
∩ C†

wM
0
sβ . The same is true of HCSQ,wM

0 ,η(M(mwM
0
)λ) ⊗ E(λ − η) by

construction. The gluing data is that of an isomorphism of (g, B∩Bsβ )-equivariant
sheaves, and by Lemma 3.6.14 the space of such isomorphisms identifies with E×,
so there is (up to isomorphism) a unique way to glue, as required. �

4. p-adic Eichler–Shimura theory

4.1. Introduction. The main goal of this section (as mentioned in §1.4) is to
relate higher Coleman theory to completed cohomology, so that (ultimately) we
can connect the Galois-theoretic properties of a p-adic ordinary (overconvergent)
modular form (in terms of the action of the Sen operator) to its classicality.

Before proceeding, we introduce some notation. We fix a Hodge type Shimura
datum (G,X). We assume that GQp is quasi-split. Let P be the parabolic cor-
responding to µ with Levi M . Let B ⊆ GQp be a Borel subgroup. We pick a
maximal torus T ⊆ B. The relevant flag variety is FL = P\G and we have the
decomposition FL =

∐
w∈MW P\PwB where MW ⊆ W is the set of Kostant rep-

resentatives in the absolute Weyl group. We also fix a coefficient field E which is a
finite extension of Qp and admits a map from the reflex field of the Shimura datum.

4.1.1. Higher Coleman theory. Higher Coleman theory [BP21] is a theory of (higher)
overconvergent modular forms. The different higher Coleman theories are parame-
terized by two parameters: an element w ∈ MW , and a weight.

Remark 4.1.2. We note that MW parametrizes chambers in the weight space
which are M -dominant, and the w-theory will interpolate those classical cohomolo-
gies whose weights belong to the w-chamber.

To describe the weight parameter, we fix w ∈ MW . Let m = Lie(M), and let
mw = w−1mw. Let O(mw, bmw) be the BGG category O of U(mw)-modules for
the Borel bmw = Lie(B) ∩ mw. In the same way that weights of modular forms
are finite dimensional representations of M , weights of (higher) overconvergent
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modular forms (parameterized by w ∈ MW ) are objects of O(mw, bmw). For any
λ ∈ X∗(T )E , we let O(mw , bmw)λ−alg be the subcategory of category O(mw, bmw)
with weights in λ+X∗(T ).

We have higher Coleman functors (see Definition 4.6.35):

HCw,λ, HCcusp,w,λ : O(mw, bmw)
op
λ−alg → D(Modλ−sm

B(Qp)
(E)) (4.1.3)

where Modλ−sm
B(Qp)

(E) is the category of locally analytic representations of B(Qp)

with b acting like λ. For example, if λ = 0, this is just the category of smooth
B(Qp)-representations.

Remark 4.1.4. The parameter λ is there to specify the B(Qp)-action. If η ∈
X∗(T ), the categories O(mw, bmw)λ−alg and O(mw, bmw)λ+η−alg are canonically
the same and one has HCw,λ+η(M) = HCw,λ(M)⊗E(η) where −⊗E(η) means a
twist of the B(Qp)-action by η.

The functors (4.1.3) are defined by first attaching to every objectM ofO(mw , bmw)λ−alg

a “quasi-coherent” B(Qp)-equivariant sheaf over the pullback of the Bruhat stratum
P\PwB via the Hodge–Tate period map and taking its cohomology with suitable
support condition.

We also have a finite slope part functor D(Modλ−sm
B(Qp)

(E)) → D(Modλ−sm
T (Qp)

(E))

and we can speak of the finite slope part of higher Coleman functors (Section
4.6.54):

HCfsw,λ, HC
fs
cusp,w,λ : O(mw , bmw)

op
λ−alg → D(Modλ−sm

T (Qp)
(E)).

Remark 4.1.5. Let κ ∈ X∗(T )+,M . Let L(mw)−w−1w0,Mκ be the finite dimensional
representation of mw of of highest weight −w−1w0,Mκ. We show that

HCfsw,0(L(mw)−w−1w0,Mκ)

is the direct sum of the RΓw(K
p, κ, χ)+,fs of [BP21] (Theorem 4.6.56). These are

higher Coleman theories with value in the classical sheaf of weight κ. On the other
hand, if M(mw)−w−1w0,Mκ denotes the Verma of highest weight −w−1w0,Mκ, then

HCfsw,0(M(mw)−w−1w0,Mκ)

corresponds to higher Coleman theory with value in the big “induction” sheaf (The-
orem 4.6.57). The surjective map M(mw)−w−1w0,Mκ → L(mw)−w−1w0,Mκ induces a
map

HCw,0(L(mw)−w−1w0,Mκ)→ HCw,λ(M(mw)−w−1w0,Mκ)

and similarly on the finite slope part. In summary, the improvements on [BP21]
are the following:

• We extend the definitions to the infinite slope part (in [BP21], only the
finite slope part was canonically defined).
• We introduce a more functorial perspective on the weights. In [BP21] we

allowed weights to be either finite dimensional representations or Verma
modules, which of course generate the BGG category.

Our main results on higher Coleman theory can be summarized as follows.

Theorem 4.1.6 (Theorems 4.6.45, 4.6.58, and 4.6.60).
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(1) HCw,λ, HC
fs
w,λ have cohomological amplitude [ℓ(w), d] and HCcusp,w,λ, HC

fs
cusp,w,λ

have cohomological amplitude [0, ℓ(w)].
(2) Let M ∈ O(mw , bmw)λ−alg be a module generated by a highest weight vector

of weight ν. Assume that the Shimura variety is proper or that we are in
the Siegel case. The slopes appearing in HCfscusp,w,λ(M) and HCfsw,λ(M)

are ≥ λ− ν + w−1w0,Mρ+ ρ.

Remark 4.1.7. In the proper case, the functors HCw,λ and HCfsw,λ are exact.

4.1.8. Completed cohomology. We let RΓ(ShtorKp ,Qp) be completed cohomology and
RΓc(ShKp ,Qp) denote completed cohomology with compact support.

We let O(g, b) be the BGG category O for g and b. We define functors (Section
4.7):

CCλ : O(g, b)λ−alg → D(Modλ−sm
B(Qp)

(E))

M 7→ RHomg(M,RΓ(ShKp ,Qp)
la)

CCcusp,λ : O(g, b)λ−alg → D(Modλ−sm
B(Qp)

(E))

M 7→ RHomg(M,RΓc(ShKp ,Qp)
la)

Remark 4.1.9. The first natural example is to apply these functors to M a finite
dimensional representation of G, in which case we recover classical étale cohomology
with weight M∨ (it is natural to take λ = 0). For a non-classical example, we can
take M = U(g)⊗U(b)λ to be a Verma module of weight λ so that we are computing
b-cohomology.

4.1.10. p-adic Eichler Shimura. We are now ready to state our main result com-
paring completed cohomology and higher Coleman theory. It holds under a non-
Liouville condition on λ (see Definition 2.3.25). We observe that if λ ∈ X∗(T ) is
algebraic, it is non-Liouville.

Theorem 4.1.11 (Theorem 4.7.1). Assume λ is non-Liouville and M is an object
of O(g, b)λ−alg. We have a spectral sequence

Ep,q1 = ⊕w∈MW,ℓ(w)=pH
p+q(HCw,λ(M ⊗Lupw

E))

converging to Hp+q(CCλ(M))⊗Cp. Moreover, the Sen operator is given by wµ ∈
Z(mw) acting on H∗(upw ,M).

Remark 4.1.12. The functor −⊗U(upw ) E : D(O(g, b))→ D(O(mw, bmw)) is the
Lie algebra homology of the unipotent radical upw of pw = w−1Lie(P )w. It is
computed by the Koszul complex (in degree −d to 0):

0→M ⊗ Λdupw → · · · →M → 0

Remark 4.1.13. In Section 3.5 we attached to M ∈ O(g, b) a certain twisted
D-module Loc(M) on the flag variety. This is a version of Beilinson–Bernstein
localization. This twistedD-module completely encodes the p-adic Eichler–Shimura
theory (see Theorem 4.7.1 for a precise statement). We observe that Loc(M) is
“constant” on each Bruhat stratum Cw and its restriction to each Cw is determined
(in the non-Liouville case) by the Lie algebra homology M ⊗Lupw

E.
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Under favorable “genericity” assumptions, the spectral sequence simplifies a lot.
Let us denote by M(g)λ = U(g)⊗U(b) λ the Verma module of weight λ. We adopt
a similar notation to denote Verma modules for other reductive Lie algebras.

Corollary 4.1.14 (Corollary 4.7.3). Assume that λ is non-Liouville and antidom-
inant in the sense of Remark 3.5.21, and that the Shimura variety is proper. Then
CCλ(M(g)λ) is concentrated in the middle degree d and moreover, it has a decreas-
ing filtration FiliHd(CCλ(M(g)λ)) with

• Fild+1Hd(CCλ(M(g)λ)) = 0,
• Fil0Hd(CCλ(M(g)λ)) = Hd(CCλ(M(g)λ)),
• GrpHd(CCλ(M(g)λ)) = ⊕w∈MW,ℓ(w)=pH

p(HCw,λ(M(mw)λ+w−1w0,Mρ+ρ)).

We also refer to Theorem 4.7.5 for a similar result in the ordinary case.

4.2. Perfectoid Shimura varieties. We consider a Hodge-type Shimura datum
(G,X). We also fix a map from the reflex field of the Shimura datum to E. We
let ShratKpKp be the analytic space over Spa(E,OE) attached to the Shimura variety
of level KpK

p over Spec E. We let ShKpKp = ShratKpKp ×Spa(E,OE) Spa(Cp,OCp).
We let Shrat,torKpKp,Σ be a toroidal compactification of ShratKpKp over Spa(E,OE) for a
specific choice of cone decomposition Σ (see [FC90], [Lan13]). For K ′

p ⊆ Kp, we
have a natural map Shrat,torK′

pK
p,Σ → Shrat,torKpKp,Σ. We let Shrat,torKp,Σ = limK′

p
Shrat,torK′

pK
p,Σ. By

[Sch15] (and [PS16a], [Lan22] for the extension to the compactification), this is a
perfectoid space. We note that the same cone decomposition Σ is used at each stage
of the limit and that there is some restriction on the choice of cone decomposition
if we are not in the Siegel case. Concretely, the underlying topological space of
Shrat,torKp,Σ is the inverse limit of the topological spaces of the Shrat,torK′

pK
p,Σ, and there

is a basis of affinoid opens Spa(A,A+) of Shrat,torKp,Σ , which are pull backs of affinoid
opens Spa(AK′

p
, A+

K′
p
) in Shrat,torK′

pK
p,Σ for small enough K ′

p, and such that A+ is the

p-adic completion of colimK′
p
A+
K′

p
.

We let ShratKp →֒ Shrat,torKp,Σ be the open subspace limK′
p
ShratK′

pK
p . We let πratHT,Σ :

Shrat,torKp,Σ → FLrat be the Hodge–Tate period map, where FLrat is the Flag variety
over Spa(E,OE).

We let ShtorKpKp,Σ be the base change to Spa(Cp,OCp) of Shrat,torKpKp,Σ (which there-
fore carries an action of Gal(Ē/E)). We similarly define ShtorKp,Σ, ShKp and FL,
and the period map πHT,Σ : ShtorKp,Σ → FL which is Gal(Ē/E)-equivariant.

The period map is also Kp-equivariant. The action of G(Qp) on ShKp,Σ does not
extend to an action on ShtorKp,Σ but for a general g ∈ G(Qp) we still have diagrams:

ShtorKp,Σ

g
//

��

Shtor
Kp,gΣ

��

FL g
// FL

Remark 4.2.1. The choice of a specific Σ does not usually play any role. If no
confusion is likely to arise, we fix a Σ and drop it from the notation. We will
eventually allow ourselves to change Σ. It is also important to note that all the
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cohomologies we will consider (coherent cohomology, completed cohomology) do
not depend on Σ.

4.3. Smooth and locally analytic vectors of the structure sheaf. We let
OShtor

Kp
be the structure sheaf of the perfectoid space. If U ⊆ Shtor

Kp is a quasi-
compact open, then U is stabilized by an open subgroup Kp of G(Qp) and we get
a continuous action of Kp on OShtor

Kp
(U). One can speak of the smooth and locally

analytic vectors of OShtor
Kp

(U). We thus obtain subsheaves of smooth and locally
analytic vectors:

Osm
Shtor

Kp
⊆ Ola

Shtor
Kp
⊆ OShtor

Kp
.

Proposition 4.3.1. For any compact open subgroup K ′
p ⊆ G(Qp), let πK′

p
:

ShtorKp → ShtorKpK′
p

be the natural map. The pullback map colimK′
p
π−1
K′

p
OShtor

K′
pKp
→

Osm
Shtor

Kp
is an isomorphism.

Proof. We consider the map of sites ν : (ShtorKpKp
)prokt → (Shtor

KpKp
)ket from the

pro-Kummer-étale site to the Kummer-étale site. It follows from [Sch13b, Coro.
6.19] (which is easily extended to the Kummer-étale case via the machinery of
[DLLZ23]) that ν∗ÔShtor

KpKp
= OShtor

KpKp
. We are going to see that the proposition

follows directly from this statement. We consider the pro-Kummer étale cover πKp :

ShtorKp → ShtorKpKp
. Since ShtorKp is perfectoid, it follows from [DLLZ23, Thm. 5.4.3]

that for any open affine U ⊆ Shtor
Kp , ÔShtor

KpKp
(U) = OShtor

Kp
(U). Since ShtorKp×Shtor

KpKp

ShtorKp = Kp×ShtorKp , we deduce that OShtor
KpKp

= ν∗ÔShtor
KpKp

= H0(Kp, πKp,∗Otor
ShKp ).

The proposition follows by taking the colimit over Kp. �

We let IShtor
KpKp

be the ideal of the (reduced) boundary DKp in Shtor
KpKp . This

is an invertible ideal in OShtor
KpKp

that we also denote by OShtor
KpKp

(−DKp). We let
I sm

Shtor
Kp

= colimK′
p
IShtor

K′
pKp

.

We let IShtor
Kp

be the ideal of the boundary in the structure sheaf OShtor
Kp

. Its
subsheaf of locally analytic vectors is denoted by I la

Shtor
Kp

and turns out to be equal

to Ola
Shtor

Kp
⊗Osm

Shtor
Kp

I sm
Shtor

Kp
by the following lemma.

Lemma 4.3.2. The natural map: Ola
Shtor

Kp
⊗Osm

Shtor
Kp

I sm
Shtor

Kp
→ I la

Shtor
Kp

is an isomor-

phism.

Proof. This is a consequence of [RC23, Thm. 3.4.1.]. �

4.4. Completed cohomology. Let ShalgKpKp
denote the Shimura variety, viewed

as a scheme, defined over its reflex field E(G,X). Let ShalgKp = limKp Sh
alg
KpKp

.
The limit exists as a scheme since the transition maps are affine. We define com-
pleted cohomology with Qp coefficients to be RΓproet(Sh

alg

Kp,Q̄
,Qp). The cohomol-

ogy groups of RΓproet(Sh
alg
Kp,Q̄

,Qp) identify with the usual completed cohomology
groups with Qp-coefficients (as defined for example in [CE12]). This cohomology
has a G(Qp)-action, an action of the Hecke algebra away from p, and an action of
GE(G,X), the absolute Galois group of E(G,X).

Using comparison theorems in [Hub96, page 30] and [RC22, Cor. 6.1.7], com-
pleted cohomology with Qp-coefficients identifies with RΓprokt(Sh

tor
Kp ,Qp). Here
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the subscript prokt is is short for “pro-Kummer-étale”, in the sense of [DLLZ23];
this modification of the pro-étale site is needed because our Shimura varieties are
not compact. We usually omit this subscript from now on. Similarly, we identify
RΓc(ShKp ,Qp) with the completed cohomology with compact support.

We let RΓ(ShtorKp ,Qp)
la be the (derived) locally analytic vectors in completed

cohomology. Similarly, we let RΓc(ShKp ,Qp)
la be the (derived) locally analytic

vectors in completed cohomology with compact support. We remark that both
RΓ(ShtorKp ,Qp) and RΓc(ShKp ,Qp) have admissible cohomology groups, and that
the passage to locally analytic vectors is an exact functor on admissible represen-
tations by [ST03], Thm. 7.1 (see also [RJRC22, Prop. 4.48]). Therefore, the co-
homology groups of RΓ(Shtor

Kp ,Qp)
la and RΓc(ShKp ,Qp)

la are the locally analytic
vectors in the completed cohomology groups.

Theorem 4.4.1. We have

RΓ(ShtorKp ,Qp)⊗QpCp = RΓan(Sh
tor
Kp ,OShtor

Kp
)

RΓc(ShKp ,Qp)⊗QpCp = RΓan(Sh
tor
Kp ,IShtor

Kp
)

We have

RΓ(ShtorKp ,Qp)
la⊗QpCp = RΓan(Sh

tor
Kp ,Ola

Shtor
Kp

)

RΓc(ShKp ,Qp)
la⊗QpCp = RΓan(Sh

tor
Kp ,I la

Shtor
Kp

)

Proof. The first part is immediate from [DLLZ23, Thm. 6.2.1], by passing to
the limit as in the proof of [Sch15, Thm. 4.2.1]. The second part is [RC22, Thm.
6.2.6]. �

Remark 4.4.2. The main ideas in the proof of Theorem 4.4.1 are due to Scholze
and Pan. More precisely, the statements regarding completed cohomology (before
taking locally analytic vectors) are a consequence of Scholze’s primitive comparison
theorem; see e.g. [Sch15, Thm. 4.2.1]. For the locally analytic vectors, in the
case of usual (i.e. not compactly supported) cohomology it is a consequence of the
fact that Ola

Shtor
Kp

= ORla
Shtor

Kp
where Rla are the derived locally analytic vectors (in

the sense of [RJRC22]). This was proved for modular curves in [Pan22a], Thm.
4.4.6. In loc. cit. it is also proved for modular curves that RΓan(Sh

tor
Kp ,Ola

Shtor
Kp

) =

RΓan(FL, (πHT )∗Ola
Shtor

Kp
). We do not need (and have not proved) this fact more

generally.

4.5. The functor V B. We now introduce a functor which turns equivariant sheaves
on the flag variety into sheaves on the perfectoid Shimura variety.

4.5.1. Definition of the functor and main properties. Let us briefly reintroduce Σ
to the notation (see Remark 4.2.1). Let U ratFL be a quasi-compact open subset
of FLrat and let UFL be its base change to Spa(Cp,OCp). We write UKp,Σ :=

π−1
HT,Σ(UFL) = limK′

p
UK′

pK
p,Σ where UK′

pK
p,Σ is a quasi-compact open subset of

ShK′
pK

p,Σ for K ′
p small enough. In Definition 3.2.6 (see also Remark 3.2.29) we

have defined the categories LBg(U
rat
FL) and LBg(UFL) and there is a base change

functor LBg(U
rat
FL)→ LBg(UFL). We define a functor

V B0
Σ : LBg(UFL) → Mod(Osm

UKp,Σ
)

F 7→ colimK′
p
((π−1

HT,ΣF )⊗π−1
HT,ΣOFL

OUKp,Σ
)K

′
p .
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Remark 4.5.2. Note that this functor is (well-) defined, because for any quasi-
compact open subset VFL ⊆ UFL, we have F (VFL) = colimK′

p
F (VFL)K′

p
where

F (VFL)K′
p

is a submodule of F (VFL) where the action of g integrates to an action
of K ′

p (compatibly for the transition maps).

We also need a derived version of this functor. We recall that in Definition
3.2.4 we introduced abelian categories Modg(U

rat
FL) and Modg(UFL) which respec-

tively contain LBg(U
rat
FL) and LBg(UFL). Moreover there is a base change functor

Modg(U
rat
FL)→ Modg(UFL). We define a functor

V BΣ : D(Modg(UFL)) → D(Mod(Osm
UKp,Σ

))

F 7→ colimK′
p
RΓ(K ′

p, (π
−1
HT,ΣF )⊗L

π−1
HT,ΣOFL

OUKp,Σ
).

Remark 4.5.3. The pullback functor

F 7→ (π−1
HT,ΣF )⊗L

π−1
HT,ΣOFL

OUKp,Σ

in the definition of V BΣ is exact on the category LBg(UFL) (essentially by the
definition of LB-sheaves). Thus on LBg(UFL), V B0

Σ is left exact, and we may
think of V BΣ as its right derived functor.

It might be more natural to denote this pullback by π∗
HT,Σ, but we reserve this

notation below for the underived pullback

F 7→ (π−1
HT,ΣF )⊗π−1

HT,ΣOFL
OUKp,Σ

.

Since the Hodge–Tate period map is Gal(Ē/E)-equivariant, if F is an object of
Modg(UFL) which comes from Modg(U

rat
FL) by base change, then V BΣ(F ) carries

a semi-linear action of Gal(Ē/E). One can study this action as follows. We can
consider the category ModGal(Ē/E)(Osm

Shtor
Kp

) of sheaves of Osm
Shtor

Kp
-modules, carrying

a semi-linear continuous Galois action. We let Osm,Gal(Ē/E)−sm

Shtor
Kp

be the subsheaf of

smooth vectors for the action of Gal(Ē/E). We remark that Osm,Gal(Ē/E)−sm

Shtor
Kp

=

Osm
Shrat,tor

Kp
⊗E Ē.

We define an arithmetic Sen functor:

Sarit : ModGal(Ē/E)(Osm
Shtor

Kp
) → Mod(Osm,Gal(Ē/E)−sm

Shtor
Kp

)

F → colimE′ F
Gal(Ē/E′

cycl),Gal(E′
cycl/E

′)−an

where the colimit goes over all finite extensions E′/E and the superscript

(−)Gal(Ē/E′
cycl),Gal(E′

cycl/E
′)−an

means the Gal(Ē/E′
cycl)-fixed and Gal(E′

cycl/E
′)-analytic vectors (where Gal(E′

cycl/E
′)

is viewed as a subgroup of Z×
p via the cyclotomic character). We observe that

Sarit(F ) carries an Osm,Gal(Ē/E)−sm

Shtor
Kp

-linear arithmetic Sen operator, obtained by

differentiating the Gal(E′
cycl/E

′)-action on (F )Gal(Ē/E′
cycl),Gal(E′

cycl/E
′)−an and pass-

ing to the colimit.
The following theorem is implicit in [Pan22a] in the modular curve case, see

[Pil24] for a formulation in this spirit. In higher dimension it is essentially a direct
consequence of the results [RC22, RC23], as we will see in the course of the proof.

Theorem 4.5.4.
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(1) For any F ∈ LBg(UFL)
u0
P , there exists a covering by open affinoids UKp,Σ =

∪iVi with Vi = limKp Vi,Kp (for Kp small enough; here the Vi,Kp are open
affinoid) a sequence of compact open subgroups {Kp,r}r∈Z≥0

and summand
of orthonormalizable Banach sheaves V B0

Σ,Kp,r,Vi
(F ) over Vi,Kp,r such that

we have:

V B0
Σ(F )|Vi = colimrOsm

Vi
⊗OVi,Kp,r

V B0
Σ,Kp,r,Vi

(F ).

Moreover, we have

V B0
Σ(F )⊗Osm

UKp,Σ
OUKp,Σ

= (π−1
HT,ΣF )⊗π−1

HT,Σ(OUFL
)OUKp,Σ

. (4.5.5)

(2) The restriction of the functor V B0
Σ to the category LBg(UFL)

u0
P is an exact

functor, and for an object F of LBg(UFL)
u0
P we have

V BΣ(F ) = V B0(F ) ⊗Osm
UKp,Σ

(colimKp ⊕di=0Ω
i
UKpKp,Σ

(log(DKp,Σ))[−i]).

(3) Let F ∈ LBg(UFL). Assume that for all i, we have Hi(u0P ,F ) ∈ LBg(UFL).
Then we have isomorphisms: V B0

Σ(H
i(u0P ,F ))

∼−→ Hi(V BΣ(F )).
(4) Let F ∈ LBg(UFL)

u0
P . Assume that F arises from an object of LBg(U

rat
FL).

Then we have

Sarit(V B0
Σ(F )) ⊗

O
sm,Gal(Ē/E)−sm
UKp,Σ

OsmUKp,Σ
= V B0

Σ(F )

and the action of µ via Θhor is an arithmetic Sen operator on Sarit(V B0
Σ(F )).

More precisely, in the notation of (1), we can suppose that the covering
UKp,Σ = ∪iVi comes from a covering U ratKp,Σ = ∪iV rati , and there exists a
finite extension Ei,n of E such that

V B0
Σ,Kp,n,Vi

(F ) = V B0
Σ,Kp,n,Vi

(F )Gal(Ē/Ei,n,cycl),Gal(Ei,n,cycl/Ei,n)−an ⊗Ei,n Cp.

Proof. We explain why the theorem follows from the results of [RC22] and [RC23].
The statement is local so we can assume that F = colimFr is a colimit of or-
thonormalizable Banach sheaves with injective transition maps and that Gr acts
on each Fr. We can assume that UFL = Spa(C,C+) is affinoid. We can also
consider VKp,Σ = Spa(B,B+) an open affinoid subset of UKp,Σ. The open subset
VKp,Σ descends to VKpKp,Σ = Spa(BKp , B

+
Kp

) for Kp small enough.
ForKp small enough (such thatKp ⊆ Gr(Qp)), the pull back π∗

HT,ΣFr to ShtorKp,Σ

carries a Kp-action Let us put Fr := Fr(UFL). We pick a C+ lattice F+
r (that is,

F+
r is the completion of a free C+-module and F+

r ⊗C+ C = Fr). The action of
Gr amounts to a co-action map c : Fr → Fr ⊗C OGr . By continuity, there exists n
such that c(F+

r ) ⊆ p−nF+
r ⊗O+

Gr
. We claim that for r′ = r + n+ 1 the restriction

of the co-action map c′ : Fr → Fr ⊗C OGr′
induces a map F+

r → F+
r ⊗C O+

Gr′
and

moreover, this co-action map is trivial modulo p. To see this, we may write (for
example by using the exponential map) OGr = Cp〈X1, · · · , Xt〉 so that OGr′

=

Cp〈p−n−1X1, · · · , p−n−1Xt〉. For any f ∈ F+
r , we write c(f) =

∑
i fiX

i, where
f0 = f and fi ∈ p−nF+

r is tending to 0. Our claim is thus clear. By shrinking Kp,
we can assume that Kp ⊆ Gr′(Qp). We remark that we have in particular checked
that the action of Kp is “locally analytic” in the sense of [RC23, Defn. 1.0.1]; more
precisely, the pro-Kummer-étale ÔVKpKp,Σ

-module corresponding to π∗
HT,ΣFr is

relatively analytic ON Banach in the sense of [RC23, Defn. 1.0.1]. Note that this is
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the familiar smallness condition in p-adic Simpson theory (see [RC23, Rem. 1.0.1]
).

We let:
• T = Spa(Cp〈T, T−1〉,C+

p 〈T, T−1〉),
• Tn = Spa(Cp〈T p

−n

, T−p−n〉,C+
p 〈T p

−n

, T−p−n〉) for any n ≥ 1.
• D = Spa(Cp〈T 〉,C+

p 〈T 〉),
• Dn = Spa(Cp〈T p

−n〉,C+
p 〈T p

−n〉) for any n ≥ 1.
We can also assume (after shrinking VKp,Σ and taking Kp small enough) that

we have a toric chart (in the sense of [DLLZ23, Prop. 3.1.10]) VKpKp,Σ → Te×Dd−e.
We let Spa(BKp,n, B

+
Kp,n

) = UKpKp,Σ×Te×Dd−eTe
n×Dd−e

n . We let Spa(BKp,∞, B
+
Kp,∞

) =

limn Spa(BKp,n, B
+
Kp,n

). We let Spa(Bn, B+
n ) = UKp,Σ×Te×Dd−eTe

n×Dd−e
n . We let

Spa(B∞, B
+
∞) = limn Spa(Bn, B

+
n ). After making a choice of compatible p-power

roots of unity, We let Γ = Zdp, acting on Te
n ×Dd−e

n . We thus have an action of
Kp × Γ on B∞. By [RC23, Prop. 3.2.3], the triple (B∞,Kp × Γ, pr2 : Kp × Γ→ Γ)
is a strongly decomposable Sen theory in the sense of [RC23, Defn. 2.2.6].

We consider the semi-linear representation of Kp, B ⊗C Fr. Our goal is to
compute colimKp H

i(Kp, B ⊗C Fr) using Sen theory. By almost purity, we have

RΓ(Kp, B⊗C Fr) = RΓ(Kp×Γ, B∞⊗C Fr) = RΓ(Γ, H0(Kp, B∞⊗C Fr)). (4.5.6)

By [RC23, Thm. 2.4.3], we have (after possibly shrinking Kp and for all n large
enough) the Sen module

SKp,n(Fr) := (B ⊗C Fr)Kp,p
nΓ−an (4.5.7)

which is obtained by taking the Kp-invariants and the pnΓ-analytic vectors. This
is an orthonormalizable Banach BKp,n-module with a locally analytic action of Γ,
and it satisfies

B∞ ⊗BKp,n SKp,n(Fr) = B∞ ⊗C Fr. (4.5.8)

In addition by (4.5.6) we have

H0(Γ, SKp,n(Fr)) = H0(Kp, B ⊗C Fr). (4.5.9)

We have an action of Lie(Γ) on SKp,n(Fr), which are the “geometric” Sen operators,
and by [RJRC22, Thm. 1.7] we have

RΓ(Γ, H0(Kp, B∞ ⊗C Fr)) = H0(Γ,RΓ(Lie(Γ), SKp,n(Fr))) (4.5.10)

where RΓ(Lie(Γ), SKp,n(Fr)) is a complex of smooth Γ-modules and H0(Γ,−) is the
exact functor of Γ-invariants on smooth Γ-modules. It is a consequence of [RC22,
Thm. 1.1.5] that these Sen operators are induced by functoriality from the map
u0P ⊗Fr → Fr, using the identification π∗

HT u
0
P ≃ Lie(Γ)⊗OVKp,Σ

.
Since the transition maps in the colimit F = colimFr are injective, it follows in

particular that F ∈ LBg(UFL)
u0
P if and only if the geometric Sen operator of each

Fr is trivial. Let us assume that this is the case. Then the action of Γ on SKp,n(Fr)
is smooth, and this action factors through Γ/pnΓ. By finite étale descent, we find
that

BKp,n ⊗BKp
SKp,n(Fr)

Γ = SKp,n(Fr) (4.5.11)

and that SKp,n(Fr)
Γ is a direct summand of the orthonormalizable Banach BKp -

module SKp,n(Fr). Taking pnΓ-invariants in (4.5.8), we obtain

Bn ⊗BKp,n SKp,n(Fr) = Bn ⊗C Fr
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and thus (using (4.5.11))

Bn ⊗BKp
SKp,n(Fr)

Γ = Bn ⊗C Fr.
Taking Γ-invariants and using (4.5.9), we deduce that

B ⊗BKp
H0(Kp, B ⊗C Fr) = B ⊗C Fr. (4.5.12)

Passing to the colimit over r and Kp, we obtain (4.5.5). This completes the proof
of (1) (taking V B0

Σ,Kp,r,Vi
(F ) to be the sheaf associated to H0(Kp, B ⊗C Fr),

and Kp,r to be Kp).
We now prove (2). We have

RΓ(Lie(Γ), SKp,n(Fr)) = ⊕SKp,n(Fr)⊗ Λi(Lie(Γ))∨[−i]
from which we deduce that

V BΣ(F ) = V B0(F )⊗Osm
UKp,Σ

(colimKp ⊕di=0Ω
i
UKpKp,Σ

(log(DKp,Σ))[−i]). (4.5.13)

Let 0 → F → L → H → 0 be an exact sequence in LBg(UFL)
u0
P . Applying

V BΣ yields exact sequences:

0→ V B0
Σ(F )→ V B0

Σ(L )→ V B0
Σ(H )

and

V B0
Σ(F )⊗Osm

U
V B0

Σ(Λ
d(u0P )

∨)→ V B0
Σ(L )⊗Osm

U
V B0

Σ(Λ
d(u0P )

∨)→ V B0
Σ(H )⊗Osm

U
V B0

Σ(Λ
d(u0P )

∨)→ 0.

Since V B0
Σ(Λ

d(u0P )
∨) is an invertible sheaf, we conclude that 0 → V B0

Σ(F ) →
V B0

Σ(L )→ V B0
Σ(H )→ 0 is exact, as required.

We now turn to (3), so we no longer assume that F is killed by u0P . We let
SKp(Fr) = colimn SKp,n(Fr), we let S(Fr) = colimKp SKp(Fr) and finally we let
S(F ) = colimr S(Fr). We claim that

Hi(Lie(Γ), S(F )) = S(Hi(u0P , F )). (4.5.14)

Granting (4.5.14), we claim that taking Γ-invariants gives

colimr,Kp H
i(Kp, B ⊗C Fr) = colimr,Kp H

0(Kp, B ⊗C Hi(u0P , Fr)), (4.5.15)

which immediately gives (3). Indeed, by 4.5.10 and (4.5.6) we have

H0(Γ, Hi(Lie(Γ), SKp,n(Fr))) = Hi(Γ, H0(Kp, B∞ ⊗C Fr)) = Hi(Kp, B ⊗C Fr).
On the other hand, passing to colimits in (4.5.9) we see that

colimKp H
0(Kp, B ⊗C Fr) = H0(Γ, S(Fr)), (4.5.16)

so that (replacing Fr by Hi(u0P , Fr))

H0(Γ, S(Hi(u0P , F ))) = colimr,Kp H
0(Kp, B ⊗C Hi(u0P , Fr)),

as required.
We now establish (4.5.14). Firstly, we claim that BKp,∞ is an orthonormaliz-

able BKp,n-module. Indeed the algebra of T∞ = limnTn has a topological basis
{T i}i∈Qp/Zp

over Cp〈T, T−1〉, and similarly the algebra of D∞ limnDn has a topo-
logical basis {T i}i∈Qp/Zp

over Cp〈T 〉. We next claim that B∞ is a direct summand
of an orthonormalizable BKp,∞-module. To see this, let us fix a decreasing se-
quence of compact open subgroups {Kp,r}r≥0 tending to {e} with Kp,0 = Kp.
Since B+

Kp,r,∞
→ B+

Kp,r+1,∞
is almost étale, there exist finite B+

Kp,r,∞
modules

XKp,r+1 and YKp,r+1 together with:
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• an injective map B+
Kp,r,∞

⊕ XKp,r+1 → B+
Kp,r+1,∞

whose cokernel is anni-
hilated by p, and
• an integer nr ∈ Z≥0 and an injective map XKp,r+1⊕YKp,r+1 → (B+

Kp,r,∞
)nr

whose cokernel is annihilated by p.

We deduce that B∞

⊕
( ̂⊕rYKp,r+1 [1/p]) is orthonormalizable over BKp,∞, as re-

quired.
In particular, we have shown that B∞ is flat over BKp,n. We deduce that

Hi(Lie(Γ), B∞⊗BKp,n SKp,n(Fr)) = Hi(Lie(Γ), B∞⊗BKp,n SKp,n(Fr)), and passing
to the colimit over Kp, n, r we obtain that (for Bsm

∞ the subring of smooth vectors
for the Kp × Γ-action):

Hi(Lie(Γ), B∞ ⊗Bsm
∞
S(F )) = B∞ ⊗Bsm

∞
Hi(Lie(Γ), S(F )).

On the other hand, Hi(u0P , B∞⊗C F ) = B∞⊗C Hi(u0P , F ) since all the Hj(u0P , F )
are flat over C (here we use our assumption that Hi(u0P ,F ) ∈ LBg(UFL)). Recall-
ing (4.5.8), we deduce that we have Kp × Γ- equivariant isomorphisms:

B∞ ⊗Bsm
∞
Hi(Lie(Γ), S(F )) = B∞ ⊗C Hi(u0P , F ) = B∞ ⊗Bsm

∞
S(Hi(u0P , F ))

TakingKp×Γ smooth vectors yieldsHi(Lie(Γ), S(F )) = S(Hi(u0P , F )), as required.
We now prove the last point. We take F ∈ LBg(UFL)

u0
P , arising from an

object of LBg(U
rat
FL). We can therefore choose the Fr to be defined over E, so that

there is a semi-linear Gal(Ē/E)-action on B⊗C Fr. Moreover, taking a topological
basis {vi}i∈I of Fr defined over E, we see that the Galois action is trivial in this
basis. Assuming that Kp acts trivially modulo p2 on F+

r (which we can always
arrange after shrinking Kp), we deduce that SKp,n(Fr) has a topological basis
{v′i}i∈I where the change of basis matrix (for the isomorphism (4.5.8)) from {vi}
to {v′i} is congruent to 1 modulo p (see [RC23, Thm. 2.4.3, (1), (b)]). As a result,
the matrix of the Galois action on SKp,n(Fr) is congruent to 1 modulo p. One
can therefore apply Sen theory to the extension BratKp,n

→ BKp,n where BratKp,n
=

(BKp,n)
GalĒ/E(ζpn ). We let Sarit,s(SKp,n(Fr)) = SKp,n(Fr)

G
Lcycl ,GL(ζps )−an. For s

large enough, Sarit,s(SKp,n(Fr)) ⊗Brat
Kp,n(ζps )

BKp,n = SKp,n(Fr) and the derivative

of the Gal(Ecycl/E(ζps)) action provides an arithmetic Sen operator.
In order to prove (4), it only remains to identify this Sen operator with the

operator µ coming from the horizontal action. The orbit map provides an embed-
ding Fr →֒ Can(Kp, Fr), f 7→ [k 7→ k.f ]. It intertwines the action of Kp on Fr
with the action of Kp on functions h(−) ∈ Can(Kp, Fr) via k ∗2 h(−) = h(−k)
(therefore the ∗2 action does not depend on the Kp-action on Fr). Note that
Can(Kp, Fr) is a C-module as there is a orbit map C → Can(Kp, C) and Can(Kp, C)
acts on Can(Kp, Fr) naturally. Moreover, the embedding Fr →֒ Can(Kp, Fr) factors
through Can(Kp, Fr)

u0
P . It therefore suffices to identify the arithmetic Sen oper-

ator of Can(Kp, Fr)
u0
P . Since Fr has a topological basis over C we can reduce to

understanding the Sen operator of Can(Kp, C)
u0
P . The orbit map C 7→ Can(Kp, C)

induces an isomorphism Can(Kp,Qp)⊗QpC → Can(Kp, C). Moreover, the subspace
of algebraic functions Calg(Kp,Qp) →֒ Can(Kp,Qp) is dense, and it induces a dense
map (Calg(Kp,Qp) ⊗Qp C)

u0
P →֒ (Can(Kp,Qp) ⊗Qp C)

u0
P . Viewing the arithmetic

Sen operator as an endomorphism of

B∞ ⊗BKp,n SKp,n(Can(Kp,Qp)⊗Qp C)
u0
P ) = B∞ ⊗C (Can(Kp,Qp)⊗Qp C)

u0
P
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we deduce that it suffices to prove it coincides with µ on B∞⊗C (Calg(Kp,Qp)⊗Qp

C)u
0
P . Since Calg(Kp,Qp) = ⊕κ∈X∗(T )+Vκ ⊗ V ∨

κ and (Vκ ⊗ V ∨
κ ⊗Qp OFL)

u0
P =

Lκ ⊗Qp V
∨
κ we deduce that it suffices to understand the Sen operator of the clas-

sical automorphic vector bundles. It therefore suffices to show that V B0
Σ(Lκ) =

ωκ,sm(κ(µ)), where κ(µ) is the Tate twist and ωκ,sm = colimKp ω
κ
Kp

is the colimit
of the automorphic vector bundles defined over ShtorKpKp

(equipped with their ratio-
nal structure). This follows from an inspection of the rationality properties of the
Hodge–Tate map and of the universal M -torsor, see [RC22, Thm. 4.2.1]. �

Observe that by (4.5.13)

V BΣ(OUFL ) = colimKp ⊕di=0Ω
i
UKpKp,Σ

(log(DKp,Σ))[−i]
is a DG algebra and admits an augmentation map to Osm

UKp,Σ
[0]. We can therefore

make the following definition.

Definition 4.5.17. We let V Bred
Σ : D(Modg(UFL)) → D(Mod(Osm

UKp,Σ
)) be the

functor given by

V Bred
Σ (F ) := V BΣ(F ) ⊗LVBΣ(OUFL

) Osm
U [0].

Remark 4.5.18. By Theorem 4.5.4 (2), if F ∈ LBg(UFL)
u0
P , then V Bred

Σ (F ) =

V B0
Σ(F )[0]. Consequently given a complex of objects in LBg(UFL)

u0
P , we can

evaluate V Bred
Σ by applying V B0

Σ termwise.

4.5.19. Variants. We now introduce variants of the above functor carrying extra
structure. Let us define ModG(Qp)(Osm

Shtor
Kp

) to be the category of sheaves (FΣ)Σ of
Osm

Shtor
Kp,Σ

-modules with the properties:

(1) For any refinement Σ′ of Σ, inducing a map πΣ′,Σ : ShtorKp,Σ′ → ShtorKp,Σ,
we have an isomorphism π∗

Σ′,ΣFΣ → FΣ′ of Osm
Shtor

Kp,Σ′
-modules (and these

isomorphisms are compatible).
(2) For any g ∈ G(Qp), inducing an isomorphism g : ShtorKp,Σ → ShtorKp,gΣ, there

is an isomorphism g∗FgΣ → FΣ of Osm
Shtor

Kp,Σ
-modules (and they satisfy the

usual cocycle condition).
Then we have a functor

V B0 : LB(g,G)(FL)→ ModG(Qp)(Osm
Shtor

Kp
),

constructed as follows. Composing the functor V B0
Σ with the forgetful functor

LB(g,G)(FL) → LBg(FL) gives a functor V B0
Σ : LB(g,G)(FL) → Mod(Osm

Shtor
Kp

).

For each g ∈ G(Qp), there is a map g : Shtor
Kp,Σ → ShtorKp,gΣ and a map g∗V B0

gΣ(F )→
V B0

Σ(F ) satisfying the usual cocycle condition. The various V B0
Σ thus define a

functor V B0 : LB(g,G)(FL) → ModG(Qp)(Osm
Shtor

Kp
) as claimed. Note that in prac-

tice, we fix some Σ and really work with the functor V B0
Σ (but see Remark 4.2.1

for our notational convention).
We recall the stratification into B-orbits FL =

∐
w∈MW Cw, with Cw = P\PwB.

We let jw : Cw →֒ FL be the locally closed immersion. It induces jw,Shtor
Kp,Σ

:

π−1
HT,Σ(Cw) → Shtor

Kp,Σ. Instead of working on the whole Shimura variety, we can
also work over π−1

HT,Σ(C
†
w) for any w ∈ MW . We recall that this is a ringed
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space, whose underlying topological space is π−1
HT,Σ(Cw) and whose structure sheaf

is j−1
w,Shtor

Kp,Σ

OShtor
Kp,Σ

. In this case, we can consider functors:

V B0
Σ : LB(g,B)(C

†
w)→ Mod(Osm

π−1
HT,Σ(C†

w)
).

If b ∈ B(Qp), there is a map b : π−1
HT,ΣC

†
w → π−1

HT,bΣC
†
w and a map b∗V B0

bΣ(F )→
V B0

Σ(F ) satisfying the usual cocycle condition. This leads us to consider the
category ModB(Qp)(Osm

π−1
HTC

†
w
) whose objects are collections of sheaves (FΣ)Σ of

Osm
π−1
HT,ΣC

†
w
-modules, such that for any refinement Σ′ of Σ, inducing a map πΣ′,Σ :

ShtorKp,Σ′ → Shtor
Kp,Σ, we have an isomorphism π∗

Σ′,ΣFΣ → FΣ′ ofOsm
π−1

HT,Σ′C
†
w
-modules

(and these isomorphisms are compatible), and such that for any b ∈ B(Qp), there
is a map b∗FbΣ → FΣ satisfying the usual cocycle condition. The various V B0

Σ

thus define a functor V B0 : LB(g,B)(C
†
w)

u0
P → ModB(Qp)(Osm

π−1
HTC

†
w
). Again, in

practice, we fix some Σ and really work with the functor V B0
Σ (but drop Σ from

the notation).
We also remark that we have E-rational structures FLrat on FL and Cratw on

Cw, and we can consider the categories LB(g,G)(FLrat) and LB(g,B)(C
rat,†
w ) which

admit base change functors to the categories LB(g,G)(FL) and LB(g,B)(C
†
w).

Theorem 4.5.20.

(1) The functor

V B0 : LB(g,G)(FL)u
0
P → ModG(Qp)(Osm

Shtor
Kp

)

is an exact functor.
(2) For any F ∈ LB(g,G)(FL)u

0
P , we have an analytic covering ShtorKp = ∪Vi, a

sequence of compact open subgroups Kp,n and summand of orthonormaliz-
able Banach sheaves V B0

Kp,n,Vi
(F ) over Vi,Kp,n such that

V B0(F )|Vi = colimn V B
0
Kp,n,Vi

(F ) ⊗OVi,Kp,n
Osm
Vi
.

Moreover, there is a compact open subgroup Kp fixing Vi such that all
sheaves V B0

Kp,n,Vi
(F ) ⊗OVi,Kp,n

Osm
Vi

are Kp-equivariant (compatibly with

n) and this induces in the limit the Kp-equivariant structure on V B0(F )|Vi .
(3) For any F ∈ LB(g,G)(FL)u

0
P , we have

V B0(F )⊗Osm
Shtor

Kp

OShtor
Kp

= π−1
HTF⊗π−1

HTOFL
OShtor

Kp
.

(4) We have that V B0(Cla) = Ola
Shtor

Kp
.

(5) The functor

V B0 : LB(g,B)(C
†
w)

u0
P → ModB(Qp)(Osm

π−1
HTC

†
w
)

is an exact functor.
(6) For any F ∈ LB(g,B)(C

†
w)

u0
P , there exists an analytic covering by quasi-

compact subsets π−1
HT (Cw) = ∪iVi, a cofinal decreasing family of quasi-

compact strict neighborhoods of Vi: Vi,n = limKp Vi,n,Kp , compact open sub-
groups Kp,n, and summand of orthonormalizable Banach sheaves V B0

Kp,n,Vi,n
(F )
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over Vi,n,Kp,n such that

V B0(F )|Vi = colimn V B
0
Kp,n,Vi,n

(F ) ⊗OVi,n,Kp,n
OV sm

i,n

Moreover, for each i, there is a compact open subgroup KB ⊆ B(Qp) stabi-
lizing Vi and all Vi,n and such that the sheaves V B0

Kp,n,Vi,n
(F )⊗OVi,n,Kp,n

OV sm
i,n

are KB-equivariant, compatibly in n, and this induces in the limit the
KB-equivariant structure on V B0(F )|Vi .

(7) For any F ∈ LB(g,B)(C
†
w)

u0
P , we have that

V B0(F )⊗Osm

π
−1
HT

C
†
w

Oπ−1
HTC

†
w
= π−1

HTF⊗π−1
HTO

C
†
w

Oπ−1
HTC

†
w
.

(8) The following diagram of functors is commutative (where the horizontal
functors are given by V B0, and the vertical functors are the natural re-
striction functors):

LB(g,G)(FL)u
0
P //

��

ModG(Qp)(Osm
Shtor

Kp
)

��

LB(g,B)(C
†
w)

u0
P // ModB(Qp)(Osm

π−1
HTC

†
w
)

(9) If F arises from LB(g,G)(FLrat)u
0
P or LB(g,B)(C

rat,†
w )u

0
P , the action of µ

via Θhor is an arithmetic Sen operator on V B0(F ).

Proof. Everything but part (4) is an immediate consequence of Theorem 4.5.4. To
see (4), note firstly that since RΓ(uP ,OG,e) = OUPw\G,e[0] (cf. Lemma 2.3.4), it
follows from Theorem 4.5.4 (3) that V B(OG,e⊗OFL) = V B0(Cla)[0]. On the other
hand, bearing in mind Remark 4.5.2, we see that

V B(OG,e ⊗OFL) = ORla
Shtor

Kp
,

where Rla is the functor of derived locally analytic vectors defined in [RJRC22,
Defn. 4.40]. The result follows immediately. �

Remark 4.5.21. In particular the proof of Theorem 4.5.20 showed that Ola
Shtor

Kp
=

ORla
Shtor

Kp
, confirming Remark 4.4.2.

Proposition 4.5.22.

(1) Assume that F ∈ LB(g,G)(FL)u
0
P is such that the g-action is the derivative

of the G-action. Then V B0(F ) ∈ModsmG(Qp)(OShtor
Kp

).

(2) Assume that F ∈ LB(g,B)(C
†
w)

u0
P is such that the restriction to b of the g-

action is the derivative of the B-action. Then V B0(F ) ∈ModsmB(Qp)(Osm
π−1
HTC

†
w
).

Proof. This is immediate from the definition of V BΣ (and of the G(Qp)-action). �

We now address the existence of an arithmetic Sen operator on the locally ana-
lytic vectors in completed cohomology. One can consider the categoryModGal(Ē/E)(Cp)
of semi-linear Cp-representations and define a Sen module functor

Sarit : ModGal(Ē/E)(Cp) → Mod(Ē)

V → colimE′(V )Gal(Ē/E′
cycl),Gal(E′

cycl/E
′)−an
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We still denote by Sarit the right derived functor. The following is [RC22, Cor.
6.3.6].

Theorem 4.5.23.

(1) We have that

RΓ(ShtorKp ,Qp)
la⊗QpCp = Sarit(RΓ(Shtor

Kp ,Qp)
la⊗QpCp)⊗Ē Cp,

RΓc(ShKp ,Qp)
la⊗QpCp = Sarit(RΓc(ShKp ,Qp)

la⊗QpCp)⊗Ē Cp.

(2) The action of µ via Θhor on RΓ(ShtorKp ,Qp)
la⊗QpCp = RΓan(Sh

tor
Kp ,Ola

Shtor
Kp

)

and RΓc(Sh
tor
Kp ,Qp)

la⊗QpCp = RΓan(Sh
tor
Kp ,I la

Shtor
Kp

) is the arithmetic Sen

operator for the semilinear action of Gal(Ē/E) (whose existence was guar-
anteed by (1)).

Proof. We can take an affinoid covering V = {Vi} of Shtor
Kp with the property that

Ola
Shtor

Kp
|Vi is a colimit of acyclic sheaves V B0

Kp,n,Vi
(Cla). It follows that the Čech

complex C(V ,Ola
Shtor

Kp
) represents RΓ(ShtorKp ,Qp)

la⊗QpCp and carries a semi-linear

Gal(Ē/E)-action. It follows from Theorem 4.5.4 (4), that we have

C(U ,Ola
Shtor

Kp
) = C(U , Sarit(Ola

Shtor
Kp

))⊗Ē Cp,

where C(U , Sarit(Ola
Shtor

Kp
)) is therefore the sub-complex of Gal(Ē/Ecycl)-smooth and

Gal(Ē/E)-locally analytic vectors. We deduce that RΓ(ShtorKp ,Qp)
la⊗QpCp admits

a Sen operator and it is given by Θhor(µ) by Theorem 4.5.20, (9). �

4.6. Higher Coleman theory.

4.6.1. Automorphic vector bundles. One can apply the functor V B0 to the G-
equivariant locally free sheaves of finite rank which are parameterized by finite
dimensional representations of M . Let κ ∈ X∗(T )M,+. We let ωκ,sm = V B0(Lκ)
(where Lκ is constructed in Example 3.2.18). The sheaf ωκ,sm descends to a sheaf
ωκKp

on the Shimura variety Shtor
KpKp (the usual sheaf of modular forms of weight

κ). By construction RΓ(Shtor
Kp , ωκ,sm) is a complex of smooth admissible G(Qp)-

representations, equal to colimKp RΓ(Sh
tor
KpKp , ωκKp

). Recall that we have denoted
by DKp the divisor of the boundary in Shtor

KpKp . We then consider the cuspidal
subsheaf ωκKp

(−DKp). Passing to the limit, we get

ωκ,sm(−D) = colimπ−1
Kp
ωκKp

(−DKp) = ωκ,sm ⊗Osm
Shtor

Kp

I
sm
Shtor

Kp
.

Similarly, RΓ(Shtor
Kp , ωκ,sm(−D)) is a complex of smooth admissibleG(Qp)-representations,

equal to colimKp RΓ(Sh
tor
KpKp , ωκKp

(−DKp)).

Remark 4.6.2. For G = GSp4, the tautological exact sequence over FL is

0→ L(0,−1;1) → St⊗OFL → L(1,0;1) → 0

which pulls back to

0→ Lie(A)Kp(1)⊗OShtor
KpKp

OShtor
Kp
→ TpA⊗ZpOShtor

Kp
→ (ωAt)Kp⊗OShtor

KpKp
OShtor

Kp
→ 0

for any level Kp. We deduce that ω(0,−1;1),sm = Lie(A)Kp(1) ⊗ Osm
Shtor

Kp
and thus

that
ω(1,0;−1),sm = (ωA)Kp(−1)⊗OShtor

KpKp
Osm

Shtor
Kp
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by duality; so our normalization of the weights of Siegel modular forms is the
standard one.

4.6.3. Higher Coleman sheaves. We now fix w ∈ MW . Let λ ∈ X∗(T )E . We
consider the exact functor:

V B0 ◦HCSw,λ : O(mw, bMw)λ−alg → LB(g,B)(C
†
w)→ ModB(Qp)(Osm

π−1
HTC

†
w
).

Lemma 4.6.4. The functor V B0◦HCSw,λ factors through the category Modλ−sm
B(Qp)

(Osm
π−1
HTC

†
w
).

Proof. This is a combination of Proposition 4.5.22 and of Remark 3.3.13. �

Lemma 4.6.5. Let λ ∈ X∗(T )M,+. Let L(mw)−w−1w0,Mλ ∈ O(mw, bMw)0−alg

be the finite dimensional irreducible representation of highest weight −w−1w0,Mλ.
Then V B0 ◦HCSw,0(L(mw)−w−1w0,Mλ) = ωλ,sm|π−1

HTC
†
w
.

Proof. . Let Vλ be the highest weight λ-representation of M . Then Vλ identifies
with L(mw)w−1λ if we conjugate mw to m. It follows from the definitions that
Lλ|C†

w
= HCSw,0(L(mw)−w−1w0,Mλ) and the conclusion follows from applying V B0.

�

As in Definition 2.3.16, we have the Verma module M(mw)λ of weight λ.

Definition 4.6.6. We define the following object of Mod
−w−1w0,Mλ−sm

B(Qp)
(Osm

π−1
HTC

†
w
):

ω†,λ
w := V B0 ◦HCSw,−w−1w0,Mλ(M(mw)−w−1w0,Mλ).

Remark 4.6.7. This definition compares with [BP21, §6.3] as follows. In that refer-
ence we (GB+VP) defined Banach sheaves Vn−anν for characters ν : T (Zp)→ C×

p ,
n large enough, over certain quasi-compact open subspaces π−1

HT (]Cw,k[n,nKp) of
ShtorKpKp

(for Kp small enough), where ]Cw,k[n,nKp is a quasi-compact open subset
of Cw. The colimit over Kp, over all ν with dν = λ and over all n of the Vn−anν

identifies canonically with the germ of ω†,λ
w at π−1

HT ({w}). A slight change of per-
spective from [BP21] is therefore this passage to the limit, and the fact that we
define the sheaf ω†,λ

w over the entire π−1
HT (Cw). For the definition and computation

of the finite slope part of higher Coleman theory, the sheaves Vn−anν are however
sufficient (and seemed to us easier to define in the first place). See Section 4.6.55
for further details.

One reason for the twist from λ to −w−1w0,Mλ is in order to obtain Remark 4.6.8
and Proposition 4.6.9; more conceptually, the multiplication by w−1 is justified by
the change of base point in the flag variety, and the appearance of −w0,M is due to
the usual duality involution on highest weights which comes from the contravariance
of HCSw,λ.

Remark 4.6.8. We see from Proposition 3.4.19 that the Θhor-action on

HCSw,−w−1w0,Mλ(M(mw)−w−1w0,Mλ)

is via λ. (We recall from Remark 2.3.10 that HCmι = −w0,MHCm.) Thus, the
arithmetic Sen operator acts via 〈µ, λ〉 on ω†,λ

w .

Proposition 4.6.9. Assume that λ ∈ X∗(T )M,+. We have an injective, B(Qp)-
equivariant map: ωλ,sm|π−1

HT (C†
w) ⊗ E(−w−1w0,Mλ)→ ω†,λ

w .
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Proof. By Lemma 4.6.5, ωλ,sm|π−1
HT (C†

w) = V B0 ◦HCSw,0(L(mw)−w−1w0,Mλ). The

map of the proposition is thus given by applying V B0 ◦ HCSw,−w−1w0,Mλ to the
surjection M(mw)−w−1w0,Mλ → L(mw)−w−1w0,Mλ, using Proposition 3.4.18. �

4.6.10. The Bruhat stratification and a Cousin spectral sequence. We recall the
stratification into B-orbits FL =

∐
w∈MW Cw, with Cw = P\PwB. We let Xw =

∪w′≤wCw′ be the Schubert variety. We let jw : Cw →֒ FL be the locally closed
immersion. It induces jw,Shtor

Kp
: π−1

HT (Cw)→ ShtorKp .

Definition 4.6.11. If F is any sheaf of solid E-modules on π−1
HT (Cw), we let

RΓw(Sh
tor
Kp ,F ) = RΓ(ShtorKp , (jw,Shtor

Kp
)!F ).

In this definition, (jw,Shtor
Kp

)! is the extension by zero functor on abelian sheaves of
solid abelian groups. By abuse of notation, if F is defined over any subset of Shtor

Kp

containing π−1
HT (Cw), we let RΓw(Sh

tor
Kp ,F ) = RΓ(ShtorKp , (jw,Shtor

Kp
)!F |π−1

HT (Cw)).
We now explain that if F carries a B(Qp)-equivariant structure, the cohomology

is a B(Qp)-representation.

Lemma 4.6.12. The functor

Mod(π−1
HT (Cw)) → D(Mod(E))

F 7→ RΓw(Sh
tor
Kp ,F )

can be upgraded to functors:

ModB(Qp)(π
−1
HT (Cw)) → D(ModB(Qp)(E)).

Modλ−sm
B(Qp)

(π−1
HT (Cw)) → D(Modλ−sm

B(Qp)
(E)).

Proof. The existence of ModB(Qp)(π
−1
HT (Cw))→ D(ModB(Qp)(E)) follows from the

fact that ModB(Qp)(π
−1
HT (Cw)) has enough injectives (see Lemma 3.2.10).

We verify that this induces a functor Modλ−sm
B(Qp)

(π−1
HT (Cw))→ D(Modλ−sm

B(Qp)
(E)).

We can reduce to the case that λ = 0. Then (jw,Shtor
Kp

)!F is a smooth B(Qp)-
equivariant sheaf on ShtorKp , which is quasi-compact, so by definition the global
sections H0

w(Sh
tor
Kp ,F ) ∈ ModsmB(Qp)(E) are a smooth B(Qp)-representation. The

result follows by applying this to an injective resolution. �

Proposition 4.6.13. Let F be a solid abelian sheaf defined over Shtor
Kp. We have

a spectral sequence (Cousin spectral sequence):

Ep,q1 = ⊕w∈MW,ℓ(w)=pH
p+q
w (Shtor

Kp ,F )⇒ Hp+q(Shtor
Kp ,F ).

Proof. See e.g. [BP21, §2.3]. �

Remark 4.6.14. If F in Proposition 4.6.13 is B(Qp)-equivariant, then so (by
construction) is the Cousin spectral sequence.

4.6.15. Tools for computing the cohomology. In this section, we give a few basic
tools for computing cohomology. All adic spaces are locally of finite type over
Spa(E,OE) and are separated unless specifically mentioned (thus they correspond
to separated rigid analytic spaces in the sense of Tate). We will often consider the
case of Stein or quasi-Stein spaces, which we recalled in Definition 2.2.17.
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Let X be an adic space over Spa(E,OE). Let F be a coherent sheaf over X .
We can think of F as an abelian sheaf of solid E-modules and compute RΓ(X ,F )
in the derived category of solid E-modules, D(Mod(E)).

Theorem 4.6.16 (Tate acyclicity). Let X be an affinoid adic space. Let F be a
coherent sheaf over X . The cohomology RΓ(X ,F ) ∈ D(Mod(E)) is concentrated
in degree 0.

Proof. Let {Ui}i∈I be a finite affinoid covering of X . We know by [Hub94, Thm.
2.5] that the augmented Čech complex of {Ui}i∈I is a long exact sequence of classical
Banach spaces. Therefore, it is also an exact sequence of solid Banach spaces (see
Remark 2.2.3). One concludes by [Gro57, 3.8, coro. 4]. �

Corollary 4.6.17. Let X be a finite type, separated adic space over Spa(E,OE).
Let F be a coherent sheaf over X . The cohomology of F agrees with Čech coho-
mology.

Proof. This is an application of [Gro57, 3.8, coro. 4] and Theorem 4.6.16. �

Corollary 4.6.18. Let X be a quasi-Stein affinoid adic space. Let F be a coherent
sheaf over X . The cohomology RΓ(X ,F ) ∈ D(Mod(E)) is concentrated in degree
0.

Proof. By Corollary 4.6.17, the cohomology is given by R limnH
0(Xn,F ). One

knows by [Kie67] that the maps H0(Xn+1,F ) → H0(Xn,F ) of classical Banach
spaces have dense image. Then the topological Mittag-Leffler [RJRC22, Lem. 3.27]
shows that R limnH

0(Xn,F ) = limnH
0(Xn,F ), as required. �

By [RJRC22, Lem. 3.21] a Banach or Smith space over E is flat.

Corollary 4.6.19. Let X be a finite type, separated adic space over Spa(E,OE),
and let F be a coherent sheaf. Let V be a Banach or Smith space over E. Then
RΓ(X ,F ⊗E V ) = RΓ(X ,F ) ⊗E V .

Proof. In the affinoid case, we check that RΓ(X ,F ⊗E V ) = H0(X ,F ) ⊗E V [0].
To see this, we simply check it on the Čech cohomology of arbitrary finite affinoid
covers, and this follows from the flatness of V . For a general X , we deduce (again
using [Gro57, 3.8, coro. 4]) that the cohomology of F ⊗V is computed by the Čech
cohomology of a finite affinoid cover, and we use one more time that V is flat. �

Corollary 4.6.20. Let F be a coherent sheaf over X , and let V be a Banach or
Smith space over L. Suppose that X is covered by finitely many quasi-Stein spaces.
Then RΓ(X ,F ⊗E V ) = RΓ(X ,F ) ⊗E V , and if X is itself a quasi-Stein space,
then we have RΓ(X ,F ⊗E V ) = H0(X ,F ) ⊗E V [0].

Proof. If X is quasi-Stein, then by Corollary 4.6.19, the cohomology is given by
R limn(H

0(Xn,F ) ⊗E V ). By the topological Mittag-Leffler and [RJRC22, Lem.
3.28], this limit is simply (limnH

0(Xn,F )) ⊗E V . From this, we deduce that if X
is covered by finitely many quasi-Stein spaces, then the cohomology of F ⊗E V is
computed by the Čech cohomology of any finite quasi-Stein cover, and the claim
follows again from flatness of V . �

We also consider duality and cohomology with compact support. Let X be an
adic space. Let F be a solid sheaf of abelian groups. Following [Hub96, 5.2], we let
H0
c (X ,F ) = colimZ H

0
Z(F ) be the space of sections with compact support where
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Z runs through the poset of closed subsets of X which are proper over Spa(E,OE).
We let RΓc(X ,F ) = colimZ RΓZ(X ,F ) be the cohomology with compact support.
(Here RΓZ(X ,F ) is by definition equal to RΓ(X , (iZ)∗i!ZF ), where iZ : Z →֒ Z.)

Remark 4.6.21. For example, Z is proper if it arises as the inverse image of a
proper subset of a formal model of a quasi-compact open subset of X .

Consider a quasi-compact and separated adic space of finite type X . Let j :
U →֒ X be an open adic subspace of X . We assume that U admits an increasing
covering by quasi-compact opens U = ∪nUn with the property that Un is relatively
compact in Un+1.

Example 4.6.22. One can take X = P1, U = A1,an. More generally, one can take
X a proper finite type analytic space and U be the complement of a Zariski closed
subset of X (see [L9̈0, 5.9]). One can also take X = Spa(L〈T 〉,OL〈T 〉) (the closed
unit ball of radius 1), with U the open unit ball of radius 1 inside X .

Lemma 4.6.23. Let F be a solid abelian sheaf over U as above. Then RΓ(X , j!F ) =
RΓc(U ,F ) = colimRΓZ(U ,F ) where Z runs through all closed subsets of X con-
tained in U . Moreover, there exists an increasing family of closed subspaces Un ⊆
Zn ⊆ Un+1, each with quasi-compact complement in X , such that RΓc(U ,F ) =
colimnRΓZn(U ,F ).

Proof. Firstly, we check that a subset Z ⊂ U is closed in X if and only if Z is
proper over Spa(E,OE). Suppose that Z is a closed subset of X contained in U .
Then Z is quasi-compact (as it is a closed subset of X ). Let U = ∪nUn. By
assumption, Un (the closure of Un in U) is proper over Spa(E,OE). Since Z is
quasi-compact, Z ⊆ Un for n large enough. Hence, Z is closed in Un, thus partially
proper. Conversely, if Z is a subset of U , proper over Spa(E,OE), then Z → X is
proper, as claimed.

