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Abstract. The compact hyperbolic triangle group ∆(p, q, r) admits a canon-

ical representation to PSL2(R) (unique, up to conjugation) whose image is
discrete, that is, a Fuchsian group. The trace field of this representation is

K = Q(cos(π/p), cos(π/q), cos(π/r)).

We prove that there are exactly eleven such groups which are conjugate to

subgroups of PSL2(K). These groups are precisely the triangle groups which

belong to the “Hilbert Series” as coined by McMullen [McM24b, McM24a].
Moreover, we prove that there are no additional compact hyperbolic triangle

groups which are conjugate to subgroups of PSL2(L) for any totally real field L.

This answers a question first raised by Waterman and Machlachlan in [WM85].
These questions were also recently studied by McMullen [McM24b, McM24a],

who raised five (interrelated) conjectures concerning the Hilbert Series; we
prove all of these conjectures.
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1. Introduction

1.1. The main results. The study of the triangle groups

∆ = ∆(p, q, r) = ⟨x, y|xp, yq, (xy)r⟩

dates back to the 19th century, beginning with the work of Schwarz [Sch1873]
and Poincaré [Poi1882] (with respect to complex uniformization) and later by
Fricke [Fri1892] from a more arithmetic perspective. If the parameters (p, q, r)
satisfy the inequality

(1.1.1)
1

p
+

1

q
+

1

r
< 1,
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Then ∆ is isomorphic to a cocompact subgroup of PSL2(R). This representation
corresponds to a tessellation of the upper half plane H by hyperbolic triangles
with angles π/p, π/q, and π/r. It is well known (see [Tak77, Prop 1]) that the
embedding ∆ ↪→ PSL2(R) is unique up to conjugation and (as a consequence) is
isomorphic to a subgroup of PSL2(L) for some number field L ↪→ R; such a map
is given explicitly in [CV19, Equation (2.7)]. The field L necessarily contains the
trace field [MR03, §4.9], [NR92]:

(1.1.2) K = Q(cos(2π/p), cos(2π/q), cos(2π/r)).

If γ ∈ PSL2(R), then the trace of any lift to SL2(R) is well-defined up to sign, and
K is the field generated by generated by these traces. In [Fri1892], Fricke studied
the (2, 3, 7) triangle group in detail:

Figure 1.1.2. A (partial) tiling of hyperbolic space by (2, 3, 7)
triangles, taken from [Fri1892, Fig 2].

The field (1.1.2) specializes in this case to K = Q(cos(2π/7)). Fricke writes down
an explicit representation of ∆ — not over K but rather the (non-Galois) quadratic
extension L = K(j) of signature (2, 2) where j is as follows (see [Fri1892, Eq (1)]):

(1.1.3) j =

√
e
2iπ
7 + e−

2iπ
7 − 1

This construction reflects the following: the group ∆ = ∆(2, 3, 7) is an arithmetic
group corresponding to