For any closed subset Z ⊆ U , the counit of adjunction for iZ : Z →֒ X gives a
map (iZ)∗i

!
Zj!F → j!F which induces a map colimZ(iZ)∗i

!
Zj!F → j!F . This map

is injective (both sheaves are subsheaves of j∗F ), and both sheaves restrict to F on
U and have zero stalk at points of XrU ; thus the map is an isomorphism. Since X is
quasi-compact and separated, this implies that RΓ(X , j!F ) = colimZ RΓZ(X , j!F ).
Moreover, colimZ RΓZ(X , j!F ) = RΓc(U ,F ) by definition. We finally claim that
for each n there exists a closed subspace Un ⊆ Zn ⊆ Un+1 with quasi-compact
complement in X . We let ∪i∈IVi be a covering by quasi-compact opens of Un

c
. We

claim that there exists a finite subset I ′ of I such that ∪i∈I′Vi contains Ucn+1. This
follows from endowing X with the constructible topology and noticing that Ucn+1 is
compact in this topology. We can take Zn = (∪i∈I′Vi)c. The Zn are clearly cofinal
among all Z’s. �

The basic duality statement is the following.

Theorem 4.6.24 ([Chi90]). Let F be a locally free coherent sheaf defined over a
smooth Stein space X of dimension d. The cohomology RΓc(X ,F ) is concentrated
in degree d and is an LB-space of compact type. Moreover,

Hd
c (X ,F ) = HomE(H

0(X , D(F )), E)

where D(F ) = Hom(F ,ΩdX ).
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Remark 4.6.25. Although we use the formalism of compactly supported cohomol-
ogy for abelian sheaves, we get the correct “coherent duality”. This is a favorable
property of Stein spaces.

We now extend this result to orthonormalizable Banach sheaves.

Corollary 4.6.26. Let F be a locally free coherent sheaf defined over a Stein space
X of dimension d. Let V be a Smith space over E. We have that RΓc(X ,F⊗EV ) =
RΓc(X ,F ) ⊗E V is concentrated in degree d and moreover,

Hd
c (X ,F ⊗ V ) = HomE(H

0(X , D(F ) ⊗ V ∨), E).

Proof. We let X = ∪nXn be an open cover by affinoids, with Xn relatively compact
in Xn+1. We also let Xn ⊆ Zn ⊆ Xn+1 be closed subspaces with quasi-compact
complement as in the statement of Lemma 4.6.23 (with Un = Xn). It follows from
Lemma 4.6.23 that RΓc(X ,F ⊗E V ) = colimnRΓZn(Xn+1,F ⊗E V ). We observe
that RΓZn(Xn+1,F ⊗V ) = RΓZn(Xn+1,F )⊗V by an easy reduction to Corollary
4.6.19. We deduce that RΓc(X ,F ⊗E V ) = RΓc(X ,F ) ⊗E V . Next, we see that

HomE(H
0(X , D(F ) ⊗ V ∨), E) = HomE(H

0(X , D(F )) ⊗ V ∨, E) by Corollary 4.6.20

= HomE(H
0(X , D(F )), V ) by adjunction and Proposition 2.2.4

= HomE(H
0(X , D(F )), E) ⊗E V by [RJRC22, Thm. 3.40]

= Hd
c (X ,F ) ⊗ V by Theorem 4.6.24

= Hd
c (X ,F ⊗ V ) by the first point. �

4.6.27. On the computation of the local cohomology. We want to give some formulas
for computing RΓw(Sh

tor
Kp ,F ).

The Bruhat cell Cw is an affine space of dimension ℓ(w) and its closure Xw is a
compactification of this affine space. We recall (see [BP21, Lemma 3.1.3] for exam-
ple) that Cw = w

∏
α∈Φ+∩w−1Φ−,M Uα where Uα is the α-root space, isomorphic to

A1,an. We also have a neighborhood of Cw, Uw = w
∏
α∈w−1Φ−,M Uα. Let us pick

a coordinate uα on each Uα.

Definition 4.6.28. We now define certain subsets of Zn, Zn,m, Un and Un,m of
Cw, for n,m ∈ Z≥0. Let n0 ≥ 0 be fixed. We take:

• Zn = {x ∈ Cw, ∀α ∈ Φ+ ∩ w−1Φ−,M , |uα|x < |p|n0−n
x }.

• Un = {x ∈ Cw, ∀α ∈ Φ+ ∩ w−1Φ−,M , |uα|x ≤ |p|n0−n−1
x }.

• Zn,m = {x ∈ Uw, ∀α ∈ Φ+ ∩ w−1Φ−,M , |uα|x < |p|n0−n
x , ∀α ∈ Φ− ∩

w−1Φ−,M , |uα|x < |p|mx },
• Un,m = {x ∈ Uw, ∀α ∈ Φ+ ∩ w−1Φ−,M , |uα|x ≤ |p|n0−n−1

x , ∀α ∈ Φ− ∩
w−1Φ−,M , |uα|x ≤ |p|mx }.

Here are some obvious properties of these sets.
• ∪nZn = ∪nUn = Cw,
• The complement of Zn in Xw is a quasi-compact open subset,
• Un is a quasi-compact open subset of Xw,
• Un = ∩mUn,m, and Un,m ∩Xw = Un,
• Un,m is a quasi-compact open of FL,
• Zn,m is a closed subset of Un,m with quasi-compact complement,
• Zn = Un ∩ Zn,m.

We let Fn = π−1
HT (Zn), Vn = π−1

HT (Un), Fn,m = π−1
HT (Zn,m) and Vn,m = π−1

HT (Un,m).
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Lemma 4.6.29. Let F be a solid abelian sheaf over π−1
HT (Cw). We have RΓw(Sh

tor
Kp ,F ) =

colimnRΓFn(Vn,F ).

Proof. This is a consequence of Lemma 4.6.23 (since the Vn give a cofinal system
of closed subsets of Zw).

�

Lemma 4.6.30. Let m0 ≥ 0 and let F ′ be a sheaf on Vn,m0 and let F = i−1F ′ on
Vn for i : Vn → Vn,m0 . Then we have: RΓFn(Vn,F ) = colimm≥m0 RΓFn,m(Vn,m,F

′).

Proof. We consider the triangle:

RΓFn,m(Vn,m,F
′)→ RΓ(Vn,m,F

′)→ RΓ(Vn,m r Fn,m),F ′)
+1→

Passing to the colimit overm, we need to see that colimmRΓ(Vn,m,F
′) = RΓ(Vn,F )

and colimmRΓ(Vn,m r Fn,m,F
′) = RΓ(Vn r Fn,F ). This follows from the fact

that all spaces involved are quasi-compact. �

The combination of lemmas 4.6.29 and 4.6.30 allows us to compute the cohomol-
ogy as a colimit of cohomologies of the shape RΓFn,m(Vn,m,F

′) where RΓFn,m(Vn,m,F
′)

fits in a triangle:

RΓFn,m(Vn,m,F
′)→ RΓ(Vn,m,F

′)→ RΓ(Vn,m r Fn,m,F
′)

+1→
and both Vn,m and Vn,m r Fn,m are quasi-compact opens.

We now give another similar presentation of the cohomology which puts emphasis
on the cohomology with compact support. We will be using Stein spaces because
of remark 4.6.25.

Definition 4.6.31. We define sets Xn, Xn,m and Tn,m,r for n,m, r ∈ Z≥0.
• For any ǫ ∈ Q>0, we put Xn,ǫ = {x ∈ Cw, ∀α ∈ Φ+ ∩ w−1Φ−,M , |uα|x ≤
|p|n0−n+ǫ

x } and set Xn = ∪ǫ>0Xn,ǫ.
• Xn,m,ǫ = {x ∈ Uw, ∀α ∈ Φ+ ∩ w−1Φ−,M , |uα|x ≤ |p|n0−n+ǫ

x , ∀α ∈ Φ− ∩
w−1Φ−,M , |uα|x ≤ |p|m+ǫ

x }, and set Xn,m = ∪ǫ>0Xn,m,ǫ.
• We also put Tn,m,r,η = {x ∈ Xn,m, ∃α ∈ Φ− ∩ w−1Φ−,M , |uα|x ≥ |p|r−η}.

We let Tn,m,r = ∪η>0Tn,m,r,η.

We see that Xn is an increasing sequence of Stein subsets of Cw with the property
that Cw = ∪nXn and that each Xn is included in a quasi-compact open subset Zn
of Cw. We see that Xn,m is a decreasing (in m) family of Stein open subsets of FL
with Xn = Xn,m ∩Xw and ∩mXn,m = Xn. We have ∪r>0Tn,m,r = Xn,m rXn.

Let Yn = π−1
HT (Xn). We let Yn,m = π−1

HT (Xn,m) and Wn,m,r = π−1
HT (Tm,n,r).

Lemma 4.6.32. Let F be a solid abelian sheaf over π−1
HT (Cw). We have RΓw(Sh

tor
Kp ,F ) =

colimnRΓc(Yn,F ).

Proof. This follows from Lemma 4.6.29. Indeed the two inductive systems are equiv-
alent as Yn ⊆ Fn ⊆ Yn+1, and we have a series of natural maps RΓFn(Vn,F ) →
RΓc(Yn,F )→ RΓFn+1(Vn+1,F ). �

Lemma 4.6.33. Let F ′ be a sheaf on Yn,m and let F = i−1F ′ on Yn. Then we
have a triangle:

RΓc(Yn,m r Yn,F
′)→ RΓc(Yn,m,F

′)→ RΓc(Yn,F )
+1→

Moreover, RΓc(Yn,m r Yn,F
′) = colimr RΓc(Wn,m,r,F

′).
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Proof. Let m ≥ 0. We consider the following commutative diagram:

Yn
jn

//

i

��

π−1
HT (Xw)

i′

��

Yn,m
jn,m

// Shtor
Kp

Yn,m r Yn

j

OO
in,m

88qqqqqqqqqqq

We have to prove that we have a triangle

RΓ(ShtorKp , (in,m)!F
′)→ RΓ(Shtor

Kp , (jn,m)!F ′)→ RΓ(π−1
HT (Xw), (jn)!F )

+1→
We have the triangle j!j−1F ′ → F ′ → i∗F

+1→. We apply (jn,m)!, and we get a

triangle: (in,m)!j
−1F ′ → (jn,m)!F

′ → (jn,m)!i∗F
+1→. Observe that (jn,m)!i∗F =

i′∗(jn)!F (as i∗ = i! and i′∗ = i′!). We then apply RΓ(ShtorKp ,−). �

4.6.34. Higher Coleman functors.

Definition 4.6.35. Using Lemma 4.6.12, we define the contravariant higher Cole-
man functor:

HCw,λ : O(mw, bMw)λ−alg → D(Modλ−sm
B(Qp)

(E))

M 7→ RΓw(Sh
tor
Kp , V B0(HCSw,λ(M)))

and the contravariant cuspidal higher Coleman functor:

HCcusp,w,λ : O(mw, bMw)λ−alg → D(Modλ−sm
B(Qp)

(E))

M 7→ RΓw(Sh
tor
Kp , V B0(HCSw,λ(M)(−D))).

We extend these functors to the derived category

HCw,λ, HCcusp,w,λ : Db(O(mw, bMw)λ−alg)→ D(Modλ−sm
B(Qp)

(E))

by putting HCw,λ(M) = RΓw(Sh
tor
Kp , V Bred(HCSw,λ(M))) and similarly in the

cuspidal case. We note that HCSw,λ is an exact functor O(mw, bMw)λ−alg →
LB(g,B)(C

†
w)

u0
p , and V B0 is also exact on LB(g,B)(C

†
w)

u0
p . Therefore, if M is

a complex, V Bred(HCSw,λ(M)) is computed by applying V B0(HCSw,λ(−)) to
each term of a complex representing M . Moreover, its i-th cohomology sheaf
Hi(V Bred(HCSw,λ(M)) is V B0(HCSw,λ(H

i(M))).

4.6.36. Formal models and the Hodge–Tate period map. Our goal is to compute the
cohomological amplitude of the higher Coleman functors. The main source of van-
ishing is the affineness of the Hodge–Tate period map. To perform the argument,
we need to consider formal models for some of the spaces and sheaves introduced
so far. We can consider the following diagram where Sh∗Kp is the minimal compact-
ification.

Shtor
Kp

��

πHT

""
❉
❉
❉
❉
❉
❉
❉
❉
❉

Sh∗
Kp

π∗
HT // FL
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In [BP21], sect. 4.4.31, we constructed a formal model of this diagram:

Sh
tor,mod
Kp

��
##●

●●
●
●
●●

●●
●

Sh
∗,mod
Kp

// FL

Moreover Sh
tor,mod
Kp = limKp Sh

tor,mod
KpKp and Sh

∗,mod
Kp = limKp Sh

∗,mod
KpKp for all Kp

small enough, where Sh
tor,mod
KpKp is a formal model of ShtorKpKp and Sh

∗,mod
KpKp is a

formal model of Sh∗KpKp .
Let U be a quasi-compact open of FL. Let U → FL be a formal model for

the map U → FL. Using the notation of [BP21], sect. 4.4.31, we have a formal
model for π−1

HT (U), denoted by Sh
tor,mod
Kp,U as well as a formal model for (π∗

HT )
−1(U)

denoted by Sh
∗,mod
Kp,U . There is a diagram:

Sh
tor,mod
Kp,U

��
""
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊

Sh
∗,mod
Kp,U

// U

Moreover, we have π−1
HT (U) = limKp π

−1
HT (U)Kp for Kp small enough and accord-

ingly Sh
tor,mod
Kp,U = limKp Sh

tor,mod
KpKp,U. Similarly, for Kp small enough (π∗

HT )
−1(U) =

limKp(π
∗
HT )

−1(U)Kp and Sh
∗,mod
Kp,U = limKp Sh

∗,mod
KpKp,U.

4.6.37. Formal Banach sheaves and formal Smith sheaves. In this section we con-
sider a flat p-adic formal scheme X which locally of topologically finite type over
Spf OE (in other words, Zariski locally, X is Spf A where A is a quotient of
OE〈X1, · · · , Xn〉). We write X for the generic fiber of X. The sheaf OX is a sheaf
of solid OE-modules, as are all the sheaves we will consider. We define the scheme
Xn = X×Spf OE Spec OE/pnOE .

Definition 4.6.38.

(1) A locally trivial formal Banach sheaf over X is a sheaf F of OX-modules
which is flat as an OE-module, and such that F = limn Fn for Fn = F/pnF,
and there exists a covering X = ∪iVi and sets Ii and such that Fn|Vi,n =
OVi,n⊗OE/pnOE

(⊕s∈IiOE/pnOE) and the transition maps Fn|Vi,n → Fn−1|Vi,n−1

are the obvious ones.
(2) A very small formal Banach sheaf over X is a sheaf F of OX-modules which

is flat as an OE-module, and such that F = limn Fn for Fn = F/pnF, and
F1 = G1 ⊗OE (⊕s∈IOE/p) for some coherent sheaf G1 and some set I.

Definition 4.6.39.

(1) A locally trivial formal Smith sheaf over X a sheaf F of OX-modules which
is flat as an OE -module, such that F = limn Fn for Fn = F/pnF, and there
exists a covering X = ∪iVi and sets Ii such that Fn = OVi,n ⊗OE/pnOE

(OE/pnOE)Ii with the obvious transition maps Fn|Vi,n → Fn−1|Vi,n−1 .
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(2) A very small formal Smith sheaf over X is a sheaf F of OX-modules which
is flat as an OE-module, such that F = limn Fn for Fn = F/pnF, and
F1 = G1 ⊗E (OE/pOE)I for a coherent sheaf G1 and some set I.

If F is a locally trivial formal Smith sheaf, then it has a generic fiber F over
X defined as follows: we take a covering X = ∪iVi, such that F|Vi = OVi ⊗OIiE .
Over the generic fibre Vi of Vi, we define F |Vi = OVi ⊗E (OIiE [1/p]) and we use
the gluing data of F to glue the F |Vi .

A similar construction applies to a locally trivial Banach sheaf. See also [BP21,
Thm. 2.5.9] for a more general statement.

Proposition 4.6.40. If F is a very small formal Banach sheaf or a very small
formal Smith sheaf, X admits an ample invertible sheaf and X is affinoid, then
Hi(X,F )⊗OE E = 0 for all i > 0.

Proof. The formal Banach case is [BP21, Thm. 2.5.8]. The same proof with minor
modification applies to the Smith case. �

4.6.41. Cohomological amplitude of the higher Coleman functors. Let M ∈ Oλ−alg.
Let us consider the sheaf F := V B0(HCSw,λ(M)). Theorem 4.5.20 addresses the
local structure of this sheaf. We also need to produce some integral structure, as
in the following lemma.

Lemma 4.6.42. There exists a quasi-compact open subset U0 ⊆ Cw containing w
such that if we set V0 = π−1

HT (U0), then we can write F |V0 = colim i−1
m Fm where:

(1) U0 = ∩mU0,m where {U0,m}m∈Z≥0
is a decreasing sequence of quasi-compact

open affinoid subsets of FL;
(2) V0,m = π−1

HT (U0,m) is a quasi-compact open subset of ShtorKp , stable under a
compact open subgroup Kp,m ⊆ G(Qp);

(3) im : V0 → V0,m is the natural inclusion;
(4) Fm is a sheaf over V0,m;
(5) V0,m,Kp,m →֒ ShtorKpKp,m

is a quasi-compact open which descends V0,m to
finite level Kp,m, and πKp,m : V0,m → V0,m,Kp,m is the induced projection;

(6) We have a Banach sheaf Gm,Kp,m on V0,m,Kp,m and Fm = π−1
Kp,m

Gm,Kp,m⊗π−1
Kp,m

OV0,m,Kp,m

Osm
V0,m

;
(7) The sheaves Gm,Kp,m arise as the generic fibers of locally trivial, very small,

formal Banach sheaves Gm,Kp,m over Sh
tor,mod
KpKp,m,U0,m

.

Proof. The first 6 points follow from Theorem 4.5.20. We need to give a more
explicit construction of Gm,Kp,m in order to be able to produce an integral struc-
ture. We will follow closely the proof of [BP21, Lem. 6.6.2]. As M ∈ Oλ−alg, we
deduce that M̂∨(λ) = colimrMr where each Mr is a Banach space representation
of the group denoted Stab(w)r,s in Definition 3.3.10 (with Q = B). Unraveling
the definition, we deduce in particular that Mr is a Banach space representation of
Mw,rUMw,s =: Mw,r,s →֒ Mw. Moreover, after possibly changing r and s, we can
also assume that there is a lattice M+

r ⊆ Mr with the property that the co-action
mapMr →Mr⊗OMw,r,s induces a mapM+

r →M+
r ⊗O+

Mw,r,s
, trivial on M+

r /pM
+
r .

We consider the Mw,r,s-torsor w(UPw ∩ GrUs)\GrUs → w(Pw ∩ GrUs)\GrUs.
This is a reduction of structure of the standard M -torsor UP \G → P\G over
w(Pw ∩ GrUs)\GrUs. Let us write Ur = w(Pw ∩ GrUs)\GrUs, which is a quasi-
compact open subset of FL. Over π−1

HT (Ur), we pull back to get a Mw,r,s-torsor
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that we denote by MdR,r,s,Ur . For Kp small enough, by [BP21, prop. 4.6.12], it
descends to a Mw,r,s-torsor MdR,r,s,Ur,Kp over π−1

HT (Ur)Kp . Moreover, by [BP21,
prop. 4.6.15] for any affinoid open subset VKp ⊆ π−1

HT (U)Kp , we can find K ′
p ⊆ Kp

such that the torsor MdR,r,s,Ur,K′
p
|VK′

p
is trivial. After rescaling, we can assume

that U0,r ⊆ Ur. We now attach to Mr a locally projective small formal Banach sheaf
on the formal model Sh

tor,mod
KpKp,r,U0,r

of V0,r,Kp,r = π−1
HT (U0,r)Kp,r for a small enough

Kp,r. Indeed, we pick a finite affine covering ∪iVi = Spf(Ai) of Sh
tor,mod
KpKp,r,U0,r

. Af-
ter replacing Kp,r by a smaller compact open, we can assume thatMdR,r,s,U0,r ,Kp,r

is trivial over the generic fiber of every Vi. It follows that the torsor is described by
a 1-cocycle {mi,j ∈Mw,r,s((Ai,j [1/p], Ai,j))}i,j (where Vi,j = Vi∩Vj = Spf(Ai,j)).
We can use the elementsmi,j to glue the trivial formal Banach sheafOVi⊗OLM

+
r to

get the very small, locally trivial, formal Banach sheaf Gr,Kp,r . The very smallness
property comes from the fact that the mi,j act trivially on M+

r /p. �

We give a technical variant of this description, using formal Smith sheaves in-
stead.

Lemma 4.6.43. There exists a quasi-compact open subset U0 ⊆ Cw containing w
such that if we set V0 = π−1

HT (U0), then we can write F |V0 = colim i−1
m Fm where:

(1) U0 = ∩mU0,m where {U0,m}m∈Z≥0
is a decreasing sequence of quasi-compact

open affinoid subsets of FL,
(2) V0,m = π−1

HT (U0,m) is a quasi-compact open subset of ShtorKp , stable under a
compact open subgroup Kp,m ⊆ G(Qp),

(3) im : V0 → V0,m is the natural inclusion,
(4) Fm is a sheaf over V0,m,
(5) V0,m,Kp,m →֒ ShtorKpKp,m

is a quasi-compact open which descends V0,m to
finite level Kp,m, and πKp,m : V0,m → V0,m,Kp,m is the induced projection,

(6) We have a sheaf G ′
m,Kp,m

on V0,m,Kp,m and Fm = π−1
Kp,m

Gm,Kp,m⊗π−1
Kp,m

OV0,m,Kp,m

Osm
V0,m

.
(7) The sheaves G ′

m,Kp,m
arise as the generic fibers of locally trivial, very small,

formal Smith sheaves Gm,Kp,m over Sh
tor,mod
KpKp,m,U0,m

.

Proof. The argument is almost identical to the proof of Lemma 4.6.42. We have that
M̂∨(λ) = colimrMr where each Mr is a Banach space representation of the group
denoted Stab(w)r,s in Definition 3.3.10. Since this is a LB-space of compact type,
it also admits a presentation as a LS-space of compact type, M̂∨(λ) = colimrM

′
r

where each M ′
r is a Smith space representation of Stab(w)r,s (see [RJRC22, Cor.

3.38]). We then pick lattices (M ′
r)

+ in M ′
r and glue the sheaves OVi ⊗OL (M ′

r)
+ to

get the very small formal Smith sheaf G′
r,Kp,r

. �

For any Kp ⊆ Kp,m, we have maps πKp,Kp,m : Sh
tor,mod
KpKp,U0,m

→ Sh
tor,mod
KpKp,m,U0,m

and we write Gm,Kp := π∗
Kp,Kp,m

Gm,Kp,m (a locally trivial, very small formal Ba-
nach sheaf) and G′

m,Kp
:= π∗

Kp,Kp,m
G′
m,Kp,m

(a locally trivial, very small formal
Smith sheaf). We denote their generic fibers by Gm,Kp and G′m,Kp

.

Lemma 4.6.44.
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(1) For any affinoid U ′ ⊆ U0,m, any compact open subgroup Kp ⊆ Kp,m′ fixing
U ′, and letting V ′ = π−1

HT (U
′), we have Hi(V ′

Kp
,Gm,Kp(−D)) = 0 for all

i > 0.
(2) For any Stein space S′ ⊆ U0,m stable under a compact open subgroup Kp ⊆

Kp,m′ , let V ′′ = π−1
HT (S

′). We have Hi
c(V

′′
Kp
,G ′

m,Kp
) = 0 for all i 6= d.

Proof. The first part follows as in lemma 6.6.2 of [BP21]. We briefly recall the
argument. We take a formal model U′ → FL of U ′ → FL. By Lemma 4.6.42, we
have a locally trivial, very small, formal Banach sheaf Gm,Kp over ShtorKpKp,U′ . Let
π : ShtorKpKp,U′ → Sh∗KpKp,U′ . We have that Riπ∗Gm,Kp(−D) = 0 for all i > 0. In-
deed, using the very smallness, this reduces to the vanishing ([BP21, Thm. 4.4.37])
of Riπ∗OShtor

KpKp,U′
(−D). We deduce that π∗Gm,Kp(−D) is a very small formal Ba-

nach sheaf and thus Proposition 4.6.40 implies that Hi(ShtorKpKp,U′ ,Gm,Kp(−D))⊗
E = 0 for all i > 0.

We claim that Hi(ShtorKpKp,U′ ,Gm,Kp(−D)) ⊗ E = Hi(V ′
Kp
,Gm,Kp(−D)). To

see this, take a Zariski open affine cover {Ws}s of ShtorKpKp,U′ with the prop-
erty that Gm,Kp(−D)|Ws is a trivial formal Banach sheaf. By Corollary 4.6.19
Hi(V ′

Kp
,Gm,Kp(−D)) is computed by the Čech complex associated to the generic

fiber of this cover, which computes Hi(ShtorKpKp,U′ ,Gm,Kp(−D)) ⊗ E. We deduce
that Hi(V ′

Kp
,Gm,Kp(−D)) = 0 for all i > 0, as required.

The second part follows from a certain form of duality. Let us define the “Serre
dual” of G ′

m,Kp
,

D(G ′
m,Kp

) = HomOV0,m,Kp
(G ′
m,Kp

,ΩdV0,m,Kp
),

by which we mean the following. We take a finite Stein covering V ′′
Kp

= ∪iV ′′
Kp,i

with the property that ΩdVm,Kp
|V ′′

Kp,i
is trivial and that G ′

m,Kp
= OV ′′

Kp,i
⊗Mi for

a Smith space Mi. Then D(G ′
m,Kp

)|V ′′
Kp,i

= OV ′′
Kp,i
⊗M∨

i where M∨
i is a Banach

space. We consider the Čech complex of Fréchet spaces:

C :
∏

i

H0(V ′′
Kp,i, D(G ′

m,Kp
))→

∏

i,j

H0(V ′′
Kp,i ∩ V ′′

Kp,i, D(G ′
m,Kp

))→ · · ·

as well as the Čech complex of LS-spaces:

D : Hd
c (∩iV ′′

Kp,i,G
′
m,Kp

)→
∏

j

Hd
c (∩i6=jV ′′

Kp,i,G
′
m,Kp

)→ · · ·

The two complexes are termwise dual of each other by the duality theory (see
Corollary 4.6.26). The complex D computes RΓc(V

′′
Kp
,G ′

m,Kp
) and the complex

C computes RΓ(V ′′
Kp
, D(G ′

m,Kp
)) by Corollary 4.6.20 and 4.6.26. Thus, it suffices

to prove that the complex C has cohomology concentrated in degree 0. Write
S′ = ∪S′

r as a countable increasing union of affinoids, and let V ′′
r = π−1

HT (S
′
r) and

V ′′
r = ∪iV ′′

r,i. It follows from Lemma 4.6.43 that D(G ′
m,Kp

) admits a formal model
which is a very small formal Banach sheaf over a formal model of V ′′

r,Kp
. We deduce

that RΓ(V ′′
r,Kp

, D(G ′
m,Kp

)) is concentrated in degree 0 by the same argument as
for the first point of the lemma. Thus, the Čech complex Cr of D(G ′

m,Kp
) with

respect to {V ′′
r,i,Kp

} has only cohomology in degree 0. We then use topological
Mittag-Leffler to deduce that C = limr Cr is concentrated in degree 0. �
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Theorem 4.6.45. For any M ∈ Oλ−alg, HCcusp,w,λ(M) has amplitude [0, ℓ(w)]
and HCw,λ(M) has amplitude [ℓ(w), d].

Proof. We first prove the claim regarding HCcusp,w,λ(M). Let us denote F =
V B0(HCSw,λ(M))(−D). Let us fix a closed neighborhood Z0 of w in Cw and
an open neighborhood U0 of Z0 in Cw as in definition 4.6.28. Let t ∈ T++(Qp).
It is easy to see that ∪n∈Z≥0

Z0t
n = Cw . As above, we put V0 = π−1

HT (U0) and
F0 = π−1

HTZ0. By Lemma 4.6.29 (noting that Z0t
n and Zn are cofinal), we have

that RΓw(Sh
tor
Kp ,F ) = colimnRΓF0tn(V0t

n,F ). It follows that each Hi
w(Sh

tor
Kp ,F )

is generated as a B(Qp)-module by the image ofHi
F0
(V0,F ) inHi

w(Sh
tor
Kp ,F ). Thus

it suffices to see that RΓF0(V0,F ) has amplitude [0, ℓ(w)].
We are free to chose n0 in definition 4.6.28, and to make F0 and V0 arbi-

trarily small. By Lemma 4.6.42, we can assume that F |V0 = colimFm where
Fm = Gm,Kp,m ⊗OV0,m,Kp,m

OV0,m(−D) where Gm,Kp,m is a Banach sheaf ad-
mitting a locally trivial, very small, formal model over V0,m,Kp,m . By Lemma
4.6.30, we have that RΓF0(V0,F ) = colimmRΓF0(V0,Fm) and RΓF0(V0,Fm) =
colims,nRΓF0,s,Kp,n

(V0,s,Kp,n ,Gm,Kp,n(−D)) where Kp,n tends to {e}. Thus it suf-
fices to prove that RΓF0,s,Kp,n

(V0,s,Kp,n ,Gm,Kp,n(−D)) has cohomological ampli-
tude in [0, ℓ(w)]. Recall from definition 4.6.28 that F0,s = π−1

HT (Z0,s) and V0,s =

π−1
HT (U0,s) for s large enough (and a fixed choice of n0 big enough). We observe that
U0,s is affinoid while U0,s r Z0,s is covered by ℓ(w) affinoids. Using the triangle:

RΓF0,s,Kp,n
(V0,s,Kp,n ,Gm,Kp,n(−D))→ RΓ(V0,s,Kp,n ,Gm,Kp,n(−D))

→ RΓ(V0,s,Kp,n r F0,s,Kp,n ,Gm,Kp,n(−D))
+1→

together with Lemma 4.6.44, we arrive at the desired conclusion.
We now turn to the case of usual cohomology, which follows along similar lines

to the above, using the presentation via cohomology with compact support. Let us
denote now F = V B0(HCSw,λ(M)). We first see by lemma 4.6.32 and a similar
argument using the B(Qp)-action, that it is enough to check that RΓc(Y0,F ) is
concentrated in degrees [ℓ(w), d] where Y0 = π−1

HTX0 and X0 is a Stein open neigh-
borhood of w in Cw (see Definition 4.6.31). Next, we use Lemma 4.6.43 to see that
F |Y0 = colimF ′

m where F ′
m = G ′

m,Kp,m
⊗OY0,m,Kp,m

OY0,m and Y0,m = π−1
HT (X0,m)

for X0,m a Stein neighborhood of X0 in FL. We deduce that RΓc(Y0,F ) =
colimRΓc(Y0,F

′
m). Let G ′

m = colimKp G ′
m,Kp

where G ′
m,Kp

is the pull back of
G ′
m,Kp,m

to Y0,m,Kp for Kp ⊆ Kp,m and G ′
m is viewed as a sheaf on Y0,m. We

deduce from lemma 4.6.33 that we have a triangle

RΓc(Y0,m r Y0,G
′
m)→ RΓc(Y0,m,G

′
m)→ RΓc(Y0,F

′
m)

+1→ .

Recall thatW0,m,r = π−1
HT (T0,m,r) (see definition 4.6.31). We have that RΓc(Y0,m,G ′

m) =
colimKp RΓc(Y0,m,Kp ,G

′
m,Kp

) is concentrated in degree d by Lemma 4.6.44. Simi-
larly, RΓc(Y0,mrY0,G ′

m) = colimr colimKp RΓc(W0,m,r,Kp ,G
′
m,Kp

), and RΓc(W0,m,r,Kp ,G
′
m,Kp

)

has cohomology concentrated in degrees [ℓ(w)+ 1, d] by Lemma 4.6.44 (as T0,m,r is
the union of ℓ(w) Stein spaces). �

4.6.46. Finite slope projector. We follow the notation introduced in Section 1.8.5.
Let Z be the character space of T (Qp). Fixing an isomorphism T (Qp) = Zr×T (Zp)
(with r the rank of T d, the maximal split torus in T ), we see that Z =W× (Gan

m )r

with W = Spa(ZpJT (Zp)K,ZpJT (Zp)K) ×Spa(Zp) Spa(Qp,Zp).
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We fix an affinoid increasing covering of the Stein space Z = ∪nZn. As in
[And21], we let D(Zn) denote the category D((OZn ,O+

Zn
)�), and we let D(Z) be

the derived category of quasi-coherent sheaves over Z (see [And21, Thm. 1.6]). We
have defined in Section 1.8.5 the monoids T++(Qp) ⊆ T+(Qp) ⊆ T (Qp). Note
that T+(Qp) = T (Zp)× Zs × Zr−s≥0 , where s is the rank of the maximal split torus
in Z(G). We let (Qp)�[T

+(Qp)] be the solidification of Qp[T
+(Qp)], and we let

(Qp)�[T (Qp)] the solidification of Qp[T (Qp)]. The categories of solid modules over
these rings are denoted by ModT+(Qp)(Qp) and ModT (Qp)(Qp) (this is consistent
with definition 2.2.21). Their derived categories are denoted D(ModT+(Qp)(Qp))
and D(ModT (Qp)(Qp)).

We define a functor f∗
n : D(ModT+(Qp)(Qp))→ D(Zn), f∗

nM =M⊗(Qp)�[T+(Qp)]

(OZn ,O+
Zn

)�. This functor has a right adjoint given by the forgetful functor
(fn)∗ : D(Zn) → D(ModT (Qp)(Qp)). These functors induce adjoint functors
f∗ : D(ModT+(Qp)(Qp))→ D(Z) and f∗ : D(Z)→ D(ModT (Qp)(Qp)).

We finally define the finite slope functor:

(−)fs = f∗f
∗ : D(ModT+(Qp)(Qp))→ D(ModT (Qp)(Qp)).

The unit of adjunction gives a natural map M →Mfs in D(ModT+(Qp)(Qp)). Note
that Mfs = limn(fn)∗f

∗
nM .

Remark 4.6.47. The finite slope functor is a localization functor, which factors
over the functor −⊗(Qp)�[T+(Qp)] (Qp)�[T (Qp)]. However, it is a stronger form of
localization. For example, let us (abusively!) consider the case that T+(Qp) = Z≥0

and T (Qp) = Z. In this case, (Qp)�[T
+(Qp)] = Qp[X ] and (Qp)�[T (Qp)] =

Qp[X,X
−1]. We can also suppose thatZn = Spa(Qp〈pnX, pnX−1〉,Zp〈pnX, pnX−1〉).

We claim that the module Qp((X)) is a solid Qp[X,X
−1]-module, whose finite slope

part is trivial. By definition we need to show that Qp((X))⊗L
Zp[X]Zp〈pnX, pnX−1〉 =

0 for every n. To see this, we first show note that Qp((X)) is a solid Qp〈p−sX〉 for
every s ≥ 0. Indeed Qp[X ]/(Xℓ) is a solid Qp〈p−sX〉-module for any ℓ, s ∈ Z≥0

and so QpJXK = limℓQp[X ]/(Xℓ) is also a Qp〈p−sX〉-module, and thus Qp((X))
is a solid Qp〈p−sX〉-module, as claimed. It remains to observe that if s ≥ n, then
Qp〈p−sX〉 ⊗LQp[X] Qp〈pnX, pnX−1〉 = 0. To see this, note that this is represented
by the following complex:

[Qp〈U, pnX, pnX−1〉 p
s−nUpnX−1−1−→ Qp〈U, pnX, pnX−1〉].

But 1− ps−nU(pnX−1) is invertible, with inverse
∑

ℓ≥0(p
s−nU(pnX−1))ℓ.

Sometimes, one wants to consider not only the finite slope part, but to specify
the slope. For any rank one point Spa(C,OC) → Z corresponding to a character
χ : T (Qp) → C×, we define the slope of χ as follows. Let v : C → R ∪ {+∞} be
the valuation, normalized by v(p) = 1. Composing the valuation and χ we obtain a
map v(χ) : T (Qp)→ R. On the other hand, via the exact sequence (1.8.6) we can
think of v(χ) as an element of X∗(T d)R (see also [BP21, Sect. 5.9]). This defines
a continuous “slope” map s : Z → X∗(T d)R (which factors through the Berkovich
space of Z).

Remark 4.6.48. If (again abusively) we consider the case T (Qp) = Z, then Z =
Gan
m , and s : Gan

m → R extends the p-adic valuation on classical rigid analytic
points.
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We have a partial order relation onX∗(T d)R where λ ≥ λ′ if λ(v(t))−λ′(v(t)) ≥ 0
for any t ∈ T+(Qp). For any λ ∈ X∗(T d)Q, we can consider the cone {λ′ ∈
X∗(T d)R, λ

′ ≤ λ}. The subset s−1({λ′ ∈ X∗(T d)R, λ
′ ≤ λ}) is the closure of

a unique rational open that we denote by Z≤λ
iλ→ Z. We have functors f∗

≤λ :

D(ModT+(Qp)(Qp))→ D(Z≤λ), f∗
≤λM = i∗λf

∗M . We also have a forgetful functor
(f≤λ)∗ : D(Z≤λ)→ D(ModT (Qp)(Qp)). We finally define the slope ≤ λ functor:

(−)≤λ = (f≤λ)∗f
∗
≤λ : D(ModT+(Qp)(Qp))→ D(ModT (Qp)(Qp)).

If M ∈ D(ModT+(Qp)(Qp)), then we have limλM
≤λ = Mfs. We leave it to the

reader to define the slope λ functor M 7→ M=λ and the slope ≥ λ functor, M 7→
M≥λ.

Remark 4.6.49. Let us assume that M is a Banach space equipped with a com-
pact endomorphism X . In other words, we are (again, abusively) in the situation
T+(Qp) = Z≥0 and T (Qp) = Z, and 1 ∈ Z≥0 acts like X . It follows from [Ser62,
Prop. 12] that for any λ ∈ Q, M≤λ is a direct summand of M and is finite dimen-
sional. In particular, f∗M defines a coherent sheaf on Z and Mfs is a pro-finite
vector space.

4.6.50. Hecke algebra action. Let KU be a compact open subgroup of U(Qp) ⊆
B(Qp) which admits an Iwahori factorization. Let λ ∈ X∗(T )Qp . For any M ∈
Modλ−sm

B(Qp)
(E), we consider the submodule MKU of KU -invariants. It is canonically

a direct summand, since one can define a trace TrKU :M →MKU . Indeed, we have
M = colimK′ MK′

where K ′ runs through the compact open subgroups of U(Qp).
Then for any K ′

U ⊆ KU we can define a normalized trace

TrK′
U/KU

=
1

[KU : K ′
U ]


 ∑

k∈KU/K′
U

k


 :MK′

U →MKU ,

and passing to the inductive limit over KU yields the map TrKU .
Let t ∈ T+(Qp). We define an action of t on MKU as follows:

MKU
t→M tKU t

−1 TrtKU t−1/KU→ MKU

Lemma 4.6.51. The above rule defines an action of the commutative monoid
T+(Qp) on MKU .

Proof. This follows from [Cas, Lem. 4.1.5]. �

We deduce that we have an exact functor

(−)KU : D(Modλ−sm
B(Qp)

(E))→ D(Modλ−sm
T+(Qp)

(E)).

Lemma 4.6.52. Let K ′
U ⊆ KU . We have a natural transformation (−)K′

U ⇒
(−)KU , induced by the trace.

Proof. We consider the map TrK′
U/KU

: MK′
U → MKU . It is elementary to check

that this map commutes with the action of t. �

We can now consider the composite functor:

(−)KU ,fs : D(Modλ−sm
B(Qp)

(E))
(−)KU

→ D(Modλ−sm
T+(Qp)

(E))
(−)fs→ D(Modλ−sm

T (Qp)
(E))
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Lemma 4.6.53. Let K ′
U ⊆ KU . The natural transformation (−)K′

U ,fs ⇒ (−)KU ,fs

is an isomorphism.

Proof. We pick t ∈ T++(Qp) such that tKU t
−1 ⊆ K ′

U . We have a commutative
diagram (where the vertical maps are trace maps, and the diagonal map is the

composite MKU
t→M tKU t

−1
TrtKU t−1/K′

U→ MKU ):

MKU
t //

##❍
❍
❍
❍
❍
❍
❍
❍

MKU

MK′
U

OO

t // MK′
U

OO

On the finite slope quotient, the horizontal maps t are isomorphisms, showing
that the maps MK′

U ,fs →MKU ,fs are isomorphisms. �

In view of this lemma, we often simply write Mfs instead of MKU ,fs, as the
choice of KU is irrelevant.

4.6.54. The finite slope part of the higher Coleman functor. We define the finite
slope part of the higher Coleman functor:

HCfsw,λ : Oλ−alg → D(Modλ−sm
T (Qp)

(E))

M 7→ RΓw(Sh
tor
Kp , V B0(HCSw,λ(M)))fs

HCfscusp,w,λ : Oλ−alg → D(Modλ−sm
T (Qp)

(E))

M 7→ RΓw(Sh
tor
Kp , V B0(HCSw,λ(M)(−D)))fs

4.6.55. Comparison with higher Coleman theory [BP21]. Let κ ∈ X∗(T )M,+ and
χ : T (Zp) → Q

×

p be a finite order character. We have defined in [BP21, Sect. 5]
cohomology theories RΓw(K

p, κ, χ)+,fs and RΓw(K
p, κ, χ, cusp)+,fs.

Theorem 4.6.56. We have canonical isomorphisms of smooth T (Qp)-modules
(where the decomposition on the right hand side corresponds to the decomposition
into isotypic parts for the action of T (Zp)):

HCfscusp,0,w(L(mw)−w−1w0,Mκ)⊗Qp Qp = ⊕
χ:T (Zp)→Q

×
p
RΓw(K

p, κ, χ, cusp)+,fs

HCfs0,w(L(mw)−w−1w0,Mκ)⊗Qp Qp = ⊕
χ:T (Zp)→Q

×
p
RΓw(K

p, κ, χ)+,fs

Proof. By Lemma 4.6.5, we have V B0◦HCSw,0(L(mw)−w−1w0,Mκ) = ωκ,sm|π−1
HT (C†

w),

so that by definition we have HCw,0(L(mw)−w−1w0,Mκ) = RΓw(Sh
tor
Kp , ωκ,sm). Let

Z0 be a closed neighborhood of w in Cw stable under a compact open subgroup
KU ⊆ U(Qp) (admitting an Iwahori factorization) and let U0 be an open neigh-
borhood of Z0 in Cw. We let F0 = π−1

HT (Z0) and V0 = π−1
HT (U0). We can define an

action of t ∈ T+(Qp) on RΓF0(V0, ω
κ,sm) as follows (where the second and third

maps are respectively given by restriction and the trace):

RΓF0(V0,F )KU
t→ RΓF0t−1(V0t

−1, ωκ,sm)tKU t
−1 →

RΓF0(V0,F )tKU t
−1 → RΓF0(V0, ω

κ,sm)KU .
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The map RΓF0(V0, ω
κ,sm) → RΓw(Sh

tor
Kp , ωκ,sm) induces a T+(Qp)-equivariant

map RΓF0(V0, ω
κ,sm)KU → RΓw(Sh

tor
Kp , ωκ,sm)KU which is a quasi-isomorphism on

the finite slope part. Indeed, it is easy to see that we have factorizations:

RΓF0(V0, ω
κ,sm)KU

t //

**❱❱
❱❱❱

❱❱
❱❱❱

❱❱
❱❱❱

❱❱❱
RΓF0(V0, ω

κ,sm)KU

RΓF0t−1(V0t
−1, ωκ,sm)KU

t //

OO

RΓF0t−1(V0t
−1, ωκ,sm)KU

OO

On the finite slope part, the maps t are quasi-isomorphisms, therefore the maps
RΓF0t−1(V0t

−1, ωκ,sm)KU ,fs → RΓF0(V0, ω
κ,sm)KU ,fs are also quasi-isomorphisms.

Now we can take t ∈ T++(Qp). Since RΓw(Shtor
Kp , ωκ,sm)KU = colimnRΓF0tn(V0t

−n,F )KU ,fs,
the colimit is constant and we conclude.

We now consider compact open subgroups Kp,n of G(Qp) which admits an Iwa-
hori decomposition Kp,n = KU × KB̄,n where KB̄,n is the principal level pn con-
gruence subgroup in B̄(Qp). We let K ′

p,n be the compact open subgroup of G(Qp)
which admit an Iwahori decomposition K ′

p,n = KU × T (Zp)×KŪ,n where KŪ,n is
the principal level pn congruence subgroup in Ū(Qp). Note that Kp,n ⊆ K ′

p,n is a
normal subgroup and that K ′

p,n/Kp,n = T (Zp/p
nZp).

We have that RΓF0(V0, ω
κ,sm)KU = colimm,nRΓF0,m,Kp,n

(V0,m,Kp,n , ω
κ
Kp,n

). More-
over,

RΓF0,m,Kp,n
(V0,m,Kp,n , ω

κ
Kp,n

)⊗QpQp = ⊕χ:T (Z/pnZp)→Q
×
p
RΓF0,m,K′

p,n
(V0,m,K′

p,n
, ωκK′

p,n
(χ)).

We claim that each RΓF0,m,K′
p,n

(V0,m,K′
p,n
, ωκK′

p,n
(χ)) can be equipped with an

action of T+(Qp) and on the finite slope quotient the maps:

RΓF0,m,K′
p,n

(V0,m,K′
p,n
, ωκK′

p,n
(χ))→ RΓF0,m,K′

p,n′
(V0,m,K′

p,n′
, ωκK′

p,n
(χ))

for n′ ≥ n are quasi-isomorphisms, and the maps:

RΓF0,m,K′
p,n

(V0,m,K′
p,n
, ωκK′

p,n
(χ))→ RΓF0,m′,K′

p,n
(V0,m′,K′

p,n
, ωκK′

p,n
(χ))

for m′ ≥ m are quasi-isomorphism. This follows from the property that for t ∈
T++(Qp) sufficiently regular, we have factorizations:

RΓF0,m,K′
p,n′

(V0,m,K′
p,n′

, ωκK′
p,n′

(χ))
t //

++❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲

RΓF0,m,K′
p,n′

(V0,m,K′
p,n
, ωκK′

p,n′
(χ))

RΓF0,m,K′
p,n

(V0,m,K′
p,n
, ωκK′

p,n
(χ))

t //

OO

RΓF0,m,K′
p,n

(V0,m,K′
p,n
, ωκK′

p,n
(χ))

OO

as well as factorizations:

RΓF0,m′,K′
p,n

(V0,m′,K′
p,n′

, ωκK′
p,n

(χ))
t //

++❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲❲❲

❲❲❲
❲

RΓF0,m′,K′
p,n

(V0,m′,K′
p,n
, ωκK′

p,n
(χ))

RΓF0,m,K′
p,n

(V0,m,K′
p,n
, ωκK′

p,n
(χ))

t //

OO

RΓF0,m,K′
p,n

(V0,m,K′
p,n
, ωκK′

p,n
(χ))

OO

We conclude, since by definition (see just after Theorem 5.4.14 in [BP21]) we have
RΓF0,m′,K′

p,n
(V0,m′,K′

p,n
, ωκK′

p,n
(χ))fs = RΓw(K

p, κ, χ)+,fs. �
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Let ν : T (Zp) → C×
p be an analytic character. [BP21, Sect. 5] We have coho-

mology theories RΓw,an(K
p, ν)+,fs and RΓw,an(K

p, ν, cusp)+,fs, defined in [BP21,
Sect. 6.4] (see just after Theorem 6.4.10 there). Let dν ∈ X∗(T )Cp be the differen-
tial of ν. Define κ ∈ X∗(T )Cp by the formula dν = −w−1w0,M (κ+ ρ)− ρ.
Theorem 4.6.57. We have canonical isomorphisms of T (Qp)-modules (where the
decomposition on the right hand side corresponds to the decomposition into isotypic
parts for the action of T (Zp)):

HCfscusp,dν,w(M(mw)−w−1w0,Mκ) = ⊕ν′:T (Zp)→C
×
p , dν′=dνRΓw(K

p, ν′, cusp)+,fs

HCfsdν,w(M(mw)−w−1w0,Mκ) = ⊕ν′:T (Zp)→C×
p , dν′=dνRΓw(K

p, ν′)+,fs

Proof. This is similar to the proof of Theorem 4.6.56 and left to the reader. �

We have the following theorem which slightly generalizes [BP21, Thm. 1.2.1,
Thm. 6.7.3].

Theorem 4.6.58. The functor HCfsw,λ has cohomological amplitude [ℓ(w), d], and

HCfscusp,w,λ has cohomological amplitude [0, ℓ(w)].

Proof. Given Theorem 4.6.45, we simply need to see that the functor (−)fs is exact
on higher Coleman theories. But one sees (see Theorem 4.6.56 and its proof) that
the finite slope part is obtained by taking the finite slope part of an inductive
system of complexes of Banach spaces acted on by a compact operator, and (−)fs
is exact in this case, see [BP21, Proposition 5.1.4]. We remark that we could also
deduce this theorem directly from [BP21, Thm. 1.2.1, Thm. 6.7.3] (which is the
current theorem in the case of HCfsw,λ and HCfscusp,w,λ applied to Vermas) by using
a diagram chase similar to the proof of Theorem 2.3.32. �

4.6.59. Bounds on slopes for higher Coleman theory. Using [BP21] and [BP23], we
can obtain bounds for the slopes.

Theorem 4.6.60. Assume that either the Shimura variety is proper or that we
are in the Siegel case. Let w ∈ MW . Let M ∈ O(mw, bMw)λ−alg be a module
generated by a highest weight vector of weight ν. Then the slopes of HCfscusp,w,λ(M)

and HCfsw,λ(M) are ≥ λ− ν + w−1w0,Mρ+ ρ.

Remark 4.6.61. The finite slope projector and the notion of slope ≥ λ − ν +
w−1w0,Mρ+ ρ were explained in section 4.6.46.

Remark 4.6.62. We conjecture ([BP21, Conj. 6.8.1]) that the theorem should hold
for any Shimura variety. The slightly weaker bound ≥ λ − ν is currently available
in full generality by [BP21, Thm. 6.8.3].

Proof of Theorem 4.6.60. For M = M(mw)ν a Verma module with highest weight
ν, this follows from [BP21, Thm. 6.10.1] for the proper case, and [BP23, Cor.
6.2.16] in the Siegel case, together with Theorem 4.6.57 (the paper [BP23] shows
that the strongly small slope condition which is sometimes needed in [BP21] can be
weakened to the small slope condition in the symplectic case). Since any module M
as in the statement of the theorem admits a resolution by Verma modules M(mw)ν′

with ν ≥ ν′, we are done. �
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4.7. p-adic Eichler Shimura theory. Let λ ∈ X∗(T )E . We define functors:

CCλ : O(g, b)λ−alg → D(Modλ−sm
B(Qp)

(E))

M 7→ RHomg(M,RΓ(ShKp ,Qp)
la)

CCcusp,λ : O(g, b)λ−alg → D(Modλ−sm
B(Qp)

(E))

M 7→ RHomg(M,RΓc(ShKp ,Qp)
la).

Theorem 4.7.1. For any M ∈ O(g, b)λ−alg, we have

CCλ(M)⊗Cp = RΓ(Shtor
Kp , V Bred(Loc(M)))

and
CCcusp,λ(M)⊗Cp = RΓ(ShtorKp , V Bred(Loc(M))⊗Osm

Shtor
Kp

I
sm
Shtor

Kp
)

Moreover, the action of µ ∈ Z(m) on Loc(M) via the horizontal action induces an
arithmetic Sen operator on the left hand side.

Proof. By Theorem 4.4.1, we have RΓ(ShtorKp ,Qp)
la⊗QpCp = RΓan(Sh

tor
Kp ,Ola

Shtor
Kp

).

We consider the category Mod′g(Osm
Shtor

Kp
) of sheaves of solid Osm

Shtor
Kp

-modules equipped

with an action of g, and the similarly-defined category Mod′g(Cp).. These are
abelian categories, with enough injectives. We consider the diagram of functors:

Mod′g(Osm
Shtor

Kp
) //

��

Mod(Osm
Shtor

Kp
)

��

Mod′g(Cp) // Mod(Cp)

where the horizontal arrows are given by taking g-invariants and the vertical arrows
are given by taking global sections. This diagram is 2-commutative, and it induces
a 2-commutative diagram at the level of bounded derived categories. We deduce
that CCλ(M) ⊗Cp = RΓ(Shtor

Kp ,RHomg(M,Ola
Shtor

Kp
)). We therefore need to show

that V Bred(Loc(M)) = RHomg(M,Ola
Shtor

Kp
). To this end, the Chevalley–Eilenberg

resolution yields

RHomg(M,Ola
Shtor

Kp
) = [M∨⊗Ola

Shtor
Kp
→M∨⊗Ola

Shtor
Kp
⊗g∨ → · · · →M∨⊗Ola

Shtor
Kp
⊗Λrg∨]

in degrees 0 up to r = dimg. By Theorem 4.5.20(4) (and the flatness of M∨⊗Λig∨),
we have

V B0(M∨ ⊗ Cla ⊗ Λig∨) =M∨ ⊗Ola
Shtor

Kp
⊗ Λig∨,

and we deduce (see Remark 4.5.18) that V Bred(Loc(M)) = RHomg(M,Ola
Shtor

Kp
).

The cuspidal case is identical. The final claim regarding the Sen operator follows
from Theorem 4.5.23. �

Theorem 4.7.2. Assume that λ is non-Liouville. For any M ∈ O(g, b)λ−alg, we
have that Hi(V Bred(Loc(M))) = V B0(Hi(Loc(M)). We have a spectral sequence:

Ep,q1 = ⊕w∈MW,ℓ(w)=pH
p+q(HCw,λ(E ⊗LuPw

M))

converging to Hp+q(CCλ(M))⊗Cp. Similarly, we have a spectral sequence:

Ep,q1 = ⊕w∈MW,ℓ(w)=pH
p+q(HCcusp,w,λ(E ⊗LuPw

M))
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converging to Hp+q(CCcusp,λ(M)) ⊗ Cp. In all cases wµ ∈ Z(mw) acting on
H∗(uPw ,M) induces an arithmetic Sen operator.

Proof. To prove the first part, it suffices to show that the cohomology sheaves
Hi(Loc(M)) is acyclic for the functor V Bred. We can check this acyclicity lo-
cally, and in particular after restricting to Bruhat strata, where it follows from
Theorems 3.5.11 and 4.5.20(5). Finally, the spectral sequence is then a simple
consequence of Proposition 4.6.13 together with Theorems 4.7.1 and 3.5.11. �

Let λ ∈ X∗(T )E be a non-Liouville weight. We apply the above theorem to the
Verma module M(g)λ, giving the following results.

Corollary 4.7.3. Assume that λ is antidominant in the sense of Remark 3.5.21,
and that the Shimura variety is proper. Then CCλ(M(g)λ) is concentrated in the
middle degree d and moreover, it has a decreasing filtration FiliHd(CCλ(M(g)λ))
with

• Fild+1Hd(CCλ(M(g)λ)) = 0,
• Fil0Hd(CCλ(M(g)λ)) = Hd(CCλ(M(g)λ)),
• GrpHd(CCλ(M(g)λ)) = ⊕w∈MW,ℓ(w)=pH

p(HCw,λ(M(mw)λ+w−1w0,Mρ+ρ)).

Proof. This follows from Theorem 4.7.2, because the spectral sequence degenerates
by a combination of Corollary 3.5.20 (noting Remark 3.5.21) and Theorem 4.6.45
(noting that since the Shimura variety is proper, HCcusp,w,λ = HCw,λ). �

Remark 4.7.4. We see that in the antidominant case, the highest weights appear-
ing in the p-adic Eichler–Shimura decomposition follow the exact same pattern as
the highest weights appearing in the classical Eichler–Shimura theory.

We now consider the general case where λ need not be antidominant, and we
take the “ordinary” part.

Theorem 4.7.5. Assume that we are in the Siegel case or that the Shimura variety
is proper. Let λ ∈ X∗(T )E be a non-Liouville weight. We have that CCfsλ (M(g)λ)

and CCfscusp,λ(M(g)λ) have slope ≥ 0. Moreover, we have a spectral sequence:

Ep,q1 = ⊕w∈MW,ℓ(w)=pH
2p+q−d(HC=0

w,λ(M(mw)λ+w−1w0,Mρ+ρ))

converging to Hp+q(CC=0
λ (M(g)λ))⊗Cp, and similarly for cuspidal cohomology.

Proof. This is a combination of Theorem 4.7.2, Corollary 3.5.20 and Theorem
4.6.60. �

Finally we have the following corollary.

Corollary 4.7.6. Assume that the Shimura variety is proper. Let λ ∈ X∗(T )E be
a non-Liouville weight. Then CC=0

λ (M(g)λ)) is concentrated in the middle degree d
and moreover, it has a decreasing filtration FiliHd(CC=0

λ (M(g)λ)) with

• Fild+1Hd(CC=0
λ (M(g)λ)) = 0,

• Fil0Hd(CC=0
λ (M(g)λ)) = Hd(CC=0

λ (M(g)λ)),
• GrpHd(CC=0

λ (M(g)λ)) = ⊕w∈MW,ℓ(w)=pH
p(HC=0

w,λ(M(mw)λ+w−1w0,Mρ+ρ)).

Proof. This is a consequence of Theorem 4.7.5 and Theorem 4.6.57. �

Remark 4.7.7. Thus, we see that on the ordinary part the highest weights ap-
pearing in the p-adic Eichler–Shimura decomposition follow the same pattern as
the highest weights appearing in the classical Eichler–Shimura theory.



MODULARITY THEOREMS FOR ABELIAN SURFACES 101

4.8. The classical Hodge–Tate decomposition for GSp4. We now specialize
the theory to the group GSp4 and first review the classical Hodge–Tate decompo-
sition. From now on we use the notation for GSp4 introduced in Section 1.8.8. Let
κ = (k1, k2;w) ∈ X∗(T )+ be a dominant weight for GSp4. The dominance condi-
tion is 0 ≥ k1 ≥ k2. We let Vκ be the corresponding highest weight representation.
We let V∨

κ,Kp
be the pro-Kummer étale local system on ShtorKpKp , attached to V ∨

κ .
The coherent weights appearing in the Hodge–Tate decomposition of the local

system V∨
κ,Kp

are the {−w0,M (w.κ + 2ρM )} where w ∈ MW (see [FC90], Thm.
6.2). We make this explicit: the set {−w0,M (w.κ + 2ρM )} consists exactly of
(3−k2, 3−k1;−w), (3−k2, k1+1;−w), (2−k1, k2;−w), (k1, k2;−w). We recall that
our conventions are that the cyclotomic character Qp(1) has Hodge–Tate weight
−1 and that the Sen operator acts via 1 on the Sen module of Qp(1), so that
the (generalized) Hodge–Tate weights are the negatives of the eigenvalues of the
Sen operator. Given our choice of parabolic Pµ, we have µ = (−1/2,−1/2; 1/2) ∈
X∗(T )E. By Theorem 4.5.20, µ is an arithmetic Sen operator.

Remark 4.8.1 (reality check). This is consistent with the fact that the tautological
exact sequence over FL is

0→ L(0,−1;1) → St⊗OFL → L(1,0;1) → 0

which pulls back to

0→ Lie(A)Kp(1)⊗OShtor
KpKp

OShtor
Kp
→ TpA⊗ZpOShtor

Kp
→ (ωAt)Kp⊗OShtor

KpKp
OShtor

Kp
→ 0.

We see that Lie(A) has Sen weight

1 = 〈(0,−1; 1), (−1/2,−1/2; 1/2)〉
(and Hodge–Tate weight−1), while wAt has weight 0 = 〈(1, 0; 1), (−1/2,−1/2; 1/2)〉.

The Hodge–Tate weight attached to the sheaf ω(l1,l2;w) is l1+l2−w
2 . Thus, in

the Hodge–Tate decomposition of the cohomology of V ∨
κ , the Hodge–Tate weights

are given by the formula: (k1, k2;−w) 7→ k1+k2+w
2 , (2 − k1, k2;−w) 7→ 2−k1+k2+w

2 ,
(3− k2, k1 + 1;−w) 7→ 4−k2+k1+w

2 , (3− k2, 3− k1;−w) 7→ 6−k1−k2+w
2 .

Theorem 4.8.2 ([FC90], Thm. 6.2). We have the following GQp×TKpKp-equivariant
isomorphisms:

Hi(Shtor
KpKp ,V∨

κ,Kp
)⊗Qp Cp =

Hi(Shtor
KpKp , ω

(k1,k2;−w)
Kp

)(
−k1 − k2 − w

2
)⊕Hi−1(ShtorKpKp , ω

(2−k1,k2;−w)
Kp

)(
−2 + k1 − k2 − w

2
)

⊕Hi−2(ShtorKpKp , ω
(3−k2,k1+1;−w)
Kp

)(
−4 + k2 − k1 − w

2
)⊕Hi−3(Shtor

KpKp , ω
(3−k2,3−k1;−w)
Kp

)(
−6 + k2 + k1 − w

2
)

Hic(Sh
tor
KpKp ,V∨

κ,Kp
)⊗Qp Cp =

Hi(Shtor
KpKp , ω

(k1,k2;−w)
Kp

(−DKp))(
−k1 − k2 − w

2
)⊕

Hi−1(ShtorKpKp , ω
(2−k1,k2;−w)
Kp

(−DKp))(
−2 + k1 − k2 − w

2
)⊕

Hi−2(ShtorKpKp , ω
(3−k2,k1+1;−w)
Kp

(−DKp))(
−4 + k2 − k1 − w

2
)⊕

Hi−3(Shtor
KpKp , ω

(3−k2,3−k1;−w)
Kp

(−DKp))(
−6 + k2 + k1 − w

2
)
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We can also state a similar result using completed cohomology. We first recall
the following theorem:

Theorem 4.8.3. Let Vκ be a finite dimensional representation of G of highest
weight κ. Then

CC0(Vκ) = RHomg(Vκ,RΓ(Sh
tor
Kp ,Qp)

la) = colimKp RΓ(Sh
tor
KpKp ,V∨

κ,Kp
)

CCcusp,0(Vκ) = RHomg(Vκ,RΓc(Sh
tor
Kp ,Qp)

la) = colimKp RΓc(Sh
tor
KpKp ,V∨

κ,Kp
)

Proof. See e.g. [Eme06, Cor. 2.2.18]. �

We deduce the following:

Corollary 4.8.4. We have that

Hi(RHomg(Vκ,RΓ(Sh
tor
Kp ,Qp)

la))⊗Cp =

Hi(Shtor
Kp , ω(k1,k2;−w),sm)(

−k1 − k2 − w
2

)⊕Hi−1(ShtorKp , ω(2−k1,k2;−w),sm)(
−2 + k1 − k2 − w

2
)

⊕Hi−2(ShtorKp , ω(3−k2,k1+1;−w),sm)(
−4 + k2 − k1 − w

2
)⊕Hi−3(Shtor

Kp , ω(3−k2,3−k1;−w),sm)(
−6 + k2 + k1 − w

2
)

There is a similar statement for compactly supported cohomology and the cuspidal
coherent cohomology.

Proof. This is simply obtained by passing to the limit over Kp in Theorem 4.8.2.
But alternatively, this is a combination of Theorem 4.7.1, Lemma 4.6.5 and Propo-
sition 3.5.17. �

4.9. The p-adic Eichler–Shimura theory for GSp4. We continue to assume
that G = GSp4, and let λ ∈ X∗(T )E . We are ultimately interested in the case
that λ = (1, 1;w). We will now specialize the results of Section 4.7, in order
to compute the Hodge–Tate structure of the ordinary part of CCλ(M(g)λ) =
RHomb(λ,RΓ(Sh

tor
Kp ,Qp)

la). We will use some more suggestive notation for the
higher Coleman sheaves now that we specialize to GSp4. Let us briefly summarize
who are the main players.

• For all κ ∈ X∗(T )M,+, we have the classical modular sheaves ωκ,sm, com-
puting classical cohomology.
• Following Definition 4.6.6, we have the “big” sheaves ω†,κ

w on π−1
HT (C

†
w) for

all κ ∈ X∗(T )Cp and all w ∈ MW . If κ ∈ X∗(T )M,+ we have maps
ωκ,sm|π−1

HT (C†
w) → ω†,κ

w ⊗ E(−w−1w0,Mκ) by Proposition 4.6.9 (where the
twist is a twist of the B(Qp)-action).
• We have higher Coleman theories RΓw(ShtorKp , ω†,κ

w ) for the big sheaves and
RΓw(Sh

tor
Kp , ωκ,sm) for the classical sheaves.

The superscript (−)ord means the ordinary part, which is the minimal slope part;
we caution the reader that precisely what the “minimal slope” part occasionally
depends on the context, but will always be spelled out. On CCλ(M(g)λ), the
ordinary part is the slope = 0 part by Theorem 4.7.5. Theorem 4.7.5 specializes as
follows.

Theorem 4.9.1. There is a spectral sequence:

Ep,q1 :
(
H2p+q−d

pw (Shtor
Kp , ω

†,−w0,M (pw·λ+2ρM )
pw )⊗Cp(−pw−1w0,Mρ− ρ)

)ord ⇒
Hp+q(RHomb(λ,RΓ(Sh

tor
Kp ,Qp)

la)ord ⊗Cp)



MODULARITY THEOREMS FOR ABELIAN SURFACES 103

and similarly:

Ep,q1 :
(
H2p+q−d

pw (ShtorKp , ω
†,−w0,M (pw·λ+2ρM )
pw (−D))⊗Cp(−pw−1w0,Mρ− ρ)

)ord ⇒
Hp+q(RHomb(λ,RΓc(Sh

tor
Kp ,Qp)

la)ord ⊗Cp).

If the Shimura variety were proper, we could use Corollary 4.7.6 to simplify
the spectral sequence. In our case we will arrive to a similar conclusion after
making a non-Eisenstein localization. We can give a first analysis of the spectral
sequence with the help of some vanishing theorems. The following lemma comes as
a complement to Theorem 4.6.58.

Lemma 4.9.2.

(1) For all κ ∈ X∗(T )E, we have that

H0
w(Sh

tor
Kp , ω†,κ

w (−D))fs = H0
w(Sh

tor
Kp , ω†,κ

w )fs = 0

for all w 6= Id and

H3
w(Sh

tor
Kp , ω†,κ

w (−D))fs = H3
w(Sh

tor
Kp , ω†,κ

w )fs = 0

for all w 6= wM0 .
(2) For all κ ∈ X∗(T )M,+, we have that

H0
w(Sh

tor
Kp , ωκ,sm(−D))fs = H0

w(Sh
tor
Kp , ωκ,sm)fs = 0

for all w 6= Id and

H3
w(Sh

tor
Kp , ωκ,sm(−D))fs = H3

w(Sh
tor
Kp , ωκ,sm)fs = 0

for all w 6= wM0 .

Proof. The statements regarding H0 and H3 are equivalent under Serre duality
([BP21, Thm. 6.7.2]). The vanishing of H0

w(Sh
tor
Kp , ω†,κ

w )fs for w 6= Id follows
from Theorem 4.6.58. The injective map of sheaves ω†,κ

w (−D) → ω†,κ
w induces an

injective map H0
w(Sh

tor
Kp , ω†,κ

w (−D))→ H0
w(Sh

tor
Kp , ω†,κ

w ) which implies the vanishing
of H0

w(Sh
tor
Kp , ω†,κ

w (−D))fs for w 6= Id. One argues similarly for the sheaf ωκ,sm. �

Proposition 4.9.3.

(1) RHomb(λ,RΓc(Sh
tor
Kp ,Qp)

la)ord is supported in degrees in the range [1, 3].
Moreover (with obvious notation) the graded pieces for the Hodge–Tate de-
compositions are:
(a) H3⊗Cp : coker(H

1
2w(−D)→ H3

3w(−D)), H2
2w(−D), H1

1w(−D), H0
0w(−D).

(b) H2 ⊗Cp : H
2
3w(−D),Ker(H1

2w(−D)→ H3
3w(−D)).

(c) H1 ⊗Cp : H
1
3w(−D).

(2) RHomb(λ,RΓ(Sh
tor
Kp ,Qp)

la)ord is supported in degrees in the range [3, 5].
Moreover the graded for the Hodge–Tate decompositions are:
(a) H3 ⊗Cp : H

3
3w, H

2
2w, H

1
1w,Ker(H0

0w → H2
1w).

(b) H4 ⊗Cp : Coker(H
0
0w → H2

1w), H
1
0w.

(c) H5 ⊗Cp : H
2
0w.

Proof. From Theorem 4.6.58 and Lemma 4.9.2, we have that the cohomology
RΓw(Sh

tor
Kp , ω†,κ

w )fs is supported in the range:
• [0, 2] for w = 0w,
• [1, 2] for w = 1w,
• [2] for w = 2w,
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• [3] for w = 3w.

On the other hand, the cohomology RΓw(Sh
tor
Kp , ω†,κ

w (−D))fs is supported in the
range:

• [0] for w = 0w,
• [1] for w = 1w,
• [1, 2] for w = 2w,
• [1, 3] for w = 3w.

It follows that the spectral sequences of Theorem 4.9.1 degenerate on the second
page. �

We now fix an irreducible residual representation ρ̄ : GQ → GSp4(Fp). We define
a maximal ideal mρ̄ of the abstract spherical Hecke algebra of level prime to S∪{p}
(where S is the set of primes at which ρ is ramified or Kp is not hyperspecial) by
the formula:

Pℓ(X) mod mρ̄ = det(X − ρ̄(Frobℓ)), ℓ /∈ S ∪ {p}
where Pℓ(X) is the Hecke polynomial defined in (1.8.27).

Theorem 4.9.4. The map RΓc(Sh
tor
Kp ,Qp)mρ̄ → RΓ(Shtor

Kp ,Qp)mρ̄ is a quasi-isomorphism.

Proof. Indeed the cohomology of the boundary is Eisenstein by identical arguments
to those of [NT16, §4]. �

Corollary 4.9.5. The maps RΓw(Sh
tor
Kp , ω†,κ

w (−D))ordmρ̄
→ RΓw(Sh

tor
Kp , ω†,κ

w )ordmρ̄
are

quasi-isomorphisms.

Proof. While this could be proved by analyzing the cohomology of the boundary,
we argue as follows. By Proposition 4.9.3 and Theorem 4.9.4, it suffices to show
that the maps

H0
0w(Sh

tor
Kp , ω

†,−w0,M (0w·λ+2ρM )
0w )ord → H2

1w(Sh
tor
Kp , ω

†,−w0,M(1w·λ+2ρM )
1w )ord,

H1
2w(Sh

tor
Kp , ω

†,−w0,M (2w·λ+2ρM )
2w (−D))ord → H3

3w(Sh
tor
Kp , ω

†,−w0,M (3w·λ+2ρM )
3w (−D))ord

are 0 after localizing at mρ̄. The second statement follows from the first by duality,
and the first statement follows from the fact that the natural map

H0
0w(Sh

tor
Kp , ω

†,κ
0w (−D))ordmρ̄

→ H0
0w(Sh

tor
Kp , ω

†,κ
0w )ordmρ̄

is an isomorphism, which is Lemma 4.9.6 below. �

Lemma 4.9.6. The map H0
0w(Sh

tor
Kp , ω

†,κ
0w (−D))ordmρ̄

→ H0
0w(Sh

tor
Kp , ω

†,κ
0w )ordmρ̄

is an
isomorphism.

Proof. This is similar to [Pil20, Cor. 15.2.3.1] and [BCGP21, Lem. 3.10.7], except
that we work with ordinary p-adic modular forms rather than classical forms. We
translate the statement to a result about Hida complexes which can then be proved
as in these previous results but working mod p and with the structure sheaf.

The Hida complexes we consider are constructed in [BP23] and also recalled be-
low in Section 7.3; they are perfect complexes M•

0w,cusp and M•
0w of Λ = ZpJT (Zp)K-

modules, and there is a natural morphism M•
0w,cusp →M•

0w. The complex M•
0w,cusp

is projective in degree 0 (and in fact it is the classical object constructed by Hida
[Hid02]), while M•

0w has amplitude [0, 2]. We can also consider the boundary Hida
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complex M•
0w,∂ = cone(M•

0w,cusp → M•
0w). A priori this has amplitude [−1, 2] but

we will recall below the simple geometric reason that it has amplitude [0, 2].
Below we shall prove that after non Eisenstein localization M•

0w,∂,mρ
has am-

plitude [1, 2] (in fact it actually vanishes, but since we do not need this, we do
not prove it). This statement implies that for any continuous homomorphism
ν : T (Qp)→ Q

×

p the morphism

H0(M•
0w,cusp,mρ

⊗LΛ,ν Qp)→ H0(M•
0w,mρ

⊗LΛ,ν Qp) (4.9.7)

is an isomorphism, and by the comparison between higher Hida and Coleman theory
[BP23, Thm 6.2.15] and Theorem 4.6.56 this is exactly the statement of the lemma.

To prove the claim, by Nakayama’s lemma it suffices to prove that

H0(M•
0w,cusp,mρ

⊗LΛ Fp[T (Fp)])→ H0(M•
0w,mρ

⊗LΛ Fp[T (Fp)])

is an isomorphism. We now translate this back into a statement about mod p
modular forms on the ordinary locus which we prove by analyzing the boundary.

We consider IG/Fp, the special fiber of the (ordinary) Igusa variety correspond-
ing to the pro-p Iwahori subgroup of P ′(Qp), in the notation of [BP23, §3.4.5]. We
let π : IGtor → IG∗ be its (partial) toroidal and minimal compactifications. By
the very construction of the Hida complexes, the map (4.9.7) is nothing but the
natural map

H0(IGtor,O(−D))ordmρ
→ H0(IGtor,O)ordmρ

(4.9.8)

(For this and the meaning of the ordinary part, see [BP23, §5.2], but note that the
setup is substantially simplified because w = 0w.) We remark that even without the
non-Eisenstein localization this map is always injective, which justifies the assertion
made above that the boundary cohomology always has amplitude [0, 2].

We now follow the strategy of [Pil20, Cor. 15.2.3.1] and [BCGP21, Lem. 3.10.7]
to prove that (4.9.8) is surjective after non-Eisenstein localization. If not then
there is a non-Eisenstein Hecke eigenvector occurring in H0(IGtor,OD). We write
D∗ ⊆ IG∗ for the (reduced) boundary. We have π∗OD = OD∗ so thatH0(D,OD) =
H0(D∗,OD∗). The boundary D∗ is a union of (ordinary) Igusa curves crossing at
cusps. We write D̃∗ for the normalization, which is a disjoint union of ordinary
Igusa curves. We have an injective pullback map

H0(D∗,OD∗)→ H0(D̃∗,OD̃∗)

There is a compatibility between the GSp4 Hecke action and the GL2 Hecke action
at primes away from p and the tame level (see [BCGP21, Lem. 3.10.7] for a precise
statement). This implies that the systems of Hecke eigenvalues in H0(D̃∗,OD̃∗) are
Eisenstein, as required. �

Theorem 4.9.9. For any irreducible representation ρ̄ : GQ → GSp4(Fp), the
localization

V := RHomb(λ,RΓ(Sh
tor
Kp ,Qp)

la)ordmρ̄
= CCλ(M(g)λ)

ord
mρ̄

is concentrated in degree 3. Moreover, there is a GQp ×TKp × T (Qp)-equivariant
filtration {FiliVCp}i=0,1,2,3 on V ⊗Cp and

GriVCp =
(
Hi

iw(Sh
tor
Kp , ω

†,−w0,M (iw·λ+2ρM )
iw )⊗Cp(−iw−1

w0,Mρ− ρ)
)ord
mρ̄
.
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The Sen operator is scalar on GriVCp and acts via −λ1−λ2−w
2 , −2+λ1−λ2−w

2 , −4+λ2−λ1−w
2 ,

−6+λ1+λ2−w
2 for i = 3, 2, 1, 0 respectively.

Proof. This is immediate from Proposition 4.9.3, Theorem 4.9.4 and Corollary 4.9.5.
�

4.10. Sen and Cousin. We now specialize to λ = (1, 1;w).

4.10.1. The Cousin map for the classical sheaves. All the action will be happening
on the union of Bruhat strata (in fact a Q-orbit) C3w,Q = C3w ∪ C2w. We have
an extension over π−1

HT (C3w,Q), corresponding to the stratification of C3w,Q into
B-orbits, with j3w,Shtor

Kp
: π−1

HT (C3w) →֒ π−1
HT (C3w,Q):

0→ (j3w,Shtor
Kp

)!ω
(1,1;−w),sm|π−1

HT (C3w) → ω(1,1;−w),sm|π−1
HT (C3w,Q) → ω(1,1;−w),sm|π−1

HT (C2w) → 0

(4.10.2)

Proposition 4.10.3.

(1) The natural map:

RΓc(π
−1
HT (C3w,Q), ω

(1,1;−w),sm)→ RΓ(Shtor
Kp , ω(1,1;−w),sm)

induces a quasi-isomorphism on the ordinary part (the slope = −(1, 1;w)-
part).

(2) Moreover, RΓc(π
−1
HT (C3w,Q), ω

(1,1;−w),sm)ord is computed by the following
complex in degrees 2, 3 where Cous is induced by the class of the extension
(4.10.2)

H2
2w(Sh

tor
Kp , ω(1,1;−w),sm)ord

Cous→ H3
3w(Sh

tor
Kp , ω(1,1;−w),sm)ord.

Proof. By Proposition 4.6.13, we have a spectral sequence (the Cousin spectral
sequence) from local cohomologies converging to classical cohomology. The first
statement is equivalent to the vanishing of the ordinary part of the higher Coleman
theories for the elements 0w and 1w. By Theorem 4.6.60, we find that the slopes on
Hi

0w(Sh
tor
Kp , ω(1,1;−w),sm) are ≥ −(2, 2;w) and the slopes on Hi

1w(Sh
tor
Kp , ω(1,1;−w),sm)

are≥ (0,−2;−w). Since −(1, 1;w)+γ = −(2, 2;w) and −(1, 1;w)+α = (0,−2;−w)
we conclude that the ordinary part vanishes. The second statement is a consequence
of Theorem 4.6.58 and Lemma 4.9.2. �

4.10.4. The Cousin map for the big sheaves. Applying the functor V B0 to the sheaf
HCSQ,3w,η(M(m3w)λ) of (3.6.5) and twisting the B(Qp)-action by λ− η yields an
extension over π−1

HT (C3w,Q):

0→ j3w,Shtor
Kp
ω
†,(1,1;−w)
3w → V B0(HCSQ,3w,η(M(m3w)λ))⊗Cp(λ−η)→ ω

†,(1,1;−w)
2w ⊗Cp((2, 0; 0))→ 0

(4.10.5)
The natural map in O(m3w, bM3w

) (mapping a Verma of dominant weight to its
finite dimensional quotient) M(m3w)λ → L(m3w)λ yields a map

HCSQ,3w,η(L(m3w)λ)→ HCSQ,3w,η(M(m3w)λ).

As in Lemma 4.6.5, applying V B0 gives a map

ω(1,1;−w),sm ⊗Cp(η)|π−1
HT (C3w,Q) → V B0(HCSQ,3w,η(M(m3w)λ)).

We deduce that there is a map of extensions from (4.10.2) to (4.10.5) (for clarity
we drop the twist of the B(Qp)-action in this diagram):
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0 // j3w,Shtor
Kp
ω
†,(1,1;−w)
3w

// V B0(HCSQ,3w,η(M(m3w)λ)) // ω
†,(1,1;−w)
2w

// 0

0 // (j3w,Shtor
Kp

)!ω
(1,1;−w),sm|π−1

HT (C3w)

OO

// ω(1,1;−w),sm|π−1
HT (C3w,Q)

OO

// ω(1,1;−w),sm|π−1
HT (C2w)

OO

// 0

Proposition 4.10.6. The maps

RΓ2w(Sh
tor
Kp , ω(1,1;−w),sm)⊗Cp((1, 1;w))

ord → RΓ2w(Sh
tor
Kp , ω

†,(1,1;−w)
2w )⊗Cp((2, 0; 0))

ord

RΓ3w(Sh
tor
Kp , ω(1,1;−w),sm)⊗Cp((1, 1;w))

ord → RΓ3w(Sh
tor
Kp , ω

†,(1,1;−w)
3w )ord

are quasi-isomorphisms.
Consequently we have a quasi-isomorphism

RΓ(ShtorKp , ω(1,1;−w),sm)⊗Cp((1, 1;w))
ord =

H2
2w(Sh

tor
Kp , ω

†,(1,1;−w)
2w )⊗Cp((2, 0; 0))

ord Cous→ H3
3w(Sh

tor
Kp , ω

†,(1,1;−w)
3w )ord

where the complex is in degree [2, 3] and the map Cous is induced by the class of
the extension (4.10.5).

Proof. We have the BGG short exact sequence

0→M(m3w)(0,2;w) →M(m3w)(1,1;w) → L(m3w)(1,1;w) → 0.

Applying HC3w,λ gives a triangle

HC3w,λ(L(m3w)(1,1;w))→ HC3w,λ(M(m3w)(1,1;w))→ HC3w,λ(M(m3w)(0,2;w))
+1→

By Theorem 4.6.60, the ordinary part of HC3w,λ(M(m3w)(0,2;w)) is trivial, so that
we get a quasi-isomorphismHC3w,λ(L(m3w)(1,1;w)))

ord → HC3w,λ(M(m3w)(1,1;w))
ord.

This translates into the quasi-isomorphismRΓ3w(Sh
tor
Kp , ω(1,1;−w),sm)⊗Cp((1, 1;w))

ord →
RΓ3w(Sh

tor
Kp , ω

†,(1,1;−w)
3w )ord. The quasi-isomorphismRΓ2w(Sh

tor
Kp , ω(1,1;−w),sm)⊗Cp((1, 1;w))

ord →
RΓ2w(Sh

tor
Kp , ω

†,(1,1;−w)
2w )⊗Cp((2, 0; 0))

ord follows by similar considerations. The sec-
ond part is then immediate from Proposition 4.10.3. �

Remark 4.10.7. We also have a quasi-isomorphism

RΓ(Shtor
Kp , ω(2,2;−w),sm(−D))⊗Cp((2, 2;w))

ord =

H0
0w(Sh

tor
Kp , ω

†,(1,1;−w)
0w (−D))⊗Cp((3, 3; 0))

ord Cous→ H1
1w(Sh

tor
Kp , ω

†,(2,2;−w)
1w (−D))⊗Cp((−1, 3; 0))ord

where the complex is in degrees [0, 1]. This statement is Serre dual to Proposition
4.10.3.

4.10.8. The Sen map. Let V = H3(RHomb(λ,RΓ(Sh
tor
Kp ,Qp)

la)ordmρ̄
). By Theorem

4.9.9, VCp carries a filtration where

• Gr3VCp = H3
3w(Sh

tor
Kp , ω

†,(1,1;−w)
3w )⊗Cp(0, 0; 0)

ord
mρ̄

,

• Gr2VCp = H2
2w(Sh

tor
Kp , ω

†,(1,1;−w)
2w )⊗Cp(2, 0; 0)

ord
mρ̄

,

• Gr1VCp = H1
1w(Sh

tor
Kp , ω

†,(2,2;−w)
1w )⊗Cp(−1, 3; 0)ordmρ̄

,

• Gr0VCp = H0
0w(Sh

tor
Kp , ω

†,(2,2;−w)
0w )⊗Cp(3, 3; 0)

ord
mρ̄

.
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Acting on VCp we have a Sen operator whose eigenvalues are −1− w
2 ,−1− w

2 ,−2−
w
2 ,−2 − w

2 . The generalized Hodge–Tate weight 1 + w
2 -part of VCp fits in the

following short exact sequence (where Θ is the Sen operator and we drop the twist
of the B(Qp)-action to lighten the notation):

0→ H3
3w(Sh

tor
Kp , ω

†,(1,1;−w)
3w )ordmρ̄

→ VCp [(Θ+1+
w

2
)2]→ H2

2w(Sh
tor
Kp , ω

†,(1,1;−w)
2w )ordmρ̄

→ 0.

(4.10.9)
Since Sen := Θ + 1 + w

2 is nilpotent, it induces a map:

H2
2w(Sh

tor
Kp , ω

†,(1,1;−w)
2w )⊗Cp(2, 0; 0)

ord
mρ̄

Sen→ H3
3w(Sh

tor
Kp , ω

†,(1,1;−w)
3w )ordmρ̄

. (4.10.10)

Similarly, by looking at the weight 2+ w
2 -part of V we obtain the following map:

H0
0w(Sh

tor
Kp , ω

†,(2,2;−w)
0w )⊗Cp(3, 3; 0)

ord
mρ̄

Sen→ H1
1w(Sh

tor
Kp , ω

†,(2,2;−w)
1w )⊗Cp(−1, 3; 0)ordmρ̄

4.10.11. Comparison between the Sen and Cousin map. The following theorem is
one of the main results in this section. It is a generalization of [Pan22a, Thm.
5.3.18], in the modular curve case. We will follow the method of proof of [Pil24,
Thm. 6.1].

Theorem 4.10.12. The two maps

Cous, Sen : H2
2w(Sh

tor
Kp , ω

†,(1,1;−w)
2w )⊗Cp(2, 0; 0)

ord
mρ̄
→ H3

3w(Sh
tor
Kp , ω

†,(1,1;−w)
3w )ordmρ̄

(coming respectively from Proposition 4.10.6 and (4.10.10))agree up to a non-zero
scalar.

Proof. We consider RHomb,∗2(λ,Ola
Shtor

Kp
)|π−1

HTC3w,Q
= V Bred(Loc(M(g)λ)|π−1

HTC3w,Q
),

which fits in the triangle (obtained by applying V Bred to Proposition 3.6.6):

Ext0b,∗2
(λ,Ola

Shtor
Kp
|π−1

HT (C3w,Q))→ RHomb,∗2(λ,Ola
Shtor

Kp
|π−1

HT (C3w,Q))

→ Ext1b,∗2
(λ,Ola

Shtor
Kp
|π−1

HT (C3w,Q))[−1]
+1→

where Ext0b,∗2
(λ,Ola

Shtor
Kp
|π−1

HTC3w,Q
) = (j3w,Shtor

Kp
)!ω

†,(1,1;−w)
3w and Ext1b,∗2

(λ,Ola
Shtor

Kp
|π−1

HTC3w,Q
) =

ω
†,(1,1;−w)
2w ⊗Cp((2, 0, 0)).
On RHomb,∗2(λ,Ola

Shtor
Kp
|π−1

HT (C3w,Q)), we have (Θ+1+ w
2 )

2 = 0. Let us introduce
some simplifying notations and denote by:

• X = (j3w,Shtor
Kp

)!ω
†,(1,1;−w)
3w ,

• Y = RHomb,∗2(λ,Ola
Shtor

Kp
|π−1

HT (C3w,Q)),

• Z = ω
†,(1,1;−w)
2w ⊗Cp((2, 0, 0))[−1],

• W = RHomb,∗2,Θ(λ,−1− w
2 ,Ola

Shtor
Kp
|π−1

HT (C3w,Q)).

Applying [Sta13, Tag 05R0] to the commutative diagram

X //

0

��

Y

(Θ+1+w
2 )

��

X // Y

https://stacks.math.columbia.edu/tag/05R0
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we obtain the following commutative diagram, where all lines and columns are part
of distinguished triangles:

X ⊕X [−1] //

��

W //

��

Z ⊕ Z[−1] //

��

X [1]⊕X

��

X //

0

��

Y //

(Θ+1+w
2 )

��

Z //

0

��

X [1]

0

��

X // Y // Z // X [1]

The top horizontal triangle can be written as

(j3w,Shtor
Kp

)!ω
†,(1,1;−w)
3w ⊕(j3w,Shtor

Kp
)!ω

†,(1,1;−w)
3w [−1]→ RHomb,∗2,Θ(λ,−1−

w

2
,Ola

Shtor
Kp

)

→ ω
†,(1,1;−w)
2w [−1]⊕ ω†,(1,1;−w)

2w [−2] +1→
(compare (3.6.7); we again drop the twist of the B(Qp)-action for simplicity and
we note that taking the Θ + 1 + w

2 -cohomology localizes over π−1
HT (C3w,Q) so we

also drop it from the notation.)
Taking cohomology yields a long exact sequence:

H3(RHomb,∗2,Θ(λ,−1−
w

2
,Ola

Shtor
Kp

))→ H2
2w(Sh

tor
Kp , ω†,(1,1;−w))

δ→ H3
3w(Sh

tor
Kp , ω†,(1,1;−w))

where the map δ is induced by the class of the extension (extracted from the top
horizontal triangle):

0→ j3w,Shtor
Kp
ω
†,(1,1;−w)
3w → Ext1b,∗2,Θ(λ,−1−

w

2
,Ola

Shtor
Kp

)→ ω
†,(1,1;−w)
2w ⊗Cp((2, 0; 0))→ 0.

(4.10.13)
By definition, the map Sen is equal to δ. Now, by Theorem 3.6.9 and Theorem
4.5.20, the extensions (4.10.5) and (4.10.13) agree up to a non-zero scalar. Thus
the maps Cous, Sen agree up to a non-zero scalar, as claimed. �

4.11. The Eichler–Shimura relation and semi-simplicity. The following is a
special case of a result of Nekovář, [Nek18]. If r is a finite-dimensional representation
of a group Γ, and g ∈ Γ, then we write charr(g) for the characteristic polynomial
of r(g).

Proposition 4.11.1. Let ρ : GQ → GSp4(Qp) and s : GQ → GLn(Qp) be contin-
uous representations (for some n ≥ 1) and assume that

(1) the Zariski closure of ρ(GQ) contains Sp4, and
(2) for a density one set of primes l, we have charρ(Frobl)

(
s(Frobl)

)
= 0.

Then we have s ∼= ρ⊕m for some integer m ≥ 1.

Proof. We claim that the result is an immediate application of [Nek18, Prop. 3.10]
(with ℓ replaced by p), taking Γ = Γ′ = GQ, a = r = 1, and the representations ρ,
ρ1 of [Nek18, Prop. 3.10] to be s and ρ respectively.

The hypothesis (C’) of [Nek18, Prop. 3.10] is immediate from our hypotheses,
taking Σ to be the set of the Frobl for primes l satisfying Condition (2). For hy-
pothesis (A’), since the Zariski closure of ρ(GQ) contains Sp4 by hypothesis (and is
contained in GSp4), the Lie algebra Qp ·Lie (ρ(GQ)) is equal to sp4 or gsp4, and the
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representation of this Lie algebra induced by ρ is the standard 4-dimensional rep-
resentation, which is minuscule. We are thus in the situation of part (3) of [Nek18,
Prop. 3.10], and the proposition follows. �

We have the following variant of Proposition 4.11 in the induced case:

Proposition 4.11.2. Let ρ : GQ → GSp4(Qp) and s : GQ → GLn(Qp) be contin-
uous representations and assume that

(1) the Zariski closure of ρ(GQ) contains SL2× SL2,
(2) ρ is absolutely irreducible but becomes reducible on some index two sub-

group GE , and
(3) for a density one set of primes l, we have charρ(Frobl)

(
s(Frobl)

)
= 0.

Then we have s ∼= ρ⊕m for some integer m ≥ 1.

Proof. We may write ρ|GE = ̺ ⊕ ̺c, where Gal(E/Q) permutes the factors. The
assumption that ρ is symplectic (together with the assumptions on the image of ρ)
implies that det(̺) and det(̺c) are both the restriction to GE of the similitude
character of ρ.

Let t be an irreducible subquotient of s|GE . Assumption (3) implies that we
have charρ(h)

(
t(h)

)
= 0 for a dense set of elements h ∈ GE . We may assume

that ̺, ̺c, and t all have models over the ring of integers O of some finite extension
of Qp. Let T and P denote the Zariski closures of t and ̺ ⊕ ̺c respectively. By
assumption, T is reductive, and the Zariski closure of t⊕ ̺⊕ ̺c inside T ⊕P is also
reductive, and by Goursat’s lemma is the graph of some projections π1 : T → G,
π2 : P → G onto a common quotient G. By the Chebotarev density theorem and
continuity, Assumption (3) implies that the minimal polynomial of any element
in K = ker(π1) divides (X − 1)4. This is because elements in the image of s which
lie inK are limits of s(Frobl) for Frobenius elements Frobl, and by assumption these
will satisfy (s(Frobl)−1)4On ⊂ πmOn for larger and larger m. This implies that K
is unipotent, which — since T is reductive — implies that K is trivial. Hence G = T
and thus T is a quotient of P . But now from the fact that P contains SL2× SL2,
we see that the only possibilities for t up to twist are Symi ̺⊗Symj ̺c, from which
one easily sees that t must either be ̺ or ̺c, and thus any irreducible subquotient
of s|GE is either ̺ or ̺c.

We claim that s|GE cannot contain any non-trivial extensions of ̺ by ̺ (equally,
of ̺c by ̺c). To see this, note that a generic element in the image of ̺c acts
invertibly on ̺. Hence the assumptions imply that for of a dense set of h ∈ GE , the
characteristic polynomial of ̺(h) annihilates this extension of ̺ by ̺. But then the
results follow from the GL2-version of [Nek18, Prop. 3.10] (first proved in [BLR91]).

Now return to representations of GQ. By what we have shown for s|GE , we
deduce that every irreducible subquotient of s is isomorphic to ρ. Hence it suffices
to rule out the case that s is of the form

0→ ρ→W → ρ→ 0

for some non-split extension W . Note that the restriction W |GE is an extension:

0→ ̺⊕ ̺c →W |GE → ̺⊕ ̺c → 0.

In particular, W |GE corresponds to a Gal(E/Q)-invariant class in

Ext1GE
(̺, ̺c)⊕ Ext1GE

(̺, ̺)⊕ Ext1GE
(̺c, ̺c)⊕ Ext1GE

(̺c, ̺).
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As already shown, the corresponding extensions of ̺ by ̺ and ̺c by ̺c both split,
so the projection of this class to both Ext1GE

(̺c, ̺) and Ext1GE
(̺, ̺c) (they are per-

muted by the Galois action) must be non-trivial. In particular, we may assume
that W |GE has a subquotient which is a genuine extension of ̺ by ̺c. Our assump-
tions on the Zariski closure of the image of ρ imply that a generic element of ρ
is regular semi-simple. Thus, by Chebotarev and assumption (3), it follows that
there is a dense set of elements of GQ which act semi-simply on W . Moreover, since
the tensor product of two semi-simple matrices is semi-simple, the same holds for
the tensor product W ⊗ ρ∨ and so consequently also for any subquotient of this
representation. We have an exact sequence:

0→ ρ⊗ ρ∨ →W ⊗ ρ∨ → ρ⊗ ρ∨ → 0. (4.11.3)

Write χ for the quadratic character of Gal(E/Q), and let η be the similitude char-
acter of ρ. We have (compare [BCGP21, §7.5.16]) a decomposition

ρ⊗ ρ∨ ≃ Qp ⊕Qp(χ)⊕ Ind
GQ

GE
ad0(̺)⊕ s(̺)⊗ η−1 ⊕ s(̺)⊗ η−1 ⊗ χ,

where s(̺) is the Asai representation (i.e. the tensor induction). Hence taking
suitable subquotients of (4.11.3), we arrive at a pair of extensions

0→ s(̺)⊗ η−1 → U → Qp → 0,

0→ s(̺)⊗ η−1 ⊗ χ→ V → Qp → 0.
(4.11.4)

We claim that at least one of these sequences must be non-split. The point is
that

Ext1GE
(̺, ̺c) = H1(E,Hom(̺, ̺c)),

but Hom(̺, ̺c) is the restriction of s(̺)⊗η−1 to GE , and thus, by Shapiro’s lemma,
we have

Ext1GE
(̺, ̺c) = H1(E,

(
s(̺)⊗ η−1

)
|GE )

= H1(Q,
(
s(̺)⊗ η−1

)
⊗ Ind

GQ

GE
Qp)

= H1(Q, s(̺)⊗ η−1 ⊗ χ)⊕H1(Q, s(̺)⊗ η−1);

and by construction, the elements of the right hand side corresponding to our non-
split extension of ̺ by ̺c coming from W |GE are the extensions U, V of (4.11.4).
We consider the case that U is non-split, the case of V being entirely similar.

To complete the proof, it suffices to show that for any such non-split extension,
there cannot be a dense set of g ∈ GQ which act semi-simply. Write A = s(̺) ⊗
η−1, and let G and H be the Zariski closures of the images of GQ and GE on U
respectively. By constriction, the Zariski closure of the image of GQ on A is the
orthogonal group O4, and the Zariski closure of the image of GE on A is the
index two subgroup SO4 which is isomorphic to the image of SL2× SL2. Any
generic h ∈ GE will act semi-simply on U because it will have distinct eigenvalues.
However, any g ∈ GQrGE has 1 as an eigenvalue on both A = s(̺)⊗η−1 and A⊗χ
(the eigenvalues in either case take the form 1,−1, λ,−λ for some λ), so that in
particular the eigenvalues of g on U are contained within the eigenvalues of g on A.
By our semi-simplicity hypothesis, there is therefore a dense set of such g with
the property that the image of g in End(U) is annihilated by the characteristic
polynomial of g on A. By continuity, this extends to all elements of GQ rGE and
also to all elements of GrH .
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Now, G is a subgroup of the semi-direct product N⋊O4, where N is the standard
representation of O4 of dimension 4; and the projection G → O4 is surjective.
Since N is abelian, the conjugation action of G onN factors through this surjection,
and since N is an irreducible representation of O4, we see that either G = O4 (in
which case the extension (4.11.4) splits, and we are done), or G = N ⋊ O4, in
which case there are elements g ∈ GrH whose minimal polynomial has degree 5,
a contradiction. �

4.12. A classicality theorem. Let S be the finite set of primes at which Kp is not
hyperspecial, together with the prime p. In this section we will consider an ordinary
overconvergentmodular form f ∈ H0

0w(Sh
tor
Kp , ω(2,2;−w),sm)ord, which is an eigenform

for T (Qp) as well as for the spherical Hecke operators at the places not contained
in S. We write χsmf : T (Qp) → Q

×

p for the smooth character corresponding to f .
Via the identification of dual groups, χsmf induces a cocharacter Q×

p → T (Qp) that
we denote by t 7→ diag(χ1(t), χ2(t), χ3(t), χ4(t)). We write

mf ⊆ Qp[T (Qp)]⊗
′⊗

l 6∈S

Qp[GSp4(Ql)//GSp4(Zl)]

for the maximal ideal corresponding to f .

Lemma 4.12.1. We have a continuous semi-simple Galois representation ρf :

GQ → GSp4(Qp), which satisfies the following properties (where Pℓ(X) is as
in (1.8.27)):

(1) ρf is unramified at primes ℓ /∈ S, and

Pℓ(X) mod mf = det(X − ρf (Frobℓ)).
(2) ρf |GQp

can be conjugated to a representation ρf |GQp
: GQp → B(Qp) where

the diagonal is given, via class field theory, by the cocharacter

z 7→ diag(χ−1
4 (z)z−1−w

2 , χ−1
3 (z)z−1−w

2 , χ−1
2 (z)−1z−2−w

2 , χ−1
1 (z)−1z−2−w

2 )

for z ∈ Z×
p , and

p 7→ diag(χ−1
4 (p)p−1−w

2 , χ−1
3 (p)p−1−w

2 , χ−1
2 (p)−1p−2−w

2 , χ−1
1 (p)−1p−2−w

2 ).

Proof. Note that any cohomological, C-algebraic automorphic representation π has
an associated Galois representation ρπ,p (see Section 1.8.12). This Galois repre-
sentation is furthermore ordinary if πp is ordinary. By a standard argument using
p-adic families, we can interpolate the Galois representations ρπ,p associated to π
of regular weight (see Section 1.8.12), and we define ρf to be the representation
corresponding to the interpolation of ρ∨π,p ⊗ ε−3. �

Remark 4.12.2. The reason for considering ρf rather than ρ∨f ⊗ ε−3 is that ρf is
the Galois representation we are likely to realize in the completed cohomology, in
view of Theorem 1.8.29.

We will also assume that ρf is irreducible and write mρf for the corresponding
maximal ideal of the spherical Hecke algebra with Fp coefficients, as in the previous
sections. We let V = H3(RHomb(λ,RΓ(Sh

tor
Kp ,Qp)

la)ordmρf
), but we think of this

space as CC0(M(g)λ)
ord
mρf

and not as CCλ(M(g)λ)
ord
mρf

. In other words we now
twist the B(Qp) action to make it smooth (and not λ-smooth as in section 4.10).
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Lemma 4.12.3. Let f ∈ H0
0w(Sh

tor
Kp , ω(2,2;−w),sm)ord be an ordinary overconvergent

modular eigenform with Galois representation ρf : GQ → GSp4(Qp). Let mf be the
corresponding maximal ideal. We assume that ρf is irreducible and either

(1) the Zariski closure of ρf (GQ) contains Sp4; or
(2) the Zariski closure of ρf (GQ) contains SL2× SL2, and ρ is irreducible but

becomes reducible on some index two subgroup GE.

Let V = H3(RHomb(λ,RΓ(Sh
tor
Kp ,Qp)

la)ordmρf
). Then V [mf ] = ρf ⊗Qp

W for some
finite-dimensional vector space W 6= 0.

Proof. Note that V carries a global Galois action since by results recalled in 4.4,
RΓ(ShtorKp ,Qp) = RΓ(ShalgKp ,Qp). By Theorem 4.9.9, VCp := V ⊗Qp

Cp has a

decreasing filtration with graded pieces {GriVCp}i=0,1,2,3 which are certain explicit
spaces of ordinary higher Coleman theories localized at mρf . In particular (bearing
in mind Proposition 4.10.6),

Gr0VCp = (H0
0w(Sh

tor
Kp , ω(2,2;−w),sm))ordmρf

.

Let χ be the Nebentypus of f (the finite order character giving the action of T (Zp)
on f). Then each GriVCp [χ] is finite dimensional (since we are fixing the slope to
be ordinary, and also the action of T (Zp)). Taking the χ-isotypic part is an exact
operation for smooth T (Zp)-modules in characteristic 0. We deduce that VCp [χ] is
finite-dimensional and has a filtration with graded pieces the {GriVCp [χ]}i=0,1,2,3.
Since H0

0w(Sh
tor
Kp , ω(2,2;−w),sm)[mf ] 6= 0, this implies that V [mf ] 6= 0 is finite di-

mensional. The result follows from the Eichler–Shimura relation (Theorem 1.8.29)
together with Proposition 4.11.1 and Corollary 4.11.2. �

By Lemma 4.12.1, the representation ρf |GQp
is ordinary, i.e. ρf |GQp

preserves a
Borel. The representation ρf |GQp

is de Rham if it fits in an extension:

0→ ρ
(1+w

2 )

f |GQp
→ ρf |GQp

→ ρ
(2+w

2 )

f |GQp
→ 0

where ρ
(1+w

2 )

f |GQp
(1 + w

2 ) and ρ
(2+w

2 )

f |GQp
(2 + w

2 ) are potentially unramified 2-
dimensional representations. Equivalently, this means that the Sen operator of
DSen(ρf |GQp

) is semi-simple with eigenvalues −1− w
2 and −2− w

2 .

Theorem 4.12.4. Let f ∈ H0
0w(ShKp , ω(2,2;−w),sm)ord be an ordinary overconver-

gent modular eigenform with Galois representation ρf : GQ → GSp4(Qp). Let mf
be the corresponding maximal ideal. Let V = H3(RHomb(λ,RΓ(Sh

tor
Kp ,Qp)

la)ordmρf
).

We assume that:

(1) Either
(a) the Zariski closure of ρf (GQ) contains Sp4; or
(b) the Zariski closure of ρf (GQ) contains SL2× SL2, and ρf is irreducible

but becomes reducible on some index two subgroup GE .
(2) The representation ρf |GQp

is de Rham.
(3) There exists an integer n such that dimCp GriVCp [mf ] = n for each 0 ≤ i ≤

3, and dimQp
V [mf ] = 4n.

(4) The representation ρf is irreducible.

Then f is a classical modular form.
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Remark 4.12.5. The simplest way to verify the assumption (3) is to prove the
multiplicity one statement that dimCpH

i
iw(Sh

tor
Kp , ω(2,2;−w),sm)[mf ] = 1 for each i

(when this statement is true). This forces dimQp
V [mf ] = 4. Indeed, dimQp

V [mf ]

is a multiple of 4 by Lemma 4.12.3.

Proof. By Proposition 4.10.6 and (4.10.9), we have an exact sequence (where Θ is
the arithmetic Sen operator):

0→ H3
3w(Sh

tor
Kp , ω(1,1;−w),sm)ordmρf

→ VCp [(Θ+1+
w

2
)2]→ H2

2w(Sh
tor
Kp , ω(1,1;−w),sm)ordmρf

→ 0

Since Θ+ 1 + w
2 is nilpotent, it induces a map:

H2
2w(Sh

tor
Kp , ω(1,1;−w),sm)ordmρf

Θ+1+w
2→ H3

3w(Sh
tor
Kp , ω(1,1;−w),sm)ordmρf

.

We pass to mf -isotypic components. Assumption (3) implies that the sequence:

0→ H3
3w(Sh

tor
Kp , ω(1,1;−w),sm)ord[mf ]→ VCp [(Θ+1+

w

2
)2][mf ]→ H2

2w(Sh
tor
Kp , ω(1,1;−w),sm)ord[mf ]→ 0

remains exact. Therefore, we get a map

H2
2w(Sh

tor
Kp , ω(1,1;−w),sm)ord[mf ]

Θ+1+w
2→ H3

3w(Sh
tor
Kp , ω(1,1;−w),sm)ord[mf ].

The kernel of this map is the space of classical forms H2(Shtor
Kp , ω(1,1;−w),sm)[mf ] be-

cause of Theorem 4.10.12 and Proposition 4.10.6. The map is zero since VCp [mf ] =

DSen(ρf )
⊕n by Lemma 4.12.3, and Θ identifies with the Sen operator of ρf which

is semi-simple by assumption. It follows that H2(Shtor
Kp , ω(1,1;−w),sm)ord)[mf ] =

H2
2w(Sh

tor
Kp , ω(1,1;−w),sm)ord[mf ]. This implies that dimH0(Shtor

Kp , ω(2,2;−w),sm))[mf ] =
n (by the stability of the L-packet of automorphic forms corresponding to f) and
therefore H0(ShtorKp , ω(2,2;−w),sm))[mf ] = H0

0w(Sh
tor
Kp , ω(2,2;−w),sm)ord[mf ], and we

are done. �

Remark 4.12.6. The way we have explained the argument, we naturally proved
the classicality of the relevant space of degree 2 cohomology classes, and used
Arthur’s classification of automorphic forms to deduce the classicality of f . This
may seem a bit strange. We should first explain why we focused on degree 2
and degree 3 cohomology classes in the argument, instead of degree 0 and degree
1 cohomology classes. The reason is that the localization Loc(M(g)λ) is simpler
on C3w,Q, but has some richer structure on its complement. This rich structure
is irrelevant for the ordinary case, but would cause minor technical problems in
Section 4.10.

Still focusing on degree 2 and 3 cohomology as we did, we could also have proven
the classicality of the relevant space of degree 3 cohomology, and then used Serre
duality instead of Arthur’s classification to deduce the classicality of f . In order
to do this, one would consider V/mfV instead of V [mf ], and the same argument
would apply with minor modifications.

5. An ordinary modularity lifting theorem for unitary groups with

p = 2

Our goal in this section is to prove Theorem 5.7.14, which combines an ordi-
nary 2-adic automorphy lifting theorem with a finiteness theorem for a universal
deformation ring. This result is a slight variant on the 2-adic automorphy lifting
theorems for unitary groups proved by Thorne in [Tho17]; we work with ordinary
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representations and use Ihara avoidance, and we use a slighter weaker definition of
adequacy (see Definition 5.3.3). We emphasize that there are no significant inno-
vations here, and indeed the arguments of [Tho17] go through verbatim using this
weaker notion of adequacy. The one minor novelty in our arguments is an argument
using base change to allow us to use an auxiliary prime in order to work at neat
level; the usual choices of such primes for p > 2 rely on choosing a prime at which
all Galois deformations are unramified, which is impossible when p = 2.

We have endeavored to write out the arguments in enough detail to make it easy
for the reader familiar with automorphy lifting theorems for unitary groups which
assume that p > 2 (e.g. [Tho12, BLGGT14]) but unfamiliar with [Tho17] to check
the details (although where these details are literally identical to those of [Tho17]
we do not repeat the proofs). We follow the notation of [Tho17] closely, although we
assume throughout that p = 2, as the analogue for p > 2 of our results is already
known (see e.g. [Tho17, Cor. 7.3]), and in any case the only use of automorphy
lifting theorems for unitary groups in this paper is in the case p = 2.

In §5.1, we recall the notion of polarized representations and clarify the rela-
tionship between essentially self-dual representations GF+ → GSp2n(R) and their
associated polarized representations GF → G2n(R). In §5.2, we recall the notion of
strong residual oddness defined in [Tho17] and establish some basic facts concern-
ing what this entails for polarized representations associated to essentially self-dual
representations over totally real fields with image in GSp2n(k). (In practice, we
only use the special case corresponding to GSp4(F2).) In §5.3, we discuss variants
of the notion of adequateness in characteristic 2 as introduced in [Tho17]. Finally,
in sections §5.4, §5.5, §5.6, and §5.7, we adapt the arguments of [Tho17] to our
precise setting.

5.1. Polarized representations. Let Gn denote the semi-direct product of G0n =
GLn×GL1 by the group {1, } where

(g, a)−1 = (ag−t, a).

We let ν : Gn → GL1 be the character which sends (g, a) to a and sends  to −1.
(This group, in the context of modularity lifting, was first introduced in [CHT08,
§2.1].)

Let F be an imaginary CM field with maximal totally real subfield F+. For each
infinite place v we let cv ∈ GF+ denote complex conjugation. Let c denote a fixed
arbitrary choice of element in GF+ r GF with c2 = e (so for example one could
take c = cv for any v|∞).

Definition 5.1.1. Let k be a perfect field, ρ : GF → GLn(k) an absolutely ir-
reducible representation, and µ : GF+ → k× a character. We say that (ρ, µ) is
polarized if there is a perfect pairing 〈·, ·〉 : kn × kn → k such that

〈x, y〉 = −µ(c)〈y, x〉,
and for all g ∈ GF we have

〈ρ(g)x, ρ(cgc−1)y〉 = µ(g)〈x, y〉.
We have ([Tho17, Lem. 2.2]):

Lemma 5.1.2. If (ρ, µ) is polarized, then we may extend ρ to r : GF+ → Gn(k) with
ν◦r = µ and r−1(G0n(k)) = GF ; and this extension is unique up to G0n(k)-conjugacy.
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If R is any ring, then G0n(R) acts via conjugation on the set of homomorphisms
r : GF+ → Gn(R) with r−1(G0n(k)) = GF .

Remark 5.1.3. Note that the GL1(R) factor of G0n(R) is not in general acting
trivially via conjugation (while it is in the centre of G0n(R), it is not in the centre
of Gn(R)). Lemmas 2.1–2.5 of [Tho17] are analogues for G0n-conjugacy of lemmas
in [CHT08, §2.1] which work instead with GLn-conjugacy. As well as giving cleaner
statements (for example, the extension of r to ρ above is unique up to G0n(k)-
conjugacy, but the GLn(k)-conjugacy classes of ρ are in bijection with k×/(k×)2),
the versions of [Tho17] hold in the case of residue characteristic 2, unlike their
analogues in [CHT08].

In Section 7.5, we will need to relate representations GF+ → GSp4(R) to repre-
sentationsGF+ → G4(R). We now explain how to do this following the construction
of [CHT08, Lem. 2.1]. Write GSp2n for the generalized symplectic group defined
by an antisymmetric matrix J2n (in particular, we can take J4 to be the matrix J
that we use to define GSp4).

Definition 5.1.4. If R is any ring, then we extend the multiplier ν : GSp2n(R)→
R× to a homomorphism

ν : GSp2n(R)× {±1} → R×

via projection to the GSp2n-factor, i.e. we set ν(g, a) := ν(g).

Lemma 5.1.5. There is an injective homomorphism

r : GSp2n(R)× {±1} → G2n(R)
defined as follows:

(1) r((g, 1)) = (g, ν(g)).
(2) r((g,−1)) = (g, ν(g)) · (J−1

2n ,−1).
This homomorphism is compatible with ν (defined on the source in Definition 5.1.4).

Proof. The only non-trivial thing to check is that r((g,−1))r((h,−1)) = r((gh, 1)),
which amounts to the claim that

(J−1
2n ,−1)(h, ν(h))(J−1

2n ,−1) = (h, ν(h)).

The left hand side is (noting  = −1):

(J−1
2n ,−1)(h, ν(h))(J−1

2n ,−1) = (J−1
2n ,−1)(hJ−1

2n ,−ν(h))−1

= (J−1
2n ,−1)(−ν(h)(hJ−1

2n )−t,−ν(h))
= (−ν(h)J−1

2n (hJ−1
2n )−t, ν(h)),

so we need to show that −ν(h)J−1
2n (hJ−1

2n )−t = h. This can be rearranged to

htJ2nh = −ν(h)J t2n,
and since J t2n = −J2n and h ∈ GSp2n(R), we are done. �

Corollary 5.1.6. If ψ : GF+ → GSp2n(R) is a homomorphism, then there is a
homomorphism rψ : GF+ → G2n(R) defined by

rψ(g) =

{
(ψ(g), ν ◦ ψ(g)) if g ∈ GF
(ψ(g), ν ◦ ψ(g)) · (J−1

2n ,−1) if g ∈ GF+ rGF .

Furthermore we have r−1
ψ (G◦2n(R)) = GF , and ν ◦ rψ = ν ◦ ψ.
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Proof. There is obviously a homomorphism

ψ̃ : GF+ → GSp2n(R)× {±1}
given by the product of ψ and the projection onto GF+/GF ∼= {±1}, i.e.

ψ̃(g) =

{
(ψ(g), 1) if g ∈ GF
(ψ(g),−1) if g ∈ GF+ rGF .

(5.1.7)

Furthermore we have ν ◦ ψ̃ = ν ◦ψ. By definition we have rψ = r ◦ ψ̃, where r is as
in Lemma 5.1.5, and the result follows immediately. �

Remark 5.1.8. If R is a (perfect) field, then we may apply Lemma 5.1.2 to the
representation ψ|GF of Corollary 5.1.6, and we see that the extension of ψ|GF to
a homomorphism GF+ → G2n(R) is well-defined up to G◦2n(R)-conjugacy. Corol-
lary 5.1.6 provides a particular choice of extension (depending of course on our
choice of symplectic form, i.e. on J2n). The reader may find it helpful to compare
to the discussion at the end of [BLGGT14, §1.1], which in the case that R is a field
and ψ|GF is absolutely irreducible shows that the choice of a specific element in
the G◦2n(R)-conjugacy class amounts to choosing bc ∈ GL2n(R) with

ψ(cgc−1) · bcψ(g)t = ν(g)bc

for all g ∈ GF . The implicit choice of such an element in Corollary 5.1.6 is bc :=
ψ(c)J−1

2n .

5.2. Oddness. We recall the following definition [Tho17, Defn. 3.3].

Definition 5.2.1. Suppose that (ρ, µ) is polarized, that k has characteristic 2, and
that n is even. If v is an infinite place of F+, then we say that (ρ, µ) is strongly
residually odd at v if r(cv) is GLn(k)-conjugate to (1n, 1).

Remark 5.2.2. The idea behind Definition 5.2.1 is as follows. A representation r :
GF+ → Gn(Qp) is defined to be (totally) odd if ν ◦ r(cv) = −1 for all infinite places
of F+ (see e.g. [BLGGT14, §2.1]). If p > 2, then a representation r : GF+ → Gn(Fp)
is odd if ν◦r(cv) = −1, and any lifting of r will automatically be odd. Furthermore,
in either case there is a single GLn-conjugacy class of elements (x, 1) of order 2
(because all symmetric matrices are equivalent), so the analogue of Definition 5.2.1
holds automatically. If p = 2, in contrast, then the condition that ν ◦ r(cv) =
−1 is automatic. However, if n is even, then there are two conjugacy classes of
elements of the form (x, 1) of order 2 (see [Tho17, Lem. 2.16]). In the situation of
Definition 5.2.1, any lift of (ρ, µ) is automatically odd at v, i.e. the lift of µ is odd;
this is one motivation for the terminology “strongly residually odd”.

In the remainder of this section, we examine when the representations rψ of
Corollary 5.1.6 are strongly residually odd at some v. We will ultimately only
need a single example for GSp4, but as it is straightforward to give a general
treatment, we do so. Assume for the rest of this subsection that k has character-
istic 2, so that in particular J2n = −J2n = J−1

2n . Let G = GL2n(k) × k×, and
let G.2 = G ⋊ Z/2Z = G2n(k) where the action by the order 2 element  is by the
outer automorphism (g, a)−1 = (ag−t, a). Let χ : G.2 → Z/2Z be the canonical
projection. By Lemma 5.1.5, there is a natural map Sp2n(k)× Z/2Z→ G.2 given
by sending −1 to J2n. If A ∈ Sp2n(k) satisfies A2 = I, then (AJ2n, 1) ·  ∈ G.2rG
has order 2. Recall (e.g. from the proof of [Tho17, Lem. 2.16]) that any invertible
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symmetric matrix M in GL2n(k) is either equivalent (under M 7→ gtMg) to J2n
or to I; the former if and only if all diagonal entries of M are zero. In the former
case we say that M is alternating (since the corresponding non-degenerate pairing
satisfies B(x, x) = 0 for all x) and otherwise we say that M is non-alternating.

Lemma 5.2.3. If A ∈ Sp2n(k) satisfies A2 = I, then AJ2n is a symmetric matrix
and AJ2n ·  ∈ G.2 has order 2. This induces a map
{

Conjugacy classes of Sp2n(k)
of order dividing 2

}
→
{

Conjugacy classes of G.2 rG
of order 2

}

The target has order 2 and consists of the conjugacy classes of  and J2n ·. The fibre
over J2n ·  consists of A for which AJ2n is alternating, and the fibre over  consists
of A for which AJ2n is not alternating. The set on the right remains unchanged if we
only consider order 2 elements in G.2rG up to conjugation by GL2n(k) ⊂ G ⊂ G.2.

Proof. For any element γ ∈ G.2 r G, the G.2-conjugacy class of γ coincides with
the G-conjugacy class of γ, since any element in G.2 either has the form g ∈ G
or gγ with g ∈ G, and (gγ)γ(gγ)−1 = gγg−1. If γ = (B, b) and g = (I2n, λ) ∈ G,
then

gγg−1 = (I2n, λ)(B, b)(I2n, λ
−1) = (λ−1 ·B, b),

but writing λ−1 = µ2 (possible since k is finite of characteristic 2), and taking h =
(µI2n, 1) ∈ GL2n(k) ⊂ G, we also have

hγh−1 = (µI2n, 1)(B, b)(µ
−1I2n, 1) = (µ2 ·B, b) = (λ−1 · B, b),

and so the G and GL2n(k)-conjugacy classes of γ ∈ G.2rG also coincide.
If A2 = I, then (A,−1) ∈ Sp2n(k)×Z/2Z has order 2 so the image AJ2n · ∈ G.2

certainly has order 2 and does not lie in G. Moreover, this map certainly induces a
map on conjugacy classes because if A is conjugate to A′ in Sp2n(k), then (A,−1)
is conjugate to (A′,−1) in Sp2n(k)×Z/2Z. The condition that (B, b) ·  ∈ G.2 has
order 2 is equivalent to the equation

(B, b)(B, b) = (b · B(Bt)−1, b2) = (I, 1),

which implies that b2 = 1 and so b = 1 and B = Bt is symmetric. Let Σ2n ⊂
GL2n(k) denote the set of symmetric matrices. Conjugation by (M, 1) ∈ GL2n(k) ⊂
G replaces (B, 1) by (MBM t, 1). Hence the order 2 conjugacy classes in G.2rG
are the orbits of GL2n(k) acting via MBM t on Σ2n. But the orbits of GL2n(k) on
this space are none other than the equivalence class of perfect pairings on k2n, and as
recalled above, there are two such orbits, corresponding to B = I and B = J2n. �

5.2.4. Involutions in Sp2n(k). (See the proof of [FGS17, Lem. 4.3]). An involu-
tion A in Sp2n(k) acting on the natural representation V preserves a flag

0 ⊂ (A− 1)V ⊂ V A ⊂ V, (5.2.5)

where we write r := dim((A− 1)V ) ≤ n for the rank of A− 1. With respect to this
flag, one can (by [FGS17, Lem. 4.4]) write A in the form

A =



Ir 0 Sr
0 I2n−2r 0
0 0 Ir


 ,
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where Sr has rank r and SrJr is symmetric. The parabolic stabilizing the flag (5.2.5)
acts on the matrices of this form, and the orbit corresponds to all symmetric ma-
trices equivalent to SrJr. Accordingly, if r is odd, the conjugacy class of A is
determined by r. If r > 0 is even, there are two conjugacy classes corresponding
to Sr = Ir and Sr = Jr. In total there are n+1+ ⌊n/2⌋ conjugacy classes. We see
that

AJ2n =



SrJr 0 Jr
0 J2n−2r 0
Jr 0 0


 (5.2.6)

This is non-alternating if either r is odd or r is even and Sr = Jr. Any involu-
tion A ∈ GSp2n(k) must have ν(A)2 = 1 and thus ν(A) = 1, and hence must lie
in Sp2n(k). In particular, from the discussion above and Lemma 5.2.3, we have the
following:

Lemma 5.2.7. Let ψ : GF+ → GSp2n(k) with k of characteristic 2, and let rψ :

GF+ → G2n(k) be as in Lemma 5.1.6. Let v be an infinite place of F+. Then the
polarized pair (ψ|GF , ν ◦ ψ) is strongly residually odd at v if and only if either

(1) (ψ(cv)− I) has odd rank, or
(2) (ψ(cv)− I) has even rank r > 0, and the matrix SrJr obtained from (5.2.6)

with A := ψ(cv) is non-alternating.

Equivalently (ψ|GF , ν ◦ψ) is strongly residually odd at v if and only if the quadratic
form associated ψ(cv)J2n is equivalent to the one associated with I2n, which occurs
if and only if ψ(cv)J2n has at least one non-zero diagonal entry.

Remark 5.2.8. If n = 1, then either A is trivial or A− I has rank r = 1. Hence in
this case strong residual oddness is equivalent to A 6= I (cf. [Tho17, Lem. 3.5(ii)]).
This is no longer true for n > 1; there are n conjugacy classes of involutions giving
rise to strongly residually odd representations and 1 + ⌊n/2⌋ conjugacy classes of
involutions which do not. In particular, for 2n = 4, there are two conjugacy classes
of involutions giving rise to strongly residually odd representations and two (one
of which is the identity) which do not. Explicit representatives for the odd classes
can be given as follows:




1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1


 ,




1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1


 ,

where the latter is conjugate to J4, and an explicit representative for the non-trivial
non-odd involution is given by




1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 .

When we later fix (in Lemma 8.1.3) an explicit isomorphism S6 ≃ Sp4(F2), the first
two elements can be identified with the images of (1, 2), and (1, 2)(3, 4) respectively,
whereas the latter can be identified with (1, 2)(3, 5)(4, 6) (See also the proof of
Lemma 8.2.4.)
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5.3. Adequacy. Let ad = Hom(V, V ) denote the adjoint representation and ad0 ⊂
Hom(V, V ) the submodule of trace zero endomorphisms. We begin with the fol-
lowing lemma just to clarify that the definition of weakly adequate used in [Tho17,
Defn. 2.20] (which is case (1) of Lemma 5.3.1 below) agrees with other definitions
in the literature.

Lemma 5.3.1. Let V be a finite-dimensional vector space over a finite field k, and
let H ⊆ GL(V ). The following conditions are equivalent:

(1) For each simple k[H ]-submodule W ⊂ ad⊗k, there exists a semi-simple
element σ ∈ H with an eigenvalue α ∈ k such that tr(eσ,αW ) 6= 0. (Here
eg,α is the g-equivariant projection onto the generalized α-eigenspace of g.)

(2) For each simple k[H ]-submodule W ⊂ ad0⊗k, there exists a semi-simple
element σ ∈ H with an eigenvalue α ∈ k such that tr(eσ,αW ) 6= 0.

(3) End(V ) is spanned by the set Hss of semi-simple elements of H.

Proof. This follows directly from the proof of [Tho12, Lemma A.1]. More precisely,
it is shown there that we have an equality

U := {w ∈ ad⊗k : tr(gw) = 0 ∀g ∈ Hss}
= {w ∈ ad⊗k : tr(eg,αw) = 0 ∀g ∈ Hss, α ∈ k}.

Note that U is an H-submodule of ad⊗k; suppose that w ∈ U , g ∈ Hss, and h ∈ H .
The element h via the natural action sends w to hwh−1, and then

tr(ghwh−1) = tr(h−1ghw) = 0,

since h−1gh ∈ Hss and w ∈ U . Condition (3) is equivalent to U = 0, whereas
conditions (1) and (2) above are equivalent to the intersection of U with the so-
cle of ad⊗k (respectively, the socle of ad0⊗k) being trivial. Since U ⊂ ad0⊗k
(take g = 1), the result follows. �

Definition 5.3.2. We say that H ⊆ GL(V ) is weakly adequate if the equivalent
conditions of Lemma 5.3.1 hold for H . A representation ρ : G → GL(V ) is weakly
adequate if im(ρ) is weakly adequate.

As remarked in [Tho17] (after Definition 2.20), if H is weakly adequate, then H
acts absolutely irreducibly on V as a consequence of condition 3 of Lemma 5.3.1.

Definition 5.3.3. Let k be a subfield of F2. We say that a finite subgroup H ⊂
GLn(k) is nearly adequate if:

(1) H is weakly adequate.
(2) H1(H, k) = 0.
(3) H1(H, ad) = 0.

We say that a representation ρ : G → GL(V ) is nearly adequate if im(ρ) is nearly
adequate.

Remark 5.3.4. The definition of a nearly adequate subgroup is almost the same
as the definition of an adequate subgroup [Tho17, Defn. 2.20]. Indeed the only
difference is that we are assuming that H1(H, ad) = 0, rather than the stronger
assumption that H1(H, ad /k) = 0 (which implies the vanishing of H1(H, ad) in
conjunction with the assumption that H1(H, k) = 0).
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The point of our definition is that, as we explain below, the arguments of [Tho17]
apply unchanged with “adequate” relaxed to “nearly adequate”, and in our applica-
tions we will need to work with representations which are nearly adequate, but not
adequate. (See Lemma 8.2.2 and Remark 8.2.3.)

5.4. Galois deformation theory. We now recall some facts about Galois defor-
mation theory when p = 2. The results we need are essentially identical to those
of [Tho17, §2.1], except that we need to work relative to a larger coefficient ring
(the weight space Λ), which we do following [KT17b, §4].

We continue to assume that F is an imaginary CM field with maximal totally real
subfield F+, and we assume that F/F+ is everywhere unramified, and that all places
of F+ dividing 2 split in F . We write S2 for the set of places of F+ dividing 2, S∞ for
the set of places of F+ dividing∞, and S for a finite set of places of F+ containing
S2 ∪ S∞. Let F (S) be the maximal Galois extension of F unramified outside
of S, and write GF+,S := Gal(F (S)/F+), GF,S := Gal(F (S)/F ). Throughout this
section we will use the notation established in Section 1.8, specialized to the case
p = 2, so that for example we have our field of coefficients E/Q2 with ring of
integers O, uniformizer ̟, and residue field k.

We fix a representation r : GF+,S → Gn(k) such that r−1(G0n(k)) = GF,S , to-
gether with a character χ : GF+,S → O× with χ = ν ◦ r and χ(cv) = −1 for
all v ∈ S∞. We abusively write r|GF,S for the representation given by restriction
to GF,S and projection to the GLn(k) factor in G0n(k). We assume that r|GF,S is
absolutely irreducible. We often write ρ for r|GF,S .

For each v ∈ S, we fix Λv ∈ CNLO, and set Λ = ⊗̂v∈SΛv, where the completed
tensor product is taken over O. For each v ∈ S, the canonical map Λv → Λ induces
the forgetful functor CNLΛ → CNLΛv .

As in [Tho17, Defn. 2.6], a lifting of r|G
F

+
v

to a CNLΛv -algebra A is a continuous
homomorphism rv : GF+

v
→ Gn(A) such that rv mod mA = r|G

F
+
v

and ν ◦ rv =

χ|G
F

+
v

. We let Lift�v : CNLΛv → Sets be the functor sending A to the set of liftings

of r|G
F

+
v

. The functor Lift�v is representable by an object R�
v ∈ CNLΛv . If v

splits in F , and rv is a lifting of r|G
F

+
v

, then rv(GF+
v
) ⊆ G0n(A), and we sometimes

write ρv : GF+
v
→ GLn(A) for the projection of rv to the GLn factor.

A local deformation problem for r|G
F

+
v

is a representable subfunctor Dv ⊆ Lift�v
such that for all A ∈ CNLΛv , the set Dv(A) is invariant under the conjugation
action of Ĝn(A) on Liftv(A).

A global deformation problem is a tuple

S = (F, r,O, χ, S, {Λv}v∈S , {Dv}v∈S),

where:

• F , r, O, χ, S, and {Λv}v∈S are as above.
• For each v ∈ S, Dv is a local deformation problem for ρ|G

F
+
v

.

As in the local case, a lift (or lifting) of r is a continuous homomorphism r :
GF → Gn(A) to a CNLΛ-algebra A, such that r mod mA = r. We say that two
lifts r1, r2 : GF → Gn(A) are strictly equivalent if there is an a ∈ Ĝn(A) such that
r2 = ar1a

−1. A deformation of r is a strict equivalence class of lifts of r.
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For a global deformation problem

S = (F, r,O, χ, S, {Λv}v∈S , {Dv}v∈S),
we say that a lift r : GF → Gn(A) is of type S if r|GFv

∈ Dv(A) for each v ∈ S.
Note that if r1 and r2 are strictly equivalent lifts of r, and r1 is of type S, then so
is r2. A deformation of type S is a strict equivalence class of lifts of type S, and
we denote by DefS the set-valued functor that takes a CNLΛ-algebra A to the set
of deformations r : GF → Gn(A) of type S.

Given a subset T ⊆ S, a T -framed lift of type S is a tuple (r, {αv}v∈T ), where
r : GF → Gn(A) is a lift of r of type S and αv ∈ Ĝn(A) for each v ∈ T . We say
that two T -framed lifts (r1, {αv}v∈T ) and (r2, {βv}v∈T ) to a CNLΛ-algebra A are
strictly equivalent if there is an a ∈ Ĝn(A) such that r2 = ar1a

−1 and βv = aαv
for each v ∈ T . A strict equivalence class of T -framed lifts of type S is called a
T -framed deformation of type S. We denote by DefTS the functor CNLΛ → Sets
taking A to the set of T -framed deformations to A of type S.

Let S = (F, r,O, χ, S, {Λv}v∈S , {Dv}v∈S) be a global deformation problem, and
let T be a subset of S. The functors DefS and DefTS are representable (see [Tho17,
Lem. 2.8, Lem. 2.10]); we denote their representing objects by RS and RTS , respec-
tively. If T = ∅, then tautologically RS = RTS , while if T is nonempty, RTS is a
formally smooth RS-algebra of relative dimension (n2 + 1)#T − 1.

Let T be a (possibly empty) subset of S such that Λv = O for all v ∈ S r T .
Write Rv for the representing object of Dv, and define Rloc

S,T = ⊗̂v∈TRv, with the
completed tensor product being taken over O. It is canonically a Λ-algebra, via
the canonical isomorphism ⊗̂v∈TΛv ∼= ⊗̂v∈SΛv. For each v ∈ T , the natural trans-
formation DefTS → Dv given by (ρ, {αv}v∈T ) 7→ α−1

v ρ|GFv
αv induces a morphism

Rv → RTS in CNLΛv . We thus have a morphism Rloc
S,T → RTS in CNLΛ.

In [Tho17, §2.2], the relative tangent space to this morphism is computed via
Galois cohomology. (Strictly speaking this reference has Λv = O for all v, but the
Λ-algebra structure does not intervene in the calculation.) More precisely, there is
an explicit chain complex of k-vector spaces CiS,T with cohomology groups Hi

S,T of
k-dimensions hiS,T , and by [Tho17, Lem. 2.12], we have dimk mRT

S
/(mRloc

S,T
,m2

RT
S
) =

h1S,T , so that there is a surjection of Rloc
S,T -algebras Rloc

S,T JX1, . . . , Xh1
S,T

K ։ RTS .
Since we do not need any properties of CiS,T and its cohomology groups beyond
those proved in [Tho17, §2.2], we do not recall their definitions here. (It may
however be helpful to point out that there is a typo in the definition of CiS,T for i ≥
3: the sum over places v ∈ S should be of Ci−1(F+

v , ad r), not Ci−1(F (S)/F+, ad r)
as written in [Tho17].) We do however need to consider a certain dual Selmer
group H1

S⊥,T of k-dimension h1S⊥,T , and we now turn to its definition (see (5.4.3)
below).

We identify ad r with ĜLn(k[ǫ]), and we write gnr for the adjoint representation
on Ĝn(k[ǫ]), so that we have an exact sequence of GF+,S-modules

0→ ad r → gnr → k → 0. (5.4.1)

For each v ∈ S, we as usual identify Lift�v (k[ǫ]) with the cocycles Z1(F+
v , ad r),

so that two liftings to k[ǫ] are Gn(k[ǫ])-conjugate if and only if the images of the
corresponding cocycles in H1(F+

v , gnr) coincide. (If v splits in F , this is equiv-
alent to their images coinciding in H1(F+

v , ad r).) We write L1v ⊆ Z1(F+
v , ad r)
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for the cocycles corresponding to liftings in Dv(k[ǫ]), and Lv for the image of L1v
in H1(F+

v , ad r). We write l1v, lv for the dimensions of the k-vector spaces L1v,Lv
respectively. We define

µv := ker
(
H1(F+

v , ad r)→ H1(F+
v , gnr)

)
.

From the long exact sequence in cohomology associated to (5.4.1), there is a natural
identification

µv ≃ im
(
H0(F+

v , k)→ H1(F+
v , ad r)

)
, (5.4.2)

and so dim(µv) ≤ 1. Note that since (by definition) Dv is stable under conjugation
by Ĝn, we have µv ⊆ Lv, and µv is trivial if v splits in F (since in this case (5.4.1)
splits as a sequence of GF+

v
-modules). (Note however that the places in S∞ do not

split in F , and indeed if (ρ, µ) is strongly residually odd at v ∈ S∞ in the sense of
Definition 5.2.1, then µv is 1-dimensional by [Tho17, Lem. 2.17(ii)].)

The trace pairing (X,Y ) 7→ tr(XY ) on ad r is perfect and GF+,S-equivariant,
so ad r(1) is isomorphic to the Tate dual of ad r. (Of course, since p = 2, the
Tate twist is trivial, and ad r is self-dual, but to avoid confusing the reader who
is used to the case p > 2, we preserve the Tate twist in our notation below.) For
each v ∈ S we let L⊥v ⊆ H1(F+

v , ad r) be the annihilator of Lv under this pairing,
and write µ⊥

v ⊇ L⊥v for the annihilator of µv.
For any T ⊆ S as above (i.e. for any T such that Λv = O for all v ∈ S r T ) we

define the dual Selmer group

H1
S⊥,T :=

ker

(
H1(F (S)/F+, ad r(1))→

∏

v∈T

H1(F+
v , ad r(1))/µ

⊥
v ×

∏

v∈SrT

H1(F+
v , ad r(1))/L⊥v

)
.

(5.4.3)

As usual, we write h1S⊥,T := dimkH
1
S⊥,T . Assume that T is nonempty; then

by [Tho17, Lem. 2.15] and our assumption that r|GF,S is absolutely irreducible,
the hiS,T vanish for i 6= 1, 2, and we have h2S,T = h1S⊥,T . (The assumption that T
is nonempty guarantees the vanishing of h0S,T , and the vanishing of hiS,T for i ≥ 4

is automatic, as in the proof of [Tho17, Lem. 2.13].)

Remark 5.4.4 (Remarks on µv and our deformation problem.). We now try to
explain where the terms µ⊥

v in (5.4.3) come from. A possibly unilluminating an-
swer is that they are necessary in order to prove that h2S,T = h1S⊥,T . Indeed, the
proof [Tho17, Lem. 2.15] is as usual via the Poitou–Tate sequence, and the µ⊥

v arise
because of the appearance of the cohomology groups H1(F+

v , ad r)
η in the long ex-

act sequence in [Tho17] computing the Hi
S,T . Here H1(F+

v , ad r)
η is by definition

the image of the map
H1(F+

v , ad r)→ H1(F+
v , gnr),

and µv is its kernel, whence the appearance of µ⊥
v as the dual Selmer condition.

A possibly more helpful explanation is as follows. In the usual Kisin modifi-
cation of the Taylor–Wiles method, when one presents a global deformation ring
over a (completed tensor product of) local deformation rings at primes v ∈ T ,
the corresponding Selmer condition Lv at v is trivial. In our setting (exactly as
in [Tho17]) we are considering deformations ρ : GF+

v
→ Gn(A) which are equiva-

lent under Ĝn(A). As in Remark 5.1.3, conjugation by the ĜL1(A) factor of Ĝ(A)
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does not in general act trivially on deformations. The group µv exactly measures
deformations ρ which are not equivalent under conjugation by ĜLn(A) but become
equivalent under conjugation by Ĝ(A).

An alternative way to view these general deformation problems would be to work
purely with conjugate self-dual GF -representations. In this setting, the Selmer
groups are naturally subgroups of H1(F (S)/F, ad r)Gal(F/F+). To compare these
approaches, note that, (since r is irreducible so (ad r)GF = k) there is a natural
inflation–restriction sequence:

0→ H1(F/F+, k)→ H1(F (S)/F+, ad r)
res−−→ H1(F (S)/F, ad r)Gal(F/F+)

→ H2(F/F+, k)→ H2(F (S)/F+, k).
(5.4.5)

The first group is 1-dimensional, and (for example by an explicit cocycle compu-
tation as in the proof of Lemma 5.5.3 below) its localization at any prime v ∈ S
agrees with µv. On the other hand, since F/F+ is CM, for any real place v, the
composite map

H2(F/F+, k)→ H2(F (S)/F+, k)→ H2(F+
v , k)

is injective (and indeed an isomorphism), so the restriction map in (5.4.5) is sur-
jective.

5.5. Taylor–Wiles systems. We briefly recall the deformation condition that we
use at Taylor–Wiles primes, and the notion of a Taylor–Wiles system, follow-
ing [Tho17, §§2.3.2, 2.4]. A Taylor–Wiles prime is a finite place v of F+ which
splits in F and is such that r is unramified at v with r(Frobv) semi-simple. At such
a v we choose an eigenvalue αv ∈ k of multiplicity n1, and decompose

ρ|G
F

+
v

= Av ⊕Bv (5.5.1)

with Av(Frobv) = αv · 1n1 . The local deformation problem DTW
v is given for each

R ∈ CNLΛ by declaring that r ∈ DTW
v (R) if there is a decomposition

ρ = Av ⊕Bv
lifting (5.5.1), with Bv unramified and Av|I

F
+
v

= ψv · 1n1 for some ψv : IF+
v
→ R×.

Note that while DTW
v depends on the choice of αv, it is omitted from the notation.

Note also that DTW
v is indeed a local deformation problem, by [Tho12, Lem. 4.2].

We write ∆v = k(v)×(2) for the 2-part of k(v)×. For any ρ ∈ DTW
v (R), the

character ψv ◦ArtF+
v

gives a canonical homomorphism ∆v → R×.

Definition 5.5.2. Let S = (F, r,O, χ, S, {Λv}v∈S , {Dv}v∈S) be a global deforma-
tion problem, and set T = S r S∞. For each N ≥ 1, a Taylor–Wiles datum of
level N is a pair (Q, (αv)v∈Q) such that

(i) Q is a finite set of places of F+.
(ii) For each v ∈ Q, we have v /∈ S, and v splits completely in F (ζ2N ).
(iii) For each v ∈ Q, ρ(Frobv) is semi-simple, and αv ∈ k is an eigenvalue of

ρ(Frobv).

For each Taylor–Wiles datum (Q, (αv)v∈Q), we define the corresponding aug-
mented global deformation problem

SQ = (F, r,O, χ, S ∪ Q, {Λv}v∈S , {Dv}v∈S ∪ {DTW
v }v∈Q),
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where for each v ∈ Q the local deformation problem DTW
v is defined using the

choice of eigenvalue αv ∈ k. Write ∆Q :=
∏
v∈Q k(v)

×(2). Then the canonical
homomorphisms ∆v → R× give a canonical homomorphism O[∆Q] → RSQ , and
we have a canonical identification RSQ ⊗O[∆Q] O = RS .

The following lemma shows that it is not possible to kill all the classes in the
dual Selmer group by adding Taylor–Wiles primes. We will shortly see that it is
however possible to kill all but one class (more precisely, all but a one-dimensional
space of classes), and that this is enough to patch.

Lemma 5.5.3. Let S = (F, r,O, χ, S, {Λv}v∈S , {Dv}v∈S) be a global deformation
problem. Set T = S r S∞. Then for N sufficiently large with respect to F+, and
any Taylor–Wiles datum Q of level N , we have h1

S⊥
Q ,T
≥ 1. In particular, taking

Q = ∅, we have h1S⊥,T ≥ 1.

Proof. Let K+
m be the maximal totally real subfield of Q(ζ2m). Assume without

loss of generality that K+
m−1 ⊆ F+ ( K+

m. Let L+/F+ be the totally real quadratic
extension of F+ given by L+ = F+.K+

m, so L+ ⊂ F+(ζ2m) ⊆ F (ζ2m), and assume
that N ≥ m. We claim that the class ψ in H1(F (S)/F+, ad r(1)) which is inflated
from H1(L+/F+, k) (via the inclusion of the scalar matrices into ad r = ad r(1)) is
necessarily contained in H1

S⊥
Q ,T

for all Q of level N ≥ m.

Since L+ is totally real, ψ is trivial at all of the infinite places of F+. In addition,
each prime in Q splits completely in F (ζ2N ) and hence also in F (ζ2m) and thus
in L+. Hence ψ is also trivial at all of the places in Q.

It remains to show that (the restriction of) ψ is contained in µ⊥
v for each finite

place v ∈ S. Let ∆v ⊂ H1(F+
v , ad r) denote the the image of the map H1(F+

v , k)→
H1(F+

v , ad r) induced by the map k → ad r. Certainly ψv ∈ ∆v; we now show
that µv ⊂ ∆v and then analyze the pairing ∆v ×∆v → k.

From (5.4.2) we have µv = im(δv), where

δv : k → H1(F+
v , ad r)

is the boundary map in the long exact sequence in cohomology obtained from the
action of GF+

v
on (5.4.1). The short exact sequence (5.4.1) has a GF -equivariant

splitting gnr ≃ ad r⊕ k. Choose a lift (0, 1) of 1 ∈ k compatible with this splitting.
The corresponding cocycle φ = δv(1) vanishes on GF and sends c ∈ GF+ r GF
to c(0, 1)− (0, 1) = (In, 0) ∈ ad r, so φ ∈ ∆v, i.e. µv ⊂ ∆v.

Since the images of cocycles in ∆v are contained in k ⊂ ad r and since the self-
duality on ad r is given by (X,Y ) 7→ Tr(XY ), the Tate pairing ∆v × ∆v → k
may be computed by first evaluating the pairing on k ⊂ ad r and then multiplying
by n = Tr(In). If n is even, it follows that ∆v ⊂ ∆⊥

v , so that ∆v ⊂ µ⊥
v , as required.

This completes the proof when n is even (which is the case which we ultimately
use). When n is odd, we must investigate more closely the pairing on k ⊂ ad r.

The Tate pairing

H1(F+
v , k)×H1(F+

v , k)→ H2(F+
v , k) = k (5.5.4)

for any v is given by the (local) Hilbert symbol:

〈∗, ∗〉v : F+,×/F+,×2 × F+,×/F+,×2 → µ2. (5.5.5)

More precisely, the relation between (5.5.4) and (5.5.5) is given by first identifying k
with µ2 ⊗ k and H1(F+

v , µ2) with F+,×/F+,×2, and then tensoring (5.5.5) with k.
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The class associated to µv ⊂ ∆v is the class cF,v coming by localization from the
extension F/F+, and the class associated to ψ ⊂ ∆v is the class cL+,v coming
from L/L+. It therefore suffices to show that

〈cF,v, cL+,v〉v = 1.

By assumption, F/F+ is unramified at all finite primes and L+/L is unramified
outside v|2, so the pairing vanishes at all finite primes away from v|2. (For primes
of odd residue characteristic, the Hilbert symbol vanishes when restricted to units).
Since L+/F+ is totally real, the Hilbert symbol also vanishes at v|∞. Finally, we
are assuming that the primes above 2 in F+ are totally split in F/F+, so cF,v is
trivial for v|2 and the pairing also vanishes for v|2. �

The following is identical to [Tho17, Prop. 2.21] except with “adequate” replaced
by “nearly adequate.” The proof is identical, but we go through it in detail in
order to show exactly where each hypothesis in Definition 5.3.3 is used (or more
precisely, to show that the hypotheses in Definition 5.3.3 are the only ones used
in the proof of [Tho17, Prop. 2.21], and the stronger assumption made there that
ρ(GF ) is adequate is in fact never used).

Proposition 5.5.6. Let S = (F, r,O, χ, S, {Λv}v∈S , {Dv}v∈S) be a global deforma-
tion problem, and let T = S r S∞. Assume that:

(i) For each v ∈ S∞, µ(cv) = −1 and Dv = Lift�v .
(ii) F = F+(

√
−1).

(iii) If n is even, there exists an infinite place v of F+ such that (ρ, µ) is strongly
residually odd at v.

(iv) The group ρ(GF ) ⊆ GLn(k) is nearly adequate.
Write q = h1S⊥,T − 1 and g = q + #T − 1 − [F+ : Q]n(n − 1)/2. Then for
each N ≥ 1 there are infinitely many Taylor–Wiles data (Q, (αv)v∈Q) of level N
such that #Q = q and the map Rloc

S,T → RTSQ
can be extended to a surjection

Rloc
S,T JX1, . . . , XgK ։ RTSQ

.

Proof. We follow the proof of [Tho17, Prop. 2.21] very closely, assuming throughout
that p = 2. As usual in arguments constructing Taylor–Wiles data, the proof begins
by using the material on Galois cohomology recalled above to reduce to showing
that for each N ≥ 1, there are infinitely many Taylor–Wiles data (Q, (αv)v∈Q)
of level N such that h1

S⊥
Q ,T

= 1 = h1S⊥,T − #Q. (This second equation is of

course equivalent to #Q = q by the definition of q.) This reduction uses assump-
tion ((i)) in the statement of the proposition, but makes no use of adequacy, so goes
over unchanged under our assumptions. Since a Taylor–Wiles datum of level N is
also a Taylor–Wiles datum of level M for any M ≤ N , we can and do assume
that N is sufficiently large to ensure that FN := F (ζ2N ) strictly contains F . Let
[ψ] ∈ H1

S⊥,T ⊆ H1(F (S)/F+, ad r(1)) be a cohomology class with nonzero image
in H1(F (S)/FN , ad r(1)). We claim that:

Claim 5.5.7. There are infinitely many Taylor–Wiles data ({w}, αw) of level N
with [ψ] /∈ H1

S⊥
{w}

,T
.

Admitting the claim for now, the proof of the proposition is as follows. Write s for
the dimension of the image of H1

S⊥,T in H1(F (S)/FN , ad r(1)). Applying the claim
repeatedly, we see that there are infinitely many Taylor–Wiles data (Q, (αv)v∈Q)
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of level N such that #Q = s, h1
S⊥
Q ,T

= h1S⊥,T −#Q, and the morphism H1
S⊥
Q ,T
→

H1(F (S)/FN , ad r(1)) is zero. We therefore have

H1
S⊥
Q ,T
⊆ H1(FN/F

+, ad r(1)GFN ) (5.5.8)

(because by inflation-restriction, H1(FN/F
+, ad r(1)GFN ) is the kernel of the re-

striction map H1(F (S)/F+, ad r(1))→ H1(F (S)/FN , ad r(1))).
It only remains to show that h1

S⊥
Q ,T

= 1. It is now time to use that ρ(GF )

is nearly adequate. We begin by using points (1) and 2 of Definition 5.3.3. The
latter implies that (indeed, is equivalent to) ρ(GF ) has no normal subgroups of
index 2, so that ρ(GFN ) = ρ(GF ). Then the former implies that ρ(GFN ) acts ab-
solutely irreducibly, so that ad r(1)GFN = ad rGFN = k, the scalar matrices. In
particular we have H1(FN/F

+, ad r(1)GFN ) = H1(FN/F
+, k). We are assuming

that F = F+(
√
−1) (Assumption ((ii)) in the statement of the proposition) and

that FN = F (ζ2N ) is non-trivial over F . Together, these imply (since p = 2) that
H1(FN/F

+, k) is two-dimensional. By assumption ((iii)), together with [Tho17,
Lem. 2.17(ii)] (and [Tho17, Lem. 2.16] in the case that n is odd), there is a
place v ∈ S∞ such that the morphism H1(F+

v , k) → H1(F+
v , ad r) is injective

(this morphism being the one induced by the inclusion of the scalar matrices in
ad r). In particular, for such a place the composite H1(FN/F

+, k)→ H1(F+
v , k)→

H1(F+
v , ad r(1)) is nonzero (because the first map is nonzero, for example because

F/F+ is an imaginary CM extension contained in FN/F
+ and F+

v is real). (Note
that in [Tho17] there is a typo, asserting that this composite is injective, but being
nonzero is all that is needed.) Now, by definition (i.e. by (5.4.3)) the restriction
to H1(F+

v , ad r(1)) of any class in H1
S⊥
Q ,T

vanishes; indeed, our choice of T gives

S∞ = S r T , and by assumption ((i)) in the statement of the proposition, we
have L⊥v = 0 for all v ∈ ∞. Going back to (5.5.8) (and recalling Lemma 5.5.3) we
see that h1

S⊥
Q ,T

= 1, and we are done.

It remains to prove Claim 5.5.7. Accordingly, we let

[ψ] ∈ H1
S⊥,T ⊆ H1(F (S)/F+, ad r(1))

be a cohomology class with nonzero image in H1(F (S)/FN , ad r(1)). By [Tho17,
Lem. 2.19], finding a Taylor–Wiles datum ({w}, αw) of level N with [ψ] /∈ H1

S⊥
{w}

,T

amounts to choosing w,αw such that
• w splits completely in FN , and ρ(Frobw) is semi-simple; and
• αw ∈ k is an eigenvalue of ρ(Frobw) such that tr eFrobw,αwψ(Frobw) 6= 0,

where eFrobw,αw is the unique idempotent in k[ρ(Frobw)] whose image is
the αw-eigenspace of ρ(Frobw).

By Chebotarev, it therefore suffices to find σ ∈ GFN and α ∈ k such that ρ(σ) is
semi-simple, and α is an eigenvalue of ρ(σ) with tr eσ,αψ(σ) 6= 0.

Let K/F be the extension cut out by ad ρ, and write KN = K ·FN . Let f denote
the image of [ψ] under the restriction map

H1(F (S)/F+, ad r(1))→ H1(F (S)/KN , ad r(1))
GF+ . (5.5.9)

By the definition of K, the action of GKN on ad r(1) is trivial so this image is a
homomorphism f : Gal(F (S)/KN)→ ad r. We claim that f 6= 0. To see this, note
that the restriction map (5.5.9) factors through the restriction map

H1(F (S)/F+, ad r(1))→ H1(F (S)/FN , ad r(1)),
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and by assumption, the image of [ψ] in H1(F (S)/FN , ad r(1)) is nonzero. It there-
fore suffices to show that the kernel of the restriction map

H1(F (S)/FN , ad r(1))→ H1(F (S)/KN , ad r(1))

vanishes. By inflation-restriction, this kernel is H1(KN/FN , ad r(1)). As we saw
above, by Definition 5.3.3 (2) we have ρ(GFN ) = ρ(GF ), so thatH1(KN/FN , ad r(1)) =
H1(ρ(GF ), ad r). This vanishes by Definition 5.3.3 (3), as required.

Let V ⊆ ad ρ be the k-vector space generated by the image of f . Since f is
GFN -equivariant (as it is restricted from [ψ]), V is a k[GFN ]-module, and we let W
be a simple k[GFN ]-submodule of V . By Definition 5.3.3 (1) (and again using
that ρ(GFN ) = ρ(GF )), we may find σ0 ∈ GFN and α0 ∈ k such that ρ(σ0) is
semi-simple, and α0 is an eigenvalue of ρ(σ0) with tr eσ0,α0W 6= 0.

If tr eσ0,αψ(σ0) 6= 0, then we are done, taking σ = σ0 and α = α0. Suppose
instead that tr eσ0,α0ψ(σ0) = 0, and choose any τ ∈ KN such that tr eσ0,α0f(τ) 6= 0.
(Such a τ exists, because tr eσ0,α0W 6= 0, and by definition V is spanned as a k-
vector space by the varying f(τ).) We set σ = τσ0, so that ρ(σ) is a scalar multiple
of ρ(σ0), and we let α be the corresponding scalar multiple of α0, so that eσ,α =
eσ0,α0 . We have ψ(σ) = ψ(σ0) + ψ(τ), so that tr eσ,αψ(σ) = tr eσ0,α0f(τ) 6= 0, as
required. �

5.6. Local deformation problems. We now assume that all finite places v ∈ S
of F+ split in F , and choose a place ṽ of F above each v ∈ S. We write S̃ for
the set of places ṽ with v ∈ S finite, and S̃2 ⊂ S̃ for the places lying over 2. For
each v ∈ S we can and do identify liftings of r|G

F
+
v

with liftings of ρ|GFṽ
.

5.6.1. Local deformation problems for v ∤ 2. The following two lemmas are presum-
ably well known, but for lack of a reference we give a proof.

Lemma 5.6.2. Suppose that v ∤ 2. Then there is a finite extension F ′
ṽ/Fṽ such

that any lifting of ρ|GFṽ
becomes unipotently ramified after restriction to GF ′

ṽ
.

Proof. Since the universal lifting ring of ρ|GFṽ
is O-flat by [Sho18, Thm. 2.5], it

suffices to prove this for closed points of its generic fibre. Since this generic fibre
has finitely many connected components, it suffices to prove the result for the
closed points of any single connected component. For each connected component,
it suffices to prove the result for a single point on that component by [BLGGT14,
Lem. 1.3.4(1)] (a theorem of Choi), and the result is immediate. �

Lemma 5.6.3. Suppose that v ∤ 2, that ρ|GFṽ
is unramified, and that ρ(Frobṽ) is

regular semi-simple. Then any lifting of r|GFṽ
is strictly equivalent to a direct sum

of characters. In particular, there is a finite extension F ′
ṽ/Fṽ such that any lifting

of ρ|GFṽ
becomes unramified after restriction to GF ′

ṽ
.

Proof. The second statement follows from the first by Lemma 5.6.2. Since qv ≡ 1
(mod 2), the first statement is standard, and may for example be proved by an
identical argument to the proof of Lemma 6.1.6. �

Now let χv,1, . . . , χv,n : O×
Fṽ
→ O× be finite order characters, which are trivial

modulo ̟. Suppose that ρ|GFṽ
is trivial. We write Dχv

v for the set of liftings ρ of
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ρ|GFṽ
to objects of CNLO such that for all σ ∈ IFṽ

, we have

charρ(σ)(X) =

n∏

i=1

(X − χv,j(ArtFṽ
(σ))

−1
).

Write Rχv
v for the corresponding local lifting ring. The following is [Tho12, Prop.

3.16].

Proposition 5.6.4.

(1) Suppose that χv,j = 1 for each j. Then each irreducible component of R1
v

has dimension n2 + 1, and every prime of R1
v minimal over ̟ contains a

unique minimal prime. Every generic point of R1
v is of characteristic zero.

(2) Suppose that the χv,j are pairwise distinct. Then SpecRχv
v is irreducible of

dimension n2 + 1, and its generic point is of characteristic zero.

5.6.5. Local deformation rings for v|2: ordinary deformation rings for v|2. We now
recall the ordinary deformation problems introduced in [Ger19, §3], and studied
there and in [Tho15, §3.3.2]. Suppose that v|2 and that ρ|GFṽ

can be conjugated
to an upper-triangular representation whose diagonal characters are χ1, . . . , χn :
GFṽ

→ k× (in that order). Let ΛGLn,v be the completed group ring of the group
IabFṽ

(2)n, where (2) denotes pro-2 completion. Let (χ1, . . . , χn) denote the universal
n-tuple of characters IFṽ

→ Λ×
GLn,v

lifting (χ1|IFṽ
, . . . , χn|IFṽ

).

Proposition 5.6.6. There is a local deformation problem D△
v , represented by a

CNLΛGLn,v -algebra R
△
v with the following properties.

(1) R△
v is reduced and 2-torsion free.

(2) Let E′/E be a finite extension with ring of integers OE′ , and fix a morphism
of local O-algebras ΛGLn,v → OE′ . Then a morphism of local ΛGLn,v-
algebras R�

v → OE′ factors through R△
v if and only if the corresponding

representation ρ : GFṽ
→ GLn(OE′) is GLn(OE′)-conjugate to an upper-

triangular representation whose ordered diagonal characters (ψ1, . . . , ψn)
are such that for each i, ψi|IFṽ

is equal to the pushforward of (χ1, . . . , χn)
along ΛGLn,v → OE′ .

(3) Suppose that ρ|GFṽ
is trivial, and that [F+

v : Q2] > n(n−1)/2+1. Let Q be
a minimal prime of ΛGLn,v. Then SpecR△

v /Q is geometrically irreducible
of dimension [F+

v : Q2]n(n+ 1)/2 + n2 + 1, and R△
v /(Q,̟) is generically

reduced.

Proof. The lifting ring R△
v is defined in [Ger19, §3]; see [Tho15, §3.3.2] for a sum-

mary of its definition. It is reduced and flat over O by construction. The remaining
points are [Ger19, Lem. 3.3] and [Tho15, Prop. 3.14(3)]. �

We will use the following remark in the proof of Proposition 7.5.10.

Remark 5.6.7. Note that [Ger19, §3] defines SpecR△
v as the flat closure of the

scheme-theoretic image of a projective morphism π : Gv → SpecR�, it is shown
in [Tho15, Lem. 3.11] that if ρ|GFṽ

is trivial and [F+
v : Q2] > n(n − 1)/2 + 1,

then Gv is already flat over O, so that SpecR△
v is equal to the scheme-theoretic

image π : Gv → SpecR�.

Definition 5.6.8. Let λ ∈ (Zn+)
Hom(Fṽ ,K). We say that a continuous representation

ρ : GFṽ
→ GLn(O) is ordinary of weight λ if:
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(1) There exists a increasing invariant filtration Fili of On, with each griOn
an O-module of rank one.

(2) Write χi for the character GFṽ
→ O× giving the action on griOn. Then

for every α ∈ F×
ṽ sufficiently close to 1, we have

(χi ◦ArtFṽ
(α)) =

∏

τ

(τ(α))−(λτ,n−i+1+i−1).

5.7. Automorphic forms on definite unitary groups. We now introduce the
spaces of automorphic forms that we work with, following [Tho17, §4] and [Ger19,
§2]. We suppose throughout Subsection 5.7 that the following hypothesis holds.

Hypothesis 5.7.1.

• F/F+ is everywhere unramified, and each place v|2 of F+ splits in F .
• n[F+ : Q] ≡ 0 (mod 4).

Let c denote the non-trivial element of Gal(F/F+). By Hypothesis 5.7.1, we can
find a unitary group G/F+ which splits over F , and is such that:

• G(F+
v ) is quasi-split at all finite places v of F+.

• G(F+ ⊗Q R) is compact.
We can and do choose an integral model of G over OF+ (which we continue to

denote by G) in such a way that if v is a finite place of F+ which splits as v = ṽṽc

in F , then there is an isomorphism

ιṽ : G(OF+
v
)

∼−→ GLn(OFṽ
).

For each place v|2 of F+ we choose a place ṽ|v of F , and let S̃2 be the set of ṽ
for v|2. Let Ĩ2 denote the set of embeddings F →֒ E inducing a place in S̃2. To
each λ ∈ (Zn+)

Ĩ2 there is an associated finite free O-module Mλ with a continuous
action of

∏
v∈S2

G(OF+
v
)

∼−→ ∏
v∈S2

GLn(OFṽ
), constructed as the tensor product

over τ ∈ S̃2 of the the algebraic representations of GLn /O with highest weight λτ .
We now write S = S∞ ⊔ T , and let R ⊂ T be a (possibly empty) set of places

disjoint from S2. For each place v ∈ R we fix a choice of ṽ (a place of F dividing v).
Suppose that U =

∏
v Uv is an open compact subgroup of G(A∞

F+) such that
Uv ⊂ ι−1

ṽ Iw(ṽ) for v ∈ R. (Here Iw(ṽ) is the Iwahori subgroup of GLn(OFṽ
)

consisting of matrices which are upper-triangular modulo ṽ, with pro- v Iwahori
subgroup Iw1(ṽ) ⊂ Iw(ṽ).)

For each v ∈ R, we choose a character

χv = χv,1 × · · · × χv,n : Iw(ṽ)/Iw1(ṽ)→ O×,

the decomposition being with respect to the natural isomorphism

Iw(ṽ)/Iw1(ṽ) ∼= (k(ṽ)×)n.

We set

Mλ,{χv} =Mλ ⊗O

(⊗

v∈R

O(χv)
)
,

a representation of G(OF+,2)×
∏
v∈R Iw(ṽ).

If A is an O-module, and Uv ⊂ G(OF+
v
) for v|2, then we write Sλ,{χv}(U,A) for

the set of functions

f : G(F+)\G(A∞
F+)→Mλ,{χv} ⊗O A
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such that for every u ∈ U , we have f(gu) = u−1
S2∪R

f(g), where uS2∪R denotes the
projection to

∏
v∈S2∪R

Uv. If R is empty then we write Sλ,{χv}(U,A) = Sλ(U,A).
We will sometimes assume that U is sufficiently small in the following sense.

Definition 5.7.2. We say that U is sufficiently small if for some finite place v
of F+, the projection of U to G(F+

v ) contains no element of finite order other than
the identity.

Let w be a place of F split over F+ and not contained in S, and let ̟w be a
uniformizer of Fw. Write

αj̟w
:= diag(̟w, . . . , ̟w︸ ︷︷ ︸

j

, 1, . . . , 1).

The spaces Sλ,{χv}(U,A) receive an action of the Hecke operators

T jw := ι−1
w

([
GLn(OFw )α

j
̟w

GLn(OFw)
])
.

For integers 0 ≤ b ≤ c, and v ∈ S2, we consider the subgroup Iw(ṽb,c) ⊂
GLn(OFṽ

) defined as those matrices which are congruent to an upper-triangular
matrix modulo ṽc and congruent to a unipotent upper-triangular matrix modulo
ṽb. We set U(lb,c) =

∏
v/∈S2

Uv ×
∏
v∈S2

Iw(ṽb,c). (Our use of l̃ is in order to follow
the notation of [Ger19].)

We now recall from [Ger19, Defn. 2.8] some additional Hecke operators at the
places dividing 2. For each v ∈ S2 we let ̟ṽ be a uniformizer of Fṽ. As above we
write

αj̟ṽ
= diag(̟ṽ, . . . , ̟ṽ︸ ︷︷ ︸

j

, 1, . . . , 1),

and we set
U jλ,̟ṽ

= (w0λ)(α
j
̟ṽ

)−1
[
U(lb,c)ι−1

ṽ (αj̟ṽ
)U(lb,c)

]
,

where as usual w0 is the longest element of the Weyl group. If u ∈ T (OFṽ
) then we

write
〈u〉 =

[
U(lb,c)ι−1

ṽ (u)U(lb,c)
]
.

By [Ger19, Lem. 2.10], these operators commute with each other and act on the
spaces Sλ,{χ}(U(lb,c), A), compatibly with the inclusions

Sλ,{χ}(U(lb,c),O) ⊂ Sλ,{χ}(U(lb
′,c′),O),

where b ≤ b′ and c ≤ c′.
We write TT

λ,{χv}
(U(lb,c), A) for the O-subalgebra of EndO(Sλ,{χv}(U,A)) gen-

erated by the operators T jw and (T nw)
−1 as above and all the operators 〈u〉 :=∏

v∈S2
〈uv〉 for

u = (uv)v∈S2 ∈ T (OF+,2) =
∏

v∈S2

T (OF+
v
),

where T denotes the usual diagonal torus in GLn. With these identifications, the
operators 〈u〉 endow each Hecke algebra TT

λ,{χv}
(U(lb,c), A) with the structure of

an algebra for the completed group ring

Λ = OJT (l)K, (5.7.3)

where T (l) is defined by the exact sequence

0 // T (l) //
∏
v∈S2

T (OF+
v
) //

∏
v∈S2

k(v)× // 0.
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We have the ordinary idempotent e = limr→∞ U(l)r!, where we set

U(l) =
∏

v∈S2

n∏

j=1

U jλ,̟ṽ
.

We define the ordinary Hecke algebra

T
T,ord
λ,{χv}

(U(lb,c), A) = eTT
λ,{χv}

(U(lb,c), A);

equivalently, TT,ord
λ,{χv}

(U(lb,c), A) is the image of the Hecke algebraTT
λ,{χv}

(U(lb,c), A)

in EndO

(
Sord
λ,{χv}

(U(lb,c), A)
)
.

We set
Sλ,{χv}(U(l∞), E/O) = lim−→

c

Sλ,{χv}(U(lc,c), E/O),

which receives a faithful action of the algebra

TT
λ,{χv}

(U(l∞), E/O) = lim←−
c

TT
λ,{χv}

(U(lc,c), E/O).

By [Ger19, Lem. 2.17], this algebra is naturally isomorphic to

TT
λ,{χv}

(U(l∞),O) = lim←−
c

TT
λ,{χv}

(U(lc,c),O).

We can again apply the idempotent e to these spaces and rings, in which case we
again decorate them with ‘ord’ superscripts.

Specializing to the case λ = 0, we define a homomorphism T (l)→ T
T,ord
0,{χv}

(U(l∞),O)×
by

u 7→


∏

τ∈Ĩ2

n∏

i=1

τ(ui)
1−i


 〈u〉

(where the ui are the coordinate entries of u, recalling that T is the usual diagonal
maximal torus in GLn). This gives rise to an O-algebra homomorphism Λ →
T
T,ord
0,{χv}

(U(l∞),O), and we write

T
T,ord
{χv}

(U(l∞),O)

for TT,ord
0,{χv}

(U(l∞),O) endowed with this Λ-algebra structure. This is the universal
ordinary Hecke algebra of level U . It is a finite Λ-algebra by [Ger19, Cor. 2.21].
Along with all of the other Hecke algebras considered above, it is reduced (by [Ger19,
Lem. 2.14]).

We can pass back from the universal ordinary Hecke algebra to the finite level
Hecke algebras in the following way. Corresponding to each λ is a prime ideal ℘λ
of SpecΛ as defined in [Ger19, Defn. 2.24(1)]; the prime ideals ℘λ are dense
in SpecΛ (see the proof of [Ger19, Cor. 3.4]). By [Ger19, Lem. 2.25], we have
a natural identification

HomO(T
T,ord
0,{χv}

(U(l∞),O)/℘λ,Q2) = HomO(T
T,ord
λ,{χv}

(U(l1,1),O),Q2). (5.7.4)

We say that a RACSDC automorphic representation π for GLn /F has weight λ ∈
(Zn+)

Ĩ2 if its infinitesimal character agrees (after composing with our fixed isomor-
phism ı : Q2

∼−→ C) with that of the algebraic representation of weight λ. We say
that π is ordinary if (ı−1(⊗v|2πv))ord 6= 0. (See [BLGGT14, §2].) The relationship
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between the spaces of automorphic forms considered above and ordinary RACSDC
representations is as follows. For each λ, write

Aλ := lim−→
U

Sλ(U,Q2).

This is a semi-simple admissible Q2[G(A
∞
F+)]-module, and by [Lab11, Cor. 5.3,

Thm. 5.9] the irreducible submodules of ıAλ are the finite parts of automorphic rep-
resentations of G/F+ which arise as the descents of automorphic representations π
of GLn /F of weight λ. These automorphic representations π are isobaric direct
sums of self dual representations, and in particular, they include the RACSDC rep-
resentations of weight λ; and after localizing at a non-Eisenstein maximal ideal of
an appropriate Hecke algebra (as we will always do below), the RACSDC represen-
tations are the only ones that contribute. Furthermore the irreducible submodules
of ıAλ which have nonzero intersection with some Sord

λ (U(lb,b),Q2) are precisely
those which correspond to those π which are ordinary.

Now let π be an ordinary RACSDC automorphic representation π of GLn /F ,
and assume that ρ = rπ,2 : GF → GLn(F2) is irreducible. Assuming as always that
our coefficient field E is large enough, we fix an extension of ρ to r : GF+ → Gn(k).
As above, we let T ⊃ S2 be a finite set of finite places of F+ which split in F .
Again we consider a subset R ⊂ (T r S2), and for each v ∈ R we fix characters
χv : Iw(ṽ)/Iw1(ṽ)→ O×. We assume furthermore that:

Hypothesis 5.7.5.

• T contains all finite places lying under a place w of F at which πw is
ramified, and
• if v ∈ R then ρ|GFṽ

is trivial and πIw(ṽ)
v 6= 0.

Set S = T ∪ S∞. If v /∈ S2 then we set Λv = O, while if v ∈ S2 we take Λv =
ΛGLn,v where ΛGLn,v is as in Section 5.6.5. We define the global deformation
problem

S{χv} =

(
F, r,O, ε1−nδnF/F+ , S, {Λv}v∈S , {Dχv

v }v∈R

∪ {D△
v }v∈S2 ∪ {Lift�v }v∈Sr(R∪S2)

)
. (5.7.6)

Using the natural isomorphism ⊗̂v∈S2Λv
∼= Λ provided by local class field theory,

we see that Rloc
{χv}

is naturally a Λ-algebra.

Lemma 5.7.7. Every irreducible component of SpecRS{χv}
has dimension at least dimΛ =

1 + [F : Q]n.

Proof. By Propositions 5.6.4 and 5.6.6, together with [Sho18, Thm. 2.5], the ring
Rloc

S{χv},T
is equidimensional of dimension

dimRloc
S{χv},T

= 1 + n2#T + [F+ : Q]n(n+ 1)/2. (5.7.8)

It therefore suffices to show that there is a presentation of the form

Rloc
{χv}

Jx1, . . . , xrK/(f1, . . . , fr+s)
∼−→ RS{χv}

for some r, s ≥ 0 with s ≤ n2#T + [F+ : Q]n(n − 1)/2. This follows from a
standard deformation-obstruction argument, and can for example be proved exactly
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as in [CHT08, Cor. 2.2.12], using the complex CiS,T . Alternatively, the existence of
such a presentation is a consequence of [Bal12, Prop. 4.2.5]. (As noted in [BG19,
§4.1], it is assumed in [Bal12, §4.2] that the reductive group G there is connected,
but in the proof of [Bal12, Prop. 4.2.5] this assumption is only used in order to cite
results of [Til96] which do not use this assumption.) �

Proposition 5.7.9. Suppose that for each v /∈ T , the compact open subgroup Uv
is hyperspecial; and that for each v ∈ R, we have Uv ⊂ ι−1

ṽ Iw(ṽ).
Then there is a maximal ideal m of TT,ord

{χv}
(U(l∞),O) such that there is a surjec-

tion of Λ-algebras
RS{χv}

→ T
T,ord
{χv}

(U(l∞),O)m. (5.7.10)

The corresponding (unique up to strict equivalence) representation

rm : GF+ → Gn(TT,ord
{χv}

(U(l∞),O)m)
is characterized by the following property: if v 6∈ T is a finite place of F+ which splits
as wwc in F , then rm is unramified at w and wc, and rm(Frobw) has characteristic
polynomial

Xn + · · ·+ (−1)j(qw)j(j−1)/2T jwX
n−j + · · ·+ (−1)n(qw)n(n−1)/2T nw .

Proof. This is proved in exactly the same way as [Ger19, Prop. 2.29] (using [Ger19,
Cor. 3.4] for the compatibility at the places v ∈ S2), using [Tho17, Lem. 2.4] in
place of [CHT08, Lem. 2.1.12] (which is used in the proof of [CHT08, Lem. 3.4.4],
to which the proof of [Ger19, Prop. 2.29] refers). (See also [Tho17, Thm. 4.1] for a
detailed proof of a very similar result.). �

Definition 5.7.11. If R is empty then we write ST,ord for S{χv} and RT,ord

for RS{χv}
, and we write TT,ord(U(l∞))m for T

T,ord
{χv}

(U(l∞),O)m.

Before stating and proving the main result of this section, we make a definition,
using the following (presumably well known) lemma.

Lemma 5.7.12. If w ∤ 2 is a finite place of F , then there is a compact open sub-
group Uw of GLn(OFw ), depending only on rπ,2|GFw

, such that if π′ is a RACSDC
automorphic representation of GLn /F with rπ,2 ∼= rπ′,2 then (π′

w)
Uw 6= 0.

Proof. This follows from Lemma 5.6.2 and local-global compatibility, together with
the compatibility of the local Langlands correspondence with conductors. �

Definition 5.7.13. Suppose that v ∈ T r S2. Then we say that a compact open
subgroup of Gn(F+

v )
∼−→ GLn(Fṽ) is sufficiently deep if it satisfies the conclusion

of Lemma 5.7.12 (for w = ṽ).

Theorem 5.7.14. Let F be a CM field, and let n ≥ 2. Fix a continuous represen-
tation

ρ : GF → GLn(Q2)

satisfying the following hypotheses.
(1) There is an ordinary RACSDC automorphic representation π of GLn /F

such that rπ,2 ∼= ρ.
(2) F/F+ is everywhere unramified. All of the places v|2 of F+ split in F , as

do all places lying under a place at which π is ramified.
(3) n[F+ : Q] ≡ 0 (mod 4).
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(4) ρ(GF ) is nearly adequate.
(5) ρ(GF ) contains a regular semi-simple element.
(6) If n is even, then there exists an infinite place v of F+ such that the polar-

ized pair (ρ, ε1−nδnF/F+) is strongly residually odd at v.

Let T be any finite set of finite places of F+ which split in F , which contains all
finite places lying under a place w of F at which πw is ramified, and all places
dividing 2.

Then RT,ord is a finite Λ-algebra. Furthermore, if for each v ∈ T r S2 the
group Uv is sufficiently deep in the sense of Definition 5.7.13, then the morphism
RT,ord → TT,ord(U(l∞))m given by (5.7.10) has nilpotent kernel, i.e.

(RT,ord)red
∼−→ TT,ord(U(l∞))m.

Remark 5.7.15. The assumption in Theorem 5.7.14 (5) that ρ(GF ) contains a
regular semi-simple element is used in order to ensure that the automorphic forms
that we consider are of neat level.

Proof of Theorem 5.7.14. We will begin by making a succession of solvable exten-
sions of CM fields to put ourselves into a situation where we can apply the Taylor–
Wiles patching method. In order to keep the notation compatible with that above
we will continue to denote our CM field by F until the end of the argument, where
we will descend to our original F .

We can and do replace F with a solvable extension (and replace T with the set of
places lying over places in T ) and enlarge our coefficient field E so that in addition
to the hypotheses of the theorem, we have:

• F = F+(
√
−1).

• if v ∈ T then ρ|GFṽ
is trivial.

• if v ∈ S2 then [F+
v : Q2] > n(n− 1)/2 + 1.

• if v ∈ T r S2 then:
– π

Iw(ṽ)
ṽ 6= 0.

– if 2N‖(qv − 1) then 2N > n and O contains a 2N th root of unity.
(Note that if (F ′)+/F+ is a solvable extension of totally real fields then (F ′)+F/F is
a solvable extension of CM fields, so we can choose a solvable CM extension to realize
any finite set of local extensions. All of these conditions are local except for the
first condition that F = F+(

√
−1). Since arranging this only involves a quadratic

extension, and ρ(GF ) has no normal subgroups of index 2 by the assumption that
it is nearly adequate (which requires in particular that H1(ρ(GF ), k) = 0), this
quadratic extension leaves ρ(GF ) unchanged.) Choose a finite place v1 /∈ T of F+

which splits in F as v = ṽ1ṽ
c
1, for which ρ(Frobṽ1) is regular semi-simple. (There

are infinitely many such v1 by our assumption (5).)
We replace T by T ∪ {v1}, and write T = S2 ⊔ {v1} ⊔R. Note in particular that

Hypotheses 5.7.1 and 5.7.5 hold. For each v ∈ R we choose pairwise distinct char-
acters χv,1, . . . , χv,n : O×

Fṽ
→ O× which become trivial after reduction modulo ̟.

(We can do this by the conditions arranged in our initial base change.) We have the
global deformation problem S{χv} defined in (5.7.6), and we write S{1} for the global
deformation problem defined in the same way but with all of the characters χv,i
replaced by the trivial character. By the definitions of the local deformation prob-
lems Dχv

v for v ∈ R, we can fix compatible isomorphisms Rloc
S{χv},T

/̟ ∼= Rloc
S{1},T

/̟

and RS{χv}
/̟ ∼= RS{1}

/̟.
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We now specify open compact subgroups Uv ⊂ G(F+
v ) as follows:

(1) Uv = G(OF+
v
) if v 6∈ T is split in F .

(2) Uv is a hyperspecial maximal compact subgroup of G(F+
v ) if v is inert in

F .
(3) Uv = Iw(ṽ) for v ∈ R.
(4) Uv1 is any torsion-free compact open subgroup of G(F+

v1 ).

(Note in particular that the choice of Uv1 means that for any b, c, the group U(lb,c)
is sufficiently small in the sense of Definition 5.7.2. While we will not explicitly use
this below, it is implicitly used multiple times, ultimately in the form of [Ger19,
Lem. 2.6].)

Since by assumption π is ordinary and unramified outside of R ∪ S2, and since
π
Iw(ṽ)
ṽ 6= 0 for all v ∈ R, there is a maximal ideal m1 of T

T,ord
{1} (U(l∞),O) with

residue field k such that ρ ∼= rm1 |GF . (As ever, we feel free to enlargeO if necessary.)
Since the χv are trivial modulo ̟, we have

Sord
0,{χv}

(U(l∞), k) = Sord
0,{1}(U(l∞), k), (5.7.16)

so m1 induces a unique maximal ideal mχ of TT,ord
{χv}

(U(l∞),O). After conjugating
we can and do assume that rmχ = rm1 = ρ.

Write

Hχ := Sord
0,{χv}

(U(l∞), E/O)∨mχ
, H1 := Sord

0,{1}(U(l∞), E/O)∨m1
.

By [Ger19, Cor. 2.21], H1 is a faithful TT,ord
{1} (U(l∞),O)m1 -module, and is in partic-

ular an RS{1}
-module via (5.7.10). Similarly Hχ is an RS{χv}

-module. By (5.7.16)
we have a natural isomorphism

Hχ/̟ ∼= H1/̟,

which is compatible with the isomorphism RS{χv}
/̟ ∼= RS{1}

/̟.
Write q = h1S⊥,T − 1 and g = q +#T − 1− [F+ : Q]n(n− 1)/2. Write

S∞ := ΛJX1, · · · , Xq+(n2+1)#T−1K

with augmentation ideal a∞ = (X1, . . . , Xq+(n2+1)#T−1). (The number of formal
variables here is given by the number of Taylor–Wiles primes plus the relative
dimension of RTS over RS .) We set

Rχ,∞ := Rloc
S{χv},T

JY1, . . . , YgK, R1,∞ := Rloc
S{1},T

JY1, . . . , YgK.

By (5.7.8) we have

dimRχ,∞ = dimR1,∞ = 1 + n2#T + [F+ : Q]n(n+ 1)/2 + g (5.7.17)

= [F+ : Q]n+ (n2 + 1)#T + q

= dimS∞.

Using Proposition 5.5.6 in place of [Tho12, Prop. 4.4], a standard patching ar-
gument exactly as in the proof of [Tho12, Thm. 8.6] provides us with the following:

• CNLΛ-homomorphisms S∞ → R1,∞, S∞ → Rχ,∞.
• An R1,∞-module H1,∞, and an Rχ,∞-module Hχ,∞, each of which is free

of finite rank over S∞.



MODULARITY THEOREMS FOR ABELIAN SURFACES 137

• A surjection of Rloc
S{1},T

-algebras R1,∞ ։ RS{1}
, which factors through a

Λ-algebra map R1,∞/a∞ → RS{1}
; and similarly, a surjection of Rloc

S{χv},T
-

algebrasRχ,∞ ։ RS{χv}
, which factors through a Λ-algebra mapRχ,∞/a∞ →

RS{χv}
.

• Isomorphisms H1,∞/a∞ ∼= H1, Hχ,∞/a∞ ∼= Hχ compatible with the sur-
jections R1,∞ ։ RS{1}

, Rχ,∞ ։ RS{χv}
.

• Compatible identifications of all the above data for 1 and for χ after reduc-
ing modulo ̟.

In particular since H1,∞ is a finite free S∞-module, we deduce from (5.7.17) that

depthR1,∞
H1,∞ ≥ depthS∞

H1,∞ = dimS∞ = dimR1,∞,

whence depthR1,∞
H1,∞ = dimR1,∞, and the support of H1,∞ in SpecR1,∞ is a

union of irreducible components (see [Tay08, Lem. 2.3]). Similarly, the support of
Hχ,∞ in SpecRχ,∞ is a union of irreducible components.

We now examine the irreducible components of SpecRχ,∞ and SpecR1,∞. Bear-
ing in mind Propositions 5.6.4 and 5.6.6, an identical argument to the proof of [BCG+25,
Lem. 3.2.4] shows that for each minimal prime Q of Λ, we have the following prop-
erties.

(1) The generic points of Rχ,∞/Q and R1,∞/Q all have characteristic 0.
(2) The irreducible components C of SpecRχ,∞/Q and SpecR1,∞/Q biject with

the products of the corresponding sets of irreducible components Cv of the
local deformation rings for v ∈ R ∪ {v1}.

(3) The irreducible components C of SpecRχ,∞/(Q,̟) = SpecR1,∞/(Q,̟)
biject with the products over T of the corresponding sets of the irreducible
components Cv of the special fibres of the deformation rings for v ∈ R∪{v1}.

In view of these statements we will use the notation C = ⊗v∈R∪{v1}Cv and C =

⊗v∈R∪{v1}Cv.
(4) The irreducible components of SpecRχ,∞/Q biject with the irreducible

components of SpecR�
v1 .

(5) For each irreducible component C = ⊗v∈R∪{v1}Cv of SpecR1,∞/(Q,̟),
there are irreducible components Cv of SpecR1

v for v ∈ R, and irreducible
components C1v1 , . . . Csv1 of SpecR�

v1 (for some s ≥ 1), such that the ir-
reducible components of SpecR1,∞/Q generalizing C are precisely the s
components Civ1 ⊗v∈R Cv.

Fix for the moment a minimal prime Q of Λ. The existence of π implies that
the support of H1,∞ in SpecR1,∞ is nonempty. Using the comparison modulo ̟,
the same is true of the support of Hχ,∞ in SpecRχ,∞. By points (4) and (5), we
conclude that for each set X of irreducible components Cv of SpecR1

v for v ∈ R, we
can choose an irreducible component CX,v1 of SpecR�

v1 such that CX,v1⊗v∈R,Cv∈XCv
is in the support of H1,∞. This choice of irreducible components corresponds to a
quotient Rloc

X of Rloc
S{1},T

, and if we set

RX := RS{1}
⊗Rloc

S{1},T
Rloc
X ,

then SpecRX ⊂ SpecRS{1}
is contained in the support of H ′

1,∞; equivalently,
SpecRX is contained in the support of H1 in SpecRS{1}

.
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In particular (RX)red is a quotient of a Hecke algebra T
T,ord
{1} (U(l∞),O)m1 , so it

is a finite Λ-algebra, so that RX itself is a finite Λ-algebra. (To see this, note by the
topological Nakayama lemma it suffices to observe RX/mΛ is Noetherian and zero-
dimensional, thus finite.) Since RX has dimension at least dimΛ by Lemma 5.7.7,
we see that the morphism SpecRX → Spec Λ/Q is dominant. In particular, we can
choose a weight λ such that RX/℘λRX is a nonzero finite O-algebra of dimension at
least 1, and thus has a Q2-point. Since (RX)red is a quotient of TT,ord

{1} (U(l∞),O)m1 ,

it follows from (5.7.4) that the Galois representation corresponding to this Q2-point
comes from an ordinary RACSDC representation of weight λ.

Repeating this construction for all choices of Q, we conclude that for each choice
set Y of irreducible components Cv for v ∈ R ∪ S2, there is an ordinary RACSDC
automorphic representation πY of GLn /F such that:

• rπY ,2
∼= ρ,

• rπY ,2|GFw
is unramified for all places w not lying over a place in T ,

• and for each v ∈ R ∪ S2, the representation rπY ,2|GFṽ
lies on Cv and on

no other irreducible component (by the genericity of πY,v, see [BLGGT14,
Lem. 1.3.2(1)]).

By Lemma 5.6.3, we can and do choose a solvable CM extension L/F , linearly
disjoint from F

ker ρ
over F , with the following property: for any Y as above, and

any place w1 of L+ lying over v1, the representation rπY ,2|GFw̃1
is unramified (where

we write w1 = w̃1w̃
c
1).

We now repeat the patching argument above with F replaced by L. More pre-
cisely, we:

• replace R by the set R′ of places of L lying over places in R;
• choose a place v′1 /∈ R′ ∪ S2 of L+ splitting in L as ṽ′1(ṽ

′
1)
c, with ρ(Frobṽ′1)

being regular semi-simple;
• and replace T by T ′ = R′ ∪ {v′1}.

WritingH ′
1, R

′
1,∞ for the corresponding objects over L, we find in particular that we

have the patched moduleH ′
1,∞, whose support in SpecR′

1,∞ is a union of irreducible
components. Again, we write these irreducible components as C′ = ⊗v′∈T ′C′v′ , and
for each set Y as above we let C′Y denote the irreducible component determined by
letting C′v′1 be the (unique) unramified component of SpecR�

v′1
, and letting C′v′ for

v′|v ∈ R ∪ S2 be the image of the component Cv for Y (via the natural morphism
SpecR�

v → SpecR�
v′).

By considering the base changes to L of the πY , we see that each component C′Y
is in the support of H ′

1,∞. The union of the irreducible components C′Y corresponds
to a quotient Rloc

L/F,T ′ of Rloc
S{1},T ′ , and as above, if we set

R′
L/F,T ′ := R′

S{1}
⊗Rloc

S′
{1}

,T ′
Rloc
L/F,T ′ ,

then SpecR′
L/F,T ′ ⊂ SpecR′

S′
{1}

is contained in the support of H ′
1,∞; equivalently,

SpecR′
L/F,T ′ is contained in the support of H ′

1 in SpecR′
S′
{1}

. Thus (R′
L/F,T ′)red

is a quotient of a Hecke algebra T
T ′,ord
{1} (U(l∞),O)m1 , and in particular every ho-

momorphism R′
L/F,T ′ → O factors through T

T ′,ord
{1} (U(l∞),O)m1 . Furthermore, it

follows as above that R′
L/F,T ′ is a finite Λ′-algebra.
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We now return to the original situation of the statement of the theorem (so F is
now the CM field that we started with, before we made any base changes, and T
is as in the statement of the theorem). By the choice of L, we have a commutative
diagram

Λ′ //

��

R′
L/F,T ′

��

Λ // RT,ord // TT,ord(U(l∞))m

The morphismR′
L/F,T ′ → RT,ord is finite, by the obvious generalization of [BLGGT14,

Lem. 1.2.3(1)] to the case p = 2, which has an identical proof up to replacing the
appeal to [CHT08, Lem. 2.1.12] with a citation of [Tho17, Lem. 2.4]. It follows that
RT,ord is a finite Λ-algebra, as claimed.

Suppose now that the Uv for v ∈ T r S2 are sufficiently deep. Since every
irreducible component of SpecRT,ord has dimension at least that of SpecΛ by
Lemma 5.7.7, it follows that each irreducible component dominates an irreducible
component of Spec Λ. It follows that the set of points SpecQ2 → SpecRT,ord which
lie over points of Λ given by the primes ℘λ is dense in SpecRT,ord. It remains to
show that each such point is in SpecTT,ord(U(l∞))m. By (5.7.4) and the choice
of U , it is enough to check that the corresponding Galois representations are au-
tomorphic. By solvable base change, it is enough to check this after restriction
to GL, where it follows from another application of (5.7.4) (and the observation
above that (R′

L/F,T ′)red is a quotient of TT ′,ord
{1} (U(l∞),O)m1). �

6. Ordinary modularity lifting theorems for GSp4: preliminaries

The goal of this section is — in part — to prove an ordinary modularity lifting
theorem for GSp4 for p ≥ 3 over totally real fields in which p splits completely.
Under suitable Taylor–Wiles hypotheses, this can be used to show that p-adic Ga-
lois representations coming from ordinary abelian surfaces give rise to quotients of
a certain p-adic Hecke algebra, but does not yet show that such classes are clas-
sical. The modularity lifting theorem we prove in this section is (in the language
of [CG18]) of l0 = 0 type rather than l0 > 0 type, and so is precisely amenable to
the usual Taylor–Wiles method. Under a stronger hypothesis (that ρ is residually
p-distinguished) our results are actually directly contained in [BCGP21] (although
that paper is generally concerned with the more subtle l0 = 1 situation), and ver-
sions of this theorem go back as far as [Pil12]. The methods we use here follow
along generally similar grounds, with some important technical improvements due
in several cases to Whitmore [Whi22].

In §6.1, we recall some general constructions and notation for GSp4-deformation
problems. In §6.2, we introduce the corresponding ordinary local deformation rings
and study their local properties. In §6.3, we carry out the Taylor–Wiles argument
(in part following [BCGP21] and [Whi22]). Finally, in §6.4, we explicitly analyze
the subgroups of GSp4(F3) which satisfy our running collection of “big–image”
conditions.

6.1. Notation and definitions. We now turn to modularity lifting theorems
for GSp4. Our arguments have relatively little direct overlap with those of our
earlier paper [BCGP21], although we will occasionally make references to it. In
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particular, in order to avoid confusing clashes of notation with our results for uni-
tary groups in Section 5, we continue to write F+ for a totally real field (whereas
totally real fields were denoted F in [BCGP21]).

Accordingly we let F+ denote a totally real field, and write Sp for the set of
places of F+ above p. We fix a continuous absolutely irreducible homomorphism
ρ : GF+ → GSp4(k) with similitude ε−1. When ρ is explicitly considered as a
symplectic representation (as in this section), we denote by ad ρ and ad0 ρ the
adjoint GF+ action with respect to GSp4 and Sp4 respectively (so dimad ρ = 11
and dimad0 ρ = 10). We warn the reader that there is some tension in this definition
with the notation of §5 where ad r denotes the adjoint action with respect to GLn;
we hope the precise meaning will always be clear from context.

Let S be a finite set of finite places of F+ containing Sp and all places at which
ρ is ramified. We write F+

S for the maximal subextension of F+/F+ which is
unramified outside S, and write GF+,S for Gal(F+

S /F
+). For each v ∈ S, we fix

Λv ∈ CNLO, and set Λ = ⊗̂v∈SΛv, where the completed tensor product is taken
over O. Then CNLΛ is a subcategory of CNLΛv for each v ∈ S, via the canonical
map Λv → Λ.

Definition 6.1.1. A lift, also called a lifting, of ρ|G
F

+
v

is a continuous homomor-

phism ρ : GF+
v
→ GSp4(A) to a CNLΛv -algebra A such that ρ mod mA = ρ|G

F
+
v

and ν ◦ ρ = ε−1.

We let D�
v denote the set-valued functor on CNLΛv that sends A to the set of

lifts of ρ|G
F

+
v

to A. This functor is representable, and we denote the representing

object by R�
v . We can identify D�

v (k[ǫ]) with the group of 1-cocycles Z1(Fv , ad
0 ρ)

by associating a cocycle φ to the lifting given by

ρ(σ) = (1 + ǫφ(σ))ρ(σ).

Note that two such liftings are ĜSp4(k[ǫ])-conjugate if and only if the images of the
corresponding 1-cocycles in H1(Fv, ad ρ) are equal.

Definition 6.1.2. A local deformation problem for ρ|G
F

+
v

is a subfunctor Dv of D�
v

satisfying the following:

• Dv is represented by a quotient Rv of R�
v .

• For all A ∈ CNLΛv , ρ ∈ Dv(A), and a ∈ ĜSp4(A), we have aρa−1 ∈ Dv(A).
Definition 6.1.3. A global deformation problem is a tuple

S = (ρ, S, {Λv}v∈S , {Dv}v∈S)
where:

• ρ, S, {Λv}v∈S are as above.
• For each v ∈ S, Dv is a local deformation problem for ρ|G

F
+
v

.

As in the local case, a lift (or lifting) of ρ is a continuous homomorphism ρ :
GF+,S → GSp4(A) to a CNLΛ-algebra A, such that ρ mod mA = ρ and ν ◦ρ = ε−1.
We say that two lifts ρ1, ρ2 : GF+,S → GSp4(A) are strictly equivalent if there is
an a ∈ ĜSp4(A) such that ρ2 = aρ1a

−1. A deformation of ρ is a strict equivalence
class of lifts of ρ.
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For a global deformation problem

S = (ρ, S, {Λv}v∈S , {Dv}v∈S)
we say that a lift ρ : GF+,S → GSp4(A) is of type S if ρ|G

F
+
v

∈ Dv(A) for each
v ∈ S. If ρ1 and ρ2 are strictly equivalent lifts of ρ, and ρ1 is of type S, then so
is ρ2. A deformation of type S is a strict equivalence class of lifts of type S, and
we denote by DS the set-valued functor that takes a CNLΛ-algebra A to the set of
lifts ρ : GF+ → GSp4(A) of type S.

Given a subset T ⊆ S, a T -framed lift of type S is a tuple (ρ, {γv}v∈T ), where ρ
is a lift of type S, and γv ∈ ĜSp4(A) for each v ∈ T . We say that two T -framed
lifts (ρ1, {γv}v∈T ) and (ρ2, {γ′v}v∈T ) to a CNLΛ-algebra A are strictly equivalent if
there is an a ∈ ĜSp4(A) such that ρ2 = aρ1a

−1, and γ′v = aγv for each v ∈ T . A
strict equivalence class of T -framed lifts of type S is called a T -framed deformation
of type S. We denote by DTS the set valued functor that sends a CNLΛ-algebra A
to the set of T -framed deformations to A of type S.

The functors DS , DTS are representable (as we are assuming that ρ is absolutely
irreducible), and we denote their representing objects by RS and RTS respectively.
Assume now that T is chosen so that Λv = O for all v ∈ S r T . Write Rv for
the representing object of Dv, and define Rloc

S,T = ⊗̂v∈TRv, with the completed
tensor product being taken over O. It is canonically a Λ-algebra, via the canonical
isomorphism ⊗̂v∈TΛv ∼= ⊗̂v∈SΛv. For each v ∈ T , the natural transformation
DefTS → Dv given by (ρ, {αv}v∈T ) 7→ α−1

v ρ|GFv
αv induces a morphism Rv → RTS

in CNLΛv . We thus have a morphism Rloc
S,T → RTS in CNLΛ.

If T is empty, then RS = RTS , and otherwise the natural map RS → RTS is
formally smooth of relative dimension 11#T − 1. Indeed DTS → DS is a torsor
under (

∏
v∈T ĜSp4)/Ĝm.

Definition 6.1.4. Let
T := ΛJx1, . . . , x11#T−1K

be the coordinate ring of (
∏
v∈T ĜSp4)/Ĝm over Λ.

The choice of a representative ρS : GF → GSp4(RS) for the universal type S
deformation determines a splitting of the torsor DTS → DS and a canonical isomor-
phism

RTS
∼= RS⊗̂ΛT . (6.1.5)

The following lemma and its proof are standard, but we include them in order
to reassure the reader that they remain valid for p = 2.

Lemma 6.1.6. Suppose that qv ≡ 1 mod p, and that ρ|G
F

+
v

is unramified, with

ρ(Frobv) being regular semi-simple with (ordered) eigenvalues αv,1, αv,2, α−1
v,2, α4 =

α−1
v,1. Let ρ : GF+

v
→ GSp4(A) be any lift of ρ.

Then there are unique continuous characters γi : GF+
v
→ A× for i = 1, 2, such

that ρ is GSp4(A)-conjugate to a lift of the form

γ1 ⊕ γ2 ⊕ γ−1
2 ε−1 ⊕ γ−1

1 ε−1,

where (γi mod mA)(Frobv) = αv,i for each i = 1, 2.

Proof. Let φ be a lifting of Frobv to GF+
v

. Then ρ(φ) is regular semi-simple, so is
contained in T (A) for a unique torus T , and we need to show that for each σ ∈ IF+

v
,
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we have ρ(σ) ∈ T (A). To do this we will prove by induction that for each n ≥ 1 we
have

(ρ mod mnA)(σ) ∈ T (A/mnA),
the case n = 1 being true by our hypotheses.

For the inductive step, we assume the result holds for n and deduce it for n+1;
replacing A by A/mn+1

A , we may furthermore assume that mn+1
A = 0. By the

inductive hypothesis (and the smoothness of T ) we can write ρ(σ) = tu where t ∈
T (A) and u ≡ 1 (mod mn). Since ρ(σ) = 1, we see that u and t necessarily commute
(as do ρ(φ) and t, as both are contained in T (A)).

Now, since ρ is tamely ramified, we have ρ(φ)ρ(σ)ρ(φ)−1 = ρ(σ)qv . Since qv ≡ 1
(mod p), and u ≡ 1 (mod mn), we see that uqv = u, and thus that ρ(φ)uρ(φ)−1 =
tqv−1u. Using again that u ≡ 1 (mod mn) and that ρ(φ) is regular semi-simple, it
follows that u = 1, as required. �

6.2. Ordinary deformation rings. In this section we study some ordinary de-
formation rings for GSp4. We assume that v is a place of F+ lying over p such
that F+

v = Qp. Write ΛGSp4,v = OJ(O×

F+
v
(p))2K, where O×

F+
v
(p) denotes the pro-p

completion of O×

F+
v

. There is a canonical character IF+
v
→ O×

F+
v
(p) given by Art−1

F+
v

,
and we define a pair of characters θi : IF+

v
→ ΛGSp4,v, i = 1, 2 by letting θi corre-

spond to the embedding O×

F+
v
(p)→ (O×

F+
v
(p))2 given by the ith copy. When p > 2,

ΛGSp4,v = OJx1, x2K is formally smooth, while when p = 2, SpecΛGSp4,v has 4
irreducible components but the generic fiber is regular.

Assume that ρ|G
F+v

is ordinary, and fix a p-stabilization (χ1, χ2) of ρ|G
F+v

, so
that (χ1, χ2) is an ordered pair of characters GF+

v
→ k×. Then for any A ∈ CNLO

there is an obvious bijection between homomorphisms ΛGSp4,v → A and ordered
pairs of characters (χ1, χ2) : IF+

v
→ A× lifting (χ1, χ2), given by multiplying the

characters (θ1, θ2) by the Teichmüller lifts of (χ1, χ2).
Similarly, write Λ̃GSp4,v = OJGal(F+,ab

v /F+
v )(p)2K, where Gal(F+,ab

v /F+
v )(p) is

the pro-p completion of Gal(F+,ab
v /F+

v ). Then we have a universal pair of characters
(χ̃1, χ̃2) : GF+

v
→ Λ̃GSp4,v lifting (χ1, χ2).

We now introduce the ordinary deformation ring we consider, following [Ger19,
§3]. Let F denote the flag variety for GSp4 over O, i.e. the variety whose S-points,
for any S/ SpecO, parameterize full flags

0 = Fil0 ⊂ Fil1 ⊂ · · · ⊂ Fil4 = O4
S

with Fili being locally free of rank i and locally a direct summand, with the further
property that (Fili)

⊥ = Fil4−i for each i (where ⊥ is with respect to our usual
symplectic form on O4

S).
Write R�

v for the ring denoted R�
v in Section 6.1 when Λv = Λ̃GSp4,v. One

shows as in the proof of [Ger19, Lem. 3.2] that there is a closed subscheme Gv
of F ×O SpecR�

v , such that for any O-algebra A, the A-points of Gv are exactly
the pairs (Fil•, R

�
v → A) consisting of a symplectic flag Fil• on A4 and an O-

algebra morphism R�
v → A, such that the pushforward of the universal lifting over

R�
v → A preserves Fil•, and for i = 1, 2, 3, 4 the action of GF+

v
on Fili /Fili−1 is

via respectively (the pushforwards to A of) the characters χ̃1, χ̃2, ε−1χ̃−1
2 , ε−1χ̃−1

1 .
We write

R△
v := im

(
R�
v → OGv (Gv)

)
,
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so that SpecR△
v is the scheme-theoretic image of the morphism Gv → SpecR�

v .
(Note that here we differ from [Ger19] by not passing to the p-torsion-free quotient.)
We denote by D△

v the corresponding deformation problem.
Exactly as in the proof of [Ger19, Lem. 3.3], it follows immediately from the

properness of F that if E′/E is a finite extension with ring of integers OE′ and
Λ̃GSp4,v → OE′ is a morphism of O-algebras, then the OE′ -points of Spf R△

v are
exactly those lifts ρ of ρ having the property that there is a symplectic flag

0 = Fil0 ⊂ Fil1 ⊂ · · · ⊂ Fil4 = O4
E′

as above such that for i = 1, 2, 3, 4 the action of GF+
v

on Fili /Fili−1 is via respec-
tively the characters χ̃1, χ̃2, ε−1χ̃−1

2 , ε−1χ̃−1
1 . Equivalently, these are the lifts ρ

which are ordinary with p-stabilization (χ̃1, χ̃2) in the sense of Definition 1.8.10.

Remark 6.2.1. As in Definition 1.8.10, we say that ρ is residually p-distinguished if
the 4 characters χ1, χ2, ε

−1χ−1
2 , ε−1χ−1

1 are pairwise distinct (if p 6= 2 this amounts
to χ1 6= χ2). In this case the filtration Fili in the definition of Gv is uniquely
determined by the Galois representation, and it follows that the map Gv → SpecR�

v

is a closed immersion. In [BCGP21, §7.3], we made this assumption and assumed
p > 2 and studied Gv under the name RB,cvv .

Let E′/E be a finite extension, and let x : SpecE′ → Gv[1/p] be a closed
point. Let ρx : GF+

v
→ GSp4(E

′) be the pushforward of the universal lift coming
from the composite SpecE′ → Gv[1/p] → SpecR�

v . Let ad0 ρx denote the adjoint
representation with respect to Sp4, and define a decreasing filtration Fili ad0 ρx
on ρx by

Fili ad0 ρx := {A ∈ ad0 ρx|AFilj ρx ⊆ Filj−i ρx∀j};
in particular, Fil0 ad0 ρx is the subspace of ad0 ρx preserving the flag Fil• ρx. We
have dimad0 ρx = 10, and dimFili ad0 ρx = 6, 4, 2, 1, 0, for i = 0, . . . , 4 respectively.

Lemma 6.2.2.

(1) If H2(GF+
v
,Fil0 ad0 ρx) = 0 then x is a regular point of Gv[1/p]; and x is

contained in a unique irreducible component of Gv[1/p], and this component
has dimension 16. We have

H2(GF+
v
,Fil0 ad0 ρx) = 0

if and only if

H0(GF+
v
,
(
ad0 ρx/Fil

1 ad0 ρx
)
(1)) = 0.

(2) The equivalent conditions of part (1) hold under any of the following cir-
cumstances:
(a) none of the specializations at x of the characters χ̃2

1ε, χ̃
2
2ε, χ̃1χ̃2ε,

χ̃1χ̃
−1
2 are equal to ε.

(b) ρx is pure and p-distinguished.
(c) ρx is pure and potentially crystalline.

(3) If ρx is p-distinguished and the equivalent conditions of part (1) hold (in
particular, if ρx is p-distinguished and pure) then the image of x in SpecR△

v

is a regular point which is contained in a unique irreducible component of
SpecR△

v , which has relative (over O) dimension 16.
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Proof. By a standard tangent-obstruction calculation exactly as in the proof of [Ger19,
Lem. 3.7] (see also [Til96, §5.1] for the case of general algebraic groups), the tangent
space to GΛGSp4,v [1/p] at x has dimension

16 + dimE′ H2(GF+
v
,Fil0 ad0 ρx), (6.2.3)

and there is an obstruction class in H2(GF+
v
,Fil0 ad0 ρx) whose vanishing implies

that x is a regular point of GΛGSp4,v [1/p].
For the remaining claim in (1), note that the space ad0 ρx is self-dual under

the trace pairing (A,B) → Tr(AB) (since we are in characteristic zero). If A ∈
Fil0 ad0 ρx and B ∈ Fil1 ad0 ρx then AB ∈ Fil1 ad0 ρx and so Tr(AB) = 0. It follows
that Fil1 ad0 ρx ⊂ (Fil0 ad0 ρx)

⊥. By considering the dimensions of these spaces (6
and 10−4 = 6 respectively), we deduce that this is an equality, and hence the claim
follows by Tate local duality.

For part (2a), note that Fil0 ad0 ρx has a filtration with graded pieces of rank 1,
and the characters through whichGF+

v
acts on these graded pieces are 1, 1, χ̃2

1ε, χ̃
2
2ε,

χ̃1χ̃2ε, χ̃1χ̃
−1
2 . Part 2c follows from part (2a) because a potentially crystalline pure

representation cannot contain two Jordan–Hölder factors differing by a cyclotomic
twist.

We now turn to part (2b), so that ρx is pure and p-distinguished, and (since we
have just established part 2c) we can furthermore assume that we are not potentially
crystalline. Assume for the sake of contradiction thatH0(GF+

v
,
(
ad0 ρx/Fil

1 ad0 ρx
)
(1)) 6=

0. We now argue as in the proof of [Ger19, Lem. 3.7(3)]. By our assumption, there is
some A ∈ ad0 ρx−Fil1 ad0 ρx such that for all σ ∈ GF+

v
, we have ρx(σ)Aρx(σ)−1 =

ε(σ)−1A mod Fil1 ad0 ρx; equivalently,

ε(σ)ρx(σ)A −Aρx(σ) ∈ Fil1 ad0 ρx. (6.2.4)

We can and do conjugate ρx so that it is contained in the usual upper triangular
Borel subgroup, so that each Filx,i is generated by e1, . . . , ei. Write

ρx =




χ̃x,1 ∗ ∗ ∗
0 χ̃x,2 ∗ ∗
0 0 χ̃x,3 ∗
0 0 0 χ̃x,4




(so χ̃x,3 = ε−1χ̃−1
x,2 and χ̃x,4 = ε−1χ̃−1

x,1). Let 1 ≤ s ≤ 4 be minimal with Aes /∈
Filx,s−1 (such an s exists by the hypothesis that A /∈ Fil1 ad0 ρx), and let r ≥ s
be the unique integer with Aes ∈ Filx,r−Filx,r−1. By (6.2.4) and the assumption
on s, we see that for all σ ∈ GF+

v
, we have

ρx(σ)(Aes) ≡ ε(σ)−1Aρx(σ)es ≡ (ε−1χ̃x,s)(σ)(Aes) (mod Filx,s−1).

Since r ≥ s this congruence in particular holds modulo Filx,r−1, whence χ̃x,r =
ε−1χ̃x,s, and consequently r > s; and furthermore we see that E · (Aes)+Filx,s−1 is
GF+

v
-stable. More precisely, we see that the 2-dimensional subquotient (E · (Aes)+

Filx,s)/Filx,s−1 of ρx is isomorphic to ε−1χ̃x,s ⊕ χ̃x,s.
It is immediate from the definition of purity that no twist of ε ⊕ 1 can be a

subrepresentation of ρx, so we must have s = 2 or s = 3. Since Fil• is symplec-
tic, the possibility (s, r) = (3, 4) is also ruled out (because we already saw that
(s, r) = (1, 2) is impossible), so we must have s = 2 and r = 3 or 4. However,
since we are pure and not potentially crystalline, we see in either case that we
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have χ̃x,1 = χ̃x,2, which contradicts our assumption that ρx is p-distinguished. So
H0(GF+

v
,
(
ad0 ρx/Fil

1 ad0 ρx
)
(1)) = 0 after all, as claimed.

Part (3) follows immediately as when ρx is p-distinguished, the map Gv →
SpecR△

v is an isomorphism in a neighborhood of x. �

In the rest of this section, we assume p > 2. In [BCGP21, Prop. 7.3.4], we
showed (in a somewhat hands-on manner) that if ρ is residually p-distinguished,
then SpecR△

v [1/p] is irreducible. This was used in the proof of our modularity
lifting theorem. We expect that the same holds in general, but we don’t prove this.
Instead we explain a softer way to proceed. We prove a series of Lemmas which
will be used in our modularity lifting theorems.

Lemma 6.2.5. Assume that (ρ ⊗ ε)|G
F

+
v

is finite flat. Then any ordinary pure

weight 2 crystalline lift lies on a unique irreducible component of SpecR△
v , which is

moreover independent of the lift. This component has relative dimension 16 over O.

Proof. We first show that a point ρ of SpecR△
v corresponding to an ordinary

pure weight 2 crystalline lift lies on a unique irreducible component (if ρ were
p-distinguished this was already part of Lemma 6.2.2 (3)). Consider the fiber in Gv
over ρ in SpecR△

v , or in other words consider the space of GF+
v

-stable symplectic
filtrations {Fili} on ρ on which GF+

v
acts on Fili /Fili−1 by χ1, χ2, ε

−1χ−1
2 , ε−1χ−1

1

for i = 1, 2, 3, 4. By assumption χ1, χ2 are unramified and ρ has two dimensional
inertia invariants, which hence must be Fil2. Then either GF+

v
has scalar action on

Fil2, in which case the fiber is the P1 of possible Fil1’s, or there is a unique line
on which GF+

v
acts through χ1,x, and the fiber is a point. In particular either way

this fiber is connected.
By Lemma 6.2.2 (2c) each point of this fiber is contained in a unique irreducible

component of Gv, and as the fiber is connected, the entire fiber is contained in this
component. It follows that the image of this component in SpecR△

v is the unique
irreducible component containing ρ.

Now we prove that all such ρ lie on the same irreducible component. Consider
the closed subscheme Gflatv ⊆ Gv whose points for any O-algebra A are pairs (Fil•, ρ)
where ρ⊗ ε is finite flat and Fil• is a filtration with Fil2 unramified. We claim that
the formal completions of Gflatv at k′-points for k′/k finite are formally smooth. By
a standard tangent-obstruction calculation as in Lemma 6.2.2 this amounts to the
vanishing of H2

flat(Fil
0 ad0 ρ) (cf. the proof of [Kis09, Prop. 2.4.4]).

We now consider R△,flat
v , the scheme-theoretic image of Gflatv in R△

v . It is irre-
ducible by the same argument as above, as the fiber over ρ is either a point or P1.
As every pure weight 2 crystalline point lies on this irreducible locus, they all lie
on the same unique irreducible component of R△

v .
Finally the dimension can be computed at any p-distinguished point using Lemma

6.2.2 �

We finally prove a lemma which will help with “Ihara avoidance”. Let Q ⊂ R△
v

be a minimal prime, corresponding to an irreducible component of SpecR△
v .

Lemma 6.2.6. Suppose that SpecR△
v /Q→ SpecΛGSp4,v is surjective. Then there

exists a minimal prime of R△
v /(p) which contains Q and no other minimal prime

of R△
v . Moreover R△

v /Q has relative dimension 16 over O.
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Proof. By the hypothesis we can take an Fq((t)) valued point x of SpecR△
v /Q so

that no ratio of the characters χ1,x, χ2,x, χ
−1
2,xε

−1, χ−1
1,xε

−1 is 1 or ε (even on inertia).
By the same argument as in Lemma 6.2.2 (2a) and (3) we have that the local ring
R△
v,x is regular. We now take any irreducible component of SpecR△

v /(p) containing
x. �

We expect that the hypothesis in Lemma 6.2.6 is always satisfied. Rather than
attempt a direct local proof of this fact we will check it by global means in the
application in the next section.

6.3. An ordinary modularity lifting theorem for GSp4, p > 2. We explain
how to prove a modularity lifting theorem for a p-adic Hida family of Hilbert–Siegel
modular forms over a totally real field F+ in which the odd prime p splits com-
pletely; this is a slight adaptation of the arguments of our earlier paper [BCGP21]
and their improvements by Whitmore [Whi22]. Indeed, under a residually p-
distinguished hypothesis, our theorem is a very special case of the theorems proved
in those papers. (The entire difficulty in [BCGP21] was about proving modularity
lifting theorems in the case l0 > 0, but the l0 = 0 case that we needed here is com-
pletely routine.) It would of course be more natural not to include the assumption
that p splits completely in F+, but as we do not know a reference for the relevant
Hida families beyond this case, we leave such results for a future paper.

We let F+ be a totally real field in which p > 2 splits completely and let π be
an ordinary cuspidal automorphic representation for GSp4 /F

+ of central character
| · |2 and weight ((kv , lv; 2))v|∞. Using our fixed isomorphism ı : C ∼= Qp we identify
the places v | ∞ and v | p without further comment. Recall from Theorem 1.8.17
that there is a Galois representation ρπ,p : GF+ → GSp4(Qp) associated to π. We
let ρ = ρπ,p. We fix R, a finite set of finite, prime to p places of F+ containing all
the prime to p places where π is ramified.

We make the following assumptions:

Hypothesis 6.3.1.

(1) ρ is GSp4-reasonable, in the sense of [Whi22, Defn. 3.19]. In particular, ρ
is absolutely irreducible.

(2) ρ is tidy, in the sense of [BCGP21, Defn. 7.5.11].
(3) For each v|p, ρ|G

F
+
v

is ordinary of weight 2, with a fixed p-stabilization

(αv, βv) which is compatible with a fixed choice of ordinary p-stabilization
of πv.

(4) For each v ∈ Sp, the representation ρπ,p|G
F

+
v

lies on a unique irreducible

component of R△
v (where R△

v is defined via the p-stabilization (αv, βv), and
ρπ,p|G

F
+
v

is a point of R△
v via the chosen p-stabilization on πv).

(5) For each place v ∈ R we have:
• ρ|G

F
+
v

is trivial.
• qv ≡ 1 (mod p), and if p = 3, then qv ≡ 1 (mod 9).
• πIw(v)

v 6= 0.

Note that we do not assume that π is ordinary of weight 2 (it will be in the
main application but we also allow π to have regular weight in order to prove
Lemma 10.4.1).
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Remark 6.3.2. The main result of this section will be a “minimal at p” modularity
lifting theorem for ordinary p-adic modular forms. In particular hypothesis (5) will
be used for Taylor’s Ihara avoidance argument, in order to have no minimality
hypotheses away from p. In the application, F+/Q will be a solvable extension
chosen to ensure this, and the main modularity lifting theorem for Q will be deduced
using base change.

We also note that the theorem is only “minimal at p” due to our failure to
completely analyze the deformation rings R△

v in the previous section. However
we emphasize that when ρ|G

F
+
v

is residually p-distinguished then SpecR△
v [1/p] is

irreducible and hypothesis (4) is automatic.

Remark 6.3.3. The most important applications of the result of this section are
in the case p = 3 and ρ(GF+) ⊆ GSp4(F3). In this case the condition that ρ is
GSp4-reasonable can be made completely explicit, see §6.4.

By the assumption that ρ(GF+) is tidy, we can choose an unramified place w0

of F+ of residue characteristic greater than 5, with qw0 6≡ 1 (mod p), and such that
no two eigenvalues of ρ(Frobw0) have ratio qw0 . We set S = Sp ∪R ∪ {w0}.

By the above hypotheses, we are in the situation of [BCGP21, Hyp. 7.8.1], except
that we have not assumed that we are residually p-distinguished. In the notation
of [BCGP21, §7.8] and [Whi22, §7], we take I = ∅, so that by definition the ring ΛI
is equal to ΛGSp4,F

+ := ⊗̂v|pΛGSp4,v. The only change that we make to the setup
of [BCGP21, Whi22] is that for v|p we use the deformation problem D△

v , taking
χ1, χ2 to be unramified with χ1(Frobv) = αp, χ2(Frobv) = βp. Note that in the
residually p-distinguished case that αp 6= βp, this agrees with the deformation

problem denoted DB,αp
v in [BCGP21, Whi22].

We can then carry out all of the constructions made in [BCGP21, §7.8] and [Whi22,
§7], which for the most part make no use of the hypothesis that αp 6= βp: the proof
of [Whi22, Thm. 7.8] generalizing [BCGP21, Thm. 7.9.4] only uses the values of D△

v

on OE′ for E′/E a finite extension (recall that in the non residually p-distinguished
case we don’t necessarily understand the values of D△

v on general complete Noe-
therian local rings due to its definition as a scheme-theoretic image). We now recall
the key points, allowing ourselves to simplify the notation slightly in comparison
to that of [BCGP21], by dropping the symbols “I” and “c” appearing there.

In particular, we have the global deformation problem

S1 = (ρ, S, {ΛGSp4,v}v∈Sp ∪ {O}v∈SrSp , {D△
v }v∈Sp ∪ {D1

v}v∈R ∪ {D�

w0
}),

where D1
v is defined in [BCGP21, §7.4.5] (it corresponds to unipotently ramified

liftings). There is a surjection of ΛGSp4,F
+ -algebras RS1 → TS1 , where TS1 is

the Hida Hecke algebra considered in [BCGP21, §7.9]: it acts faithfully on a finite
free ΛGSp4,F

+ -module M1, which is obtained from the ordinary part of the coherent
H0 of Hilbert–Siegel Shimura varieties.

By Hypothesis 6.3.1 (4), for each v|p the representation ρπ,p|G
F

+
v

lies on a unique

irreducible component of SpecR△
v , which we denote SpecR△,π

v . We let D△,π
v be

the deformation problem determined by this irreducible component, and write

S1,π = (ρ, S, {ΛGSp4,v}v∈Sp ∪ {O}v∈SrSp , {D△,π
v }v∈Sp ∪ {D1

v}v∈R ∪ {D�

w0
}).

We let TS1,π denote RS1,π ⊗RS1
TS1 . These should be thought of as “p-minimal”

deformation rings and Hecke algebras, see also Remark 6.3.2.
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Theorem 6.3.4. Assume that we are in the above situation, so that in particular
Hypothesis 6.3.1 holds. Then RS1,π is a finite ΛGSp4,F

+-algebra, and the morphism
RS1,π → TS1,π has nilpotent kernel, i.e. (RS1,π)

red ∼−→ TS1,π .

Proof. We first verify that for v | p, the irreducible components R△,π
v satisfy the

hypothesis of Lemma 6.2.6. For this consider a minimal prime Qπ ⊂ TS1 contained
in the prime ideal corresponding to π and the chosen p-stabilizations, and consider
the composition

R△
v → RS1 → TS1 → TS1/Qπ.

By Hypothesis 6.3.1 (4), the composite must factor through the component R△,π
v .

We now claim that the composite

SpecTS1/Qπ → SpecR△,π
v → SpecΛGSp4,v

is surjective, and hence the second map is surjective, which is what we are trying
to prove. To see this note that the composite is also

SpecTS1/Qπ → SpecΛGSp4,F
+ → SpecΛGSp4,v.

Here the second map is clearly surjective, while the first map is surjective because
SpecTS1/Qπ is finite and torsion free as a ΛGSp4,F

+ -module, since TS1 acts faith-
fully on a finite free ΛGSp4,F

+ -module.
Now we proceed with the proof of the theorem. It is enough to prove that the

support of M1 in SpecRS1 contains SpecRS1,π . As in [Whi22, §7.3], we have a
power series ring S∞ over ΛGSp4,F

+ , and we write a∞ for the augmentation ideal
ker(S∞ → ΛGSp4,F

+). We also have a power series ring R1
∞ over Rloc

S1,S
. Set

R∞,π := R1
∞ ⊗Rloc

S1,S
Rloc

S1,π,S .

The patching argument of [Whi22, Prop. 7.11] provides us in particular with:
• ΛGSp4,F

+ -algebra morphisms S∞ → R1
∞ → RS1 ;

• a R1
∞ module M1

∞ which is free as an S∞ module (and hence has depth as
an R1

∞ equal to the dimension of S∞).
• an isomorphism M1

∞/a∞
∼=M1;

• a commutative diagram of S∞-algebras

R1
∞

��

// EndS∞(M1
∞)

−⊗S∞ΛGSp4,F+

��

RS1
// EndΛGSp4,F+ (M

1)

It thus suffices to prove that the support of M1
∞ contains every irreducible com-

ponent of R∞,π. Exactly as in the proof of Theorem 5.7.14, we know that the
support of M1

∞/̟ contains SpecR∞,π/̟. (This is Taylor’s “Ihara avoidance” ar-
gument, using the data Mχ

∞ etc. from [Whi22, Prop. 7.11] which we have not
recalled here.) Every irreducible component of the support of M∞ has dimension
equal to that of S∞, and as every irreducible component of SpecR∞,π has dimen-
sion equal to that of S∞, M∞ will be supported on an irreducible component of
SpecR∞,π as soon as it is supported on some point which is only contained in that
irreducible component.

It thus suffices to show that for each irreducible component of SpecR∞,π there
is a point of SpecR∞,π/p contained in it and in no other component. Since R∞,π
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is a power series ring over a completed tensor product of local deformation rings, it
suffices to check the same property for each factor, i.e. to check that the same holds
for R△,π

v (for v ∈ Sp), SpecR1
v (for v ∈ R), and SpecR�

w0
. The first of these follows

from Lemma 6.2.6 (noting that we have verified the hypothesis above), the second
from [BCGP21, Prop. 7.4.7], and the last from our choice of w0, which guarantees
that R�

w0
is formally smooth over O. �

6.4. Subgroups of GSp4(F3). In this section, we shall identify the precise sub-
groups of GSp4(F3) we are allowing for our modularity lifting theorems. We first
identify the regular semi-simple elements in GSp4(F3). We have:

Lemma 6.4.1. There are three conjugacy classes of elements g ∈ GSp4(F3) such
that ν(g) = 1 and g is regular semi-simple, namely:

(1) The unique conjugacy class of elements of order 5,
(2) The unique conjugacy class of elements of order 10,
(3) The unique conjugacy class of elements of order 8 which lie in Sp4(F3).

There are five conjugacy classes of elements g ∈ GSp4(F3) such that ν(g) = −1
and g is regular semi-simple, namely:

(1) Both conjugacy classes of elements of order 20,
(2) Three of the five conjugacy classes of elements of order 8, namely those

whose images in PSp4(F3) lie in the conjugacy classes 4D or 8A but not 4C
in the notation of Lemma 9.1.3.

We now turn to reasonableness [Whi22, Defn. 3.19]. Although this definition
does not a priori depend only on the image of ρ, it shall turn out that that under
our running assumptions this will be true.

Lemma 6.4.2. Suppose that A/Q is an abelian surface, and that A has good re-
duction at some p > 2. Then the image of ρA,p|GQ(ζp)

coincides with the image
of ρA,p|GQ(ζpn )

for all n ≥ 1.

Proof. Let K/Qp be the fixed field of the kernel of ρA,p|GQp
, which certainly con-

tains Qp(ζp). Since Gal(Qp(ζpn)/Qp(ζp)) is cyclic, the lemma holds unless there
exists an inclusion Qp(ζp2 ) ⊆ K. Assume such an inclusion exists. It follows that
the root discriminant δK is divisible by the root discriminant of Q(ζp2), which
is p(2p

2−3p)/p(p−1) = p(2p−3)/(p−1). The assumption that A has good reduction
implies that A[p]/Zp is a finite flat group scheme, which by [Fon85, 2.1 Thm. 1]
implies that the root discriminant of K satisfies

vp(δK) < 1 +
1

p− 1
.

Since p ≥ 3, this contradicts our lower bound:

vp(δK) ≥ vp(δQ(ζp2 )
) = 1 +

1

p− 1
+
p− 3

p− 1
. �

We deduce:

Lemma 6.4.3. Let A/Q be an abelian surface with a prime to 3 polarization and
good reduction at 3, and let

ρ = ρA,3 : GQ → GSp4(F3)

denote the corresponding mod 3 representation. Then the following hypotheses:
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Γ′ ⊂ GSp4(F3) and Γ = Γ′ ∩ Sp4(F3) Conditions

LMFDB label small group labels for Γ′, Γ (1) (2) (3) (4)

3.1620.1 <64,258> <32,44> X

3.1620.2 <64,258> <32,50> ✗

3.1620.5 <64,152> <32,44> X

3.1620.10 <64,152> <32,8> X

3.1296.1 <80,29> <40,3> X

3.810.1 <128,137> <64,137> ✗

3.810.2 <128,2023> <64,137> X

3.810.5 <128,137> <64,37> ✗

3.810.6 <128,142> <64,37> X

3.540.1 <192,1485> <96,190> X

3.540.2 <192,1483> <96,191> ✗

3.540.3 <192,1485> <96,202> ✗

3.540.5 <192,1018> <96,202> ✗

3.540.7 <192,965> <96,191> ✗

3.405.1 <256,6671> <128,937> X

3.270.1 <384,18045> <192,989> X

3.216.1 <480,948> <240,90> X

3.216.2 <480,947> <240,89> ✗

3.162.1 <640,21454> <320,1581> ✗

3.135.1 <768,1086054> <384,618> X

3.135.2 <768,1086054> <384,18130> X

3.45.1 2304 1152 X

3.36.1 2880 1440 ✗

3.27.1 3840 1920 X

1.1.1 103680 51840 X

Table 6.4.4. Conjugacy classes of subgroups Γ′ ⊂ GSp4(F3)
with ν(Γ′) 6= 1 and Γ = Γ′ ∩ Sp4(F3) absolutely irreducible.
LMFDB labels determine the conjugacy class of Γ′, the small group
labels [BEO01] determine Γ, Γ′ up to abstract isomorphism.

(1) ρ is GSp4-reasonable in the sense of [Whi22, Defn. 3.19],
(2) ρ is tidy in the sense of [BCGP21, Defn. 7.5.11],
(3) ρ(GQ(ζ3)) contains a regular semi-simple element,
(4) ρ(GQ)r ρ(GQ(ζ3)) contains a regular semi-simple element,

are satisfied precisely if Γ′ = ρ(GQ) in Table 6.4.4 has a tick, where otherwise the
cross indicates the corresponding obstruction to condition (1), (2), (3), or (4). In
particular, these conditions are all satisfied if ρ(GQ) = GSp4(F3).

Proof. Note that if Γ′ = ρ(GQ), and Γ = ρ(GQ(ζ3)), then Γ = Γ′ ∩GSp4(F3). Fur-
thermore, reasonableness (which a priori depends on the image of ρ|G(Q(ζ3n )) for
all n) only depends on the image of ρ|G(Q(ζ3)) by Lemma 6.4.2. As noted in [Whi22,
§4.3], the spanning condition of reasonableness is satisfied for all of these subgroups.
We have listed the abstract isomorphism types of Γ′ and Γ according to the small
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groups database [BEO01] when they are of small order. The LMFDB subgroup
labels [LMF24] (which for proper subgroups are of the form 3.i.n where i =
[GSp4(F3) : Γ

′]) determine Γ′ up to conjugacy in GSp4(F3). The groups of larger or-
der are described more explicitly in [BCGP21, Lemma 7.5.21]. The abstract isomor-
phism type of Γ′ is already enough to determine Γ′ up to conjugation in GSp4(F3)
(under the assumption that Γ = Γ′ ∩ Sp4(F3) acts absolutely irreducibly) except
for two pairs with |Γ′| = 64, one pair with |Γ′| = 128, and the pair of groups
with |Γ′| = 768, and in all such cases they can be distinguished by the abstract
isomorphism type of Γ = Γ′ ∩ Sp4(F3). �

Remark 6.4.5 (Sp4(F3) is not GL4-adequate). There is a natural inclusion

ρ : Sp4(F3) →֒ GL4(F3). (6.4.6)

It turns out that the image G of ρ is not adequate (in the sense of [Tho17, Defn.
2.20]), which is the reason why, when p = 3, we need to use GSp4 modularity lifting
theorems rather than U(4) automorphy lifting theorems (in contrast to our treat-
ment of the case p = 2 in Section 5). The failure of adequacy can be seen directly
as follows. The group G ≃ Sp4(F3) has exactly two irreducible representations V ,
V σ of dimension 4 over C. The representations are defined over the ring Z[ζ3] and
are conjugate under the action of Gal(Q(ζ3)/Q) [CCN+85]. The mod π = (1− ζ3)
reduction of this representation is ρ. The corresponding mod π2 = (3) reduction:

ρ : G→ SL4(Z[ζ]/3) = SL4(F3[ǫ]/ǫ
2)

gives a non-trivial deformation of ρ and a non-zero class in H1(G, sl4) ⊂ H1(G, gl4).
The deformation ρ is not, however, valued in Sp4(F3[ǫ]/ǫ

2); this reflects the fact
that V is not self-dual in characteristic zero; we have V ∨ ≃ V σ. In particular,
identifying gl4 with Hom(ρ, ρ) ≃ ρ ⊗ ρ ≃ Sym2(ρ) ⊕ ∧2(ρ), this cohomology class
lives in H1(G,∧2ρ). In contrast, for ρ to be adequate as a symplectic representa-
tion, it suffices that H1(G, sp4) = 0 where (in this example) sp4 may be identified
with Sym2(ρ).

This example is similar to the failure of the image of the map

ρ : SL2(F5) →֒ GL2(F5) (6.4.7)

to be adequate. This failure of adequacy for (6.4.7) does not cause an issue
in [Wil95]; one exploits the fact that the fixed field of the kernel of the adjoint
representation of ρE,5 for an elliptic curve E/Q does not contain ζ5 (see the proof
of [Wil95, Prop 1.11]). On the other hand, for an abelian surface A, the fixed of the
kernel of the adjoint representation of ρA,3 always contains ζ3, so there is no way to
avoid this cohomological obstruction. Hence this situation is more analogous to the
problem of proving modularity lifting for elliptic curves over Q(

√
5) using 5-adic

modularity lifting theorems; see the introduction to [KT17a] for an exposition of
this case, and an explanation of why there are classes in the dual Selmer group
(so-called “Lie classes”) that cannot be killed by Taylor–Wiles primes.

7. Multiplicity one theorems

Our classicality theorems in low weight (in particular Theorem 4.12.4) require
as input a multiplicity one theorem in characteristic zero. The main goal of this
section is to prove such a theorem. Note that multiplicity one really consists of
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two separate statements — firstly that the multiplicity is at least one (a p-adic
modularity statement), and secondly that the multiplicity is at most one.

One approach to proving multiplicity one (following Diamond [Dia97]) would
be to prove an R = T theorem for the corresponding ordinary Hida family and
then, assuming the local deformation ring at p is formally smooth, deduce that
the corresponding module M of modular forms is free, and moreover free of rank
one by specialization at classical points. Such an argument would work if we made
the additional hypotheses that p > 2 and that ρ was p-distinguished (as is done
in [BCGP21]). Since we are not making such assumptions, a further argument
is required. The first point to note is that we are working in characteristic zero
and hence we only need prove that M is free (and non-zero) after localizing at a
height one prime q corresponding to our characteristic zero representation. To show
that M is non-zero when p = 2 we are able to appeal to the R = T theorem for
unitary groups that we proved in Section 5, while for p > 2 we use the R = T the-
orems for GSp4 proved in Section 6.3. In either case, Diamond’s argument applies
(at least in principle) providing that the formal completion of the local deformation
ring at q is regular, something that is ultimately true under our hypotheses.

More precisely, what is ultimately required for our arguments is the following.
First, we need an Rred[1/p] = T[1/p] theorem in our higher Hida theory (not yet
classical) situation. (In truth, when p > 2, we get away with a weaker version of
such a theorem in a neighbourhood of the prime q, at the cost of some further
local complications already considered in §6.) This proves that Mq is non-zero.
Second, we want to control the relative tangent space of R at the prime q. This
is closely related to establishing the vanishing of the adjoint Bloch-Selmer group
(in characteristic zero) of our characteristic zero representation. Theorems of this
kind were proved by Newton and Thorne [NT23] in some generality for Galois
representations associated to automorphic representations of GLn of unitary type,
and we follow their arguments closely. In fact our situation is for the most part
simpler than theirs, since as we are assuming that ρ is absolutely irreducible we do
not have to use pseudorepresentations. Finally, we need enough local properties of
the local deformation ring at p in characteristic zero at q, and this is what ultimately
requires the p-distinguished hypothesis in characteristic zero.

A summary of this section is as follows. In §7.1, we adapt the Galois-theoretic
arguments of Newton–Thorne [NT23] to our setting. In §7.2 we set up the basic
patching formalism required for our argument, and in §7.4, we show how this can
be applied in the setting of GSp4 over Q, by patching modules coming from higher
Hida theory, as recalled in §7.3. Note that there is quite a lot of overlap between the
arguments of §7.4 and of similar ones in [BCGP21, §7.8, 7.9] — the difference being
that the latter worked under a more restrictive hypothesis on ρ but also proved
strong integral statements. Finally, in §7.5, we prove the desired multiplicity one
theorem. Note that our arguments certainly require understanding the multiplic-
ities of certain automorphic representations in cohomology, which ultimately uses
Arthur’s classification of discrete automorphic representations of GSp4.

7.1. Taylor–Wiles primes. Let H be a compact subgroup of GSp4(O). After
replacing E by a finite extension, we can assume that for each element h ∈ H , the
characteristic polynomial of h is already split over E. We will assume this without
comment from now on. We write H for the image of H in GSp4(k). Throughout
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this section, we write ad, ad0 for the Lie algebras associated to GSp4 and Sp4
over O.

Definition 7.1.1. A compact subgroup H of GSp4(O) is integrally enormous if
it acts absolutely irreducibly on E4, and if for all simple E[H ]-submodules W ⊂
E ⊗ ad0, there exists an element h ∈ H such that

• 1 is an eigenvalue for the action of h on W , and
• the image h of h in GSp4(k) is regular semi-simple (i.e. has 4 distinct

eigenvalues).

Lemma 7.1.2 (Examples of integrally enormous representations, I).
(1) If H contains a regular semi-simple element, and the Zariski closure of H

contains Sp4, then H is integrally enormous.
(2) Suppose that the action of H ⊂ Sp4(O) is absolutely irreducible but becomes

reducible after restriction to an index 2 subgroup G. Suppose that (H rG)
contains a regular semi-simple element. Suppose that the Zariski closure
of G is SL2× SL2. Then H is integrally enormous.

Proof. We first consider case (1). Since Sp4 acts irreducibly on both its standard
representation and on ad0, H acts irreducibly on both E4 and E ⊗ ad0. (Indeed
if H preserves a subspace, we obtain a partial flag which is stabilized by the Zariski
closure of H .) Furthermore every element h ∈ GSp4(O) has 1 as an eigenvalue
on E ⊗ ad0; so if h ∈ H is any element whose reduction h is regular semi-simple,
then h satisfies the conditions of Definition 7.1.1.

We now consider case (2). Our argument is essentially a characteristic zero
version of the proof of [BCGP21, Lemma 7.5.17] (though note that the roles of G
and H are reversed). If h ∈ (H r G) ∩ Sp4, then the eigenvalues of h are of the
form (α, α−1,−α,−α−1), and by assumption we may assume that the image of h
in Sp4(k) lands in (H rG) and is regular semi-simple — the latter condition being
equivalent to the condition that α4 6= 1. Now, following the proof of [BCGP21,
Lemma 7.5.17], the representation E ⊗ ad0 decomposes over the algebraic closure
of E into two irreducible representations of dimension 6 and 4 on which h has
eigenvalues (1,−1, α2,−α2, α−2,−α−2) and (−1, 1, α2, α−2) respectively, both of
which contain 1 as an eigenvalue. �

We now let F+ be a totally real number field in which p splits completely, and
we fix a continuous representation ρ : GF+ → GSp4(O) satisfying the following
hypothesis.

Hypothesis 7.1.3. Assume that:
(1) ρ is unramified at all but finitely many places.
(2) ν ◦ ρ = ε−1.
(3) ρ : GF+ → GSp4(k) is absolutely irreducible.
(4) ρ(GF+(ζp∞)) is integrally enormous.
(5) ρ is pure.
(6) for all v ∈ Sp, ρ|G

F
+
v

is ordinary, semistable of weight 2, pure, and p-
distinguished. We choose a p-stabilization (αp, βp) of ρ|G

F
+
v

(and thus of

ρ|G
F

+
v

, so that by definition ρ|G
F

+
v

corresponds to a point of SpecR△
p ).

(7) If p = 2 then ρ(GF+(i)) = ρ(GF+).
(8) If p > 2 then ρ(GF+)r Sp4(Fp) contains a regular semi-simple element.
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We will use the following result to verify condition (4) in Hypothesis 7.1.3.

Corollary 7.1.4 (Examples of integrally enormous representations, II). Suppose
that ρ : GF+ → GSp4(O) satisfies either of the following two sets of conditions:

(A1) the Zariski closure of ρ(GF+) contains Sp4, and
(A2) ρ(GF+(ζp)) contains a regular semi-simple element.

Or alternatively:

(B1) ρ is induced from a quadratic extension K/F+ disjoint from the composi-
tum F∞ of F+(ζp∞) with the fixed field of the similitude character. The
Zariski closure of ρ(GF+) contains SL2× SL2, and

(B2) ρ(GF∞)r ρ(GK.F∞) contains a regular semi-simple element.

Then ρ(GF+(ζp∞ )) is integrally enormous.

Proof. We assume the first set of conditions. Since the regular semi-simple el-
ements have order prime to p, and since F+(ζp∞)/F+(ζp) is a pro-p extension,
ρ(GF+(ζp∞ )) contains a regular semi-simple element. Since the Zariski closure of
ρ(GF+) contains Sp4 by assumption, so does the Zariski closure of ρ(GF+(ζp∞ ))

(note that taking the derived subgroup is compatible with taking the Zariski clo-
sure, by [Bor91, 2.1(e)]). The result follows from Lemma 7.1.2(1).

Now we assume the second set of conditions. The property of being integrally
enormous is inherited from subgroups so it suffices to show that H := ρ(GF∞) is
integrally enormous. By construction H ⊂ Sp4(O) is absolutely irreducible but
becomes reducible after restriction to G = ρ(GK.F∞). Moreover, as in the first
case, we deduce that the Zariski closure of H contains SL2× SL2. Hence the result
follows from Lemma 7.1.2(2). �

We now use the notation for deformation rings that was introduced in Section 6.1.
Let S be a finite set of places of F+ containing Sp and the places where ρ is ramified.
We define a global deformation problem S by

S = (ρ, S, {Λv}v∈Sp ∪ {O}v∈SrSp , {D△
v }v∈Sp ∪ {D�

v }v∈SrSp), (7.1.5)

where Λv = ΛGSp4,v and D△
v is as in Section 6.2. As in Section 6.1, we write

ΛGSp4,F
+ = ⊗̂v∈SpΛv. Given a nonempty subset T ⊆ S, which we assume con-

tains Sp, we fix an extension of ρ to a T -framed lifting (ρ, {γv}v∈T ) of ρ (i.e. fix
choices of γv ∈ ĜSp4(O) for each v ∈ T ). Write q (resp. qS,T ) for the kernel of the
homomorphism RS → O (resp. RTS → O) corresponding to ρ, and write qlocT for the
kernel of the composite Rloc

S,T → RTS → O.
Write W = ad ρ, WE = W ⊗O E, WE/O = WE/W , and for each m ≥ 1 write

Wm = W ⊗O O/̟m; and we similarly write W 0 = ad0 ρ, W 0
E/O = W 0 ⊗O E/O,

W 0
m =W 0 ⊗O O/̟m. We write

Hi(F+
S /F

+,W )′ := im

(
Hi(F+

S /F
+,W 0)→ Hi(F+

S /F
+,W )

)
,

and similarly we write Hi(F+
S /F

+,WE)
′ and so on. For any place v of F+ we also

have cohomology groups Hi(F+
v ,W )′ etc. defined in the analogous way. We write

hi(F+
S ,Wm)′ for the length of the finite O-module Hi(F+

S ,Wm)′, and similarly for
hi(F+

v ,Wm)′.
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Remark 7.1.6. Write z for the centre of ad. Since ad0 and ad /z are isogenous, the
quantities hi(F+

S ,Wm)′ − hi(F+
S ,W

0
m) are bounded independently of m (and sim-

ilarly for hi(Fv,Wm)′ − hi(Fv ,W 0
m), and for the various Selmer groups introduced

below).

We define Selmer groups H1
S,T (F

+,Wm) by

H1
S,T (F

+,Wm) := ker

(
Hi(F+

S /F
+,Wm)′ →

∏

v∈T

Hi(F+
v ,Wm)′

)
.

We write h1S,T (F
+,Wm) for the length of H1

S,T (F
+,Wm). In the same way we

define

H1
S,T (F

+,W ) := ker

(
Hi(F+

S /F
+,W )′ →

∏

v∈T

Hi(F+
v ,W )′

)
,

H1
S,T (F

+,WE) := ker

(
Hi(F+

S /F
+,WE)

′ →
∏

v∈T

Hi(F+
v ,WE)

′

)
,

H1
S,T (F

+,WE/O) := ker

(
Hi(F+

S /F
+,WE/O)

′ →
∏

v∈T

Hi(F+
v ,WE/O)

′

)
.

Note that if we take direct limits via the injections Wm
∼= ̟Wm+1 ⊂ Wm+1 we

obtain
H1

S,T (F
+,WE/O) = lim−→

m

H1
S,T (F

+,Wm),

while the Mittag-Leffler property means that if we take inverse limits with respect
to the projection maps Wm+1 →Wm we have

H1
S,T (F

+,W ) = lim←−
m

H1
S,T (F

+,Wm)

and thus

H1
S,T (F

+,WE) =

(
lim←−
m

H1
S,T (F

+,Wm)

)
⊗O E.

Lemma 7.1.7. Assume that Sp ⊆ T . For each m ≥ 1, the length of the O/̟m-
module

qS,T/(q
2
S,T , q

loc
T · RTS , ̟m) (7.1.8)

is
h1S,T (F

+,Wm) +
∑

v∈T

h0(GF+
v
,Wm)− h0(F+

S ,Wm).

Proof. The length of (7.1.8) is equal to the length of its O/̟m-dual, which equals

HomO(qS,T/(q
2
S,T , q

loc
T · RTS ),O/̟m),

and elements of this latter group correspond to strict equivalence classes of T -framed
liftings (ρ′, {γ′v}v∈T ) of type S of ρ to the ring O ⊕ ǫO/̟m, which furthermore
satisfy:

(1) ρ′ (mod ǫ) is strictly equivalent to (ρ, {γv}v∈T ), and
(2) for each v ∈ T , (γ′v)

−1(ρ′|G
F

+
v

)γ′v = γ−1
v (ρ|G

F
+
v

)γv.
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(Recall that since we have assumed that Sp ⊆ T , we are not imposing any
conditions at the places v ∈ SrT .) Suppose that [φ] ∈ H1

S,T (F
+,Wm), and let φ be

a lift of [φ] to Z1(F+
S ,Wm). By definition, for each v ∈ T we can write φ|G

F
+
v

= dψv

for some ψv ∈ Z0(F+
v ,Wm) = Wm. Then ((1 + ǫφ)ρ, {(1 − ǫψv)γv}v∈T ) defines a

T -framed lifting of ρ, and we claim that the strict equivalence classes satisfying the
two conditions above are exactly those containing ((1+ǫφ)ρ, {(1+ǫ(av−ψv))γv}v∈T )
for some [φ] ∈ H1

S,T (F
+,Wm) and av ∈ H0(GF+

v
,Wm). (Implicit in the claim is

that this set of strict equivalence classes does not depend on the choices of liftings φ
and elements ψv.) Given this claim, the lemma follows immediately (because the
only strict equivalences between such T -framed liftings are given by replacing all
the av with av + a for some a ∈ H0(F+

S ,Wm)).
To establish the claim, we firstly check that ((1 + ǫφ)ρ, {(1 − ǫψv)γv}v∈T ) is a

lift of the required form. Condition (1) is obvious, while (2) is equivalent to asking
that φ|G

F
+
v

(g) = ψv − gψv for all v ∈ T , g ∈ GF+
v

, which is true by the choice of
the ψv.

Conversely, if (ρ′, {γ′v}v∈T ) satisfies (1), then after replacing ρ′ by a strictly
equivalent representation, we can and do assume that (ρ′, {γ′v}v∈T ) (mod ǫ) =
(ρ, {γv}v∈T ). We may write ρ′ = (1 + ǫφ)ρ for some φ ∈ Z1(F+

S ,Wm)′, and
write γ′v = (1 + ǫav)γv with av ∈ Wm. Then (2) is equivalent to asking that for
each v ∈ T and we have φ|G

F
+
v

= −dav. Thus we require that [φ] ∈ H1
S,T (F

+,Wm),

and given this, the possible av differ by elements of H0(GF+
v
,Wm), as required. �

We define dual Selmer groups as follows. We let W 0∗ be the O-module dual
of W 0, so that W 0∗

m := W 0∗/̟m is the O/̟m-module dual of Wm (and simi-
larly W 0∗

E/O :=W 0∗ ⊗O E/O ≃ Hom(W 0, E/O)). Then we set

H1
S⊥,T (F

+,W 0∗
m (1)) := ker

(
Hi(F+

S /F
+,W 0∗

m (1))→
∏

v∈SrT

Hi(F+
v ,W

0∗
m (1))

)
,

and similarly

H1
S⊥,T (F

+,W 0∗(1)) := ker

(
Hi(F+

S /F
+,W 0∗(1))→

∏

v∈SrT

Hi(F+
v ,W

0∗(1))

)
,

H1
S⊥,T (F

+,W 0∗
E (1)) := ker

(
Hi(F+

S /F
+,W 0∗

E (1))→
∏

v∈SrT

Hi(F+
v ,W

0∗
E (1))

)
,

H1
S⊥,T (F

+,W 0∗
E/O(1)) := ker

(
Hi(F+

S /F
+,W 0∗

E/O(1))→
∏

v∈SrT

Hi(F+
v ,W

0∗
E/O(1))

)
.

Just as for the Selmer groups, these satisfy the obvious compatibilities with direct
and inverse limits.

We now show the existence of appropriate sets of Taylor–Wiles primes. We
closely follow the proofs of [NT23, Cor. 2.21, Lem. 2.26, Cor. 2.27], beginning with
the following lemma.

Lemma 7.1.9. Suppose that ρ : GF+ → GSp4(O) satisfies Hypothesis 7.1.3. Let
q := corankOH

1
S⊥,S(F

+,W 0∗
E/O(1)).

Then there exist σ1, . . . , σq ∈ GF+(ζp∞) such that

(a) for each i = 1, . . . , q, ρ(σi) is regular semi-simple, and
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(b) the kernel of the map

H1
S⊥,S(F

+,W 0∗
E/O(1))→

q⊕

i=1

H1(Ẑ,W 0∗
E/O(1))

∼=
q⊕

i=1

W 0∗
E/O(1)/(σi − 1)W 0∗

E/O(1)

(the product of the restriction maps Res
GF+,S

〈σi〉
associated to the homomor-

phisms Ẑ→ GF+,S, the ith such homomorphism sending 1 to σi) is a finite
length O-module.

Proof. Since H1
S⊥,S(F

+,W 0∗
E/O(1)) is cofinitely generated, it suffices (by an obvious

inductive construction) to show that for any non-zero homomorphism f : E/O →
H1

S⊥,S(F
+,W 0∗

E/O(1)), we can find σ ∈ GF+(ζp∞ ) such that ρ(σ) is regular semi-

simple, and the restriction Res
GF+,S

〈σ〉 ◦f : E/O → W 0∗
E/O(1)/(σ − 1)W 0∗

E/O(1) is
non-zero.

Let L′
∞/F

+ be the extension cut out by W 0∗
E (1), and let L∞ = L′

∞(ζp∞). We
claim that H1(L∞/F

+,W 0∗
E (1)) = 0. To see this, note that the extension cut out

by W ∗
E(1) =W 0∗

E (1)⊕E(1) is L∞, and since W ∗
E(1) is pure, it follows from [Kis04,

Lemma 6.2] that H1(L∞/F
+,W ∗

E(1)) = 0, and thus H1(L∞/F
+,W 0∗

E (1)) = 0 as
claimed. Thus H1(L∞/F

+,W 0∗
E/O(1)) is killed by a power of p (since it injects into

the finitely generated O-module H2(L∞/F
+,W 0∗

O (1))), and hence the homomor-
phism

Res
GF+,S

GL∞,SL∞

◦f : E/O → H1(FS/L∞,W
0∗
E/O(1))

GF+,S

∼= HomGF+,S
(GL∞,SL∞

,W 0∗
E/O(1))

is still non-zero (here SL∞ denotes the set of places of L∞ lying over places in S).
Let M ⊂ W 0∗

E/O(1) be the O-submodule generated by the elements f(x)(σ),
x ∈ E/O, σ ∈ GL∞ ; it is a non-zero divisible O[GF+(ζp∞ )]-submodule of W 0∗

E/O(1).
By the assumption that ρ(GF+(ζp∞ )) is integrally enormous, we deduce that there
exists σ ∈ GF+(ζp∞ ) such that ρ(σ) is regular semi-simple andM 6⊂ (σ−1)W 0∗

E/O(1).
Consequently, there exists m ≥ 0 and τ ∈ GL∞ such that f(1/̟m)(τ) 6∈ (σ −
1)W 0∗

E/O(1).

If f(1/̟m)(σ) 6∈ (σ − 1)W 0∗
E/O(1), then Res

GF+,S

〈σ〉 ◦f is non-zero, as required.

On the other hand if f(1/̟m)(σ) ∈ (σ − 1)W 0∗
E/O(1) then Res

GF+,S

〈τσ〉 ◦f is non-
zero (because f(1/̟m)(τσ) = f(1/̟m)(τ) + f(1/̟m)(σ) and (τσ− 1)W 0∗

E/O(1) =

(σ − 1)W 0∗
E/O(1)). By construction, τ ∈ GL∞ ⊂ GF+(ζp∞ ) so τσ ∈ GF+(ζp∞).

Finally, since τ lies in GL∞ , ρ(τ) is scalar and hence ρ(τσ) is regular semi-simple,
so we are done. �

Definition 7.1.10. A set of Taylor–Wiles primes of level N is a finite set of finite
places Q of F+, disjoint from S, such that for each v ∈ Q, we have qv ≡ 1 mod pN ,
and ρ(Frobv) is regular semi-simple.
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Given a set of Taylor–Wiles primes Q, we define the augmented global deforma-
tion problem

SQ = (ρ, S ∪Q, {Λv}v∈Sp ∪ {O}v∈(S∪Q)rSp
, {D△

v }v∈Sp ∪ {D�

v }v∈(S∪Q)rSp
).

Lemma 7.1.11. Suppose that ρ : GF+ → GSp4(O) satisfies Hypothesis 7.1.3. Let
q := corankOH

1
S⊥,S(F

+,W 0∗
E/O(1)).

Then there exist constants d1, d2 ≥ 0 such that for each N ≥ 1 we can find a set
of Taylor–Wiles primes QN of level N such that

(1) #QN = q.
(2) h1

S⊥
QN

,S
(F+,W 0∗

N (1)) ≤ d1.
(3) for each m ≤ N , the length of

qS∪QN ,S/(q
2
S∪QN ,S, q

loc
S ·RSSQN

, ̟m)

is at most d2 +m
(
2q − 4[F+ : Q] + #S − 1

)
.

Proof. Let Q be any set of Taylor–Wiles primes. We have by definition the exact
sequence

0→ H1
S⊥
Q ,S

(F+,W 0∗
N (1))→ H1

S⊥,S(F
+,W 0∗

N (1))→ ⊕v∈QH1(k(v),W 0∗
N (1)).

More generally, for a set Q of elements σi ∈ GF+(ζpN ) with ρ(σi) semi-simple, let
us denote by H1

S⊥
Q ,S

(F+,W 0∗
N (1)) the kernel of the map

H1
S⊥,S(F

+,W 0∗
N (1))→ ⊕QH

1(〈σi〉,W 0∗
N (1)).

Accordingly, if Q = {vi} is a set of Taylor–Wiles primes, and Q = {σi} with σi =
Frobvi , then

H1
S⊥
Q ,S

(F+,W 0∗
N (1)) = H1

S⊥
Q ,S

(F+,W 0∗
N (1)).

Moreover, by the Chebotarev density theorem, for any such set Q = {σi}, there
exists a set of places vi with qvi ≡ 1 mod pN such that the action of Frobvi on the
finite module W 0∗

N (1) coincides with the action of σi, and such that for any m ≤ N
and any f ∈ H1

S⊥,S(F
+,W 0∗

m (1)), we have f(σi) = f(Frobvi). (Here we use that
the O-modules H1

S⊥,S(F
+,W 0∗

m (1)) are finitely generated and the modules W 0∗
m (1)

are finite.) This implies the equality

H1
S⊥
Q ,S

(F+,W 0∗
m (1)) = H1

S⊥
Q ,S

(F+,W 0∗
m (1)). (7.1.12)

for any m ≤ N . Comparing to Lemma 7.1.9, we see that we can and do choose a
set of elements Q = {σi} so that the groups H1

S⊥
Q ,S

(F+,W 0∗
E/O(1)) are finite length

O-modules of uniformly bounded length (indeed they are all isomorphic, but we
do not need this), and let QN denote a corresponding set of Taylor–Wiles primes
of level N so that equality 7.1.12 holds. We will now show that these sets in fact
satisfy properties (2) and (3).

Considering the long exact sequences in Galois cohomology associated to the
short exact sequence

0→ W 0∗
N (1)→W 0∗

E/O(1)
̟N

→ W 0∗
E/O(1)→ 0

we see that we have a morphism

H1
S⊥
QN

,S(F
+,W 0∗

N (1)) = H1
S⊥
Q ,S

(F+,W 0∗
N (1))→ H1

S⊥
Q ,S

(F+,W 0∗
E/O(1))[̟

N ]
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whose kernel has order bounded by that of H0(F+,W 0∗
E/O(1))/̟

N . Since as ex-
plained above h1

S⊥
Q ,S

(F+,W 0∗
E/O(1)) is uniformly bounded, in order to prove (2),

it remains to show that H0(F+,W 0∗
E/O(1)) has finite length. It in turn suffices

to check that H0(F+,W 0∗
E (1)) = 0 (because then H0(F+,W 0∗

E/O(1)) is cofinitely
generated and injects into the finitely generated O-module H1(F+,W 0∗(1))). But
H0(F+,W 0∗

E (1)) = H0(F+,W 0
E(1)), and we even have H0(F+,WE(1)) = 0, be-

cause ρ is absolutely irreducible and not isomorphic to ρ(1) (e.g. because it has
different Hodge–Tate weights).

We now turn to (3). Write l for the length of a finite O-module. By the
Greenberg–Wiles formula together with Remark 7.1.6, the quantity

h1SQN
,S(F

+,Wm)− h1S⊥
QN

,S(F
+,W 0∗

m (1)) + h0(F+,W 0∗
m (1))− h0(F+,W 0

m)

+
∑

v∈S

h0(F+
v ,W

0
m) +

∑

v∈QN

(
h0(F+

v ,W
0
m)− h1(F+

v ,W
0
m)
)
+
∑

v|∞

l((1 + cv)W
0
m)

is uniformly bounded independently of N and m ≤ N (and of our choice of QN ).
Comparing to Lemma 7.1.7, we see that in order to establish (3), it suffices to

show that the quantity

− h1S⊥
QN

,S(F
+,W 0∗

m (1)) + h0(F+,W 0∗
m (1))

+

(
h0(F+,Wm)− h0(F+,W 0

m)−m
)
+
∑

v∈S

(
h0(F+

v ,W
0
m)− h0(F+

v ,Wm) +m

)

+
∑

v∈QN

(
h0(F+

v ,W
0
m)− h1(F+

v ,W
0
m) + 2m

)
+
∑

v|∞

(
l
(
(1 + cv

)
W 0
m)− 4m

)

is uniformly bounded independently ofN and ofm ≤ N . We will do this by showing
that each of the terms is uniformly bounded.

We begin with h1
S⊥
QN

,S
(F+,W 0∗

m (1)). Considering the morphisms

W 0∗
m (1)→W 0∗

N (1)→W 0∗
E/O(1)

we obtain a morphism

H1
S⊥
QN

,S(F
+,W 0∗

m (1)) = H1
S⊥
Q ,S

(F+,W 0∗
m (1))→ H1

S⊥
Q ,S

(F+,W 0∗
N (1))

whose kernel is contained in the kernel of the morphism

H1(F+
S /F

+,W 0∗
m (1))→ H1(F+

S /F
+,W 0∗

E/O(1)).

This latter kernel is isomorphic to a subquotient of H0(F+,W 0∗
E/O(1)), which we

showed above is a finiteO-module. The uniform boundedness of h1
S⊥
QN

,S
(F+,W 0∗

m (1))

for m ≤ N then follows from that of h1
S⊥
QN

,S
(F+,W 0∗

N (1)), i.e. from (2).

To show that the term h0(F+,W 0∗
m (1)) is uniformly bounded, we recall from

above that H0(F+,W 0∗
E (1)) = 0. It follows that we have an injective map:

H0(F+,W 0∗
m (1)) →֒ H1(F+,W 0∗)[̟m],

and we are done becauseH1(F+,W 0∗)[̟m] is uniformly bounded (sinceH1(F+,W 0∗)
is a finitely generated O-module). The term

h0(F+,Wm)− h0(F+,W 0
m)−m
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and the terms for v ∈ S can be handled similarly, using that H0(F+,WE) =
H0(F+,W 0

E)⊕ E (respectively H0(F+
v ,WE) = H0(F+

v ,W
0
E)⊕ E).

If v ∈ QN , then since v splits in F+(ζpN ) and m ≤ N , the local Euler character-
istic formula and Tate local duality give

h1(F+
v ,W

0
m)− h0(F+

v ,W
0
m) = h2(F+

v ,W
0
m) = h0(F+

v ,W
0∗
m (1)) = h0(F+

v ,W
0∗
m ),

and since ρ(Frobv) is regular semi-simple, we have h0(F+
v ,W

0∗
m ) = 2m, so these

terms vanish identically.
Finally the claim for places v|∞ follows easily from dimE H

0(F+
v ,W

0
E) = 4

(which in turn follows from the assumption that ν ◦ ρ = ε−1). �

Proposition 7.1.13. Suppose that ρ : GF+ → GSp4(O) satisfies Hypothesis 7.1.3.
Let q := corankOH

1
S⊥,S(F

+,W 0∗
E/O(1)).

Then there exists an integer d ≥ 0 such that for each N ≥ 1 we can find a set of
Taylor–Wiles primes QN of level N , together with a morphism in CNLΛ

GSp4,F+

Rloc
S,SJX1, . . . , XgK→ RSSQN

, (7.1.14)

such that:

(1) #QN = q.
(2) g = 2q − 4[F+ : Q] + #S − 1.
(3) Let qlocS,g be the kernel of the composite morphism

Rloc
S,SJX1, . . . , XgK→ RSSQN

→ O

determined by ρ and (7.1.14). Then the finite O-module

qS∪QN ,S/(q
2
S∪QN ,S , q

loc
S,g ·RSSQN

)

is killed by ̟d.

Proof. Choose the Taylor–Wiles primes QN as in Lemma 7.1.11, and let d be the
constant d2 in the statement of that lemma. We can without loss of generality
assume that N > d (because a set of Taylor–Wiles primes of level N + 1 is also a
set of Taylor–Wiles primes of level N). If M = qS∪QN ,S/(q

2
S∪QN ,S

, qlocS · RSSQN
),

the length of M/̟m is at most gm+ d for all m ≤ N by Lemma 7.1.11 (3). Thus,
by [NT23, Lem. 2.20], we can find a map

Og →M/̟N = qS∪QN ,S/(q
2
S∪QN ,S , q

loc
S · RSSQN

, ̟N )

whose cokernel has length at most d, and is in particular killed by ̟d. By the
topological version of Nakayama’s lemma, we can find a presentation (7.1.14) such
that

qS∪QN ,S/(q
2
S∪QN ,S , q

loc
S,g · RSSQN

, ̟N )

is killed by ̟d. Since we are assuming that N > d, this implies that

qS∪QN ,S/(q
2
S∪QN ,S , q

loc
S,g ·RSSQN

)

is killed by ̟d, as required. �
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7.2. An abstract patching argument. Set ∆∞ := Z2q
p . Suppose that we have

the following data.

Hypothesis 7.2.1.

(1) An RS -module M , which is finite free as a ΛGSp4,F
+-module.

(2) For each integer N ≥ 1, a finite quotient ∆N of ∆∞, such that ∆∞ ։

∆∞/p
N factors through ∆N .

(3) For each N ≥ 1, a homomorphism ΛGSp4,F
+ [∆N ] → RSQN

, and a finite
RSQN

-module MN which is finite free as a ΛGSp4,F
+ [∆N ]-module.

(4) Isomorphisms of ΛGSp4,F
+-modules

MN ⊗ΛGSp4,F+ [∆N ] ΛGSp4,F
+

∼−→M,

(where the homomorphism ΛGSp4,F
+ [∆N ] → ΛGSp4,F

+ is the augmenta-
tion map), compatible with the actions of RSQN

and RS and the natural
homomorphism RSQN

→ RS .

As in Definition 6.1.4, we let T = ΛGSp4,F
+Jx1, . . . , x11#S−1K be the coordinate

ring of (
∏
v∈T ĜSp4)/Ĝm over ΛGSp4,F

+ . Let

S∞ := ΛGSp4,F
+J∆∞K⊗̂Λ

GSp4,F+
T ,

and let a∞ be the kernel of the map S∞ → ΛGSp4,F
+ given by sending each element

of ∆∞ to 1 and each xi to 0. Write SN := ΛGSp4,F
+ [∆N ]⊗̂ΛGSp4,F+T = T [∆N ], a

quotient of S∞. Let
R∞ := Rloc

S,SJX1, . . . , XgK.

For each N ≥ 1 we write RN := RSSQN
and qN = qS∪QN ,S , so that RN is an R∞-

algebra via (7.1.14) and an SN -algebra via (6.1.5) and Hypothesis 7.2.1(3). We
set

M�

N :=MN ⊗RSQN
RN =MN ⊗ΛGSp4,F+ T ,

where the equality follows from (6.1.5). Write R = RS , which is naturally an
RN -algebra for each N .

Then Hypothesis 7.2.1 implies that:

• The R-module M is finite free as a ΛGSp4,F
+ -module.

• For each N ≥ 1, we have a homomorphism SN → RN , and M�
N is an

RN -module which is finite free as an SN -module.
• We have isomorphisms of ΛGSp4,F

+ -modules

M�
N /a∞

∼−→M,

compatible with the actions of RN and R and the homomorphism RN → R.

Fix a non-principal ultrafilter F on N, and write Λ :=
∏
N∈NΛGSp4,F

+ , and
write Λx for the localization of Λ at the prime ideal

x := {(xN )N∈N|∃I ∈ F s.t. ∀N ∈ I, xN ∈ mΛGSp4,F+}.

Then we set

M∞ := lim←−
n

(
Λx ⊗Λ

∏

N≫0

M�
N/a

n
∞

)
,
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where the product is over the cofinite (by Hypothesis 7.2.1(2)) set of N for which
an∞ ⊇ ker(S∞ → SN ), and we set

Rpatch := lim←−
n

(
Λx ⊗Λ

∏

N≥1

RN/m
n
RN

)
.

By for example [GN20, Prop. 3.4.16], we have in particular produced the following
structures.

• ΛGSp4,F
+ -algebra homomorphisms S∞ → R∞ → Rpatch ։ R.

• A finite free S∞-module M∞, together with an isomorphism of ΛGSp4,F
+ -

modules
M∞ ⊗S∞ ΛGSp4,F

+
∼−→M.

• A commutative diagram of S∞-algebras

R∞

��

// EndS∞(M∞)

−⊗S∞ΛGSp4,F+

��

R // EndΛGSp4,F+ (M)

Write qpatch ⊂ Rpatch and q∞ ⊂ R∞ for the inverse images of q ⊂ R (i.e. the kernels
of the composite morphisms R∞ → Rpatch ։ R→ O corresponding to ρ).

Lemma 7.2.2. The O-module qpatch/((qpatch)2, q∞) is killed by ̟d, where d is as
in Proposition 7.1.13.

Proof. This is proved in exactly the same way as [NT23, Prop. 4.18]. By Proposi-
tion 7.1.13, for each N ≥ 1 the O-module qN/((qN)

2, q∞) is killed by ̟d, so the
cokernel of ∏

N≥1

q∞/(q∞)2 →
∏

N≥1

qN/(qN )2

is killed by ̟d (here the map q∞ → qN is the one induced by the morphism
R∞ → RN ). By an identical argument to the proof of [NT23, Lem. 4.16, 4.17], the
image of

∏
N≥1 qN (resp.

∏
N≥1 q

2
N) in Rpatch is qpatch (resp. (qpatch)2).

It remains to show that the image of
∏
N≥1 q∞/(q

2
∞) in qpatch/(qpatch)2 agrees

with the image of q∞/(q∞)2. This follows from [NT23, Lem. 4.19], exactly as in
the proof of [NT23, Prop. 4.18]. �

Our abstract freeness result is the following, where for the convenience of the
reader we have recalled the running hypotheses and notation in the statement.

Proposition 7.2.3. Assume that ρ satisfies Hypothesis 7.1.3, and that M satisfies
Hypothesis 7.2.1. Write q for the kernel of the homomorphism RS → O correspond-
ing to ρ. Then Mq is a finite free (RS)q-module.

Proof. By Lemma 6.2.2(3) and our assumption that ρ|G
F

+
v

is ordinary, pure and
p-distinguished for all v|p, together with [BCGP21, Lem. 7.1.3] and the assumption
that ρ is pure, the local ring (R∞)q∞ is regular. Write (R∞)∧q∞

for its q∞-adic com-
pletion, and similarly (Rpatch)∧

qpatch for the qpatch-adic completion of (Rpatch)qpatch .
Then the morphism

(R∞)∧q∞
→ (Rpatch)∧qpatch
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is surjective, because by Lemma 7.2.2 the relative cotangent space qpatch/((qpatch)2, q∞)
vanishes (note that localization at qpatch in particular inverts p).

Accordingly we can and do lift the morphism S∞ → (Rpatch)∧
qpatch to a morphism

S∞ → (R∞)∧q∞
. Since M∞ is a finite free S∞-module, we see that the (R∞)∧q∞

-
module (M∞)∧q∞

has depth dimS∞ − 1. By the definition of g together with
Lemma 6.2.2(3)and [BG19, Thm. 3.3.3], we have dim(R∞)∧q∞

= dimS∞− 1. Since
(R∞)∧q∞

is regular, it follows from Auslander–Buchsbaum that (M∞)∧q∞
is a finite

free (R∞)∧q∞
-module. Quotienting by a∞, we conclude that M∧

q is a finite free
R∧

q -module, and equivalently that Mq is a finite free Rq-module, as required. �

7.3. Higher Hida theory. We now specialize to the case F+ = Q (but still allow
p ≥ 2 to be arbitrary), and continue to assume that ρ : GQ → GSp4(O) satisfies
Hypothesis 7.1.3. In particular since ρ|Qp is ordinary, semistable of weight 2, and p-
distinguished, and we have chosen a p-stabilization, we have determined an ordered
pair (αp, βp) of distinct elements of O such that

ρ ∼=




λαp 0 ∗ ∗
0 λβp ∗ ∗
0 0 ε−1λ−1

βp
0

0 0 0 ε−1λ−1
αp




where λx is the unramified character with λx(Frobp) = x.
Our next goal is to explain the construction of the data as in Hypothesis 7.2.1

which we will use to prove our multiplicity one theorems. This amounts to con-
structing Taylor–Wiles systems out of higher Hida theory modules, which we al-
ready did for usual (i.e. H0) Hida modules in [BCGP21, §7.8, 7.9], and we will
follow the account there where possible. We do make some changes to the setup
however: we specialize to the case F+ = Q, allow p = 2, work with different level
structures at primes where ρ ramifies, and use a different argument to ensure that
we can work at neat level.

We begin by recalling some of the main results of [BP23], specialized to the case
of GSp4. For each w ∈ MW , and neat tame level Kp, in [BP23, §1.4, 5.4], we
have defined perfect complexes of ZpJT (Zp)K-modules, which we denote by M•

w,cusp

and M•
w. By [BP23, Prop. 5.6.3] the complexes M•

w,cusp have amplitude in the
range [0, ℓ(w)], and the complexes M•

w have amplitude in the range [ℓ(w), 3]. These
complexes have an action of T (Qp) (extending the T (Zp)-action) and an action of
the Hecke algebra Tp of prime to p level. We now set

Mw :=




Hℓ(w)(M•

w,cusp)⊗Zp O, if ℓ(w) = 0, 1,

Hℓ(w)(M•
w)⊗Zp O, if ℓ(w) = 2, 3.

When we want to stress the dependence on the tame level Kp, we write M•
w,cusp,Kp ,

M•
w,Kp, and Mw,Kp-respectively. We now summarize the main properties of these

modules, writing Iw(p) ⊂ GSp4(Zp) for the Iwahori subgroup.

Theorem 7.3.1. The following properties hold:

(1) The modules Mw are finite projective OJT (Zp)K-modules.
(2) For any dominant algebraic character λ ∈ X∗(T )+, let

κ = −w0,Mw(λ + ρ)− ρ.
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There are Hecke equivariant isomorphisms

Mw ⊗OJT (Zp)K,λ E(−λ) =




Hℓ(w)(ShtorIw(p)Kp , ωκ(−D))ord, if ℓ(w) = 0, 1,

Hℓ(w)(ShtorIw(p)Kp , ωκ)ord, if ℓ(w) = 2, 3.

(3) For any algebraic character λ ∈ X∗(T ) with

κ = −w0,Mw(λ+ ρ)− ρ ∈ X∗(T )M,+

there are Hecke equivariant isomorphisms

Mw ⊗OJT (Zp)K,λ E(−λ) =




H
ℓ(w)
w (Shtor

Kp , ωκ,sm(−D))ord,T (Zp), if ℓ(w) = 0, 1,

H
ℓ(w)
w (Shtor

Kp , ωκ,sm)ord,T (Zp), if ℓ(w) = 2, 3.

(4) We have a perfect duality pairing:

Mw ⊗OJT (Zp)K Mw0,Mww0 → OJT (Zp)K

interpolating the classical Serre duality.
(5) If we have a normal subgroup Kp

1 ⊆ Kp
2 then Mw,Kp

1
is a finite projective

OJT (Zp)K[K
p
2/K

p
1 ]-module and the pullback and trace induce isomorphisms

Mw,Kp
2

∼−→M
Kp

2/K
p
1

w,Kp
1

(Mw,Kp
1
)Kp

2 /K
p
1

∼−→Mw,Kp
2
.

Proof. By duality ([BP23, Thm 5.5.2]), point (1) follows from the vanishing theorem
[BP23, Prop. 5.6.3] combined with the fact that when ℓ(w) = 1 the H0 with support
vanishes. Point (2) is the classicality theorem [BP23, Cor 4.5.5] combined with the
control theorem [BP23, Thm 5.3.5]. Point (3) is the comparison between higher
Hida and Coleman theories [BP23, Thm 6.2.9] together with Theorem 4.6.56. As
already remarked, the duality in point (4) is [BP23, Thm 5.5.2].

We give some justification for point (5) as this is not explained in [BP23]. The
projectivity is a consequence of the other statements and Lemma 7.3.2 below. By
the vanishing results just recalled it suffices to show that the corresponding state-
ments for the higher Hida complexes. In other words, pullback and trace induce
quasi-isomorphisms

M•
w,Kp

2
→ RΓ(Kp

2/K
p
1 ,M

•
w,Kp

1
), Mw,Kp

1
⊗LOJT (Zp)K[K

p
2/K

p
1 ]
OJT (Zp)K→M•

w,Kp
2
,

and the same statement holds for the cuspidal complexes. For this, the key point is
to show that for a suitable choice of cone decomposition Σ, for the integral models
π : ShtorKpK

p
1 ,Σ
→ Shtor

KpK
p
2 ,Σ

considered in [BP23] there is an action of Kp
2/K

p
1 on

ShtorKpK
p
1 ,Σ

, and the natural map

OShtor
KpK2,Σ

→ RΓ(Kp
2/K

p
1 , Rπ∗OShtor

KpK
p
1
,Σ
)

is an isomorphism, and the analogous statements for the sheaves OShtor
KpKi,Σ

(−D),

and for traces. For this, the facts thatRπ∗OShtor

KpK
p
1 ,Σ

= π∗OShtor

KpK
p
1 ,Σ

and π∗OK
p
2 /K

p
1

Shtor
KpK

p
1
,Σ

=

OShtor

KpK
p
2 ,Σ

are standard and follow from the local description of the toroidal bound-

ary (see [Lan17, Prop. 7.5] for example). We just need to explain why there is no
higher Kp

2/K
p
1 cohomology (note that the action of Kp

2/K
p
1 may not be free and p

may divide the order of Kp
2/K

p
1 ); however it again follows from the local description

of the toroidal boundary that the stabilizers have order prime to p. �
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We used the following (presumably standard) lemma above.

Lemma 7.3.2. Let R be a Noetherian local ring with residue field k of character-
istic p. Let G be a finite group with Sylow p-subgroup H, and let M be a finitely
generated R[G]-module. Then the following conditions are equivalent:

(1) M is a projective R[G]-module.
(2) M is a projective (equivalently free) R[H ]-module.
(3) M ⊗LR[H] R is a free R-module concentrated in degree 0.
(4) M ⊗LR[H] k is concentrated in degree 0.

Proof. The equivalence of the first two conditions follows from the usual averaging
argument to promote a splitting as R[H ]-modules to a splitting as R[G]-modules.
Since R[H ] is a local ring, the equivalence of the second, third and fourth condi-
tions is immediate from the existence of minimal free resolutions, and in particular
from [GN20, Lem. 2.1.7, Prop. 2.1.9]. �

Remark 7.3.3. Let us spell out the Hecke action at p. On Mw⊗OJT (Zp)K,λE(−λ),
T (Qp) acts via a smooth character, trivial on T (Zp) (this is the reason for the twist
by λ). The isomorphism Mw⊗OJT (Zp)K,λE(−λ) = Hℓ(w)(Shtor

Iw(p)Kp , ωκ)ord matches
the action of t ∈ T+(Qp) with the action of the double class [Iw(p)tIw(p)] (note
that on the left hand side, the unitary action of T (Qp) is twisted by −λ).
Remark 7.3.4. Let κ be such that κ = −w0,Mw(λ + ρ) − ρ with λ + ρ being
G-dominant. Let c be an eigenclass in Hℓ(w)(ShtorIw(p)Kp , ωκ)ord, corresponding to
an automorphic representation π. The torus T (Qp) acts on the Jacquet module of
π via a smooth character χsmc . Assume furthermore that π∞ is a discrete series
representation (which is automatic if λ is sufficiently regular), so that we have a
Galois representation ρπ,p : GQ → GSp4(Qp) associated to π (see Theorem 1.8.13).

Then ρπ,p|GQp
is conjugate to a B(Qp)-valued representation, which we can

describe explicitly as follows (see Remark 1.8.15). If λ = (λ1, λ2;w), the Hodge–
Tate weights of ρπ are given in increasing order by

λ1 + λ2 − w
2

,
2− λ1 + λ2 − w

2
,
4 + λ1 − λ2 − w

2
,
6− λ1 − λ2 − w

2
.

If we use the upper triangular Borel in B(Qp) in GSp4(Qp), and use the local class
field theory map Q×

p → Gab
Qp

, the character on the diagonal is given by

t 7→ diag(t
−λ1−λ2+w

2 , t
−2+λ1−λ2+w

2 , t
−4−λ1+λ2+w

2 , t
λ1+λ2+w−6

2 ), t ∈ Z×
p

while p ∈ Q×
p goes to

diag(χsmc ((1, 1, p, p))p
−λ1−λ2+w

2 , χsmc ((p, 1, p, 1))p
λ1−λ2+w

2 ,

χsmc ((1, p, 1, p))p
−λ1+λ2+w

2 , χsmc ((p, p, 1, 1))p
λ1+λ2+w

2 ).

In view of Remark 7.3.4, we now give a more Galois-theoretic parametrization
of the Higher Hida theories. Recall that in Section 6.2 we defined a complete
local Noetherian O-algebra ΛGSp4,Q = OJ(Z×

p (p))
2K. We have two maps Z×

p →
Z×
p (p)× Z×

p (p) (given by the projections to each factor), corresponding to χ1, χ2 :

Z×
p → Λ×

GSp4,Q
, and there is an associated homomorphism ψ : Z×

p → T (ΛGSp4,Q)

which is given by

ψ(z) = diag(χ1(z), χ2(z), z
−1χ−1

2 (z), z−1χ1(z)
−1).
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On the other hand, consider the universal character

χun : T (Zp)→ (ZpJT (Zp)K)
×.

Using Lemma 7.3.5 and the identification of T and T̂ , we can view χunρν−
3
2 :

T (Zp)→ (ZpJT (Zp)K)
× as a homomorphism

χunρν−
3
2 : Z×

p → T (ZpJT (Zp)K).

Lemma 7.3.5. There is a unique algebra map f : ZpJT (Zp)K→ ΛGSp4,Q such that
f ◦ χunρν− 3

2 = ψ.

Proof. Using Lemma 7.3.6 and the identification of T and T̂ , ψ corresponds to a
character T (Zp)→ (ΛGSp4,Q)×, and the lemma follows from the universal proper-
ties of χun and of ZpJT (Zp)K. �

We used the following (presumably standard) lemma above.

Lemma 7.3.6. If T/Z is a split torus with dual T̂ , then for any two commutative
rings R,S, there is a natural bijection between group homomorphisms

T (R)→ S×

and group homomorphisms

R× → T̂ (S).

Proof. This follows from the case T = Gm, which is obvious. More precisely,
since X∗(T̂ ) = X∗(T ) is a free Z-module, we have

Hom(T (R), S×) = Hom(X∗(T )⊗R×, S×)

= Hom(X∗(T ),Hom(R×, S×))

= X∗(T )⊗Hom(R×, S×)

= X∗(T̂ )⊗Hom(R×, S×)

= Hom(R×, X∗(T̂ )⊗ S×)

= Hom(R×, T̂ (S)),

as required. �

We now consider the action of the centre of the group GSp4(Af ). The action of
Z(GSp4(Af )) on the toroidal compactification of our Shimura varieties factors into
an action of Z(Q)\Z(GSp4(Af )) = {±1}\∏ℓ Z

×
ℓ (as can be seen by considering

complex uniformization). From a modular perspective, Z×
ℓ acts on the ℓ-adic Tate

module of an abelian surface by scalar multiplication. The fact that we quotient by
{±1} witnesses the fact that −1 is an automorphism of any abelian surface. This
action extends to an action on the Mw,Kp (as part of the Hecke action on these
modules).

When we have a Zp-module M , equipped with an action of Z(Q)\Z(GSp4(Af )),
we let M |.|2 be the submodule where the centre acts via the character (zℓ)ℓ 7→ z−2

p .
More generally, if we have a finite set of primes S, we let M |.|2,S be the submodule
where the group

∏
ℓ/∈S Z

×
ℓ acts via the character (zℓ)ℓ/∈S 7→ z−2

p .
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Remark 7.3.7. This definition is motivated by Theorem 7.3.1 (2). Under the
classicality theorem, this condition corresponds to fixing the central character of
automorphic forms contributing to coherent cohomology to be |.|2.

By abuse of language, we say that the centre acts by |.|2 on M |.|2.

On the module Mw,Kp ⊗OJT (Zp)K ΛGSp4,Q, the subgroup Z×
p of Z(GSp4(Af ))

acts via z 7→ z−2. Therefore, fixing the central action to be |.|2 amounts to
asking that the group

∏
ℓ 6=p Z

×
ℓ acts trivially. We would therefore morally have

that (Mw,Kp ⊗OJT (Zp)K ΛGSp4,Q)|.|
2

= Mw,ZKp ⊗OJT (Zp)K ΛGSp4,Q where ZKp =∏
ℓ 6=p Z(Zℓ)Kℓ. Note however that the group ZKp is not neat (a condition we have

imposed so far on our tame level). We now explain a construction which addresses
this issue.

We choose a prime r > 5 such that r 6≡ 1 (mod p) and r 6≡ 1 (mod 4) if p = 2.
We let Iw1(r) denote the subgroup of matrices which are upper-triangular and
unipotent modulo r. If Kp is a compact open subgroup with Kr = Iw1(r), then
Kp is neat by [BCGP21, Lem. 7.8.3] (applied to v = r).

For any finite set of primes S (possibly empty) not containing p, we let ZSKp =∏
ℓ/∈S∪{p} Z(Zℓ)Kℓ

∏
ℓ∈SKℓ.

Lemma 7.3.8. Let Kp
1 ⊆ Kp

2 be compact open subgroups, Kp
1 normal in Kp

2 , and
the r-components of Kp

1 ,K
p
2 both being Iw1(r). Let S be a finite set of primes, with

r ∈ S, and p /∈ S.
(1) The module

(Mw,Kp
1
⊗OJT (Zp)K ΛGSp4,Q)|.|

2,S

is a finite projective ΛGSp4,Q[ZSKp
2/Z

SKp
1 ] module.

(2) The module
(Mw,Kp

1
⊗OJT (Zp)K ΛGSp4,Q)|.|

2

is a finite projective ΛGSp4,Q[ZKp
2/ZK

p
1 ] module.

Proof. Since r ∈ S, it follows that the groups ZSKp
i are neat for i = 1, 2. On the

other hand, we have an identification

(Mw,Kp
1
⊗OJT (Zp)K ΛGSp4,Q)|.|

2,S =Mw,ZSKp
1
⊗OJT (Zp)K ΛGSp4,Q,

so (1) follows from Theorem 7.3.1. Next, we can take S = {r}. Then (Mw,Kp
1
⊗OJT (Zp)K

ΛGSp4,Q)|.|
2

is obtained from (Mw,Kp
1
⊗OJT (Zp)KΛGSp4,Q)|.|

2,S by considering the in-
variants for (Z/rZ)×. Observe that ZSKp

2/Z
SKp

1 = ZKp
2/ZK

p
1 , so

(Mw,Kp
1
⊗OJT (Zp)K ΛGSp4,Q)|.|

2,S

is a finite projective ΛGSp4,Q[ZSKp
1/Z

SKp
2 ] module. Note that (Z/rZ)× acts via

(Z/rZ)×/{±1} and this group has order prime to p. Therefore the invariants are
a direct factor, as required. �

7.4. Taylor–Wiles systems. We continue to fix a continuous representation ρ :
GQ → GSp4(O) satisfying Hypothesis 7.1.3.

Definition 7.4.1. A neat prime for ρ is a prime r > 5 such that
• r 6= p,
• r 6≡ 1 (mod p) and r 6≡ 1 (mod 4) if p = 2.
• ρ|GQr

is unramified,
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• ρ(Frobr) is regular semi-simple,
together with a fixed ordering (αr,1, αr,2, rα

−1
r,2 , rα

−1
r,1) of the eigenvalues of ρ(Frobr).

By Hypothesis 7.1.3 parts (4), (7), and (8) we can and do choose a neat prime r.

Definition 7.4.2. We let S be the union of {r} and the set of primes at which ρ
is ramified (so in particular p ∈ S, because ε is ramified at p), and choose sets of
Taylor–Wiles primes QN as in Proposition 7.1.13.

For any prime l, we let Iw(l) denote the subgroup of GSp4(Zl) consisting of ma-
trices which are upper-triangular modulo l, and we let Iw1(l) denote the subgroup
of matrices which are upper-triangular and unipotent modulo l.

Definition 7.4.3. We define an open compact subgroupKp =
∏
lKl of GSp4(A

∞,p)
as follows:

• If l 6∈ S, then Kl = GSp4(Zl).
• Kr = Iw1(r).
• If l ∈ S r {r}, then we allow any choice of open compact Kl ⊆ GSp4(Zl).

We have compact subgroups Kp
0 (QN ), Kp

1 (QN) of Kp given by
• If l 6∈ QN , then Kp

0 (QN )l = Kp
1 (QN)l = Kp

l .
• If l ∈ QN , then Kp

0 (QN )l = Iw(l), Kp
1 (QN )l = Iw1(l).

These groups are neat by [BCGP21, Lem. 7.8.3].
We let

TS =
⊗

l 6∈S

O[GSp4(Ql)//GSp4(Zl)]

be the ring of spherical Hecke operators away from the bad places, and similarly
we set

TS∪QN =
⊗

l 6∈S∪QN

O[GSp4(Ql)//GSp4(Zl)].

We will also make use of some Hecke operators at Iwahori level, which we recall
from [BCGP21, §2.4]. Let l be a prime. Assume that E is large enough to contain a
square root of l; we fix such a choice l1/2. The reader can easily check that nothing
before [BCGP21, Lem. 2.4.3] makes any use of the running assumption made there
that p 6= 2; indeed, these results are for the most part over E, and use only that it
is a field of characteristic zero containing l1/2. We define

H = H(l) = O[G(Ql)//Iw(l)],

H1 = H1(l) = O[G(Ql)//Iw1(l)].

With T denoting our usual maximal torus in GSp4, we set

T (Zl)1 := (kerT (Zl)→ T (Fl)),

and exactly as in [BCGP21, Prop. 2.4.2] we have an injective homomorphism

T (Ql)/(kerT (Zl)→ T (Fl))→ (H1)
×. (7.4.4)

The injection (7.4.4) induces an injective homomorphism O[T (Ql)/T (Zl)1] →
H1, and we identify O[T (Ql)/T (Zl)1] with its image in H1.

Definition 7.4.5. Assume that l ≡ 1 (mod p). Given elements αl,1, α2 ∈ k×, we
let mα1,α2 denote the kernel of the homomorphism O[T (Ql)/T (Zl)1] → k induced
by the character T (Ql)/T (Zl)1 → k× sending T (Zl) 7→ 1, βl,0 7→ 1, βl,1 7→ αl,1,
βl,2 7→ αl,1αl,2.
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We define the following elements of T (Qp) which act on Mw:

Up,1 = diag(1, 1, p, p)

Up,2 = diag(p, 1, p2, p)

Up,0 = diag(p, p, p, p)

We let man ⊂ TS be the maximal ideal corresponding to ρ; so by definition man

contains ̟, and the polynomials det(X − ρ(Frobl)) and Ql(X) are congruent mod-
ulo man for each l 6∈ S. We define man,QN ⊂ TS∪QN in the same way. We let

T = TS [Up,0, Up,1, Up,2]

and
TQN = TS∪QN [Up,0, Up,1, Up,2],

and additionally we let m ⊂ T be the maximal ideal

m = (man, Up,0 − 1, Up,1 − αp, Up,2 − αpβp)
and we let mQN ⊂ TQN be the maximal ideal

mQN = (man,QN , Up,0 − 1, Up,1 − αp, Up,2 − αpβp).
For each q ∈ QN , fix an ordering αq,1, αq,2, α

−1
q,2, α

−1
q,1 of the eigenvalues of

ρ(Frobq). Set ∆N = ∆QN =
∏
q∈QN

F×
q (p)

2. We now fix a choice of w ∈ MW , and
consider the finite free ΛGSp4,Q-module

M := HomΛGSp4,Q((MKp ⊗OJT (Zp)K ΛGSp4,Q)|·|
2

,ΛGSp4,Q)m,mr , (7.4.6)

and the finite ΛGSp4,Q[∆QN ]-modules

MN := HomΛGSp4,Q((MKp
1 (QN ) ⊗OJT (Zp)K ΛGSp4,Q)|·|

2

,ΛGSp4,Q)mQN ,mr,mQN
,

where:

• MKp and MKp
1 (QN ) denote the modules Mw of Theorem 7.3.1, taking Kp

there to be respectively our Kp and Kp
1 (QN ).

• ΛGSp4,Q is an OJT (Zp)K-algebra via Lemma 7.3.5.
• The localizations m,mQN are defined above.
• The localization mr and the localization mQN are with respect to the max-

imal ideals ml of the subalgebras O[T (Ql)/T (Zl)1] of the pro-l Iwahori
Hecke algebras H1(l) for l ∈ QN ∪ {r} as in Definition 7.4.5.
• The action of ∆QN onMKp

1 (QN ) is induced by the actions ofO[T (Qq)/T (Zq)1]

for q ∈ QN , by regarding F×
q (p)

2 as the maximal p-power quotient of
T (Fq)/Z(Fq), where Z denotes the centre of GSp4.
• The superscript | · |2 denotes that we are fixing the central character.

Lemma 7.4.7. M is a free ΛGSp4,Q-module, and MN is a free ΛGSp4,Q[∆QN ]-
module.

Proof. Since ΛGSp4,Q[∆QN ] is a local ring, this follows from Lemma 7.3.8(2), since
Iw(q)Z(Zq)/Iw1(q)Z(Zq) ≃ T (Fq)/Z(Fq). �

The following is essentially [GG12, Lem. 7.1.1], adapted slightly to allow p = 2;
we will use it in the proof of Proposition 7.4.10.
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Lemma 7.4.8. Let Γ be a profinite group, and let S ⊂ R be complete local Noe-
therian rings with mR ∩S = mS and common residue field k. Let ρ : Γ→ GSp4(R)
be a continuous representation. Suppose that ρ mod mR is absolutely irreducible,
that tr ρ(Γ) ⊂ S, and that ν ◦ ρ(Γ) ⊂ S×. Then there is a ĜSp4(R)-conjugate of ρ
whose image is contained in GSp4(S).

Proof. By [CHT08, Lem. 2.1.10], there is some B ∈ ĜL4(R) such that ρ′ := BρB−1

is valued in GL4(S). Since J−1ρJ = (ν ◦ ρ)ρ−t, we have

(BJBt)−1ρ′(BJBt) = (ν ◦ ρ′)(ρ′)−t.
By choosing a symplectic basis for the alternating form determined by BJBt, it
follows that ρ′ is ĜSp4(S)-conjugate to a representation ρ′′ valued in GSp4(S). By
Schur’s lemma [CHT08, Lem. 2.1.8], we see the element in ĜL4(R) conjugating ρ
to ρ′ is necessarily contained in ĜSp4(R), as required. �

Definition 7.4.9. Let TS (resp. TSQN
) denote the image of T (resp. of TQN )

in EndΛGSp4,Q(M) (resp. in EndΛGSp4,Q(MN )). (These are objects of CNLΛGSp4,Q ,
but under the present hypotheses we do not know that these algebras are nonzero
(because we do not know that ρ is modular).)

Recall that we have defined the global deformation problems

S = (ρ, S, {ΛGSp4,p} ∪ {O}l∈Sr{p}, {D△
p } ∪ {D�

l }l∈Sr{p}),

SQN = (ρ, S ∪QN , {ΛGSp4,p} ∪ {O}l∈(S∪QN)r{p}, {D△
p } ∪ {D�

l }l∈(S∪QN )r{p}).

The deformation ring RSQN
is a ΛGSp4,Q[∆QN ]-algebra via Lemma 6.1.6 (i.e. ∆QN

acts via the characters γq,i ◦ ArtQq). For ease of notation, we sometimes (e.g. in
the statement of the following proposition) adopt the convention that Q0 = ∅, so
that for example TSQN

= TS .

Proposition 7.4.10. For each N ≥ 0, the action of ∆QN on MN makes TSQN
a

ΛGSp4,Q[∆QN ]-algebra, and there is a ΛGSp4,Q[∆QN ]-algebra homomorphism RSQN
→

TSQN
with corresponding representation ρSQN

: GQ → GSp4(TSQN
) determined by

the property that det(X − ρSQN
(Frobl)) = Ql(X) for all l /∈ S ∪QN .

Proof. Since MN is a finite free ΛGSp4,Q-module, this follows from local-global
compatibility for the Galois representations at a dense set of points of regular
weight. More precisely, it can be proved in exactly the same way as the case
I = ∅ of [BCGP21, Thm. 7.9.4], using Lemma 7.4.8 in place of [GG12, Lem. 7.1.1].
(The fact that TSQN

is automatically a ΛGSp4,Q[∆QN ]-algebra was not recorded in
[BCGP21]; it follows from local-global compatibility at the places in QN .) �

In particular, Proposition 7.4.10 makes M into an RS-module, and each MN

into an RSQN
-module. We can also regard M as an RSQN

-module via the natural
map RSQN

→ RS . For each N ≥ 1 we fix a surjection ∆∞ ։ ∆QN , and write ∆N

for the corresponding quotient of ∆∞. The kernel of this surjection is contained
in (pNZp)

2q , since each v ∈ QN satisfies qv ≡ 1 mod pN . At this point we have
established points (1)–(3) of Hypothesis 7.2.1, so it only remains to check (4), which
is the content of Lemma 7.4.15 below.

Before proving it, we recall some standard facts about Iwahori Hecke algebras
that were explained in [BCGP21, §2.4] under the unnecessary assumption that p 6=
2. Indeed the only place in [BCGP21, §2.4] that relies on the assumption p 6= 2
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is [BCGP21, Lem. 2.4.34], i.e. the statement that the spherical invariants of a
module for the Iwahori Hecke algebra are a direct summand. This is no longer
valid for p = 2, but we will avoid this problem by making use of Lemma 7.3.8. We
do need to make use of the (proofs of) [BCGP21, Lem. 2.4.36, 2.4.37], but for the
convenience of the reader we will recall the necessary arguments as we use them
(making it clear as we do so that they remain valid for p = 2).

Suppose now that q is a prime with q ≡ 1 (mod p), and let H = H(q) be the
corresponding Iwahori Hecke algebra. The Bernstein presentation of H is valid for
all p, so we can write

H = O[X∗(T )]⊗̃OO[Iw(q)\GSp4(Zq)/Iw(q)],

where the twisted tensor product is determined by the relations [BCGP21, (2.4.32)].
The centre ofH is O[X∗(T )]

W (where as usual W ∼= D8 is the Weyl group of GSp4),

O[X∗(T )]
W = O[GSp4(Qq)//GSp4(Zq)]

given by x 7→ [GSp4(Zq)]x (where we are regarding x as an element of H); this
isomorphism agrees with the usual Satake isomorphism. (Indeed this presentation,
and the compatibility with the Satake isomorphism, are valid over any ring con-
taining an invertible square root of q; see for example [Vig05] or the very general
results of [Bou21].)

Since we are assuming that q = 1 in k, we deduce exactly as in [BCGP21, Lem.
2.4.33] that reduction modulo ̟ induces a natural isomorphism

H⊗O k ∼= k[X∗(T )⋊W ].

Since we are assuming that q ≡ 1 (mod p), and in any case in our applications of
these results in the global setting there is a twist which makes all of the powers of q
integral, we will ignore all powers of q1/2 from now on.

Exactly as in [BCGP21], we let x0, x1, and x2 denote the following three cochar-
acters:

x0 : t→ diag(t, t, 1, 1),

x1 : t→ diag(1/t, 1, 1, t),

x2 : t→ diag(1, 1/t, t, 1).

Then x20x1x2 is the cocharacter t 7→ diag(t, t, t, t) and

O[X∗(T )] = O[x0, x1, x2, (x20x1x2)−1] = O[x0, x1, x2, (x0x1x2)−1].

The action of W preserves (x0, x0x1, x0x2, x0x1x2) considered as an unordered
quadruple. Recalling that we are ignoring powers of q1/2, under the identification
of k[X∗(T )]

W with the spherical Hecke algebra we have

Qq(X) = X4 − Tq,1X3 + (Tq,2 + 2Tq,0)X
2 − Tq,0Tq,1X + T 2

q,0

= (X − x0)(X − x0x1)(X − x0x2)(X − x0x1x2).
Then k[X∗(T )]

W = k[e1, e2, (e3/e1)
±1] where

∑
eiX

i = (X − x0)(X − x0x1)(X − x0x2)(X − x0x1x2).

Now suppose that αq,1, αq,2 ∈ k× are such that αq,1, αq,2, α−1
q,2, α

−1
q,1 are pairwise

distinct, and set γ0 := αv,1, γ1 := αv,2α
−1
v,1, γ2 := (αv,1αv,2)

−1.
We let n ⊂ O[X∗(T )]

W be the maximal ideal generated by ̟ and the ei −
ei(γ0, γ1, γ2), and for each w ∈ W we let mw be the maximal ideal of O[X∗(T )]
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generated by ̟ and the w ·xi−γi. By our assumption on αq,1, αq,2, the 8 ideals mw
are pairwise distinct, and exactly as in the proof of [BCGP21, Lem. 2.4.36], we see
that O[X∗(T )]n is a semi-local ring whose maximal ideals are the mw. In particular
if M is an O[X∗(T )]-module, we can write

Mn = ⊕w∈WMmw .

Lemma 7.4.11. Suppose that R is a commutative ring, and that G is a finite
group. If H is a subgroup of G then we write eH :=

∑
h∈H h ∈ R[G], and let [G]H =∑

g∈G/H g ∈ R[G] (the coset representatives being chosen arbitrarily). Then if M
is a finite projective left R[G]-module, we have

(1) MH = eHM .
(2) MG = [G]HM

H .
(3) If S is any R-algebra, then (M ⊗R S)H =MH ⊗R S.
(4) The natural maps MH → M and M → MH induce isomorphisms of R-

modules
HomR(MH , R)

∼−→ HomR(M,R)H ,

HomR(M,R)H
∼−→ HomR(M

H , R).

Proof. Writing M as a direct summand of a free R[G]-module, we reduce to the
case M = R[G]. Then the first part is an easy calculation, while the second part
follows from the first and the relation [G]HeH = eG, which is immediate from the
definitions. The third part is immediate from the first.

Turning to the final part, it is easy to see that the isomorphismHomR(MH , R)
∼−→

HomR(M,R)H holds for any finite left R[G]-module, projective or otherwise. It re-
mains to show that if M is projective then HomR(M,R)H

∼−→ HomR(M
H , R). We

may again assume that M = R[G], and since R[G] is a free R[H ]-module, we can
furthermore assume that H = G. We can identify R[G] with HomR(R[G], R) by
sending [1] to the map φ such that φ

(∑
g xgg

)
= x1. Combining this with the usual

identification of R[G]G with R via the trace map, we see that HomR(M,R)G is
a free R-module of rank one generated by the image of φ. By part (1), we have
R[G]G = R · eG. Since φ(eG) = 1, we are done. �

Lemma 7.4.12. Suppose that αq,1, αq,2 ∈ k× are such that αq,1, αq,2, α−1
q,2, α

−1
q,1 are

pairwise distinct, and define ideals mw, n as above.
Let R be an object of CNLO, and let N be an R-module with a smooth action

of GSp4(Qq), with the property that if K2 E K1 are compact open subgroups of
GSp4(Qq), then NK2 is a finite projective R[K1/K2]-module.

Then for each w ∈W the projection

prw : (NGSp4(Zq))n → (N Iw(q))mw (7.4.13)

is an isomorphism.

Proof. Take K1 = GSp4(Zq), K2 = ker
(
GSp4(Zq) → GSp4(Fq)

)
. Set G =

K1/K2 = GSp4(Fq), and let H = Iw(q)/K2 = B(Fq) < G. Write M = NK2 ,
so that by assumption M is a finite projective R[G]-module, and we have MG =
NGSp4(Zq) and MH = N Iw(q).

By Nakayama’s lemma and Lemma 7.4.11(3), we can and do assume from now
on that R = k. Let [GSp4(Zq)] ∈ H be the Hecke operator which is the indicator
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function on GSp4(Zq). By Lemma 7.4.11(2) we have

NGSp4(Zq) = [GSp4(Fq)]B(Fq)(N
Iw(q)) = [GSp4(Zq)](N

Iw(q)),

where the second equality follows from the very definition of the Hecke operators.
We claim that (under our assumption that R = k) the Hecke operator [GSp4(Zq)]
is an inverse to prw.

To see this, note firstly that by the Bruhat decomposition we have

[GSp4(Zq)] =
∑

w∈W

w

(where we are using the identification H ⊗O k = k[X∗(T ) ⋊ W ]). We have the
decomposition

(N Iw(q))n = ⊕w∈W (N Iw(q))mw ,

so we can write any x ∈ (N Iw(q))n as x =
∑
w∈W xw for unique elements xw ∈

(N Iw(q))mw , and in particular if x ∈ (NGSp4(Zq))n then prw(x) = xw . By the
definition of the mw, we see that the action of W on (N Iw(q))n is via w1xw2 = xw1w2

for all w1, w2 ∈ W .
We can therefore compute that if x ∈ (NGSp4(Zq))n then [GSp4(Zq)] ◦ prw(x) =

[GSp4(Zq)]xw =
∑
w′∈W w′xw =

∑
w′∈W xw′w = x, while if y ∈ (N Iw(q))mw then

prw ◦[GSp4(Zq)](y) = prw
(∑

w′∈W w′y
)
= y, as required. �

Remark 7.4.14. The second half of the proof of Lemma 7.4.12 is essentially identi-
cal to the proof of [Whi22, Prop. 5.10] in the special case that G = GSp4 and P = B.
Indeed note that while it is assumed there that p ∤ #W , all that is used in the proof
is that p ∤ #WL, where L is the Levi factor of P ; and for P = B the group WL is
trivial.

We now establish Hypothesis 7.2.1 (4).

Lemma 7.4.15. The natural pullback map MKp → MKp
1 (QN ) induces an isomor-

phism of RSQN
-modules (MN )∆QN

→M .

Proof. First, we have that

(MN )∆QN
= HomΛGSp4,Q((MKp

0 (QN ) ⊗OJT (Zp)K ΛGSp4,Q)|·|
2

,ΛGSp4,Q)mQN ,mr,mQN

by part (4) of Lemma 7.4.11 and Lemma 7.4.7. We claim that the map

(MKp ⊗OJT (Zp)K ΛGSp4,Q)
|·|2

m,mr → (MKp
0 (QN ) ⊗OJT (Zp)K ΛGSp4,Q)

|·|2

mQN ,mr,mQN

is an isomorphism. It suffices to see (imposing that the central character acts by
| · |2) that the map

(MKp ⊗OJT (Zp)K ΛGSp4,Q)
|·|2,QN∪{r}
m,mr

→ (MKp
0 (QN ) ⊗OJT (Zp)K ΛGSp4,Q)

|·|2,QN∪{r}

mQN ,mr,mQN

is an isomorphism. Here the subscript (| · |2, QN ∪ {r}) indicates that the central
character acts by | · |2 up to primes in QN ∪ {r} (as in Lemma 7.3.8).

Let K(QN) =
∏
lK(QN)l ⊂ GSp4(A

∞,p) be defined by
{
Kp(QN )l = Kp

l if l 6∈ QN ,
K(QN )l = ker

(
GSp4(Zl)→ GSp4(Fl)

)
if l ∈ QN

By Lemma 7.3.8(1), (MK(QN )⊗OJT (Zp)K ΛGSp4,Q)
|·|2,QN∪{r}

mQN ,mr
is a finite projective

ΛGSp4,Q[
∏
q∈QN

GSp4(Fq)]-module. We conclude by Lemma 7.4.12. �
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We summarize our results so far in the following proposition; we remind the
reader that at this point we do not know that Mq is nonzero. Indeed, even if we
knew that ρ was modular, it could be that our choice of subgroups Kl for l ∈ S
forces Mq to be zero. In Proposition 7.5.10 we will establish sufficient conditions
under which Mq is free of rank 1.

Proposition 7.4.16. Assume that ρ satisfies Hypothesis 7.1.3, and let S be the
deformation problem (7.1.5) with S as in Definition 7.4.2. Write q for the kernel
of the homomorphism RS → O corresponding to ρ. Define M as in (7.4.6). Then
Mq is a finite free (RS)q-module.

Proof. By Lemmas 7.3.8 and 7.4.15, our construction of the modules MN above
gives the data of Hypothesis 7.2.1. The result is then immediate from Proposi-
tion 7.2.3. �

7.5. Multiplicity one. Before establishing our main multiplicity one results we
begin with some background material and preliminary lemmas. We refer to Sec-
tion 1.8.22 for the relationship between cuspidal automorphic representations π of
GSp4 /Q which are of general type, and cuspidal automorphic representations Π
of GL4 /Q of symplectic type.

Assume from now on that F = Q, and that furthermore π has central character
ωπ = | · |2. We now recall some consequences of the theory of newforms due
to Roberts and Schmidt [RS07]. (This theory assumes that we are working with
representations of trivial central character, but this is harmless, as we can reduce
to this case by twisting π by the everywhere unramified character | · |.) Recall that
for each prime l and each n ≥ 0, the paramodular group of level n is

Par(ln) := {g ∈ GSp4(Ql) | ν(g) ∈ Z×
l } ∩




Zl Zl Zl l−nZl
lnZl Zl Zl Zl
lnZl Zl Zl Zl
lnZl lnZl lnZl Zl




We say that πl is paramodular if (πl)Par(l
n) 6= 0 for some n. The minimal such n is

the paramodular level Nπl
of πl.

The following result summarizes the facts that we need about paramodular vec-
tors in cuspidal automorphic representations π of GSp4 /Q.

Proposition 7.5.1. Suppose that π is of general type.
(1) For each prime l, there is a unique paramodular representation in the L-

packet containing πl, namely the unique generic representation.
(2) If πl is generic, then (πl)

Par(l
Nπl ) is one-dimensional.

(3) The paramodular level Nπl
coincides with the conductor of the corresponding

L-parameter recGT(πl).
(4) If π is regular algebraic and ρπ,p is irreducible, then Nπl

coincides with the
conductor of ρπ,p|GQl

.

Proof. The first part is [Sch18, Thm. 1.1], the second is [RS07, Thm. 7.5.1], and
the third is [JLRS23, Thm. 2.3.5]. The last claim is [BCGP21, Thm. 2.7.1(2)]
(see e.g. [Ulm16] for the various equivalent definitions of the conductor of a Galois
representation). �

For the following lemma we return to the setting of Section 6.1.
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Lemma 7.5.2. Suppose that v ∤ p and that x1, x2 are two closed points of SpecR�
v [1/p]

which lie on a common irreducible component, and are such that the correspond-
ing lifts ρx1 , ρx2 of ρ|G

F
+
v

are both pure. Then we have the equality of conduc-

tors a(ρx1) = a(ρx2).

Proof. Let x′i be the image of xi in the spectrum of the GL4 lifting ring for ρ|G
F

+
v

.
These points lie on a common irreducible component by the assumption on x1, x2,
and the purity of the ρxi ensures that this is the unique irreducible component that
either lies on (e.g. by [BG19, Cor. 3.3.4] and the definition of purity), The result
follows immediately from [BLGGT14, Lem. 1.3.4(2)] (a lemma of Choi). �

We now establish some instances of solvable descent for GSp4.

Proposition 7.5.3.

(1) If Π is a | · |2-self dual regular algebraic cuspidal automorphic representation
of GL4 /Q, then (Π, | · |2) is of symplectic type.

(2) Let F/Q be a solvable Galois extension with F CM. Suppose that

ρ : GQ → GSp4(Qp)

has multiplier ε−1, that ρ|GF is irreducible, and that there is a RACSDC
automorphic representation πF of GL4 /F such that ρ|GF

∼= ρπF ,p ⊗ ε.
Then there is a regular algebraic cuspidal automorphic representation π
of GSp4 /Q with central character | · |2, such that ρ ∼= ρπ,p.

(3) Let F+/Q be a solvable Galois extension with F+ totally real. Suppose
that ρ : GQ → GSp4(Qp) has multiplier ε−1, that ρ|GF+ is irreducible, and
that there is a regular algebraic cuspidal automorphic representation πF+

of GSp4 /F
+, with central character | · |2, and such that ρ|GF+

∼= ρπF+ ,p.
Then there is a regular algebraic cuspidal automorphic representation π

of GSp4 /Q with central character | · |2, such that ρ ∼= ρπ,p.

Proof. We begin with part (1). If the pair (Π, | · |2) is not of symplectic type, then
it is of orthogonal type, so it descends to an automorphic representation πα of
some GSpinα4 /Q, with central character | · |2. The central character of πα∞ can be
read off from its L-parameter. Under our assumption that Π is regular algebraic
(i.e. C-algebraic), it follows from [Pat15, Lem. 3.2(3), 3.4] that the central character
must be odd, which means in particular that it cannot equal |·|2. This contradiction
implies that (Π, | · |2) is of symplectic type, as claimed.

By part (1), in each of parts (2) and (3) it suffices to show that there is a | · |2-
self dual regular algebraic cuspidal automorphic representation Π of GL4 /Q with
ρ ∼= ρΠ,p. Indeed by (1) such a Π is of symplectic type, and we can take π to
be a descent of Π. Then part (2) is a standard consequence of solvable descent
for GL4, and in particular is a special case of [BLGGT14, Lem. 2.2.2] (bearing
in mind [BLGGT14, Lem. 2.2.1], which takes care of the twist by ε). Finally
for part (3), since ρπ

F+ ,p is irreducible, we see that πF+ is of general type. Its
transfer ΠF+ is | · |2-self dual, and the result follows from another application
of [BLGGT14, Lem. 2.2.2]. �

We now return to our running hypotheses, so that ρ : GQ → GSp4(O) is a
continuous representation satisfying Hypothesis 7.1.3, r is a fixed neat prime for ρ,
and S is the deformation problem (7.1.5) with S as in Definition 7.4.2. Write q for
the kernel of the homomorphism RS → O corresponding to ρ.
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Lemma 7.5.4. Every irreducible component of SpecRS containing q has dimension
at least dimΛGSp4,Q.

Proof. We claim there is a presentation

R△
p Jx1, . . . , xrK/(f1, . . . , fr+14)

∼−→ RS

for some r ≥ 0. Indeed since {p} ( S, the map [Bal12, (4.2.1)] is injective, and
the existence of such a presentation is a consequence of [Bal12, Prop. 4.2.5, Rem.
4.2.6]. Now by Hypothesis 7.1.3 (6) and Lemma 6.2.2 (3), ρ|GQp

lies on a unique
irreducible component of SpecR△

p which has dimension dimΛGSp4,Q + 14 and the
result follows.

�

We now put ourselves in the setting of Section 7.4, and if l ∈ S r {r}, then we
take

Kl = Par(l
a(ρ|GQl

)
). (7.5.5)

Define M as in (7.4.6). Let q′ be the kernel of a homomorphism RS → O cor-
responding to a lift ρ′ : GQ → GSp4(O) of ρ, and assume that q′ and q lie on a
common irreducible component of SpecRS [1/p] (in particular, we could take q′ = q,
but we will also consider other choices below). Then by the definition of M , we
have

dimE(M/q′M)[1/p] = dimE

(
(MKp)mp,mr,|·|2 ⊗O E

)
[q′]. (7.5.6)

Definition 7.5.7. If R ∈ Z≥1, we say that a Qp-point of SpecΛGSp4,Q is of R-

regular classical weight if the corresponding characters θ1, θ2 : IQp → Q
×

p are
algebraic with respective Hodge–Tate weights h1, h2 satisfying h2−h1, 1−2h2 ≥ R.

Lemma 7.5.8. For all sufficiently large R, if the point of SpecΛGSp4,Q determined
by q′ is of R-regular classical weight, and Mq′ is nonzero, then dimE(M/q′M)[1/p] =
1.

Proof. We claim that dimE(M/q′M)[1/p] is equal to
∑

π

dimE(π
∞)K

pIw(p),Up,1=α
′
p,Up,2=α

′
pβ

′
p,βr,1=α

′
r,1,βr,2=α

′
r,1α

′
r,2 (7.5.9)

where the sum is over the cuspidal automorphic representations π of weight deter-
mined by q′ with central character |·|2, with π∞ respectively holomorphic if l(w) = 0
or 3, and generic if l(w) = 1 or l(w) = 2, and which satisfy ρπ,p ∼= ρ′; and α′

p, β
′
p are

the lifts of αp, βp determined by q′, and similarly for α′
r,1, α

′
r,2 (where the βr,i act

as in (7.4.4)). Indeed (7.5.6) and Theorem 7.3.1 (2) reduce this to the correspond-
ing assertion about the (cuspidal or otherwise) coherent cohomology of Shimura
varieties, which holds by a standard argument using [Har90, BHR94, HZ01]. More
precisely, the results of Harris–Zucker allow us to reduce to the case of interior
cohomology, and the argument is then identical to that of the proof of [BCGP21,
Thm. 3.10.1].

Since ρ is absolutely irreducible, so is ρ′, so any such π is of general type. We
need to show that there is a unique π with a nonzero contribution to (7.5.9), and
that this contribution is 1. By strong multiplicity one, it suffices to show that for
each prime l, there is a unique πl in the L-packet corresponding to ρ′|GQl

which
contributes, and that it contributes with multiplicity one. For l 6= p, r, this follows
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from our choice of Kp, together with Proposition 7.5.1 and Lemma 7.5.2. For l = p
it follows from ordinarity and the assumption that q′ is in R-regular classical weight
that πp is an irreducible unramified principal series representation, and that the
simultaneous eigenspaces for the Up,i-operators are 1-dimensional (see [BCGP21,
Prop. 2.4.24, 2.4.26]). Finally for l = r, since ρ′ and ρ lie on a common irreducible
component of SpecRS [1/p], we know that ρ|GQr

has unipotent ramification, so πr
has Iw(r)-fixed vectors. Since ρ(GQr ) is regular semi-simple, we again conclude
that the simultaneous βr,1, βr,2-eigenspaces are 1-dimensional, as required. �

We now prove our multiplicity one criterion. For the convenience of the reader,
we incorporate our running hypotheses into the statement of the result.

Proposition 7.5.10. Suppose that ρ : GQ → GSp4(O) satisfies the following
conditions.

(1) ρ is unramified at all but finitely many primes.
(2) ν ◦ ρ = ε−1.
(3) ρ(GQ(ζp∞ )) is integrally enormous.
(4) ρ is pure.
(5) ρ|GQp

is ordinary, semistable of weight 2, and p-distinguished.

Suppose furthermore that either p = 2, and there is a solvable CM extension F/Q
and an ordinary RACSDC automorphic representation π of GL4 /F such that:

(A1) rπ,2 ∼= ρ|GF .
(A2) ρ(GF ) is nearly adequate.
(A3) ρ(GF ) contains a regular semi-simple element.
(A4) There exists an infinite place v of F+ such that the polarized pair (ρ|GF , 1)

is strongly residually odd at v.
(A5) ρ(GQ(i)) = ρ(GQ).

Or alternatively, suppose that p > 2, and there exists an ordinary cuspidal auto-
morphic representation π of GSp4 /Q with central character | · |2 such that:

(B1) ρπ,p ≃ ρ.
(B2) ρ is GSp4-reasonable, in the sense of [Whi22, Defn. 3.19].
(B3) ρ is tidy, in the sense of [BCGP21, Defn. 7.5.11].
(B4) ρ(GQ)r Sp4(Fp) contains a regular semi-simple element.
(B5) There is a compatible choice of p-stabilizations of πp and ρ|GQp

such that
ρπ,p|GQp

lies on a unique component of SpecR△
p and ρ|GQp

lies on the same
component.

Let r be a neat prime for ρ, and define S,S,M as in Definition 7.4.2 and (7.1.5),
(7.4.6) respectively, where we make the choice of level structure (7.5.5). Let q be
the prime of RS determined by ρ. Then Mq is a free (RS)q-module of rank 1.

Proof. Note firstly that in either case ρ satisfies Hypothesis 7.1.3 (with F+ there
equal to Q), because ρ is absolutely irreducible by whichever of (A2) and (B2)
applies, and if p = 2 then ρ(GQ(i)) = ρ(GQ) by (A5). We showed in Section 7.4
that the RS-module M is part of a set of data satisfying Hypothesis 7.2.1, so Mq

is a free (RS)q-module by Proposition 7.2.3.
Recall that we have a surjection RS → TS , where the Hecke algebra TS is

defined in Definition 7.4.9, and acts faithfully on M by definition. We next show
in the case p = 2 that the induced map Rred

S [1/p]→ TS [1/p] is an isomorphism. In
the case p > 2 we prove the weaker statement that the image of the corresponding
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map on spectra contains an irreducible component containing q. In either case it
follows that Mq is nonzero, and we will conclude by showing that its rank is one.

We begin with the case p = 2. After possibly replacing F+ with a quadratic
extension, we can and do assume that all places of F+ lying over S split in F , as
well as any place lying under a place at which π is ramified. After making a further
solvable extension of totally real fields, we can furthermore assume that F/F+ is
everywhere unramified and for each place v|2 of F , ρ|GFv

is trivial and we have
[Fv : Q2] > 7; so by Remark 5.6.7 restriction induces a map from the deformation
problem D△

2 of Section 6.2 to the deformation problems D△
v of Proposition 5.6.6.

Let T be the set of places of F+ which lie over places in S, and let RT,ord be
the global deformation problem for ρ|G

F+
defined in Definition 5.7.11. This is by

definition a Λ-algebra, where Λ is as in (5.7.3). Then we have a morphism of Λ-
algebras RT,ord → RS (the Λ-algebra structure on RS comes from the natural
map ΛGSp4,F

+ → ΛGSp4,Q), defined by applying the construction of Corollary 5.1.6
to (ρ⊗ε−1)|GF+ . (Note that this construction indeed gives a morphism of deforma-
tion problems rather than just framed deformation problems, because conjugating
a lift of ρ by a matrix B ∈ ĜSp4(R) corresponds to conjugating the corresponding
lift of rρ|G

F+
by (B, ν ◦ (B)) ∈ Ĝ◦4 (R).)

By our assumptions, we can apply Theorem 5.7.14, and conclude in particular
that RT,ord is a finite Λ-algebra. We have the commutative diagram

Λ //

��

RT,ord

��

ΛGSp4,Q
// RS

// TS ,

and since RT,ord → RS is a finite morphism (by a standard argument exactly as
in the proof of [BLGGT14, Lem. 1.2.3]), we deduce that RS is a finite Λ-algebra,
and thus a finite ΛGSp4,Q-algebra. Combining this finiteness with Lemma 7.5.4, it
follows that every irreducible component of SpecRS [1/2] dominates an irreducible
component of SpecΛGSp4,Q[1/2], and thus that there is a dense set of closed points
of SpecRS [1/2] of R-regular classical weight. Let ρ′ : GQ → GSp4(Q2) be the
lift of ρ corresponding to such a point; then Theorem 5.7.14 shows that ρ′|GF is
automorphic. By solvable descent (see Proposition 7.5.3 (2)), we deduce that ρ′

corresponds to a point of SpecTS . Since this applies to a dense set of points, we
see that the surjection Rred

S [1/2]→ TS [1/2] is an isomorphism, as claimed.
We now turn to the case p > 2. We choose a solvable totally real extension F+/Q

disjoint from Q
ker ρ

, in which p splits completely, and so that for every prime l 6= p
for which either ρ|GQl

or ρπ,p|GQl
ramifies, if v | l is a prime of F+, then:

• qv ≡ 1 (mod p), and if p = 3, then qv ≡ 1 (mod 9)
• ρ|G

F
+
v

is trivial.
• If ρ′ is any lift of ρ|GQq

then ρ′|G
F

+
v

is unipotently ramified. (In particular

ρ|G
F

+
v

and ρπ,p|G
F

+
v

are unipotently ramified.)

For the third point, see Lemma 5.6.2 which we stated for p = 2, but whose proof
makes no use of this assumption. We put ourselves in the setting of Section 6.3
with the automorphic representation π there being the base change πF+ of our π
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to F+, and R the set of places lying above the primes l 6= p where either ρ|GQl
or

ρπ,p|GQl
ramifies. Then Hypothesis 6.3.1 is satisfied.

We have a diagram

ΛGSp4,F
+ //

��

RS1

��

ΛGSp4,Q
// RS

// TS

where RS is a finite RS1-algebra (again, this follows exactly as in [BLGGT14, Lem.
1.2.3], using Lemma 7.4.8 in place of [CHT08, Lem. 2.1.12]).

Consider a minimal prime Q of RS contained in the prime corresponding to ρ.
By assumption (B5), the map RS1 → RS/Q factors through the quotient RS1,πF+

defined in section 6.3, which is finite over ΛGSp4,F
+ by Theorem 6.3.4. It follows

that RS1/Q is finite over ΛGSp4,Q. As it also has dimension at least that of ΛGSp4,Q

by Lemma 7.5.4, it follows that SpecRS1/Q→ SpecΛGSp4,Q is surjective. Arguing
exactly in the previous case we use Theorem 6.3.4 and Proposition 7.5.3 (3) at a
dense set of closed points of R-regular classical weight to show that Q contains the
kernel of RS → TS , and consequently Mq is nonzero, as claimed.

It remains to show that Mq is of rank 1. Let η be the generic point of any irre-
ducible component of SpecRS [1/p] containing ρ. Since Mq is a nonzero free (RS)q-
module, it suffices to show that Mη has rank 1 over (RS)η. Since the rank can
only increase under specialization, it suffices to show that there is some other
ρ′ : GQ → GSp4(Qp) corresponding to a closed point of the component deter-
mined by η, given by an ideal q′ such that Mq′ is free of rank 1 over (RS)q′ .

To see this, note that we have seen above that SpecRS [1/p] has a dense set of
closed points of R-regular classical weight. Let q′ correspond to such a point (on
the component η); then we are done by Lemma 7.5.8. �

Theorem 7.5.11. Suppose that ρ satisfies the hypotheses of Proposition 7.5.10,
and that in addition either:

(1) the Zariski closure of ρ(GQ) contains Sp4; or
(2) the Zariski closure of ρ(GQ) contains SL2× SL2, and ρ is irreducible but

becomes reducible on some index two subgroup GE.
Then ρ is modular.

Proof. This is immediate from Proposition 7.5.10 and (7.5.6) (with q′ = q), Theo-
rem 7.3.1 (3) and Theorem 4.12.4, bearing in mind Remark 4.12.5. �

8. A 2-adic modularity theorem for abelian surfaces

In this section, we prove a modularity theorem (Theorem 8.3.2) for abelian sur-
faces A/Q which are ordinary at 2 and whose mod-2 representation ρ : GQ →
GSp4(F2) ≃ S6 has a very particular form. Specifically, we demand that the im-
age Γ of GQ contains a copy of A5 ⊂ GSp4(F2) with index at most two which acts
absolutely irreducibly on F4

2, and additionally require that the image of complex
conjugation is non-trivial and lands in A5 ⊆ Γ. After passing to the totally real
field F+ (at most quadratic) such that ρ|G

F+
has image A5, we may identify ρ

with the symmetric cube of a 2-dimensional representation with image A5, and this
allows us to deduce that ρ is residually modular (in regular weight) using known
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cases of the Artin conjecture for totally real fields together with symmetric cube
functoriality. In light of our previous modularity lifting theorems (in particular The-
orem 7.5.11), the remaining work required to show that A is modular is to show
that the representation ρ is nearly adequate in the sense of Definition 5.3.3 and
strongly residually odd in the sense of Definition 5.2.1. Using our results from §5.2
and §5.3, this reduces to some facts concerning the modular representation theory
of A5 in characteristic 2.

In §8.1, we recall some standard facts about 2-torsion of abelian surfaces and fix
once and for all a choice of isomorphism S6 → GSp4(F2). In §8.2, we carry out the
necessary group-theoretic arguments concerning the mod-2 representation theory
of A5. Finally, in §8.3, we prove that the representations ρ we are considering
are residually modular (although not a priori in singular weight), and then use
Theorem 7.5.11 to prove the desired modularity theorem.

8.1. The 2-torsion of an abelian surface. We begin by recalling some standard
facts concerning the relationship between Weierstrass points on a genus two curve
and the 2-torsion on its Jacobian. One source for the facts cited in this section is
the introduction to [BFvdG08].

Let A be the Jacobian of a genus two curve X over a field of characteristic 6= 2.
There is a Weil pairing on A[2] which defines a symplectic pairing 〈, 〉. If one denotes
the Weierstrass points (over the algebraic closure) by ri for i = 1, . . . , 6, then for
i 6= j the element ri − rj has order 2, and is thus a non-trivial element of A[2].
The 2-torsion points ri−rj for i < j are distinct, and they are precisely the nonzero
elements of A[2]. Moreover, with respect to the Weil pairing, one has:

〈ri − rj , rk − rl〉 = #{i, j} ∩ {k, l} (mod 2) (8.1.1)

for i 6= j, k 6= l.
In [BPP+19, 5.1], the following identification ι : S6

∼−→ Sp4(F2) = GSp4(F2) is
given: let U := F6

2 with the bilinear form 〈x, y〉 = ∑6
i=1 xiyi, let U0 ⊂ U denote

the trace zero subspace, and let L be the span of (1, 1, . . . , 1) ∈ U0. Let S6 act in
the obvious way on = F6

2. Then A[2] ≃ U0/L where the Weil pairing is the pairing
inherited from U . To see that this isomorphism is compatible with the action
on the Weierstrass points, it suffices to identify U with the F2-space generated
by ri for i = 1, . . . , 6. Certainly the ri − rj land in U0, and so it suffices to show
that the divisor

∑
(ri) is congruent modulo 2 to a principal divisor. If one writes

an affine model for X as y2 = (x − r1)(x − r2) · · · (x − r6) and {1, 2, 3, 4, 5, 6} =
{i, j, k} ∪ {i′, j′, k′} is any partition, then

ri − ri′ + rj − rj′ + rk − rk′ = (x− ri) + (x− rj) + (x− rk)− (y)

is principal. Finally, the compatibility of the Weil pairing is a consequence of
equation (8.1.1).

Under this identification, there are two conjugacy classes of subgroup S5 ⊂ S6,
which one can denote S5(a) and S5(b), where S5(b) is the subgroup which has a
fixed point (we use here the same notation as [BPP+19, §5.1]), that is, S5(b) is the
standard copy of S5 in S6 (and below A5(b) denotes the copy of A5 in S5(b)). It
follows that X has a rational Weierstrass point, if and only if ρA,2 factors through
a conjugate of S5(b).

The S6-representation U is the natural permutation representation. Hence U as
an A5(b) representation is also the direct sum of the trivial representation and the
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standard representation. The Brauer character of U satisfies

χ(1) = 5 + 1, χ((1, 2, 3, 4, 5)) = χ((1, 3, 5, 2, 4)) = 0 + 1, χ((1, 2, 3)) = 2 + 1.

Consequently, if we let V = A[2] as an A5-representation, the Brauer character
of V is

χ(1) = 4, χ((1, 2, 3, 4, 5)) = χ((1, 3, 5, 2, 4)) = −1, χ((1, 2, 3)) = 1.

Lemma 8.1.2. The representation V ⊗ F2 is the unique irreducible modular rep-
resentation of A5 over F2 of dimension 4.

Proof. This follows directly from the Brauer character table of A5; see Lemma 8.2.1.
�

We can make the identification ι : S6
∼−→ Sp4(F2) = GSp4(F2) completely

explicit:

Lemma 8.1.3. An explicit isomorphism S6 → GSp4(F2) is given by:

(12)(34)(56) 7→




1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1


 , (12) 7→




1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1


 ,

(12345) 7→




0 0 1 1
1 1 0 0
1 1 1 0
1 0 1 1


 ,

Proof. Let e1 = r1 − r2, e2 = r3 − r4, e3 = r3 − r5, and e4 = r1 − r6. Then
the ei ∈ U0 span U0/L ≃ A[2], and the corresponding Weil pairing agrees with our
usual choice of symplectic form J . �

8.2. The modular representations of A5. We now establish some easy group-
theoretic lemmas and also prove some facts concerning mod-2 representations of A5.
Everything here is elementary, but is included for completeness. We begin by
describing the irreducible modular representations of A5 in characteristic 2.

Lemma 8.2.1. Let k be a subfield of F2 which contains F4. Then the irreducible
representations of A5 over k are as follows; moreover, these representations are all
absolutely irreducible, and in particular all absolutely irreducible representations of
A5 over F2 are defined over F4.

(1) The trivial representation k.
(2) A two-dimensional representation U obtained by choosing an identifica-

tion A5 ≃ SL2(F4) and then taking the tautological representation of SL2(F4)
over k.

(3) The conjugate Uσ of U by Gal(F4/F2) acting on k.
(4) A four-dimensional representation V which is defined over F2, which may

be identified with U ⊗ Uσ, and also with Sym3(U). This lifts to the unique
irreducible representation of A5 in characteristic zero of dimension four.
The representation V has a regular semi-simple element of order 5.
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Furthermore: there are exactly two blocks of A5, consisting of the trivial block and
a block of defect zero consisting only of V . In particular, V defines a projective
module for k[A5]. The Brauer character table of A5 is given as follows (where ζ is
a 5th root of unity):

The Brauer character table of A5

A5 dim (1, 2, 3, 4, 5) (1, 3, 5, 2, 4) (1, 2, 3)

k 1 1 1 1
U 2 ζ + ζ−1 ζ2 + ζ−2 −1
Uσ 2 ζ2 + ζ−2 ζ + ζ−1 −1
V 4 −1 −1 1

Proof. The group A5 has 4 conjugacy classes of order prime to 2, and thus has 4
distinct irreducible representations over k. The trace of (1, 2, 3, 4, 5) on U is ζ +
ζ−1. For the Brauer character table, see [Kar95, Ch 4, Example 8.5] or [Ser77a,
Example 18.6]. From this table, the identifications V = U ⊗Uσ and V = Sym3(U)
follow. (One can also deduce these identifications from the Steinberg tensor product
theorem.) The facts concerning the blocks can be read off from the decomposition
matrix and Cartan matrix given in [Kar95, Ch 4, Example 8.5]. The projectivity
of V is also immediate from [Ser77a, Prop. 46], since 4 = dim(V ) is the largest
power of 2 dividing |A5| = 4 · 15. The fact that the order 5 elements act with
distinct eigenvalues on V is also apparent from the character table. �

Lemma 8.2.2. The representation V of G = A5 is nearly adequate (in the sense
of Definition 5.3.3).

Proof. By definition, we need to show that
(1) V is weakly adequate.
(2) H1(G, k) = 0.
(3) H1(G, adV ) = 0.

The first claim follows directly from [GHT17, Prop 9.1] since A5 = SL2(F4)
and 4 = 22 > 3. (We also give a simple direct proof in Lemma 8.2.9 below.)
The second claim is immediate from the fact that A5 is perfect. For the third
claim, recall that V is projective, and thus adV ≃ V ⊗ V is also projective (e.g.
using that a projective module is a direct summand of a free module, and ten-
sor products commute with direct sums and preserve freeness.) Hence we deduce
that Hn(G, adV ) = 0 for n > 0. �

Remark 8.2.3. From the exact sequence 0 → k → ad → ad /k → 0, we deduce
thatH1(G, ad /k) ≃ H2(G, k) ≃ k since the Schur multiplier of A5 is Z/2Z. Thus V
is not adequate in the sense of [Tho17, Defn. 2.20].

Lemma 8.2.4. Suppose that F+ is totally real and that ρ : GF+ → GSp4(F2) is
an absolutely irreducible representation with image G = A5(b). If v is an infinite
place such that ρ(cv) is non-trivial, then (ρ|GF , 1) is strongly residually odd at v in
the sense of Definition 5.2.1.

Proof. non-trivial involutions A in A5(b) ⊂ GSp4(F2) ≃ S6 are characterized by
being squares of order 4 elements. This is most obvious by thinking about con-
jugacy classes in S6 and noting that non-trivial involutions in A5 have the cycle
shape (∗∗)(∗∗); this conjugacy class is also preserved by the outer automorphism
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so this description does not depend on any choice of isomorphism from GSp4(F2)
to S6. Judiciously choosing a suitable order 4 element σ of GSp4(F2), we find that
any such A is conjugate in GSp4(F2) to

A ∼ σ2 =




0 1 0 0
1 0 0 1
0 0 0 1
0 0 1 0




2

=




1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1


 =

(
I2 J2
0 I2

)
,

so that in the notation of Section 5.2.4, S2J2 = J2 · J2 = I2 which is manifestly
not alternating. (In the explicit isomorphism S6 ≃ GSp4(F2) of Lemma 8.1.3,
we have σ = (1423)(56) and σ2 = (12)(34).) Hence the result follows from
Lemma 5.2.7. (See also Remark 5.2.8.) �

Proposition 8.2.5. Suppose that F+ is a totally real field, and that ρ : GF+ →
GSp4(F2) has image A5(b). Suppose that there is an infinite place v of F+ such that
ρ(cv) 6= 1. Then for any imaginary CM quadratic extension F/F+, the polarized
pair (ρ|GF , 1) determined by ρ is nearly adequate and strongly residually odd at v.
Furthermore, ρ(GF ) contains a regular semi-simple element.

Proof. The representation of G = A5(b) in GSp4(F2) is irreducible and so coin-
cides with the representation V of dimension 4 in Lemma 8.2.1 part (4), and so
in particular has a regular semi-simple element of order 5. By Lemma 8.2.2, V is
nearly adequate. Since G is perfect, we have ρ(GF ) = G, so the polarized pair
(ρ|GF , 1) is indeed nearly adequate. Finally, it is strongly residually odd at v by
Lemma 8.2.4. �

We end this section with our promised direct proof that V is weakly adequate.
Recall firstly that if W is a representation of a finite group G over a field k of
characteristic 2, then in addition to the usual short exact sequence

0→ ∧2W →W ⊗W → Sym2W → 0, (8.2.6)

there is a short exact sequence

0→W (1)→ Sym2W → ∧2W → 0, (8.2.7)

where the first map is the inclusion of the subspace spanned by the x⊗x for x ∈W ,
and the second map is the one induced by x⊗y 7→ x∧y. We can and do identifyW (1)
with the Frobenius twist of W .

Lemma 8.2.8. The socle of V ⊗ V is k ⊕ V .

Proof. Consider (8.2.6) and (8.2.7) with G = A5 and W = V . Then V = V (1),
and since V is projective, we see that V ⊗ V splits as a direct sum of V and an
extension of ∧2V by itself. Since U,Uσ and consequently V are all self-dual, and
since V ⊗ V ∼= Hom(V, V ) contains exactly one copy of k in its socle by Schur’s
lemma, it suffices to prove that the socle of ∧2V is k.

Now considering (8.2.6) and (8.2.7) with W = U we see that U ⊗ U admits a
filtration with successive graded pieces k, Uσ, k. Similarly, Uσ⊗Uσ has a filtration
with graded pieces k, U, k. Tensoring these together, we see that the Jordan–Hölder
factors (with multiplicity) of ∧2V are k, k, U, Uσ.

Since ∧2V is Gal(F4/F2)-invariant, if either U or Uσ occurs in the socle of ∧2V ,
then they both do. Since ∧2V is self dual, however, if U and Uσ appear in the
socle of ∧2V , then they also appear in the cosocle, and therefore occur as direct



184 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

summands. If this occurs, then since H1(A5, k) = 0, the representation ∧2V would
be semi-simple, contradicting the presence of exactly one copy of k in its socle. This
contradiction completes the proof. �

The following lemma gives our second proof that V is weakly adequate (the first
was in the proof of Lemma 8.2.2).

Lemma 8.2.9. The representation V of A5 is weakly adequate.

Proof. Let M be the subspace of End(V ) = Hom(V, V ) ∼= V ⊗ V generated by
the semi-simple elements of A5. Note that M is an A5-module: if [h] is semi-
simple, then so is g.[h] = [ghg−1]. To prove that V is weakly adequate, it suffices
(by definition) to verify any of the equivalent conditions of Lemma 5.3.1; we shall
verify condition (3), namely, that M = End(V ). If M → End(V ) is not surjective,
then End(V ) has a simple quotient Q such that the composite map M → Q is
zero. The map from End(V ) to any simple quotient factors through the cosocle
of End(V ), hence it suffices to show that M surjects onto the cosocle of End(V ).
Since V is self-dual, this cosocle is isomorphic to k ⊕ V by Lemma 8.2.8. The
corresponding map End(V ) → k is the trace map, and any non-trivial element
of A5 of odd order has nonzero trace on V , so M surjects onto k.

It remains to show that M meets the direct summand V , which we will do by
showing that each element of A5 of order 3 contributes to this summand, using
the description of this summand coming from (8.2.7) with W = V . Let e1, e2
be the standard basis of U , and let eσ1 , e

σ
2 be the corresponding basis of Uσ, so

that the ei ⊗ eσj for i = 1, 2 give a basis vi,j for V . The two elements of order 3

in A5 correspond to the diagonal matrices (ω, ω−1) ∈ SL2(F4), where ω3 = 1, and
each vi,j is an eigenvector for these matrices (with eigenvalues 1, 1, ω, ω−1). The
same is true for the vi,j ⊗ vi,j , and these give a basis modulo ∧2V for the direct
summand V ⊂ V ⊗ V , so we are done. �

8.3. A 2-adic ordinary modularity theorem. In this section we will establish
our 2-adic modularity theorem (Theorem 8.3.2). We begin by proving the following
lemma which establishes residual modularity in our situation; a closely related
result was also obtained by Tsuzuki and Yamauchi, see [TY22, Thm. 4.7].

Lemma 8.3.1. Let F+ be a totally real field, and let

ρ : GF+ → GSp4(F2) ≃ S6

be a continuous Galois representation with the following properties:

(1) The image of ρ is either S5(b) or A5(b).
(2) The image of each complex conjugation has order 2 and lands in A5(b).

Then there exists a solvable extension of totally real fields E+/F+, and an imagi-
nary CM quadratic extension E/E+, such that:

• ρ(GE) = ρ(GE+) = A5(b), and
• there is an ordinary RACSDC representation π of GL4 /E with rπ,2 ∼= ρ|GE .

Proof. Let E+/F+ denote the extension of degree at most 2 corresponding to the
kernel of the composite GF+ → S5(b) → Z/2Z. Then ρ(GE+) = A5, and E+ is
totally real by the assumption on complex conjugations. Making a further solvable
base change, we can and do assume that for each place v|2, ρ|G

E
+
v

is trivial.
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Let
̺ : GE+ → SL2(F4) ≃ A5

denote the residual 2-dimensional Galois representation associated to this A5-extension.
(There are two such representations which are permuted by the outer automor-
phism; choose either.) Note that ρ = Sym3 ̺ by Lemma 8.2.1 (4).

By a theorem of Tate [Ser77b, Thm 4], the composite ̺ : GE+ → A5 →֒ PGL2(C)
lifts to a representation

̺ : GE+ → GL2(C)

with finite image (which will be some central extension of A5). Since the image
of complex conjugation under ̺ is non-trivial in PGL2(C), the image in GL2(C)
is non-scalar and hence ̺ is odd. By the odd Artin conjecture for GL2 (i.e. by
the main results of [PS16b, Sas19]), ̺ is modular. More precisely, ̺ is the Galois
representation associated to an ordinary Hilbert modular eigenform f of paral-
lel weight 1 (the ordinarity being a consequence of local-global compatibility, and
the assumption that ρ|G

E
+
v

is trivial for all v|2.). In particular f is contained in
a Hida family. Specializing this Hida family to parallel weight 2, and making a
further solvable base change if necessary, we obtain an ordinary cuspidal automor-
phic representation πE+ of GL2 /E

+ of weight 0 and trivial central character, with
rπ,2 ∼= ̺|GE+ .

Let E/E+ be an imaginary quadratic CM extension, and let π be the base
change of πE+ to E. Then the symmetric cube Sym3 π (which exists by [KS02]) is
an ordinary RACSDC automorphic representation of GL4 /E. Since ρ = Sym3 ̺,
we are done. �

We now prove the main result of this section.

Theorem 8.3.2. Suppose that A/Q is an abelian surface such that
(1) A5(b) ⊆ ρA,2(GQ) ⊆ S5(b).
(2) The image of complex conjugation has order 2 and lands in A5(b).
(3) A has good ordinary or semistable reduction at 2, and ρA,2|GQ2

is ordinary
and 2-distinguished.

Then A is modular. More precisely, there is a weight 2 cuspidal automorphic rep-
resentation π for GSp4 /Q which is ordinary at 2, and satisfies ρπ,p ∼= ρA,p for
all p.

Proof. As recalled in Section 1.8.23, the representation ρA,2 unramified at all but
finitely many primes, is pure, and ν ◦ ρA,2 = ε−1. By Lemma 8.3.1, there is an
imaginary CM field E and an ordinary RACSDC automorphic representation π
of GL4 /E such that E/Q is solvable, ρA,2(GE+) = A5(b), and rπ,2 ∼= ρA,2|GE .
Making a further solvable extension, we can and do assume that furthermore E/E+

is everywhere unramified, and all of the places v|2 of E+ split in E, as do all places
lying under a place at which π is ramified, and all places lying over a place at
which A does not have good reduction.

By Theorem 7.5.11 it therefore suffices to check that:
(a) the Zariski closure of ρA,2(GQ) contains Sp4.
(b) ρA,2(GQ(i)) = ρA,2(GQ).
(c) ρA,2(GQ(ζ2∞ )) is integrally enormous.
(d) ρA,2(GE) is nearly adequate.
(e) ρA,2(GE) contains a regular semi-simple element.
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(f) There exists an infinite place v ofE+ such that the polarized pair (ρA,2|GE , 1)
is strongly residually odd at v.

Since A5(b) ⊆ ρA,2(GQ), it follows from [Zar00, Thm. 2.1] that End(AQ) = Z.
By [Ser00, Thm 3] (see also [Pin98, Thm 5.14]), this implies that the Zariski closure
of ρA,2(GQ) contains Sp4, which verifies condition (a). To see that ρA,2(GQ(i)) =
ρA,2(GQ) (condition (b)), we note that the assumptions (1) and (2) imply that
ρA,2(GQ) contains at most one normal subgroup of index 2, and that such a sub-
group corresponds to a real quadratic field, and in particular not to Q(i). For
condition (c), note that A5(b) ⊆ ρA,2(GQ), so we see that ρA,2(GQ) contains a reg-
ular semi-simple element (of order 5), and then by Corollary 7.1.4 we deduce that
ρA,2(GQ(ζ2∞ )) is integrally enormous. Conditions (d), (e), and (f) are immediate
from Proposition 8.2.5. �

9. Local Geometry of curves with a Weierstrass point

The goal of this section is to complete the proofs of our main modularity theorems
(Theorem A and B) using a 2-3 switch. By Theorems 7.5.11 and 8.3.2, we have
established the following (we omit the full list of hypotheses):

(1) A 2-adic ordinary modularity theorem in weight 2 under a hypothesis on
the residual image: the image Γ of GQ in GSp4(F2) contains a copy of A5

with index at most two acting absolutely irreducibly, and moreover complex
conjugation is non-trivial and lies in A5 ⊆ Γ.

(2) A 3-adic ordinary modularity lifting theorem in weight 2.

We combine these two results as follows. Given an abelian surfaceA/Q with good
ordinary reduction at 3 (satisfying our supplementary hypotheses), we construct a
second abelian surface B/Q with A[3] = B[3], such that B also has good ordinary
reduction at 3, and so that the result described in point (1) can be applied to
establish the modularity ofB. This implies that the 3-adic representation associated
to A is residually modular and hence that A is modular using point (2).

The construction of B uses the rationality of a certain twisted moduli space P (ρ)
of principally polarized abelian surfaces (introduced in [BCGP21, §10.2], see Defi-
nition 9.2.1 below). The space P (ρ) is closely related to the moduli space Mw

2 (ρ)
of genus two curves X with a fixed Weierstrass point and fixed level 3 structure
ρ = ρJac(X),3. Concretely, the Torelli map Mw

2 (ρ)→ P (ρ) is an isomorphism onto
its (open) image. This relationship suggests a natural approach to understanding
points on P (ρ) with suitable local properties at p = 2 and p = 3, including having
good ordinary reduction when p = 3 and good reduction when p = 2. Namely, we
can consider genus 2 curves over Fp and Qp with a rational Weierstrass point with
the corresponding local properties. We carry out this analysis in §9.1 for p = 2 and
§9.3 for p = 3.

This would suffice to prove some version of our main theorem (with a more
restrictive hypothesis at 2 but still applying to a positive proportion of genus 2
curves). However, we can push these arguments further by exploiting the fact that
the Jacobian of a genus 2 curve can have good reduction even when the original
curve does not. Moreover, a principally polarized abelian surface need not even
be a Jacobian. We carry out such auxiliary constructions (for p = 2) in §9.2. It
also follows from the results of that section that weakening the hypothesis at 2
any further would require some new ideas. Note that many of the arguments
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in this section could potentially become much simpler (and stronger) once our
modularity lifting theorems are generalized to totally real fields (since passing to
finite extensions makes finding local points much easier). It seemed potentially
useful, however, to push our current methods as far as possible until such results
are available.

Finally, in §9.4, we carry out the details of the 2-3 switch using the results in the
previous three sections and then complete the proof of our main theorems in §9.5.

9.1. Genus 2 curves locally at 2. In this section, we discuss some explicit com-
putations with genus 2 curves (with or without rational Weierstrass points) over F2

and also over local fields. Note that if B/Q2 is an abelian surface with good reduc-
tion, then ρB,3(Frob2) ∈ GSp4(F3) has similitude character ε−1(Frob2) = −1, and
thus the image of ρB,3(Frob2) in the group PGSp4(F3) does not land in PSp4(F3).

Remark 9.1.1 (Reminder concerning conventions). If B is an abelian surface
over a field of characteristic prime to p, our convention (see Section 1.8.23) is
that TpB and B[p] correspond to ρ∨B,p and ρ∨B,p. Note, however, that since these
representations are self-dual up to twist, the associated projective representations
are independent of this choice.

Definition 9.1.2. Let B/Qp be an abelian surface for which the associated Galois
representation on TpB is ordinary. We say that B is p-distinguished if the corre-
sponding representation ρB,p : GQp → GSp4(Qp) is p-distinguished in the sense
of Definition 1.8.10. For example, if B has good ordinary reduction, then B is p-
distinguished if and only if the characteristic polynomial Q(x) of Frobp on TℓB,
ℓ 6= p, has pairwise distinct roots, or equivalently if Q(x) is not a square. If B0/Fp
is ordinary, we say that B0 is p-distinguished if the characteristic polynomial Q(x)
of Frobenius has pairwise distinct roots. If X/Qp is a genus 2 curve, we say that X
is p-distinguished if Jac(X) is p-distinguished.

We begin with some basic group–theoretic facts, which can easily be extracted
from [CCN+85, pp. 26–27]:

Lemma 9.1.3. There are 10 conjugacy classes of elements in PGSp4(F3)rPSp4(F3).
Their orders and the characteristic polynomials of any lift to GSp4(F3) are given by
the following table. Here the name of the conjugacy class (with the first number indi-
cating the order of the element) follows the same convention as the Atlas [CCN+85]:

〈g〉 P (x) ∈ F3[x] Size

2C x4 + 2x2 + 1 36
2D x4 + x2 + 1 540
4C x4 ± x3 + 2x2 ∓ x+ 1 540
4D x4 + 1 1620
6G x4 + 2x2 + 1 1440
6H x4 + 2x2 + 1 1440
6I x4 + x2 + 1 4320
8A x4 ± x3 + x2 ∓ x+ 1 6480
10A x4 ± x3 ∓ x+ 1 5184
12C x4 ± x3 + 2x2 ∓ x+ 1 4320
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There are, in particular, 9 different possible characteristic polynomials of ele-
ments of GSp4(F3)r Sp4(F3). There is a natural permutation representation

PGSp4(F3)→ S40

coming from the action on the 40 points (F4
3 − 0)/{±1}, and there is also a unique

transitive action PGSp4(F3) → S27 whose stabilizer is the maximal subgroup 24 :
S5 ⊂ PGSp4(F3); see [CCN+85, p. 26]. The conjugacy class of g ∈ PGSp4(F3) r
PSp4(F3) is determined by the conjugacy classes of its images in S40 and S27, and
even the image in S40 suffices except for the following classes:

g S40 S27

4C (4, 4, 4, 4, 4, 4, 4, 4, 4, 4) (1, 2, 2, 2, 4, 4, 4, 4, 4)
4D (4, 4, 4, 4, 4, 4, 4, 4, 4, 4) (1, 1, 1, 1, 1, 2, 4, 4, 4, 4, 4)
6G (2, 2, 6, 6, 6, 6, 6, 6) (1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 6)
6H (2, 2, 6, 6, 6, 6, 6, 6) (3, 3, 3, 3, 3, 6, 6)

Lemma 9.1.4. Consider the genus 2 curves Ci over Q:

C1 : y2 + (x3 + 1)y = x2 + x

C2 : y2 + (x3 + 1)y = − x5 + x3 + 2x2 + x− 1

C3 : y2 + (x2 + x)y = x5 + 2x4 + x3 − 16x2 − 8x− 1

Then the Ci have good ordinary reduction at 2 and a rational Weierstrass point.
Moreover, the Ci are 2-distinguished. The corresponding characteristic polynomials
of Frob2 are as follows:

P1 : x4 + 2x3 + 3x2 + 4x+ 4,

P2 : x4 + x2 + 4,

P3 : x4 − x2 + 4,

and the conjugacy classes of ρCi,3(Frob2) in PGSp4(F3) have type 10A, 6I, and 6H
respectively.

Proof. These three curves have conductors 249, 975, and 1947 respectively (they
are taken from the LMFDB [LMF24]). The characteristic polynomials of Frobenius
at 2 can be obtained by an explicit point count; they are irreducible over Q, which
proves they are 2-distinguished. One can determine directly from the characteristic
polynomial that the conjugacy class of ρCi,3(Frob2) must be 10A for i = 1; 2D
or 6I for i = 2; and 2C, 6G, or 6H for i = 3. Given a genus two curve with a ratio-
nal Weierstrass point, one can write down the general degree 40 polynomial whose
splitting field is PGSp4(F3) (see [CCR20, §3]), and then compute a degree 27 resol-
vent. From this one can determine the correct conjugacy class using Lemma 9.1.3.
(For C2, the image in S40 is already enough to determine that the element has
order 6 and so must be 6I.) �

Remark 9.1.5. The computations in this section and the next are all done using
magma [BCP97], and the explicit code with documentation can be found at [BCGP25]).

We now consider what happens as we loop over all ordinary genus two curves
over F2.

Lemma 9.1.6. Let X0/F2 be an ordinary smooth genus two curve.
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(1) The action of Frob2 on Jac(X0)[3]/{±1} has conjugacy class of type 6G,
6H, 6I, 8A, or 10A.

(2) If X0 has a smooth lift X/Z2 with a Q2-rational Weierstrass point, then
the action of Frob2 on Jac(X0)[3]/{±1} has conjugacy class of type 6H,
6I, or 10A.

(3) If ρ : GQ2 → GSp4(F3) is an unramified representation with similitude ε−1,
and the image of ρ(Frob2) in PGSp4(F3) has conjugacy class of type 6H, 6I,
or 10A, then there is an ordinary smooth genus 2 curve X/Z2 with ρ ∼= ρX,3,
such that X has a Q2-rational Weierstrass point, and is 2-distinguished.

Proof. We may write any smooth genus two curve X0 over F2 in the form

y2 + h(x)y = f(x), (9.1.6)

where deg(f(x)) ≤ 6 and deg(h(x)) ≤ 3. We may enumerate all such equations.
We do not concern ourselves with identifying either isomorphism classes of curves
or of their Jacobians, and so in particular when we talk of “curves” below we really
mean curves with a given Weierstrass equation as in (9.1.6). Let A = Jac(X0). We
find that:

(1) There are 211 possible pairs of h(x) and f(x).
(2) There are 768 curves which are smooth of genus 2.
(3) There are 384 ordinary curves, of which:

(a) 32 have ρA,3(Frob2) in PGSp4(F3) of type 6G,
(b) 16 have ρA,3(Frob2) in PGSp4(F3) of type 6H ,
(c) 48 have ρA,3(Frob2) in PGSp4(F3) of type 6I,
(d) 96 have ρA,3(Frob2) in PGSp4(F3) of type 8A,
(e) 192 have ρA,3(Frob2) in PGSp4(F3) of type 10A.

(4) The are are 384 non-ordinary curves, of which:
(a) 48 have ρA,3(Frob2) in PGSp4(F3) of type 6G,
(b) 144 have ρA,3(Frob2) in PGSp4(F3) of type 12C,
(c) 48 have ρA,3(Frob2) in PGSp4(F3) of type 4D,
(d) 48 have ρA,3(Frob2) in PGSp4(F3) of type 8A,
(e) 96 have ρA,3(Frob2) in PGSp4(F3) of type 10A.

(5) If X0 is ordinary and is additionally the reduction of a smooth curve over Z2

with a Q2-rational Weierstrass point, then ρA,3(Frob2) in PGSp4(F3) has
type 6H , 6I, or 10A.

We first explain how to distinguish between the various conjugacy classes in parts (3)
and (4), and then we explain part (5).

(1) By point counting, we can compute the characteristic polynomial Q(x)
of Frobenius. The characteristic polynomials of the conjugacy classes 8A
and 10A are not congruent modulo 3 to the characteristic polynomial of
any other class in PGSp4(F3) r PSp4(F3), so in these cases we are done.
This is also enough to determine the counts in part (4).

(2) The conjugacy classes {2C, 6G, 6H}, {2D, 6I}, and {4C, 12C} are complete
sets of conjugacy classes in PGSp4(F3)rPSp4(F3) with the same character-
istic polynomial. We now show how to distinguish the elements of order 2
(respectively, 4) from the elements of order 6 (respectively, 12) (none of the
elements of order 2 or 4 of this type actually occur). If g ∈ PGSp4(F3)
is any element, and we choose a lift in GSp4(F3), then g2 is independent
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of the choice of lift. If g is of type 2C or 2D, the square of any lift is
scalar and given by I and −I respectively, and so g4 will be trivial. If
we start with g ∈ PGSp4(F3) of order 6, however, then for any lift, the
element g4 ∈ GSp4(F3) will not be trivial, since it will have order divisible
by 3. This allows us to distinguish the classes of types 2C and 2D from the
classes of order divisible by 3 by computing Jac(X0)(F16)[3]. Similarly, if g
is of type 4C or 12C, then, for any lift, the element g8 ∈ GSp4(F3) will be
trivial if and only if g has type 4C. We have the following table (where as
above Q(x) denotes the characteristic polynomial of Frobenius):

Q(x) mod 3 〈g〉 dim ker(g8 − 1)

x4 + 2x2 + 1 2C 4
x4 + 2x2 + 1 6G 2
x4 + 2x2 + 1 6H 2

x4 + x2 + 1 2D 4
x4 + x2 + 1 6I 2

x4 ± x3 + 2x2 ∓ x+ 1 4C 4
x4 ± x3 + 2x2 ∓ x+ 1 12C 2

We find in all the 96 ordinary cases and 192 non-ordinary cases when
Q(x) mod 3 is a polynomial corresponding to one of the conjugacy classes
in this table, there is an isomorphism

Jac(X0)(F256)[3] ≃ (Z/3Z)2.

This rules out the case that ρA,3(Frob2) in PGSp4(F3) has order either 2

or 4. When Q(x) mod 3 is either x4 + x2 +1 or x4 ± x3 + 2x2 ∓ x+ 1, this
suffices to determine the conjugacy class exactly for the 48 ordinary curves
lying in {2D, 6I}, and the 144 non-ordinary curves lying in {4C, 12C}.

(3) For the remaining 48 ordinary curves and 48 non-ordinary curves where the
conjugacy class is either of type 6G or 6H , we first compute the degree 40
polynomial corresponding to the PGSp4(F3) representation, and then com-
pute the degree 27 resolvent, and then use the table in Lemma 9.1.3.

(4) To establish point (5), we need to show that all of the ordinary curves
where ρB,3(Frob2) has conjugacy class 6G or 8A do not lift to a smooth
curve X/Z2 with a rational Weierstrass point. By Lemma 9.1.8 below,
the Jacobian of such a curve X has a rational 2-torsion point, so that in
particular, the polynomial Q(x) (mod 2) would need to have 1 as a root.
However, the 32 curves of type 6G and the 96 curves of type 8A have the
property that Q(x) ≡ x2(x2 + x+ 1) (mod 2), so no such lift can exist.

It remains to note that if ρ(Frob2) is of type 6H , 6I, or 10A, then an appropriateX
exists by Lemma 9.1.4. �

Definition 9.1.7. Say that an abelian variety A/Qp has semistable ordinary re-
duction if it has semistable reduction and the abelian part of the special fibre of
the Néron model is ordinary. (In particular, good ordinary reduction is a special
case of semistable ordinary reduction.)

Recall from Section 8.1 that we have fixed an identification S6 = GSp4(F2).
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Lemma 9.1.8. Let B/Q2 be an abelian surface with semistable ordinary reduction.
Suppose that the image of ρB,2 lands inside S5(b) ⊂ S6 = GSp4(F2). Then:

(1) The image of ρB,2 is a 2-group.
(2) There exists a rational 2-torsion point P ∈ B[2](Q2).

In particular, this holds if B = Jac(X), and X/Q2 has good ordinary reduction and
a rational Weierstrass point.

Proof. The ordinary assumption implies that the image of GQ2 in GSp4(F2) =
Aut(B[2]) lands (up to conjugation) in the Siegel parabolic:




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗


 ∩GSp4(F2). (9.1.9)

To see this, it suffices to show that GQ2 preserves an (isotropic) subspace (Z2)
2 in-

side T2(B). If B has good ordinary reduction, the subspace is the kernel of the mod-
2 reduction. More generally, if B has semistable reduction, we can use the descrip-
tion of the Tate module given in [GRR72, Exp.9, IX]. There is a GQ2 -equivariant
filtration T2(B)t ⊂ T2(B)f ⊂ T2(B) of (saturated) Z2-modules of ranks t > 0
and t + 2a where 2(t + a) = 4. Moreover, by the orthogonality theorem [GRR72,
Thm 2.4, Exp.9, IX], T2(B)⊥t = T2(B)f . If B is purely toric, then t = 2 and T2(B)
gives the desired space. If t = 1, then the abelian part of B is an abelian variety, and
the kernel of reduction gives a rank one GQ2 -stable submodule of T2(B)f/T2(B)t,
and the inverse image of this in T2(B)f is the desired submodule.

This group (9.1.9) is a subgroup of GSp4(F2) order 48 which is isomorphic to S4×
S2, and is the normalizer of the element:




1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1


 . (9.1.10)

There are two (non-conjugate) subgroups of order 48 in S6; one given by the
centralizer of (∗∗)(∗∗)(∗∗) in S6 and the other by the centralizer of (∗∗); they
are permuted by the outer automorphism. Under our fixed isomorphism, the el-
ement (9.1.10) is conjugate to (∗∗)(∗∗)(∗∗) by Lemma 8.1.3. (In fact the other
conjugacy class of subgroups of order 48 is given by the Klingen parabolic.) But
now the assumption that the image of ρB,2 lands inside S5(b) implies that the im-
age of GQ2 lands inside the intersection of S5(b) with the centralizer of an element
of the form (∗∗)(∗∗)(∗∗). If that intersection is not a 2-group, then it contains an
element of order 3. But the conjugacy class of elements of order 3 inside the nor-
malizer of (∗∗)(∗∗)(∗∗) consists of elements with cycle shape (∗∗∗)(∗∗∗), whereas
the conjugacy class of elements of order 3 in S5(b) ⊂ S6 consists of elements with
cycle shape (∗∗∗), and thus the intersection is a 2-group, proving (1). Hence the
image of ρB,2 is certainly contained within the 2-Sylow of GSp4(F2), so the action
of GQ2 fixes a 2-torsion point, proving part (2). �

9.2. Abelian surfaces with semistable ordinary reduction at 2. In this sec-
tion, we study abelian surfaces A/Q2 with either good ordinary or semistable or-
dinary reduction at 2.
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Let F be a number field or a local field of characteristic zero, and suppose
that ρ : GF → GSp4(F3) has similitude character ε−1. We now recall some rational
varieties associated to ρ constructed in [BCGP21, §10.2].

Definition 9.2.1. Let P = P (ρ) be the fine moduli space over F parametrizing
principally polarized abelian surfacesA with a given symplectic isomorphism A[3] ≃
ρ∨ and a fixed odd theta characteristic.

LetMw
2 (ρ) be the fine moduli space over F parametrizing genus two curves X/F

with a fixed Weierstrass point and a fixed symplectic isomorphism Jac(X)[3] ≃ ρ∨.

More explicitly (see [BCGP21, Defn. 10.2.2]) the space P (ρ) can be defined as
follows: we let B be the moduli space of principally polarized abelian surfaces A
with a given symplectic isomorphism A[3] ≃ ρ∨, and let B(2) → B be the S6

∼=
PSp4(F2)-cover corresponding to a full level 2 structure. Then P is the intermediate
cover corresponding to the subgroup S5(b) ⊂ S6. In particular we note that a
principally polarized abelian surface A/F gives rise to a point in P (ρ)(F ) if, in
additional to having a symplectic isomorphism A[3] ≃ ρ∨, the image of ρA,2 is
conjugate to a subgroup of S5(b).

The space P (ρ) is smooth and rational [BCGP21, Thm 10.2.3]. The Torelli
map Mw

2 (ρ) → P (ρ) is an open immersion, and hence Mw
2 (ρ) is also smooth and

rational, and dense in P (ρ).
An unramified representation

ρ : GQ2 → GSp4(F3)

with similitude character ε−1 is given up to conjugation and unramified twist by
a conjugacy class in PGSp4(F3) r PSp4(F3). Given such a class, the goal of this
section is (when possible) to find a point A ∈ P (ρ)(Q2) which either has good ordi-
nary or semistable ordinary reduction and is in addition 2-distinguished. Naturally,
one such source of representations comes from a point X ∈ Mw

2 (ρ)(Q2) where X
has good ordinary reduction at 2, however, this turns out not to exhaust the list
of possibilities. There are three reasons for this. The first is that A = Jac(X)
can have good reduction even when X does not. The second is that A can have
bad reduction and yet ρA,3 can still be unramified (although such A will neces-
sarily be semistable). The third is that some of the most accessible points of P
lie on the complement of the image of Mw

2 (ρ), namely, direct products of elliptic
curves. We exploit a number of these phenomena to find points for various different
representations ρ.

Since we shall only consider ρ : GQ2 → GSp4(F3) which are unramified, we
begin with following, which is a (specialization of a) standard result:

Lemma 9.2.2. Let A/Q2 be an abelian variety. Suppose that ρA,3 is unramified.
Then A has semistable reduction.

Proof. The assumption that ρA,3 is unramified implies that the action of inertia
on T3(A) is unipotent, so the claim follows from Grothendieck’s semi-stability The-
orem [GRR72, Exp.9, IX]. �

The ultimate goal of this section is to prove the following theorem:

Theorem 9.2.3. Let ρ : GQ2 → GSp4(F3) be unramified with similitude charac-
ter ε−1. There exists a point A ∈ P (ρ)(Q2) which has semistable ordinary reduction
and is 2-distinguished if and only if the conjugacy class of the image of ρ(Frob2)
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in PGSp4(F3)r PSp4(F3) is not of type 4C or 12C. Moreover, one can addition-
ally take A to have good reduction if and only if the conjugacy class of the image
of ρ(Frob2) in PGSp4(F3) r PSp4(F3) is of type 4D, 6H, 6I, or 10A. This is
summarized by the table below.

〈g〉 ⊂ PGSp4(F3)r PSp4(F3) good ordinary semistable ordinary

2C ✗ X

2D ✗ X

4C ✗ ✗

4D X X

6G ✗ X

6H X X

6I X X

8A ✗ X

10A X X

12C ✗ ✗

Proof. (Most of) the proof is carried out in the remainder of this section, and we
give the proof by the order in which the argument occurs, namely:

(1) When 〈g〉 is one of the conjugacy classes 6H , 6I, and 10A, the result follows
directly from the fact that there exist genus two curves X/Q2 with a ratio-
nal Weierstrass point, good ordinary reduction, and with 2-distinguished
Jacobians, by Lemma 9.1.6(3).

(2) When 〈g〉 has the form 4C or 12C, the result follows by Lemma 9.2.7.
(3) When 〈g〉 has the form 8A, the good reduction case is covered by Lemma 9.2.6,

and the semistable reduction case by Lemma 9.2.8.
(4) When 〈g〉 has the form 2D or 4D, the semistable reduction case follows from

Lemma 9.2.8, which also covers the good reduction case for the conjugacy
class 4D.

(5) When 〈g〉 has the form 2C or 6G, the good reduction case follows from
Lemma 9.2.11 and Lemma 9.2.12 (together with an examination of Ta-
ble 9.2.5).

(6) The semistable reduction case for the conjugacy class 2C is Lemma 9.2.14.
(7) The semistable reduction case for the conjugacy class 6G is Lemma 9.2.17.
(8) The good reduction case for the conjugacy class 2D is Lemma 9.2.19. �

Definition 9.2.4. An ordinary Weil polynomial of weight one for p is a degree 4
polynomial X4 + aX3 + bX2 + paX + p2 ∈ Z[X ] all of whose roots have absolute
value p1/2 and for which (b, p) = 1.

If A/Q2 has good ordinary reduction, then certainly the characteristic polyno-
mial Q(x) of Frobenius at 2 will (by the Weil conjectures) be an ordinary Weil
polynomial of weight one for p = 2.

There are 16 possible ordinary Weil polynomials of weight one for p = 2, listed
in factored form in Table 9.2.5, together with the list of corresponding conjugacy
classes in PGSp4(F3)r PSp4(F3) (as described in Lemma 9.1.3) whose conjugacy
class admits a lift to GSp4(F3) with the given characteristic polynomial over F3[x].

Lemma 9.2.6. There does not exist a principally polarized abelian surface A/Q2

with good ordinary reduction at 2 such that ρA,3(Frob2) has conjugacy class 8A,
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Q(x) Q(x) mod 3 〈g〉
x4 − x2 + 4 x4 − x2 + 1 2C, 6G, 6H

x4 − 3x3 + 5x2 − 6x+ 4 x4 − x2 + 1
x4 + 3x3 + 5x2 + 6x+ 4 x4 − x2 + 1

x4 + x2 + 4 x4 + x2 + 1 2D, 6I
(x2 − x+ 2)2 x4 + x3 + 2x2 + 2x+ 1 4C, 12C

x4 + x3 − x2 + 2x+ 4 x4 + x3 + 2x2 + 2x+ 1
(x2 + x+ 2)2 x4 + 2x3 + 2x2 + x+ 1 4C, 12C

x4 − x3 − x2 − 2x+ 4 x4 + 2x3 + 2x2 + x+ 1
x4 − 3x2 + 4 x4 + 1 4D

(x2 + x+ 2)(x2 − x+ 2) x4 + 1
x4 + x3 + x2 + 2x+ 4 x4 + x3 + x2 + 2x+ 1 8A
x4 − x3 + x2 − 2x+ 4 x4 + 2x3 + x2 + x+ 1 8A
x4 − 2x3 + 3x2 − 4x+ 4 x4 + x3 + 2x+ 1 10A
x4 + x3 + 3x2 + 2x+ 4 x4 + x3 + 2x+ 1
x4 + 2x3 + 3x2 + 4x+ 4 x4 + 2x3 + x+ 1 10A
x4 − x3 + 3x2 − 2x+ 4 x4 + 2x3 + x+ 1

Table 9.2.5. Mod 3 reduction of ordinary Weil polynomials of
weight one for p = 2

and ρA,2 has image inside S5(b). If one further insists that A is 2-distinguished,
then ρA,3(Frob2) can not have conjugacy class 4C and 12C.

Proof. Consider first the case of 4C and 12C. Up to unramified twist, the charac-
teristic polynomial of ρA,3(Frob2) is then

(x2 − x+ 2)2 mod 3.

If Q(x) ≡ (x2 − x + 2)2 mod 3 is an ordinary Weil polynomial, this forces (by
Table 9.2.5) either the equality Q(x) = (x2 − x+ 2)2 or

Q(x) = x4 + x3 − x2 + 2x+ 4 ≡ x2(x2 + x+ 1) mod 2.

The first case is ruled out by the 2-distinguished condition. For the second, it
implies that the action of Frob2 on A[2](F2) has order 3. But this contradicts
Lemma 9.1.8.

Now consider 8A. The characteristic polynomial up to twist is

(x+ 1)(x− 1)(x2 + x+ 2) mod 3,

in which case (see Table 9.2.5) there is a unique possibility

Q(x) = x4 + x3 + x2 + 2x+ 4 ≡ x2(x2 + x+ 1) mod 2,

and we are again done by Lemma 9.1.8. �

We can upgrade this lemma as follows:

Lemma 9.2.7. Suppose that A/Q2 is a principally polarized abelian surface with
(potentially) semistable ordinary reduction and such that:

(1) ρA,3 is unramified.
(2) ρA,3(Frob2) has projective conjugacy class 4C or 12C.
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(3) ρA,2 has image inside some conjugate of S5(b).
Then A has good reduction at 2 and is not 2-distinguished.

Proof. The conditions imply that ρA,3(Frob2) has, up to unramified twist, charac-
teristic polynomial

(x2 + x+ 2)2 mod 3.

If α is a root of this polynomial, then −α is clearly not a root. But that implies that
no two roots have ratio 2 ≡ −1 mod 3. In particular we see that H2(GQ2 , ρA,3) = 0,
so all lifts of ρA,3 are unramified. In particular ρA,3|GQ2

is unramified, and by
Néron–Ogg–Shafarevich, we deduce that A must have good ordinary reduction
at 2. The result now follows from Lemma 9.2.6. �

We now move on to the classes 2D, 4D, and 8A, which we can construct directly
using products of elliptic curves.

Lemma 9.2.8. Let X/Q2 be an elliptic curve with split multiplicative reduction
and such that the Tate parameter q is a perfect 6th power. Let Y/Q2 be an elliptic
curve with good ordinary reduction with characteristic polynomial Q(x) = x2+x+2
and with ρY,2 trivial. Let X ′ and Y ′ denote the unramified quadratic twists of X
and Y respectively. Let A = X×Y , and let B = Y ×Y ′, and C = X×X ′. Then A,
B, and C are principally polarized abelian surfaces with the following properties:

(1) A and C have semistable ordinary reduction, and B has good ordinary
reduction.

(2) Q(A[3]), Q(B[3]), and Q(C[3]) are unramified at 2.
(3) ρA,3(Frob2) has projective conjugacy class 8A, ρB,3(Frob2) has projective

conjugacy class 4D, and ρC,3(Frob2) has projective conjugacy class 2D.
(4) ρA,2, ρB,2, and ρC,2 have image inside S5(b) ⊂ GSp4(F2) up to conjugacy.
(5) A, B, and C are 2-distinguished.

Proof. First we note that both X and Y exist; there exists a Tate curve for any q ∈
Q2 with v(q) > 0, and one can take Y to be y2 + xy + y = x3 − x2 − 6x− 4, which
is actually the base change to Q2 of an elliptic curve E over Q of conductor 17
with E[2] ≃ (Z/2Z)2 as a GQ-module.

The surfaces A, B, and C have a principal polarization coming from the prin-
cipal polarization on each elliptic curve. They clearly all have semistable ordinary
reduction, and B in addition has good ordinary reduction. The assumption that
the Tate parameter q is a cube implies that the action of GQ2 on X [3] is isomorphic
to µ3 ⊕ Z/3Z as a Galois representation, and hence is unramified. Moreover, we
deduce that there is also an isomorphism X ′[3] ≃ Z/3Z ⊕ µ3, since the unique
unramified quadratic character is the cyclotomic character. The second claim then
follows since Y and Y ′ have good reduction.

The element ρY,3(Frob2) ∈ GL2(F3) has characteristic polynomial x2 + x +

2 mod 3, and ρX,3(Frob2) has characteristic polynomial (x2−1) from the description
above. Thus ρA,3(Frob2) has characteristic polynomial

(x2 − 1)(x2 + x+ 2) = x4 + x3 + x2 − x+ 1 mod 3.

The only elements with this characteristic polynomial modulo 3 have conjugacy
class 8A in PGSp4(F3). For B, we see that Q(x) = (x2 + x + 2)(x2 − x + 2),
and thus (from Table 9.2.5) the only possibility is that ρB,3(Frob2) has projective
conjugacy class 4D. For C, we see that the characteristic polynomial of Frobenius
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on C[3] is (x2− 1)2 mod 3 and that Frobenius clearly has order 2, so the projective
conjugacy class is 2D.

We now show that the mod 2 reductions are conjugate to a subgroup of S5(b).
The assumption that q is a square implies that ρX,2 (and its quadratic twist) are
trivial. On the other hand, by construction, ρY,2 and thus its quadratic twist are
also trivial. So ρA,2, ρB,2, and ρC,2 are also trivial and the claim follows.

It remains to show that A, B, and C are 2-distinguished. In each case, we can
compute directly the unit Frobenius eigenvalues on the semi-simplification of the
Tate module. If α denotes the unit root of x2+x+2 = 0, then for A, B, and C they
are given by {1, α}, {α,−α}, and {1,−1} respectively. Since α 6= 1 and α 6= −α,
these pairs all consist of distinct numbers and we are done. �

9.2.9. The cases 2C, 6G, and 6H. We now turn to the cases of 2C, 6G, and 6H ,
where (see Table 9.2.5) the characteristic polynomial of ρA,3(Frob2) is

x4 − x2 + 1 = (x2 + 1)2 mod 3 (9.2.10)

We have the following:

Lemma 9.2.11. If A/Q2 has good ordinary reduction and

Q(x) = x4 ± 3x3 + 5x2 ± 6x+ 4 ≡ x2(x2 + x+ 1) mod 2,

then the image of ρA,2 is not conjugate to a subgroup of S5(b).

Proof. This follows from Lemma 9.1.8, exactly as in the proof of Lemma 9.2.6. �

Lemma 9.2.11 implies that, in the good reduction case with conjugacy classes 2C,
6G, and 6H , the only possibility for Q(x) is x4 − x2 + 4.

Lemma 9.2.12. Let A/F2 be an abelian surface with Q(x) = (x4 − x2 + 4).
Then the action of Frob2 on A[3](F2) is not semi-simple and the projective im-
age of ρA,3(Frob2) has conjugacy class 6H.

Proof. Note firstly that the abelian surfaceA = Jac(C3) where C3 is as in Lemma 9.1.4
satisfies the hypothesis and conclusions of the lemma. Let B be another abelian
surface with Q(x) = x4 − x2 + 4; it suffices to show that A[3] ∼= B[3]. There is
an inclusion Z[φ] ⊂ End(A) where φ is the Frobenius endomorphism which satis-
fies φ4 − φ2 + 4 = 0. Let ψ = φ2 + 1, so ψ∨ = 3 − ψ and ψ∨ ◦ ψ = [6]. Note
that Frob2 acts non-semi-simply on A[3]. Since Frob2 on A[3] has characteristic
polynomial (x2+1)2 mod 3, and x2+1 mod 3 is irreducible, it follows that the only
proper Gal(F2/F2)-equivariant submodule of A[3] is ker(ψ) ∩ A[3].

Since Q(x) determines A up to isogeny, there is an isogeny χ : A→ B. Either χ
has order prime to 3 or ker(ψ)∩A[3] ⊂ ker(χ), in which case there is a factorization:

A
χ

//

ψ

��

B

[2]

��

A
χ′

// B

where the 3-part of the degree of χ′ is less than that of χ. By induction, there
exists an isogeny of A to B of order prime to 3, which implies that A[3] and B[3]
are isomorphic, as required. �

Lemma 9.2.13. Suppose that A/Q2 is an abelian surface such that:
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(1) ρA,3|GQ2
is unramified.

(2) ρA,3(Frob2) has projective conjugacy class 2C or 6G.
(3) The image of ρA,2 is conjugate to a subgroup of S5(b).

Then A/Q2 has semistable ordinary reduction with purely toric reduction.

Proof. Suppose that A had good reduction. Condition (2) implies that Q(x) ≡
x4 − x2 + 1 mod 3. By Lemmas 9.2.11 and 9.2.12, assumptions (1), and (3) (tak-
ing into account Table 9.2.5) imply that ρA,3(Frob2) has projective conjugacy
class 6H , contradicting condition (2). Thus A cannot have good reduction. By
Lemma 9.2.2, A has semistable reduction. As in the proof of Lemma 9.1.8 there is
a GQ2 -equivariant filtration T3(A)t ⊂ T3(A)f ⊂ T3(A) of (saturated) Z3-modules
of ranks t and t + 2a where 2(t + a) = 4. Since A does not have good reduction,
we have t > 0. If t = 1, then T3(A)t/3 is a Galois invariant line inside A[3], but
this is not compatible with the fact that ρA,3(Frob2) has characteristic polyno-
mial (x2 + 1)2, and (x2 + 1) has no roots over F3. So t = 2 and A has purely toric
(and hence semistable ordinary) reduction. �

On the other hand, we have the following variation on Lemma 9.2.8.

Lemma 9.2.14. There exists a principally polarized abelian surface A/Q2 satisfy-
ing the following:

(1) A has semistable ordinary reduction.
(2) ρA,3 is unramified.
(3) ρA,3(Frob2) has projective conjugacy class 2C,
(4) ρA,2 has image inside S5(b) ⊂ GSp4(F2) up to conjugacy.
(5) A is 2-distinguished.

Proof. Let X/Q2 be an elliptic curve with split multiplicative reduction and such
that the Tate parameter q ∈ Q×

2 is a perfect cube, and that q ∈ 5·(Q×
2 )

2. With these
choices ρX,3 is the trivial representation while ρX,2 is unramified and ρX,2(Frob2)

is conjugate to
(
1 1
0 1

)
.

We now take A = X ⊗ Z2 where GQ2 acts on Z2 via an unramified quotient
with Frob2 acting by

(
0 −1
1 0

)
(9.2.15)

or in other words A is descended from (X ×X)Q16 where Frobenius is twisted by
the automorphism (a, b) 7→ (b,−a).

Certainly A is semistable ordinary. Since X is principally polarized and since
the map GQ2 → GL2(Z) associated to (9.2.15) is self-dual, it follows that A is
isomorphic to its dual and hence is also principally polarized. Moreover we have,
up to conjugation,

ρA,3(Frob2) =

(
1 0
0 1

)
⊗
(
0 −1
1 0

)
=




0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0


 ,
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with order 4 and projective image 2C. On the other hand,

ρA,2(Frob2) =

(
1 1
0 1

)
⊗
(
0 −1
1 0

)
=




0 1 0 1
1 0 1 0
0 0 0 1
0 0 1 0


 .

The centralizer of this element has order 16, which means (with respect to the
isomorphism in Lemma 8.1.3, although this conjugacy class is preserved by the
outer automorphism) that it is conjugate to (∗∗)(∗∗) in S6 and so is conjugate to
an element of S5(b). �

This leads us to 6G as the last remaining semistable case of Theorem 9.2.3. There
is a construction in this case along the lines of Lemma 9.2.14, although the details
are more cumbersome. Instead, we use a different idea motivated by Lemma 9.2.13.
Consider the genus two curve

Y : y2 + y = x5 − x4 + x3

with good reduction at 2 (it has conductor 797). We have Q(x) ≡ x4−x2+1 mod 3,
and so (the projective image of) ρJac(Y ),3(Frob2) has conjugacy class 2C, 6G, or 6H .
By computing the corresponding degree 40 and degree 27 polynomials, we find that
it has conjugacy class 6G. This does not contradict Lemma 9.2.13 because Q(x) =
x4 + 2x2 + 1 and Y is not ordinary. We may write Y/Q as

Y : y2 = x5 + ax3 + bx2 + cx+ d, (9.2.16)

with

(a, b, c, d) =

(
48

5
,
704

25
,
3072

125
,
821504

3125

)
.

We can think ofMw
2 (ρ) explicitly as the moduli space of genus two curves X given

by y2 = x5 + Ax3 + Bx2 + Cx + D with a (symplectic) isomorphism ρJac(X),3 ≃
ρJac(Y ),3. In [CCR20, Thm 2], an explicit parametrization P3

Q(s, t, u, v)→Mw
2 (ρ)

is given; that is, A, B, C, and D are explicit polynomials in (s, t, u, v) whose
specialization to (1, 0, 0, 0) gives the parameters (a, b, c, d) of equation (9.2.16). By
Lemma 9.2.13, any specialization of this family which does not have good reduction
is necessarily semistable ordinary with purely toric reduction. Moreover, it will
also necessarily be 2-distinguished; the pair of eigenvalues of Frobenius on the
unramified quotient will be Galois invariant and yet be roots of (x2 + 1) mod 3.
Thus in practice we can choose random points on this family to find one which
does not have good reduction, and then we are done. The specialization of this
family to the point (0, 0, 4, 1) is the curve y2 = x5 + Ax3 + Bx2 + Cx + D, with
(after scaling down by (436, 836, 1636, 3236) from the formulas in [CCR20])

A = 672315215064342/5,

B = − 197745818620367722373332/25,

C = − 3038748471428312132304651799323/125,

D = 405130036222076498453650257209001453372/3125.

Thus we have produced a curve of the required form. As a sanity check, the
conductor has the form 22 ·N where (2, N) = 1, and the Euler factor at 2 is x2+1,
and one can indeed compute the 3-torsion division polynomial of degree 40 and
its resolvent of degree 27 and find that they give an extension unramified at 2
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with ρ(Frob2) of conjugacy class 6G (as they should). On the other hand, after
reducing this modulo a large enough power of 2 (212 in this case), we get a more
manageable example (except now a different global representation):

Lemma 9.2.17. Let X be the curve

y2 + (−x2 − x− 1)y = x5 − 4x4 + 47x3 − 43x2 − 2x+ 8.

Then A = Jac(X)/Q2 has purely toric reduction, and is 2-distinguished. Fur-
thermore A[3] is unramified, ρA,2 has image conjugate to a subgroup of S5(b),
and ρA,3(Frob2) has conjugacy class 6G.

Proof. We may compute directly using division polynomials that A[3] is unramified
at 2 and ρA,3(Frob2) has conjugacy class 6G. Since X has a Q2 (even a Q) Weier-
strass point, the image of ρA,2 is conjugate to a subgroup of S5(b). The conductor
at 2 of A is 22, so by Lemma 9.2.13, A has purely toric reduction, and the eigen-
values of Frobenius on the unramified quotient are ±i, so A is 2-distinguished. �

9.2.18. The case 2D. We finish the proof of Theorem 9.2.3 by ruling out 2D in the
case of good ordinary reduction.

Lemma 9.2.19. There does not exist an abelian surface A/Q2 with good ordinary
reduction and ρA,3(Frob2) projectively conjugate to 2D.

Proof. From Table 9.2.5, we see that such an A must satisfy Q(x) = x4 + x2 +4 ≡
(x − 1)2(x + 1)2 mod 3. From Lemma 9.1.4 (in particular the curve C2), we see
that there exists a smooth ordinary X/F2 with the same Q(x), and thus Jac(X) is
isogenous to A/F2. Let χ : Jac(X)→ A be an isogeny, which we may assume is not
divisible by [3]. Since ρJac(X),3(Frob2) is conjugate to 6I, the minimal polynomial
of Frob2 on A[3] is (x−1)2(x+1)2. Thus the only Galois invariant subspaces of A[3]
contain either the intersection of A[3] with the kernel of ψ = φ − 1 or ψ = φ + 1
respectively. Thus (as in Lemma 9.2.12) we may reduce to the case when χ has
degree prime to 3, which implies that ρA,3(Frob2) is conjugate to ρJac(X),3(Frob2)
of class 6I. �

9.3. Genus 2 curves locally at 3. In this section, we carry out some computa-
tions similar to §9.1 except now over F3. (The magma files for these computations
can also be found in [BCGP25], as noted in Remark 9.1.5.)

Recall that an irreducible monic polynomial Q(x) ∈ Z[x] with roots of absolute
value q1/2 (for q some power of p) corresponds (by Honda–Tate theory) to an
isogeny class of simple abelian varieties A of dimension deg(Q)

2 · [E : F ]1/2 over Fq,
where F = Q(α) = Q[x]/Q(x) and E is a certain division algebra whose centre
is F and whose invariants (also determined by Q(x)) are trivial away from primes
dividing p and ∞. However, if one also assumes that Q(x) is ordinary in the sense
that it has degree 2g and for g of the embeddings F →֒ Qp, the valuation of α is
zero, this forces F to be totally complex and the invariants of E to be trivial at v|p,
which implies that E = F and dim(A) = g.

Specializing to the case g = 2, recall (Definition 9.2.4) that by an ordinary Weil
polynomial of weight one for p, we mean a degree 4 polynomial X4 + aX3 + bX2 +
paX+p2 ∈ Z[X ] all of whose roots have absolute value p1/2 and for which (b, p) = 1.

Lemma 9.3.1. Table 9.3.3 contains the following data concerning all pairs con-
sisting of a smooth genus two curve together with an explicit Weierstrass equa-
tion X : y2 = f(x) with f(x) ∈ F3[x]. The columns indicate:



200 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

• All 40 ordinary Weil polynomials Q(x) of weight one for p = 3. By Honda–
Tate theory, these correspond to isogeny classes of ordinary abelian sur-
faces A/F3.
• The reduction of Q(x) mod 3.
• Whether the isogeny class of A/F3 contains the Jacobian of an ordinary

curve X/F3 with a rational Weierstrass point.
• Whether the isogeny class of A/F3 contains the Jacobian of an ordinary

curve X/F3.
• How many such X have a Jacobian with the corresponding Q(x).

Of the 37 possible f(x) of degree ≤ 6, we find that:
(1) There are 1296 curves which are smooth of genus 2.
(2) There are 864 ordinary curves.
(3) Exactly 10 of these ordinary curves are not 3-distinguished; equivalently,

the polynomial Q(x) is a square. Moreover, these are precisely the curves
for which:

Jac(X)(F3)[3] ≃ χ⊗ (Z/3Z)2

as a GF3-representation, where χ2 = 1. None of these curves have a ratio-
nal Weierstrass point.

If one enumerates curves together with a generalized Weierstrass equation

y2 + h(x)y = f(x),

where deg(f(x)) ≤ 6 and deg(h(x)) ≤ 3, all the relative ratios remain unchanged.

Proof. This is a straightforward computation, although we explain point (3). If
there is an isomorphism Jac(X)(F3)[3] ≃ χ ⊗ (Z/3Z)2 as a GF3 -representation,
then Q(x) ≡ x2(x ± 1)2 (mod 3). Similarly, if Q(x) is a square then it is a square
modulo 3, and thus Q(x) ≡ x2(x± 1)2 (mod 3).

We may make a quadratic twist to reduce to the case χ = 1 and Q(x) ≡ x2(x−
1)2. We are reduced to checking that if Jac(X) is in the isogeny class corresponding
to Q(x) with Q(x) ≡ x2(x − 1)2 (mod 3), then Q(x) is a square if and only if
Jac(X)(F3)[3] = (Z/3Z)2. One checks this directly for each of the 4+ 24+ 1+ 8+
48+ 8+48 = 141 curves X corresponding to such a Q(x). One further checks that
the 5 such X where Q(x) is a square do not have rational Weierstrass points. �

Remark 9.3.2. The fact that some Q(x) in Table 9.3.3 do not arise from any X
means that there exist ordinary abelian surfaces over F3 which are not isogenous
to Jacobians of genus two curves. The simple (although not absolutely simple)
examples in our table (with Q(x) = x4− 5x2+9 and Q(x) = x4− 4x2+9) actually
generalize to similar examples over Fq for any odd q, see [How04].

Given a finite flat ordinary mod 3 representation ρ∨ : GQ3 → GSp4(F3), we
would like to realize it as the 3-torsion in the Jacobian of a genus 2 curve with good
ordinary reduction and a rational Weierstrass point. We shall do this (under some
restrictions) in Lemma 9.3.7, using the following lemma.

Lemma 9.3.4. Let p > 2 be prime, and let O be the ring of integers in a finite
extension of Qp with residue field F. Let G1/O be a principally quasi-polarized finite
flat group scheme of rank 4. Suppose that A0/F is a principally polarized abelian
surface with A0[p] ≃ G1,F compatibly with the quasi-polarization. Then there exists
a lift of A0 to a principally polarized abelian surface A/O with A[p] ≃ G1.
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Q(x) Q(x) mod 3 Jac(XWP) Jac(X) #X

9− 5x2 + x4 x2 + x4 ✗ ✗ 0
9− 2x2 + x4 x2 + x4 X X 30
9 + x2 + x4 x2 + x4 ✗ X 24
9 + 4x2 + x4 x2 + x4 X X 24

9− 9x+ 7x2 − 3x3 + x4 x2 + x4 X X 24
9 + 9x+ 7x2 + 3x3 + x4 x2 + x4 X X 24

9− 4x2 + x4 2x2 + x4 ✗ ✗ 0
(3− x+ x2)(3 + x+ x2) 2x2 + x4 ✗ X 24

(3 − 2x+ x2)(3 + 2x+ x2) 2x2 + x4 X X 36
(3 − 2x+ x2)(3− x+ x2) 2x2 + x4 ✗ ✗ 0
(3 + 2x+ x2)(3 + x+ x2) 2x2 + x4 ✗ ✗ 0

9− x2 + x4 2x2 + x4 ✗ X 24
9− 9x+ 5x2 − 3x3 + x4 2x2 + x4 X X 24
9 + 9x+ 5x2 + 3x3 + x4 2x2 + x4 X X 24

(3− x+ x2)2 x2 + x3 + x4 ✗ X 4
(3 − x+ x2)(3 + 2x+ x2) x2 + x3 + x4 X X 24

(3 + 2x+ x2)2 x2 + x3 + x4 ✗ X 1
9− 6x+ x2 − 2x3 + x4 x2 + x3 + x4 ✗ X 8
9− 6x+ 4x2 − 2x3 + x4 x2 + x3 + x4 X X 48
9 + 3x− 2x2 + x3 + x4 x2 + x3 + x4 X X 8
9 + 3x+ x2 + x3 + x4 x2 + x3 + x4 X X 48

(3− 2x+ x2)2 x2 + 2x3 + x4 ✗ X 1
(3 − 2x+ x2)(3 + x+ x2) x2 + 2x3 + x4 X X 24

(3 + x+ x2)2 x2 + 2x3 + x4 ✗ X 4
9− 3x− 2x2 − x3 + x4 x2 + 2x3 + x4 X X 8
9− 3x+ x2 − x3 + x4 x2 + 2x3 + x4 X X 48
9 + 6x+ x2 + 2x3 + x4 x2 + 2x3 + x4 ✗ X 8
9 + 6x+ 4x2 + 2x3 + x4 x2 + 2x3 + x4 X X 48

9− 12x+ 8x2 − 4x3 + x4 2x2 + 2x3 + x4 ✗ X 6
9− 3x− x2 − x3 + x4 2x2 + 2x3 + x4 X X 24
9− 3x+ 2x2 − x3 + x4 2x2 + 2x3 + x4 X X 48
9− 3x+ 5x2 − x3 + x4 2x2 + 2x3 + x4 X X 24
9 + 6x+ 2x2 + 2x3 + x4 2x2 + 2x3 + x4 X X 36
9 + 6x+ 5x2 + 2x3 + x4 2x2 + 2x3 + x4 ✗ X 24

9− 6x+ 2x2 − 2x3 + x4 2x2 + x3 + x4 X X 36
9− 6x+ 5x2 − 2x3 + x4 2x2 + x3 + x4 ✗ X 24
9 + 3x− x2 + x3 + x4 2x2 + x3 + x4 X X 24
9 + 3x+ 2x2 + x3 + x4 2x2 + x3 + x4 X X 48
9 + 3x+ 5x2 + x3 + x4 2x2 + x3 + x4 X X 24
9 + 12x+ 8x2 + 4x3 + x4 2x2 + x3 + x4 ✗ X 6

Table 9.3.3. Data from Lemma 9.3.1
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Proof. By [Wed01, (2.17)], there is a lift of A0[p
∞] to a principally quasi-polarized

p-divisible group G/O with G[p] ≃ G1. By Serre–Tate theory [Kat81, Thm 1.2.1],
there exists a principally polarized formal abelian surface A/O with AF = A0

and A[p∞] ≃ G. Since deformations of polarized abelian surfaces are effective, we
are done. �

Remark 9.3.5. While we do not use this fact, we note that if A0 in Lemma 9.3.4 is
of the form Jac(C0) for a smooth genus 2 curve C0/F, then necessarily A = Jac(C)
for a lift C of C0 to O. To see this, note that since deformations of curves are
effective, it suffices to show that taking the functor taking a formal lift of C0 to its
Jacobian is an isomorphism to the deformation problem of lifting J0 = Jac(C0) to a
principally polarized abelian variety. Since both deformation problems are formally
smooth of dimension 3, it is enough to show that the morphism on tangent spaces
is injective. This is classical; see [Lan21, §2.1] for an exposition.

Corollary 9.3.6. Let ρ∨ : GQ3 → GSp4(F3) be a finite flat representation with
similitude character ε. Assume that ρ∨ is ordinary, so it is an extension of an
unramified 2-dimensional representation V by its Cartier dual.

Suppose that there exists an ordinary principally polarized abelian surface A0/F3

with the following properties:
(1) There is an isomorphism of GF3-representations V ≃ A0[3]

ét, and
(2) The image of ρA0,2 is conjugate to a subgroup of S5(b).

Then there exists a genus 2 curve X/Q3 with a Q3-rational Weierstrass point such
that J = Jac(X) has good ordinary reduction, and ρJ,3 ≃ ρ. Moreover, if A0

is 3-distinguished, then so is J .

Proof. The p-divisible group A0[3
∞] is the direct product of an étale part V and

its Cartier dual. By abuse of notation, we may also consider V as an unramified
representation of GQ3 (equivalently, the generic fibre of an étale 3-divisible group).
We are assuming that V is isomorphic to the unramified quotient of ρ.

We can therefore apply Lemma 9.3.4 to A0 where G0 taken to be the (unique)
finite flat group scheme with generic fibre ρ∨. Let A be the resulting lift of A0.
Since ρA0,2 has image inside a conjugate of S5(b), so does ρA,2 (since A has good
reduction, these two representations are the same). Hence A gives a Q3-rational
point of P (ρ) (see Definition 9.2.1). By a version of Krasner’s Lemma due to
Kisin [Kis99, Thm. 5.1], all the properties listed hold in any open ball around A ∈
P (ρ), and hence there exists a Q3-point J = Jac(X) in the corresponding (dense)
open subschemeMw

2 (ρ), and we are done. �

We use this to deduce the following:

Lemma 9.3.7. Let ρ : GQ3 → GSp4(F3) be an ordinary representation with simil-
itude factor ε−1, and suppose that ρ∨ is finite flat. Then there exists a genus two
curve X/Q3 with a rational Weierstrass point such that ρJac(X),3

∼= ρ, and Jac(X)
has good ordinary reduction and is 3-distinguished.

Proof. Write q(x) ∈ F3[x] for the characteristic polynomial of the Frobenius on the
unramified 2-dimensional quotient of ρ∨. Note that q(x) determines the unramified
quotient V of ρ unless it has repeated roots, in which case there are two possible V ;
one semi-simple and one non-semi-simple. By Corollary 9.3.6, it suffices to find
for each such V an A0/F3 satisfying the hypotheses of Corollary 9.3.6. We first
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consider Jacobians A0 = Jac(X0) of smooth ordinary genus 2 curves X0/F3 with
an F3-rational Weierstrass point such that the characteristic polynomial Q(x) of
Frobenius at 3 on T3X0 lifts x2q(x).

There are six possibilities x2±1 and x2±x±1 for q(x), and the existence of such
an X0 follows immediately from Lemma 9.3.1, in particular from Table 9.3.3. We
can also give explicit examples of such curves X0 : y2 = f(x) as follows, noting that
(after taking into account unramified quadratic twists) we only need to consider
four of the six cases.

Q(x) q(x) f(x)

x4 + 3x3 + 7x2 + 9x+ 9 x2 + 1 x5 + 2x+ 1
x4 + 3x3 + 5x2 + 9x+ 9 x2 − 1 x5 + x3 + x+ 1
x4 − x3 + 2x2 − 3x+ 9 x2 − x− 1 x5 + x2 + x
x4 + x3 + x2 + 3x+ 9 x2 + x+ 1 x5 + x4 + x2 + 1

In the ambiguous case where q(x) has repeated roots, it follows from Lemma 9.3.1(3)
that in all examples which arise (including the final example above) the represen-
tation V is not semi-simple. Hence it remains to consider the case when Frob3 acts
on V by a scalar. In this case, we shall construct A0 directly. After an unrami-
fied quadratic twist (if necessary), we may assume that V is trivial. Let E−1/F3

and E2/F3 denote the elliptic curves with a3 = −1 and a3 = 2 respectively.
Note that they are both ordinary and they each have a rational point over F3.
Let A0 = E−1 × E2. Then A0/F3 is principally polarized and 3-distinguished,
since Q(x) = (x2 + x + 3)(x2 − 2x + 3). Moreover, ρE−1,2(Frob3) has order 2

and ρE2,2(Frob3) has order 3. It follows that ρA,2(Frob3) has order 6 and charac-
teristic polynomial (x−1)2(x2+x+1) mod 2. This uniquely identifies the conjugacy
class as the element (∗∗∗)(∗∗) ∈ S5(b) ⊂ GSp4(F2), since the characteristic polyno-
mial of the other conjugacy class of order six elements (∗∗∗∗∗∗) ∈ S6 ≃ GSp4(F2)
is equal to (x2 + x+ 1)2.

One can verify these claims directly using Lemma 8.1.3, where, for example,

(12)(345) 7→




1 0 0 1
0 0 1 0
0 1 1 0
0 0 0 1


 , (125346) 7→




0 0 0 1
0 0 1 0
0 1 0 1
1 0 1 0


 ,

Alternatively, the claim about conjugacy classes is equivalent to the claim that the
eigenvalues of the semi-simple element (∗∗∗) ∈ A5(b) are 1, 1, ω, ω−1 for a primitive
third root of unity ω and not ω and ω−1 with multiplicity two; equivalently that
the Brauer character of V on (∗∗∗) evaluates to 1 + 1 + ω + ω−1 = 1 rather
than 2ω + 2ω−1 = −2, and this follows from Lemma 8.2.1. (The 4-dimensional
representation of A5(a) coming from GSp4(F2), in contrast, is isomorphic over F4

to U ⊕ Uσ.) See also [BPP+19, Lemma 5.1.7]. �

Remark 9.3.8. Although A0/F3 = E−1 × E2 is principally polarized, it is not a
Jacobian of an ordinary curve X/F3 (by Lemma 9.3.1 (3)), and so the X whose
existence is proven in Lemma 9.3.7 must have bad reduction at 3, even though the
Jacobian of X has good reduction at 3. From Table 9.3.3, we see there are exactly
five isogeny classes of principally polarized ordinary abelian surfaces A0/F3 which
are 3-distinguished and with Q(x) ≡ x2(x2 + x+1) = x2 + x3 + x4 mod 3. It turns
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out that in four out of these five examples, it is not possible to find an A0/F3 in the
corresponding isogeny class with A0[3](F3) = (Z/3Z)2. This can be proved by an
argument similar to Lemma 9.2.12; for each of the five isogeny classes there exists
a Jacobian B0/F3 with B0[3](F3) = Z/3Z. Suppose there exists an isogeny χ :
B0 → A0 with A0[3](F3) = (Z/3Z)2. The kernel of χ must contain B0[3](F3).
Now suppose that the characteristic polynomial Q(x) of Frobenius satisfies Q(1) ≡
±3 mod 9, which occurs in precisely four of these cases. It follows that (up to
isogenies of degree prime to 3) the map χ will factor through 1 − φ where φ is
the Frobenius morphism, and since this reduces the power of three dividing the
degree, we reduce to the case when χ has degree prime to three and we obtain a
contradiction. In the remaining case (which we exploited above), we have Q(x) =
(3 − x + x2)(3 + 2x + x2) and so Q(1) ≡ 0 mod 9, and now such an isogeny is
possible.

9.4. A 2-3 switch. We begin with the following approximation lemma.

Lemma 9.4.1. Let Z be a rational variety over Q. Let S be a finite set of places
of Q, and for each v ∈ S, let Ωv be a non-empty open subset of Z(Qv) (for the
v-adic topology). Then there exists a rational point P ∈ Z(Q) with Pv ∈ Ωv for
all v ∈ S, and such that P avoids any fixed thin subset of Z(Q).

Proof. Apart from the statement that we may avoid any fixed thin subset of Z(Q),
this is a special case of [Ser08, Lem. 3.5.5], and our proof is an obvious variation
on the arguments of [Ser08, §3.4, §3.5]. We may assume that S is nonempty. After
shrinking Z if necessary, we may assume that Z →֒ PnQ is an open immersion. Here
we use that Z is smooth; this guarantees that, for any open U ⊂ Z, Ωv ∩U(Qv) ⊂
U(Qv) is non-empty. Since Y = PnQ rZ is closed, Y (Qv) ⊂ PnQ(Qv) is closed, and
so Ωv ⊂ Z(Qv) ⊂ PnQ(Qv) is open. Since

PnQ(Q) ∩Ωv ⊂ PnQ(Q) ∩ Z(Qv) = Z(Q),

we can and do assume that Z = PnQ.
The number of points in PnQ(Q) which are of height at most H and are contained

in Ωv for all v ∈ S grows at the rate of a positive constant times Hn (the precise
constant depending on the open sets {Ωv}), whereas the number of points in any
fixed thin set is bounded by O(Hn−1/2 logH) by [Ser08, Thm. 3.4.4], and the result
follows. �

We now construct a suitable abelian surface through which to do our 2-3-switch.

Lemma 9.4.2. Suppose that

ρ : GQ → GSp4(F3)

has similitude ε−1, that ρ∨|GQ3
is ordinary and finite flat, and that ρ|GQ2

is un-
ramified.

(1) The following conditions are equivalent:
(a) The image of ρ(Frob2) in PGSp4(F3) r PSp4(F3) is not conjugate

to 4C or 12C (see Lemma 9.1.3).
(b) ρ|GQ2

≃ ρA,3, where A is the Jacobian of a genus 2 curve Y/Q2 with
a rational Weierstrass point, and where A has either good ordinary or
semistable ordinary reduction at 2 and is 2-distinguished.
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(2) Assume that the equivalent conditions in (1) hold. Then there exists a genus
two curve X/Q with a rational Weierstrass point, with B = Jac(X) having
the following properties:
(a) ρB,3

∼= ρ.
(b) B has good ordinary or semistable ordinary reduction at 2, and is 2-

distinguished.
(c) B has good ordinary reduction at 3.
(d) The representation

ρB,2 : GQ → GSp4(F2)

has image S5(b), and the image of complex conjugation has conjugacy
class (∗∗)(∗∗).

Moreover, End(BQ) = Z.

Proof. We recall from Definition 9.2.1; that Mw
2 (ρ) and P = P (ρ) are the fine

moduli spaces over Q parametrizing respectively genus 2 curves X with a ratio-
nal Weierstrass point together with a symplectic isomorphism ρJac(X),3

∼= ρ, and
principally polarized abelian surfaces with a fixed odd theta characteristic and a
symplectic isomorphism ρA,3

∼= ρ.
We claim that condition (1a) is equivalent to condition (1b) by Theorem 9.2.3.

More precisely, that theorem shows that (1a) implies there exists a point A ∈
P (ρ)(Q2) with either good ordinary or semistable ordinary reduction (and which
is 2-distinguished), whereas condition (1b) shows that there is a point A = Jac(Y ) ∈
P (ρ)(Q2) which lies in the image of Mw

2 (ρ). The variety P (ρ) is smooth and the
mapMw

2 (ρ)→ P (ρ) is an open immersion. Moreover, all the properties listed hold
in any open ball around any such point A by [Kis99, Thm. 5.1]. Hence given A ∈
P (ρ)(Q2) there exists a point B ∈ P (ρ)(Q2) with the same properties but lying in
the image of Mw

2 (ρ).
Having established this equivalence, we now turn to the proof of part (2), so we

in particular assume that condition (1b) holds. We now use Lemma 9.4.1 (applied
to Z = Mw

2 (ρ)) to produce a suitable point X/Q. Our set S will consist of the
primes 2, 3,∞. The corresponding thin set inside Z(Q) ⊂ P (Q) is the union of the
rational points in the images of PG(Q), where PG → P is the cover corresponding
to imposing that the image of ρB,2 lands inside a strict subgroup G ⊂ S5(b). There
are finitely many such G and the degree of PG over P is [S5(b) : G] > 1, so this is
indeed a thin set.

(1) Suppose that p = 2. Condition (1b) implies that there exists a point X
in Z(Q2) with the required properties (Jac(X)/Q2 with good ordinary
reduction or semistable ordinary reduction and 2-distinguished in charac-
teristic zero). By [Kis99, Thm. 5.1], there exists an open ball Ω2 ⊂ P (Q2)
around X consisting of points which also have good ordinary reduction and
are 2-distinguished.

(2) Suppose that p = 3. Then there exists a suitable point X ∈ Z(Q3) by
Lemma 9.3.7. As above, we take Ω3 to be a suitable open ball around X .

(3) For p = ∞, we choose Ω∞ ⊂ Z(R) to be a sufficiently small open ball
around any point with the correct local properties, namely y2 = f(x) for
any separable f(x) ∈ R[x] of degree 5 with exactly one real root.

The existence of X and B then follows from Lemma 9.4.1. Since the image
of ρB,2 is S5(b), it follows from [Zar00] that End(BQ) = Z. �
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Remark 9.4.3. The application of Lemma 9.3.7 in the proof of Lemma 9.4.2 can
obviously additionally be used to show that B can be chosen to be 3-distinguished,
but we shall not use this fact, so we have not explicitly recorded it.

Remark 9.4.4. Suppose that ρ : GQ → GSp4(F3) has multiplier ε−1, and ρ|GQ3
is

ordinary and (dual to) finite flat. Then, exactly as in the proof of Lemma 9.4.2 (now
ignoring the conditions at 2) obtains infinitely many genus two curves X/Q with a
rational Weierstrass point and such that A = Jac(X) has good ordinary reduction
at 3, such that ρX,3 ∼= ρ. This was implicitly assumed in the proof of [BCGP21,
Theorem 10.2.1].

9.5. Proof of Theorems A and B. In this section, we prove Theorem A, which
we restate as Theorem 9.5.2 below, except that the hypothesis on the image of ρA,3
has been relaxed. (Note that if ρA,3 is surjective, then End(AQ) = Z is automatic,
so Theorem 9.5.2 really does imply Theorem A.) We begin, however, with the
following modularity lifting theorem.

Theorem 9.5.1. Suppose that p > 2, and that A/Q and B/Q are abelian surfaces
such that:

(1) ρA,p
∼= ρB,p.

(2) A and B both have good ordinary reduction at p, and ρA,p|GQp
is p-distinguished.

(3) B is modular; more precisely, there is a weight 2 cuspidal automorphic
representation π for GSp4 /Q of level prime to p, which is ordinary at p
and satisfies ρπ,p ∼= ρB,p.

(4) The Zariski closure of ρA,p(GQ) contains Sp4.
(5) ρA,p is GSp4-reasonable, in the sense of [Whi22, Defn. 3.19].
(6) ρA,p is tidy, in the sense of [BCGP21, Defn. 7.5.11].
(7) ρA,p(GQ(ζp)) contains a regular semi-simple element.
(8) ρA,p(GQ)r Sp4(Fp) contains a regular semi-simple element.

Then A is modular. More precisely, there exists a cuspidal automorphic repre-
sentation π for GL4 /Q (the transfer of a cuspidal automorphic representation
of GSp4 /Q of weight 2) such that L(s,H1(A), s) = L(s, π).

Proof. We deduce the theorem from Theorem 7.5.11 (taking ρ there to be ρA,p).
By our assumption (4), it suffices to check that hypotheses (1)–(5) and (B1)–(B5)
of Proposition 7.5.10 hold.

Most of these conditions hold either explicitly by our assumptions, or by the
purity of Galois representations associated to abelian surfaces. The only remaining
conditions are:

(a) ρ(GQ(ζp∞ )) is integrally enormous.
(b) We can choose p-stabilizations of ρA,p|GQp

and ρB,p|GQp
such that the rep-

resentations ρB,p|GQp
lies on a unique irreducible component of SpecR△

p

and ρA,p|GQp
lies on the same component.

Part (a) follows from Corollary 7.1.4. For Part (b), we firstly choose a p-stabilization
of ρB,p|GQp

, and thus of ρB,p|GQp
= ρA,p|GQp

. Then at least one of the p-stabilizations
of ρA,p|GQp

is compatible with this fixed choice, and we conclude by Lemma 6.2.5
and the assumption that A and B both have good ordinary reduction at p. �

We are now ready to prove our main theorem.
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Theorem 9.5.2. Let A/Q be an abelian surface with a polarization of degree prime
to 3. Suppose that the following conditions hold:

(1) The image of the mod 3 representation:

ρA,3 : Gal(Q/Q)→ GSp4(F3)

is one of the 15 subgroups listed in Lemma 6.4.3, and End(AQ) = Z.
(2) ρA,3|GQ2

is unramified, and the image of ρA,3(Frob2) inside PGSp4(F3) r
PSp4(F3) does not have conjugacy class 4C or 12C (see Lemma 9.1.3).
Equivalently, the characteristic polynomial of ρA,3(Frob2) is not (x2 ± x+

2)2.
(3) A has good ordinary reduction at 3 and is 3-distinguished.

Then A is modular. More precisely, there exists a cuspidal automorphic repre-
sentation π for GL4 /Q (the transfer of a cuspidal automorphic representation
of GSp4 /Q of weight 2) such that L(s,H1(A)) = L(s, π).

Proof. By Lemma 9.4.2 (2) (which applies to ρA,3, since condition (1a) of Lemma 9.4.2
holds by our assumption (2)), there exists a genus two curve X/Q with a rational
Weierstrass point, with B = Jac(X) having the following properties:

• ρA,3 ∼= ρB,3.
• B has semistable ordinary or good ordinary reduction at 2, and is 2-

distinguished.
• B has good ordinary reduction at 3.
• The representation

ρB,2 : GQ → GSp4(F2)

has image S5(b), and the image of complex conjugation has conjugacy
class (∗∗)(∗∗).
• End(BQ) = Z.

We shall first apply Theorem 8.3.2 (a 2-adic modularity theorem; we take A
there to be our B) to deduce that B is modular. To recall, the hypotheses of
Theorem 8.3.2 are as follows:

(i) A5(b) ⊆ ρB,2(GQ) ⊆ S5(b).
(ii) The image of each complex conjugation has order 2 and lands in A5(b).
(iii) ρB,2|GQ2

is ordinary and 2-distinguished.

All of these conditions are guaranteed by the properties of B listed above, noting
that (∗∗)(∗∗) is a non-trivial conjugacy class contained in A5(b). Thus B is mod-
ular. More precisely, there is a weight 2 cuspidal automorphic representation π
for GSp4 /Q which in particular satisfies ρπ,3 ∼= ρB,3; furthermore π is necessarily
of level prime to 3 and is ordinary at 3 by local-global compatibility.

We now wish to use Theorem 9.5.1 at p = 3 to deduce that A is modular,
so we need to check the conditions of that theorem. We established that B is
modular above, and thus condition (3) holds. The isomorphism ρA,3

∼= ρB,3 holds
by the construction of B, hence we have condition (1). Both A and B have good
ordinary reduction at 3 and A is furthermore 3-distinguished (by assumption for A
and by construction for B), and thus we have condition (2). We are assuming
that End(AQ) = Z, so condition (4) holds by [Ser00, Thm 3]. Finally conditions (5),
(6), (7) and (8) hold by Lemma 6.4.3 and our assumptions on A. �
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Theorem 9.5.3. Let X be a smooth genus two curve over Q. Suppose that:
(1) The image of ρJac(X),3 : GQ → GSp4(F3) is one of the 15 subgroups listed

in Lemma 6.4.3, and End(Jac(X)Q) = Z.
(2) X has good ordinary reduction at 2.
(3) X has good ordinary reduction at 3.
(4) Jac(X) is 3-distinguished.

Then X is modular.

Proof. Let A = Jac(X) (so that A is in particular principally polarized). It suffices
to verify the conditions (1)–(3) of Theorem 9.5.2. Condition (1) is identical to our
first condition. Since we are assuming that X has good ordinary reduction at 2
and 3, so does A. Condition (2) follows from Lemma 9.1.6(1). Finally condition (3)
is immediate from our assumptions. Hence A (and thus X) is modular. �

We now deduce Theorem B, which we restate here, again with a weakening of
the assumption that ρX,3 is surjective.

Theorem 9.5.4. Let X : y2 = f(x) with deg(f(x)) = 5 be a smooth genus two
curve over Q. Suppose that:

(1) The image of ρX,3 : GQ → GSp4(F3) is one of the 15 subgroups listed in
Lemma 6.4.3, and End(Jac(X)Q) = Z.

(2) X has good ordinary reduction at 2.
(3) X has good ordinary reduction at 3.

Then X is modular.

Proof. By Theorem 9.5.3, it suffices to show that Jac(X) is 3-distinguished. SinceX
has a rational Weierstrass point (by our assumption that f(x) has degree 5), this
follows immediately from Lemma 9.3.1(3). �

Note that Theorem A and Theorem 9.5.2 do not require that A has good reduc-
tion at 2, only that ρA,3 is unramified at 2. Here we answer a question of Drew
Sutherland, who asks if the conditions of our main theorem are easy to verify com-
putationally if Q(A[3]) is unramified at 2 but A has bad reduction at 2. It turns
out that the answer is surprisingly simple.

Theorem 9.5.5. Let A/Q be an abelian surface with a polarization of degree prime
to 3. Suppose the following holds:

(1) The image of the mod 3 representation:

ρA,3 : Gal(Q/Q)→ GSp4(F3)

is one of the 15 subgroups listed in Lemma 6.4.3, and End(AQ) = Z.
(2) ρA,3|GQ2

is unramified.
(3) A has good ordinary reduction at 3 and the characteristic polynomial of

Frobenius at 3 does not have repeated roots.
(4) A has bad reduction at 2.

Then A is modular.

Proof. We shall apply Theorem 9.5.2. It suffices to show that, under the assump-
tion that A has bad reduction at 2, that the action of Frob2 on A[3] does not have
characteristic polynomial (x2 ± x + 2)2. By Lemma 9.2.2, we deduce that A has
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semistable reduction. Hence, as in the proof of Lemma 9.1.8, we deduce the exis-
tence of a GQ2 -equivariant filtration T2(B)t ⊂ T2(B)f ⊂ T2(B) of (saturated) Z3-
modules of ranks t > 0 and t + 2a where 2(t + a) = 4. If t = 1, then A[3] has
a GQ2 -stable line. But x2 ± x + 2 has no eigenvalues in F3, which concludes the
proof in this case. Assume that t = 2, so A has purely multiplicative reduction. It
follows that A has split multiplicative reduction over some minimal unramified ex-
tension K/Q2. There is a corresponding action of Gal(K/Q2) on Gm×Gm which
gives the descent data to Q2; this determines a finite order element of GL2(Z), and
such elements can only have orders 1, 2, 3, 4, or 6. (The characteristic polynomial
of this element will be, up to normalization, the L-factor of A at p = 2.) On the
other hand, the action of GQ2 on T3(B) ⊗ Q3 factors through Gal(K/Q2). By
considering the action on the unramified quotient A[3], we deduce that Gal(K/Q2)
has order divisible by 8, since x4 + 1 = (x2 + x + 2)(x2 − x + 2) mod 3. This is a
contradiction. �

Remark 9.5.6. An alternative argument is to note that if the characteristic poly-
nomial of Frob2 on ρA,3 is (x2 ± x + 2)2, then the ratio of any two eigenvalues is
never equal to 2 = −1 mod 3, and so ρA,3|GQ2

has no ramified lifts.

10. Complements

This final section includes a number of results which are complementary to the
main theorems of our paper (and in particular are not used elsewhere).

In §10.1, we explain how our main theorems apply (relative to a certain natural
way of enumerating genus two curves) to slightly over 10% of all such curves,
and we compare this to the data in the LMDFB [LMF24]. In §10.2, we prove the
automorphy of any abelian surface A/Q which falls into 32 of the 34 possible Galois
types. In §10.3, we prove some residual modularity theorems (Serre’s conjecture) for
mod-2 representations ρ : GQ → GSp4(F2) with image A6 or S6. Finally, in §10.4,
we point out that a sufficiently strong version of Serre’s conjecture for GSp4 in
regular weight would be enough to prove the modularity of all abelian surfaces A/Q.

10.1. Examples. Suppose one samples genus two curves

X : y2 + h(x)y = f(x)

with h(x), f(x) ∈ Z[x] of degrees ≤ 3 and ≤ 6 in any way in which the distributions
modulo 2 and 3 are equidistributed, and considers curves X with the following
properties:

(1) X has good reduction at 2,
(2) X has good ordinary reduction at 3,
(3) ρJac(X),3(Frob2) does not have characteristic polynomial x4±x3+2x2±x+1,

equivalently, is not projectively conjugate to 4C or 12C,
(4) The characteristic polynomial Q3(x) of Frob3 has distinct eigenvalues.

Then from Lemmas 9.1.6 and 9.3.1 these X form a subset of density
768− 144

211
· 864− 10

37
=

13

16
· 3
8
· 854
2187

=
5551

46656
= 0.1189 . . .

(Note that 13/16 is the density of allowable elements for ρX,3(Frob2), and 3/8 is the
density of curves with good reduction at 2.) Since End(AQ) = Z holds for a set of
density one, we see in particular that Theorem 9.5.2 applies to a positive (although
not so large, slightly over 10%) proportion of all genus 2 curves. (The main theorem



210 G. BOXER, F. CALEGARI, T. GEE, AND V. PILLONI

of [Wil95] also applies to a positive but strictly less than one proportion of all genus 1
curves by any natural counting.)

Another point of comparison is with the curves in the database [LMF24]: There
are 66158 genus two curves X in [LMF24, BSS+16]:

(1) Of those, 63107 have EndAQ = Z, where A = Jac(X).
(2) Of those, 22158 have good reduction at 2 and 3. (In the range of the

data, a genus 2 curve X has good reduction at p (for any p) if and only
if A = Jac(X) has good reduction at p.)

(3) Of those, 21552 have surjective mod 3 representations.
(4) Of those, 14856 have ordinary reduction at p = 3.
(5) Of those, our theorem applies to 11384 curves, where the distribution of

various conjugacy classes and 3-distinguishedness conditions is indicated in
Table 10.1.

Table 10.1.1. ρA,3(Frob2) distributions of A = Jac(X) where X
has good reduction at 2, good ordinary reduction at 3, ρA,3 is
surjective, and X is taken from [BSS+16], together with a count
of those to whom Theorem 9.5.2 applies.

ρA,3(Frob2) ordinary at 2 non-ordinary at 2

3-dist not 3-dist 3-dist not 3-dist
2C/6G/6H 1048 8 840 7

4D 0 0 890 2
2D/6I 825 1 0 0
8A 1233 9 854 6
10A 3407 48 2287 4

4C/12C 0 0 3369 18

All 6513 66 8240 37
Theorem 9.5.2 applies 6513 0 4871 0

If one allows ρA,3 to be any of the 15 subgroups listed in Lemma 6.4.3, there
are three additional curves, precisely one of which we can deduce is modular by
Theorem 9.5.2. This is the curve 7889.b.55223.1 of conductor 73 · 23. The repre-
sentation ρA,3 in this case (with image of order 2304) is induced from a representa-
tion ρE,3 : GF → GL2(F3), where E is a modular elliptic curve over F = Q(

√
−7)

with [LMF24] label 2.0.7.1-322.1-a1 and conductor of norm 322 = 2 · 7 · 23.
There are 41324 curves in the [LMF24] database with ρA,3 surjective, EndQ(A) =

Z, and such that A has good reduction at 3. Of those, 19772 of these curves have
bad reduction at 2. We find that for precisely 360 of these curves, A is ordinary at 3
and ρA,3 is unramified at 2. Of those, 359 are 3-distinguished and thus modular by
Theorem 9.5.5. In particular, Theorem A applies to precisely 11384+ 359 = 11743
of the 66158 curves in the [LMF24]. (One can verify modularity for more of the
curves in [LMF24] by including quadratic twists.) The smallest conductor of such
an A with bad reduction at 2 is 1982; the corresponding A is the Jacobian of the
curve

y2 + (x+ 1)y = −x5 + x4 − x3 + x2.
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10.2. Automorphy for abelian surfaces with small Sato–Tate group. In
this section, we prove the automorphy (in the sense of Definition 1.8.25) for 32 of
the 34 Galois types (in the sense of [FKRS12]) of abelian surfaces A over Q. We
closely follow [BCGP21, §9.2] and use freely the notation of that section, as well
as the results summarized there from [FKRS12, Joh17] (see also [Tay20]). We say
that a Galois representation is “finite up to twist” if it is a twist by a character of
a representation with finite image.

Recall that the Galois type of A/Q is A precisely when End(AQ) = Z, and A/Q
has type B[C2] if there exists a quadratic field K/Q so that End(A) = Z but
End(AK)⊗Q is either Q⊕Q or a real quadratic field. (In [BCGP21, §9.2], we call
an abelian surface A/Q “challenging” precisely when it is one of these two types.)

The main theorem of this section is as follows.

Theorem 10.2.1. Let A/Q be an abelian surface. Suppose that the Galois type
of A is neither A nor B[C2]. Then A is modular.

Remark 10.2.2 (Abelian surfaces of Galois type B[C2]). A natural source of
abelian surfaces of type B[C2] are those of the form ResK/Q(E) for a non-CM el-
liptic curve E which is not isogenous to its Gal(K/Q)-conjugate. If K/Q is real
quadratic, then E is automorphic for GL2 /K by [FLHS15] and then A is auto-
morphic for GL4 /Q. The modularity of elliptic curves E over imaginary quadratic
fields K is known in many cases (but not yet all) by [CN23]. On the other hand,
for A of type B[C2], the endomorphism algebra End(AK)⊗Q could also be a real
quadratic field E rather than Q×Q, in which case A/K will be a simple abelian
surface of GL2-type. This happens, for example, when A is the Jacobian of the
genus 2 curve

y2 + (x3 + 1)y = x6 + 2x3 − x
with E = K = Q(

√
5) [LMF24, genus 2 curve 12500.a.12500.1]. The modularity

of such abelian surfaces remains open in general even for real quadratic fields K.

Proof of Theorem 10.2.1. Following the discussion in [BCGP21, §9.2] and [BCGP21,
Prop 9.2.1], all abelian surfaces A/Q can be divided up into a number of possible
Galois types, which, writing {ρA,p} for the compatible system of Galois represen-
tations {H1(AQ,Qp)}, fall into the following categories independently of p:

(1) strongly irreducible (type A),
(2) reducible (type B[C1], C, E[Cn], some D, some F),
(3) potentially abelian but not reducible (of type the remaining D and F cases),
(4) induced from a quadratic extension K/Q but not potentially abelian, in

which case either:
(a) the two 2-dimensional representations over K are equivalent up to

twist (type E[Dn]), or
(b) the two 2-dimensional representations over K are not equivalent up to

twist (type B[C2]).
We will prove automorphy in all cases except those of type A and those of

type B[C2].
In the reducible cases, it follows from [FKRS12] that the compatible system

associated to A can be written as a direct sum of two irreducible, odd, regular,
weakly compatible systems of Galois representations over Q. These are modular
by [KW09]. In case E[Dn], we see (as in the proof of [BCGP21, Prop 9.2.1])
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that there exists a quadratic extension K/Q and an odd irreducible regular weakly
compatible system S = {sp} of GQ such that ρp ≃ sp⊗IndGQ

GK
ψ−1 = Ind

GQ

GK
sp|GK⊗

ψ−1 for some fixed finite order character ψ. Once more S is automorphic for GL2 /Q
by [KW09], and then A is is automorphic for GL4 /Q, as required.

It remains to consider the cases where ρp is (absolutely) irreducible but poten-
tially abelian. Since the representations ρp have similitude character ε−1 and ρp
is not finite up to twist (since it has distinct Hodge–Tate weights), this last case
follows from Lemma 10.2.5 below. �

In the remainder of this section we prove Lemma 10.2.5, which was used in the
proof of Theorem 10.2.1. We begin with some preliminary lemmas, the first of
which concerns representations which have potentially abelian image.

Lemma 10.2.3. Let F be a number field, and let ρ : GF → GLn(Qp) be a con-
tinuous irreducible representation which is de Rham at all places dividing p and
potentially abelian over a finite Galois extension L/F . Then there exist integers a,
b, with ab = n, and b pairwise distinct characters χi : GL → Q

×

p such that

ρ|GL ≃
b⊕

i=1

(χi)
⊕a.

The action of Gal(L/F ) on the characters χi via χσi (g) = χi(σgσ
−1) induces a map

Gal(L/F )→ Sb

with transitive image. Let Gal(L/Ki) be the stabilizer of χi. Then there exists an
irreducible representation Vi of GKi such that Vi|GL

∼= (χi)
⊕a, and

ρ ≃ IndGF

GKi
Vi.

If ρ is not finite up to twist, then:
(1) the characters χi are associated to algebraic Hecke characters of non-parallel

weight.
(2) b > 1.
(3) If a = 1, then each Ki contains an imaginary CM field.

Proof. Since the χi eigenspace is mapped to the χσi eigenspace under the action
of ρ(σ) for any lift of σ ∈ Gal(L/F ) to GF , the group Gal(L/F ) acts transitively
on the characters (since otherwise the direct sum of the eigenspaces for χσi for any
given i would be a non-trivial GF -invariant subspace of ρ, and we are assuming
that ρ is irreducible). Similarly, the multiplicity of each χi is independent of i.
Let V be the vector space underlying the representation ρ, and let Vi denote the
subspace on which GL acts by χi. Since GF preserves the decomposition V =

⊕
Vi,

it follows that Vi extends to a representation of GKi where Gal(L/Ki) stabilizes χi.
By the orbit–stabilizer theorem, [Ki : F ] = b. By Frobenius reciprocity, there is a
non-trivial map V → IndGF

GKi
Vi, which (because V is irreducible) is an isomorphism,

and hence Vi must also be irreducible.
Assume for the remainder of the proof that ρ is not finite up to twist. Each

character χi is de Rham and thus is either a finite order character times an integer
power of the cyclotomic character or has non-parallel weight. In the first case,
after twisting ρ by a power of the cyclotomic character, we may assume that χi
has finite image. But then Vi and hence ρ also have finite image, contrary to our
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assumption. If b = 1, then the projective image of ρ restricted to GL is trivial, and
hence the image of the projective representation Pρ is finite. From the vanishing
of H2(F,Q

×

p ) [Ser77b, Thm. 4], it follows Pρ lifts to a genuine representation ρ̂ :

GF → GLn(Qp) which has finite image. Since ρ is irreducible, ρ̂ ≃ ρ⊗χ for some χ,
and thus ρ is finite up to twist, once more contrary to our assumption.

If a = 1, then the action of GKi on Vi is via a character ψi which restricts to χi
over GL. We have already shown that χi has non-parallel weight, and thus ψi also
corresponds to an algebraic Hecke character of non-parallel weight, which implies
that Ki contains an imaginary CM field. �

Lemma 10.2.4. Let F be a number field, and let ρ : GF → GL2(Qp) be a contin-
uous irreducible representation which is de Rham at p and potentially abelian over
a finite extension. Then either:

(1) ρ is finite up to twist, or
(2) ρ is automorphic for a cuspidal automorphic representation π for GL2 /F

which is the automorphic induction of an algebraic Hecke character.

Proof. Suppose that ρ|GL becomes reducible over a Galois extension L/F , and
write ρ|GL ≃ χ1⊕χ2. If χ1 = χ2, then ρ is finite up to twist by Lemma 10.2.3. Thus
we may assume that χ1 6= χ2, and then by Lemma 10.2.3, we see that K = Ki/F

is cyclic of degree 2 and ρ = IndGF

GK
ψp where ψp corresponds to an algebraic Hecke

character ψ of GK . �

Lemma 10.2.5. Let ρ : GQ → GSp4(Qp) be a continuous irreducible representa-
tion which is de Rham at p. Suppose that:

(1) There exists a Galois extension L/Q so that the image of ρ|GL is abelian.
(2) If ν is the similitude character, then ν(c) = −1, where c is complex conju-

gation.
(3) ρ is not finite up to twist.

Then ρ is modular.

Proof. By Lemma 10.2.3, there is a decomposition ρ|GL ≃
⊕b

i=1(χi)
⊕a with ab = 4.

Since ρ is not finite up to twist, it follows from Lemma 10.2.3 that b > 1. Suppose
that b = 2. Then ρ ≃ Ind

GQ

GKi
Vi where [Ki : Q] = 2 and dim(Vi) = 2. Note that

since Gal(L/Ki) is the stabilizer of a point with respect to the map Gal(L/Q)→ S2,
the field F = Ki does not depend on i. We know that V1 and V2 are irreducible and
potentially abelian, so by Lemma 10.2.4 either both Vi are automorphic for GL2 /F ,
in which case ρ is modular, and we are done; or both Vi are finite up to twist, which
we assume from now on.

If we write V = Ind
GQ

GF
Vi, then

∧2V = Ind
GQ

GF
det(Vi)⊕ AsaiF/Q(Vi),

where AsaiF/Q(Vi)|GF ≃ V1⊗V2 (this only characterizes the representation over GQ

up to quadratic twist but it is all that we will use in this argument). Since V admits
a symplectic form which is Galois invariant up to a similitude character, we know
that ∧2V must contain a character. We deduce either that det(Vi) extends to Q

or Asai(F/Q)(Vi) is reducible. Suppose firstly that det(Vi) is the restriction to GG
of a character χ of GQ. The image of χ lands in O×

E for some finite extension E/Qp,
and so χ factors through a quotient of GQ of the form Zrp⊕T for some finite group T .
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Define a new character ψ : GQ → O×
E by sending topological generators σ of each

of these Zp factors to any square root of χ(σ), so that χψ−2 has finite order. Then
det(Vi ⊗ ψ|−1

GF
) has finite order, and Vi ⊗ ψ|−1

GF
is finite up to twist, so Vi ⊗ ψ|−1

GF

has finite image. Since

V = Ind
GQ

GF
Vi = ψ ⊗ Ind

GQ

GF
(Vi ⊗ ψ|−1

GF
),

and Vi⊗ψ|−1
GF

has finite image, we see that ρ is finite up to twist, contradicting our
assumptions.

Hence we may assume that the Asai representation contains a character as a
constituent, and in particular its restriction V1 ⊗ V2 to GF does as well, and thus
(since the Vi are irreducible over F ) we have V1 ≃ V2 ⊗ φ for some φ. This implies
that the projective representations associated to V1 and V2 are isomorphic. Since V1
and V2 are GQ-conjugate, it follows that the projective representation associated
to Vi extends to Q, and thus (by Tate’s theorem) Vi itself lifts (up to twist) to a
representation V of GQ. It then follows that

ρ ≃ V ⊗ Ind
GQ

GF
χ

where now F/Q is an imaginary quadratic field, χ is an algebraic Hecke character,
and V is a representation of GQ of finite image. If V is induced, then V and ρ
are automorphic, so we may assume that V is not induced. The GQ-module V
admits a unique symplectic form invariant up to a similitude character which is
given by det(V ), but V does not admit any corresponding orthogonal form, since V
is not induced. On the other hand, we also see that W = Ind

GQ

GF
χ admits a sym-

plectic form which is invariant up to similitude character det(W ), and an orthog-
onal form which is invariant up to similitude character det(W )ηF/Q, where ηF/Q
is the quadratic character associated to the imaginary quadratic field F/Q. We
deduce that the unique symplectic form on ρ = V ⊗ W has similitude charac-
ter det(V ) det(W )ηF/Q, which is odd if and only if det(V ) is odd, since det(W )ηF/Q
is even. Thus the oddness assumption implies that V is an odd Artin representa-
tion, and thus V is modular by known cases of the Artin conjecture [PS16b, Sas19],
and the automorphy of ρ follows.

Finally, suppose that b = 4, so a = 1. By Lemma 10.2.3, there exists a degree 4

field K/Q such that ρ ≃ Ind
GQ

GK
χ, where χ corresponds to an algebraic Hecke

character of non-parallel weight, so that K/Q contains an imaginary CM field.
In particular, either K is itself an imaginary CM field, and thus contains a real
quadratic subfield E = K+, or K contains an imaginary quadratic subfield E.
In either case, we see that ̺ = IndGE

GK
χ corresponds to a cuspidal automorphic

representation of GL2 /E, and by another application of automorphic induction we
deduce that ρ = Ind

GQ

GE
̺ is automorphic. �

Remark 10.2.6. Various rationality considerations (see [FKRS12]) imply that, if ρ
is a potentially abelian Galois representation associated to an abelian surface A/Q,
then ρ is actually potentially abelian over a solvable extension of Q, which can
be used to simplify the argument in this case, On the other hand. Lemma 10.2.5
is conjecturally still true without either the oddness assumption, or the finiteness
up to twist condition, although presumably extremely difficult. In the first case, it
would include the automorphy of representations of the form V ⊗IndGQ

GF
χ where χ is
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an algebraic Hecke character of a CM field F and V is an even Galois representation
with projective image A5, which would imply the automorphy of such a V .

Similarly, assume oddness holds but drop the finiteness up to twist condition.
The group S6 is a subgroup of PGSp4(C); this S6 can also be seen inside PGSp4(F3).
Let L/Q be any S6 extension such that complex conjugation is odd. Then there
is a projective representation GQ → Gal(L/Q) ≃ S6 →֒ PGSp4(C). Any lift to an
Artin representation ρ : GQ → GSp4(C) will be odd, but the modularity of ρ is
unknown for any representation with projective image S6 regardless of the image
of complex conjugation. Fortunately, neither case is relevant for the automorphy
of abelian surfaces over Q.

10.3. Residual modularity theorems (modulo 2). The goal in this section is to
prove some residual modularity theorems for mod-2 representations with image A6

or S6. We will need the following variation of Lemma 9.3.4 for the prime p = 2.

Lemma 10.3.1. Let O be the ring of integers in a finite extension K of Q2 with
residue field F. Let G1/O be a 2-torsion finite flat group scheme of order 16 = 24,
together with an isomorphism λ : G1 → G∨

1 such that λ∨ = −λ. Suppose that A0/F
is a principally polarized ordinary abelian surface with A0[2]/F ≃ G1/F. Then there
exists a lift of A0 to a principally polarized abelian surface A/O with A[p] ≃ G1.

Remark 10.3.2 (Remarks on the proof and the statement of Lemma 10.3.1).
Let p = 2. By Serre–Tate theory, we are reduced to finding an appropriate lift-
ing A0[p

∞] to a Barsotti–Tate group, together with a lifting of λ to make A0[p
∞]

a quasi-polarized BT. By a result of Grothendieck [Ill85], there is no issue in lift-
ing A0[p

∞] as a Barsotti–Tate group, so the subtlety is imposing the polariza-
tion. We proved an analogous statement in Lemma 9.3.4 (without any ordinary
hypothesis) using results from [Wed01]. Wedhorn’s argument in [Wed01, (2.17)]
involves certain constructions in which one obtains a polarization by an averag-
ing procedure involving dividing by 2 — this naturally causes issues when p = 2.
One difficulty is that, when p = 2, one needs to decide what it means for a pair-
ing on a finite flat group scheme G to be alternating rather than skew symmetric.
If G = α2/F2, then G is Cartier self-dual via the map α2×α2 → Gm given on points
by (x, y) 7→ 1 + xy. This is alternating on points (since x2 = 0 for x ∈ α2(A)) but
one does not want to regard it as an alternating pairing. Instead, following [LH13,
§3.2] (where the idea is attributed in part to de Jong), one could define a pair-
ing G × G → Gm of finite flat group schemes to be strongly alternating if, fpqc
locally on the base, there is is a central extension

1→ Gm → G̃→ G→ 1 (10.3.3)

such that the pairing arises from the commutator pairing on this extension.
One strategy would be to determine the precise conditions for any G = G1 of

exponent 2 admitting an isomorphism λ : G1
∼−→ G∨

1 with λ∨ = λ (since p = 2 there
is no choice of sign) to give rise to a corresponding Heisenberg group extension G̃ of
the form (10.3.3), and then to prove a version of this lemma without any ordinary
hypothesis on A0/F, but with a suitably modified definition of what it means
for G/O to be quasi-polarized.

Alternatively, instead of addressing any of the more subtle issues which might
arise in the general case, we exploit the assumption that A0/F is ordinary. In this
case, the assumption that a commutative finite flat group scheme G is an extension
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of an étale group scheme by a multiplicative (dual to étale) group scheme simplifies
the situation considerably: There is a connected-étale sequence

1→ G0 → G→ Gét → 1,

where G0 is multiplicative and so its Cartier dual is étale. Now any isomorphism λ :
G ≃ G∨ clearly has the property that the induced map

G0 → G
λ≃ G∨ → (G0)∨ = ((G0)∨)ét (10.3.4)

is trivial, and so any such λ will automatically be alternating on the generic fibre. In
particular, we only work with the assumption that there exists an isomorphism λ :
G1 → G∨

1 with λ∨ = −λ (the sign makes no difference for finite flat group schemes
annihilated by 2), even though one expects this may will be the “wrong” definition
in the non-ordinary case.

Proof of Lemma 10.3.1. The assumption that A0/F is ordinary implies that the
corresponding 2-divisible group splits into toroidal (ind-multiplicative) and (ind)-
étale parts which are Cartier dual to each other. Over O/πnK or over O, these
factors have unique lifts, and the lifts of A0[2

∞] are equivalent to the category of
extensions of these factors ([Mes72, Prop 2.1]). But over O, 2-divisible groups are
determined by their generic fibres, and so the lifts are classified in terms of Galois
cohomology. More precisely, if V denotes the free (rank 2) Z2 module corresponding
to the Pontryagin dual of the (ind)-étale part of A0[2

∞], and W = V ∨ the Z2-dual
of V , then the extensions of interest are computed by the group

H1
f (K,W ⊗W (1)).

The result [Ill85] then implies the surjectivity of the reduction map:

H1
f (K,W ⊗W (1))→ H1

f (K,W ⊗W (1)),

where W =W/2. Now we wish to impose the condition that there exists a suitable
polarization λ. There is an exact sequence of flat Z2-modules

0→ S(W )→W ⊗W → ∧2(W )→ 0,

where S(W ) is the submodule generated by x ⊗ x for all x ∈ W . The vector
space S(W ) ⊗ K is isomorphic to Sym2(W ) ⊗ K, but this is not used below. By
purity, the (generalized) eigenvalues of Frobenius on W ⊗W cannot have absolute
value 1 and so in particular are 6= 1. It follows that for M equal to any of S(W ),
W ⊗W , or ∧2W , we have H2(K,M(1)) = 0, and H1

f (K,M(1)) = H1(K,M(1)).
We say that a class η in H1

f (K,W ⊗ W (1)) ⊂ H1(K,W ⊗ W (1)) is alternating
if it lies in the image of H1(K,S(W )(1)), and we denote the alternating classes
by H1

f (K,W ⊗W (1))Alt. We similarly write H1
f (K,W ⊗W (1))Alt for the same

condition modulo 2. (The reason this is the correct choice is ultimately explained
by equation (10.3.4) below.) We have a commutative diagram as follows.

H1
f (K,S(W )(1)) //

��

H1
f (K,W ⊗W (1)) //

����

H1
f (K,∧2(W )(1))

��

// 0

H1
f (K,S(W )(1)) // H1

f (K,W ⊗W (1)) // H1
f (K,∧2(W )(1))

Because the H2 groups vanish, the kernel of each vertical map consists of classes
divisible by 2. Now take an alternating class η ∈ H1

f (K,W ⊗W (1))Alt. It lifts
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to η ∈ H1
f (K,W ⊗W (1)), which then maps to a class ν ∈ H1

f (K,∧2(W )(1)) whose
reduction ν is trivial. But that implies that ν is divisible by 2, and thus, writing ν =
2γ, and lifting γ to γ̃ ∈ H1

f (K,W⊗W (1)), we see that η−2γ̃ ∈ H1
f (K,W⊗W (1))Alt,

and hence there is a surjection

H1
f (K,W ⊗W (1))Alt → H1

f (K,W ⊗W (1))Alt.

It now suffices to show that H1
f (K,W ⊗ W (1))Alt classifies possible principally

quasi-polarized Barsotti–Tate groups G/O lifting A0[2
∞], equivalently, a BT G/O

together with an isomorphism λ : G → G∨ with λ∨ = −λ, whereas H1
f (K,W ⊗

W (1))Alt classifies finite flat group schemes over O lifting A0[2] together with an
isomorphism λ : G → G∨ with λ∨ = −λ. In both settings, the corresponding lifts
are determined by extensions of (fixed) étale by multiplicative group schemes, and
these extensions are determined by their generic fibres. In either case, λ induces a
skew-symmetric pairing J on the generic fibre which (as explained in the discussion
surrounding (10.3.4) using the ordinary hypothesis) is alternating. Moreover, the
generic fibre of the connected part (respectively, étale part) is isotropic with respect
to this pairing. That implies that the action on the generic fibre factors through
the generalized symplectic group, and in particular that the extension class of the
étale by multiplicative part is alternating in the sense described above. (This is
equivalent to the computation that

(
I A
0 I

)(
0 I
−I 0

)(
I A
0 I

)T
=

(
0 I
−I 0

)
(10.3.4)

if and only if A is symmetric.) Conversely, once the image of the Galois repre-
sentation lies in the generalized symplectic group compatible with the connected
part being isotropic, the Barsotti–Tate group (or finite flat group scheme) admits
a suitable λ. We deduce that G1 corresponds to a class in H1

f (K,W ⊗W (1))Alt,
and that there exists a lift of A0[2

∞] to a principally quasi-polarized BT G/O
with G[2] ≃ G1, and we conclude as in the proof of Lemma 9.3.4. �

We also offer the following alternative proof using stacks, for those who are
gripped to the pages of this manuscript and don’t wish it to end:

Alternate proof of Lemma 10.3.1. Let us consider the p-divisible group µ2
p∞⊕Qp/Z

2
p

equipped with its standard polarization over Fp. By Serre–Tate theory, the moduli
space of polarized extension of 0 → µ2

p∞ → G → Qp/Z
2
p → 0 on local Artinian

W (Fp)-algebras is represented by

Ĝ3
m = SpfW (Fp)JX1, X2, X3K.

Identify F = Fq and let φ be the q-th power Frobenius which topologically generates
Gal(Fp/F). The p-divisible group A0[p

∞] is isomorphic over Fp to µ2
p∞ ⊕Qp/Z

2
p.

This implies that the moduli stack of deformations (as polarized extensions) of
A0[p

∞] to local W (F)-Artinian algebras is represented by

Ĝ3
m/φ

Ẑ

where φ acts naturally on W (Fp) and the action on the Serre–Tate parameters is
induced by the action of Frobenius on TpAét

0 ⊗Tp(Am0 )D. Let W (Fp)/p
n =Wn(Fp).
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We can think of Ĝ3
m/φ

Ẑ as the ind-stack colimSpecWn(Fp)JX1, X2, X3K/φ
Ẑ and

each SpecWn(Fp)JX1, X2, X3K/φ
Ẑ is the inverse limit on r of:

SpecWn(Fqr )JX1, X2, X3K/φ
Z/qrZ

where r is large enough so that the action on the Serre–Tate parameters of φq
r

is
trivial modulo pn. The map

SpecWn(Fqr )JX1, X2, X3K→ SpecWn(Fqr )JX1, X2, X3K/φ
Z/qrZ

is formally étale as the group Z/qrZ is étale. The moduli of polarized extensions

0→ µ2
p → G→ (Z/pZ)2 → 0

on local Artinian W (Fp)-algebras is the quotient stack Ĝ3
m/Ĝ

3
m where each copy

of Ĝm acts on itself through the map (1+x, 1+ y) 7→ (1+x)p(1+ y). (The moduli
of all extensions is given by Ĝ4

m/Ĝ
4
m, and the inclusion of the polarized extensions

into all extensions corresponds in the previous argument to the inclusion of S(W )

into W ⊗W .) The map Ĝ3
m → Ĝ3

m/Ĝ
3
m is formally smooth. We now consider the

map

Ĝ3
m/φ

Ẑ → Ĝ3
m/Ĝ

3
m/φ

Ẑ. (10.3.4)

The map (10.3.4) sends a deformation (as a polarized extension) of A0 to a de-
formation (as a polarized extension) of A0[p]. The map (10.3.4) is moreover the
inductive limit of the maps

Ĝ3
m|Wn(Fp)

/φẐ → Ĝ3
m|Wn(Fqr )/Ĝ

3
m|Wn(Fqr )/φ

Ẑ. (10.3.4)

In turn, these maps (10.3.4) are the inverse limit of the maps:

Ĝ3
m|Wn(Fqr )/φ

Z/qrZ → Ĝ3
m|Wn(Fqr )/Ĝ

3
m|Wn(Fqr )/φ

Z/qrZ

This last map is formally smooth because the groups Ĝ3
m|Wn(Fqr ) and Z/qrZ are

both formally smooth.
By assumption, we begin with G1/O, which is a point Spf O → Ĝ3

m/Ĝ
3
m/φ

Ẑ,
and our goal is to lift this to an Spf O-point of Ĝ3

m/φ
Ẑ. Let ̟ be a uniformizer

of O. Assume that we have found a lift of G1|Spec(O/̟k) to G → Spec(O/̟k);
we shall upgrade it to a lift on Spec(O/̟k+1) of G1|Spec(O/̟k+1), and then we are
done by induction.

There exists, n, r such that we have a commutative diagram (given by the solid
arrows):

Spec(O/̟k) Ĝ3
m|Wn(Fqr )/φ

Z/qrZ

Spec(O/̟k+1) Ĝ3
m|Wn(Fqr )/Ĝ

3
m|Wn(Fqr )/φ

Z/qrZ

By formal smoothness, we can produce the lift given by the dotted arrow, complet-
ing the proof. �
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10.3.5. Moduli of X with fixed Jac(X)[2]. Let F be a global or local field of char-
acteristic zero, and let

ρ : GF → GSp4(F2)

be a continuous representation. Under the identification (Lemma 8.1.3) of S6

with GSp4(F2), there exists a corresponding degree 6 separable polynomial f(x)
such that ρ is isomorphic to the 2-torsion representation on the Jacobian of y2 =
f(x). LetK = F [x]/f(x) ≃∏Fi, which is a degree 6 étale F -algebra. Given θ ∈ K,
the multiplication by θ map K → K naturally has a characteristic polynomial of
degree 6 with roots we denote by σθ. If we fix a basis for K over F , for example
given by the powers of x, this map is compatible with extensions of F . If we iden-
tify K with F 6, then by the primitive element theorem, the σθ will be distinct for θ
outside a finite number of hyperplanes (which are defined over the splitting field
of f(x) and compatible with field homomorphisms F → F ′). If the σθ are distinct,
then

X : y2 =
∏

(x− σθ),
will be a smooth genus two curve over F with Jac(X)[2] ≃ ρ. We have therefore
constructed a smooth rational variety Z(ρ) ⊂ P6 over F given by the complement of
finitely many hyperplanes, whose F -rational points give smooth genus two curvesX
with 2-torsion given by ρ. Moreover, the construction of Z(ρ) (having fixed K) is
compatible with both extensions of F and completions at primes of F . There is a
map from Z(ρ) to the corresponding moduli stack M2(ρ), but to avoid any issues
concerning fields of moduli versus fields of definition it is fine for our purposes to
work directly with Z(ρ).

Lemma 10.3.6. Let ρ : GQ → GSp4(F2) be a continuous representation unram-
ified at 3. Assume that there exists a finite flat model W/Z2 for ρ over Z2 which
is isomorphic to its Cartier dual and which is ordinary, that is, the extension of
an étale group scheme by a multiplicative group scheme. Suppose that ρ(Frob3) is
non-trivial. There exists an abelian surface A/Q such that:

(1) A has good ordinary reduction at 3 and is 3-distinguished.
(2) A has good ordinary reduction at 2. There is an isomorphism of finite flat

group schemes A[2]/Z2 ≃ W, and the characteristic polynomial Q(x) of
Frobenius at 2 satisfies

Q(x) 6≡ x4 ± x3 + 2x2 ∓ x+ 1 mod 3. (10.3.7)

(3) ρA,3 is surjective.
(4) ρA,2

∼= ρ.

Proof. Let Z = Z(ρ). The conditions we are imposing at 2 and 3 are open con-
ditions in Z(Q2) and Z(Q3) respectively. The condition that ρA,3 is surjective
holds outside a thin set. Since Z is smooth and rational, by Lemma 9.4.1 once we
find suitable points on Z(Q2) and Z(Q3), we obtain an A which has the required
properties.

Let us consider Z(Q3). With F = Q, let K denote the degree 6 étale F -algebra
corresponding to ρ as described above. Since we are assuming that ρ is unramified
at 3, we certainly have thatK is unramified at 3, so the possible completions K⊗Q3

are determined by a partition of 6. There are exactly 11 such partitions, the
partition 6 = 1 + 1 + 1 + 1 + 1 + 1 corresponding to the case when ρ(Frob3) is
trivial, which we are excluding. For the remaining 10 partitions, we now produce
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an explicitX : y2 = f(x) with good ordinary reduction at 3 which is 3-distinguished.
We actually write down X/Q with these properties. Note that for y2 = f(x) where
one of the Weierstrass points is at ∞, the corresponding partition corresponds to
the factorization of f(x) over Q3 plus another copy of Q3. In other words, the
partition corresponds to the degrees of the (unramified) fields of definition of the 6
Weierstrass points of X over Q3.

f(x) partition N

4x5 + 32x4 + 64x3 + x2 + 4x [1, 1, 1, 1, 2] 1051
4x5 − 7x2 + 4x [1, 1, 1, 3] 709

4x5 − 11x4 + 6x3 + 3x2 − 2x+ 1 [1, 1, 2, 2] 1415
x6 + 4x5 − 6x4 − 32x3 + x2 + 64x+ 28 [1, 1, 4] 389

x6 + 2x5 + 5x4 + 4x3 − 4x− 8 [1, 2, 3] 847
x6 + 2x5 + 3x4 − x2 + 2x+ 1 [1, 5] 349
x6 + 4x4 + 6x3 − 8x2 + 1 [2, 2, 2] 7165

x6 + 2x4 + 2x3 + 5x2 + 2x+ 1 [2, 4] 353
x6 + 2x5 + 5x4 − 10x3 + 10x2 − 4x+ 1 [3, 3] 4889
x6 + 4x5 − 6x4 + 2x3 + x2 − 2x+ 1 [6] 1343

Let us now turn to the prime 2. By Lemma 10.3.1, the required abelian sur-
face A/Z2 will exist provided that there is an A0/F2 with A0[2] ≃ W/F2 (also
satisfying equation (10.3.7)). The finite flat group scheme W/Z2 is an extension
of an étale group scheme V by its Cartier dual V

∨
(1), and in particular W/F2 is

determined by V . There are three possibilities for V :
(1) V is trivial as a GF2 -module,
(2) GF2 acts on V via a (non-semi-simple) element of order 2,
(3) GF2 acts on V via a (semi-simple) element of order 3.

It now suffices to find an A0/F2 of each form.
One subtlety is that, given ρ, the finite flat group schemeW/Z2 is not determined

by ρ. Consider the following two examples:
(1) The action of GF2 on V is trivial, and the extension class of V = (Z/2Z)2

by its Cartier dual V
∨
(1) = (µ2)

2 is a direct sum of two extensions corre-
sponding to the unramified class in H1

f (Q, µ2) = Z×
2 /Z

×2
2 .

(2) The action of GF2 on V has order 2, and the group scheme is V ⊕ V ∨
(1).

In both cases, the representation ρ is unramified of order 2, and the non-trivial
elements in the images are given by




1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1


 ,




1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 ,

respectively. Under the isomorphism of Lemma 8.1.3, these are equal to (12)(34)(56) ∈
S6 and (12)(35)(46) ∈ S6, and so are conjugate. (They are not, however, conjugate
inside the Siegel parabolic C((12)(34)(56)) = S4 × S2 described in Lemma 9.1.8.)

We now consider the following examples of genus 2 curves given by the equa-
tions y2 = f(x) where f(x) is listed in the table below. One can check that the
corresponding minimal models have good ordinary reduction at 2 and compute the
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corresponding polynomial Q(x). Since these curves are defined over Q, one can
also compute the global conductor, which is indicated in the table by N .

f(x) partition Q(x) N

−4x5 + x4 + 6x3 − 3x2 − 4x [1, 1, 1, 1, 1, 1] x4 − x2 + 4 3451
x6 − 12x4 + 2x3 + 16x2 + 8x+ 1 [2, 2, 2] x4 + 2x3 + 3x2 + 4x+ 4 2225
x6 − 4x5 + 2x4 + 2x3 + x2 − 2x+ 1 [3, 3] x4 + 3x3 + 5x2 + 6x+ 4 713

Here the partition indicates the factorization of f(x) over Q2; the corresponding
Galois extension is cyclic and unramified of degree 1, 2, and 3 (in that order). It
follows immediately in the first and last cases that A[2]/Z2 is the split extension
of V by V

∨
(1), where GF2 acts on V through a cyclic group of order 1 and 3

respectively. In the second case, we still need to check (in light of the example
above) that GF2 acts on V through a cyclic group of order 2. In this case, a
smooth model C/Z2 is given by the equation

y2 + (x3 + 1)y = −3x4 + 4x2 + 2x,

from which we find that Jac(C)(F2) ≃ Z/14Z. If V was trivial, then Jac(C)(F2)
would contain (Z/2Z)2 as a subgroup, which it does not. Hence we deduce that
the action of GF2 on V is through a cyclic group of order 2 (which suffices for our
purposes, but is not sufficient to determine W as an extension). Thus we obtain a
suitable A0/F2 in all possible cases. �

Remark 10.3.8. Note that the method of proof of Lemma 10.3.6 fails when ρ(Frob3)
is trivial. This would imply that X has 6 Weierstrass points over F3, but if X has
good reduction at 3 these points are distinct, and they are exactly the ramification
points over the map to P1. But P1(F3) has only 4 < 6 points, so this is impossible.
It seems unlikely one can avoid this using X for which A = Jac(X) has good reduc-
tion but X does not; at least the idea of using a product of elliptic curves does not
work, since if #E[2](F3) = 4, then by the Hasse bounds #E(F3) = 4 and a3 = 0,
and E is supersingular.

By combining this with our main modularity theorem for abelian surfaces, we
deduce the following:

Theorem 10.3.9. Let ρ : GQ → GSp4(F2) be a continuous representation which is
unramified at 3 and such that ρ(Frob3) is non-trivial. Suppose as in Lemma 10.3.6
that there exists a finite flat model W/Z2 for ρ over Z2 which is isomorphic to its
Cartier dual and which is ordinary. Then ρ is ordinarily modular of weight 2 and
level prime to 6.

Proof. Consider the abelian surface A/Q with ρA,2 = ρ whose existence follows
from Lemma 10.3.6. It suffices to show that A is modular. Condition (10.3.7)
guarantees (by Lemma 9.1.3) that ρA,3(Frob2) is not of conjugacy class 4C or 12C
in PGSp4(F3) r PSp4(F3). Moreover, A has good ordinary reduction and 3, is 3-
distinguished, and ρA,3 is surjective. Thus A satisfies the conditions of Theo-
rem 9.5.2 and hence A is modular. �

Remark 10.3.10. If one proved a version of Lemma 10.3.1 in the non-ordinary
case, one could improve the statement of Theorem 10.3.9. But note that in either
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case the required assumption on ρ is stronger than merely the assumption that ρ
is finite flat, that is, arises as the generic fibre of some W/Z2 without any duality
assumption. For example, if ρ|Q2 is unramified with image of order 5, then ρ is
both ordinary and finite flat, and yet there does not exist any abelian surface A/Z2

with A[2] ≃ ρ. The issue is that the only finite flat W/Z2 with generic fibre ρ
are either étale or multiplicative, and so certainly not Cartier self-dual. This is
analogous to the fact that an unramified representation ρ : GQ2 → GL2(F2) with
image of order 3 is ordinary and finite flat in the usual sense but does not come from
the 2-torsion of an elliptic curve with good reduction, although after one extends
the coefficients of ρ to F4 it does come from the 2-torsion of an abelian surface
with endomorphisms by Z[(1 +

√
5)/2] with good reduction at 2 (for example, the

modular abelian surface J0(23)/Z2.) Note that this subtlety only arises (over Q)
for p = 2, since for p > 2 any finite flatW/Zp is determined by its generic fibre and
so the Cartier self-duality of W/Zp follows from the corresponding property of ρ.

10.4. Consequences of Serre’s Conjecture in regular weight. The odd Artin
conjecture for odd 2-dimensional complex representations of GQ is a consequence
([KW09, Cor 10.2]) of Serre’s Conjecture for odd 2-dimensional mod-p representa-
tions of GQ (this implication was proved by Khare in [Kha97], using the weight
lowering results [Gro90, CV92]). It seems worthwhile remarking here that as a con-
sequence of our main theorems, an analogous deduction is valid for abelian surfaces
over Q.

Lemma 10.4.1 (Serre’s Conjecture in regular weight implies modularity). Suppose
that for every residual representation:

ρ : GQ → GSp4(Fp)

satisfying the following conditions:
(1) ρ has multiplier ε−1,
(2) ρ is absolutely irreducible,
(3) the semi-simplification of ρ|GQp

is a direct sum of characters,

there exists an ordinary cuspidal automorphic representation π of GSp4 /Q of reg-
ular weight, level prime to p, and central character | · |2, such that

ρπ,p
∼= ρ.

Then all abelian surfaces A/Q are modular.

Remark 10.4.2. There are several possible natural variations on the hypotheses
of this Lemma; for example, one could only demand the statement for p sufficiently
large. We have simply chosen one such version for illustrative purposes.

Proof of Lemma 10.4.1. By Theorem 10.2.1, we may assume that A is “challenging”
in the terminology of [BCGP21, §9], i.e. that either End(AQ) = Z, or that A
has Galois type B[C2], so there exists a quadratic extension K/Q so that E =
End(AK)⊗Q = End(AQ)⊗Q is either Q⊕Q or a real quadratic field. By [BCGP21,
Lemma 9.2.5], there is a density one set of primes p > 2 such that A is ordinary at p
and residually p-distinguished in the sense of [BCGP21, Def 7.3.1], and moreover
that ρ = ρA,p satisfies the hypotheses listed in the statement of this lemma, as well
as being vast in the sense of [BCGP21, Defn. 7.5.6] (and in particular reasonable in
the sense of [Whi22, Defn. 3.19]) and tidy in the sense of [BCGP21, Defn. 7.5.11].
Furthermore, we may assume that if A has Galois type B[C2] then p splits in E.
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We now deduce the modularity of A as a consequence of Theorem 7.5.11 for ρ =
ρA,p. It suffices to check the conditions of that theorem; and in particular it suffices
to check that hypotheses (1)–(5) and (B1)–(B5) of Proposition 7.5.10 hold (the other
condition of Theorem 7.5.11 being immediate from the definition of “challenging”).
Since A is an abelian surface with good ordinary reduction, and is additionally
residually p-distinguished, the only conditions that need to be checked are that:

(a) ρA,p(GQ(ζp∞ )) is integrally enormous,
(b) ρA,p(GQ)r Sp4(Fp) contains a regular semi-simple element,
(c) There are choices of p-stabilizations such that ρπ,p|GQp

lies on a unique ir-
reducible component of SpecR△

p and ρA,p|GQp
lies on the same component.

Suppose firstly that A has Galois type B[C2]. Then for sufficiently large primes p
(splitting in E) the mod p representations

ρA,p : GK(ζp∞ ) → SL2(OE/p) = SL2(Fp)× SL2(Fp)

ρA,p : GK → {(A,B) ∈ GL2(Fp)×GL2(Fp), det(A) = det(B)}
are surjective. (This follows from [BCGP21, Lem. 9.1.10(3)], and for E = Q ⊕Q

goes back to [Ser72].) Thus we may additionally assume that p is chosen so thatK 6⊆
Q(ζp∞) and ρA,p(GQ(ζp∞ )) is precisely SL2(Fp) ≀ Z/2Z. As explained in the proof
of [BCGP21, Lemma 7.5.18], for p ≥ 3, the set ρA,p(GQ(ζp∞ )) r ρ(GG(ζp∞ )) =

SL2(Fp) ≀ Z/2Z r SL2(Fp)
2 always contains a regular semi-simple element with

eigenvalues (ζ8, ζ
−1
8 ,−ζ8,−ζ−1

8 ). Thus condition (a) follows from Corollary 7.1.4.
For p > 5, ρA,p(GQ) contains (A,B) = (diag(1, 6), diag(2, 3)), which is regular
semi-simple and which does not lie in Sp4(Fp), which verifies condition (b) in this
case as well.

Finally if End(AQ) = Z, then for sufficiently large p we have ρA,p(GQ) =

GSp4(Fp) and ρA,p(GQ(ζp∞ ) = Sp4(Fp). Hence both ρA,p(GQ) r Sp4(Fp) and
ρA,p(GQ(ζp∞ ) contain regular semi-simple elements for large enough p (for exam-
ple, the same elements that were used above). This verifies condition (b) in this
case, and ρA,p(GQ(ζp∞ )) is integrally enormous by Corollary 7.1.4, verifying condi-
tion (a).

For condition (c), we firstly choose a p-stabilization of πp, and thus of ρA,p|GQp
.

Then at least one of the p-stabilizations of ρA,p|GQp
is compatible with this fixed

choice. Having made this choice, since ρA,p|GQp
is residually p-distinguished it

follows from [BCGP21, Prop. 7.3.4] that SpecR△
p [1/p] is irreducible, and we are

done. �
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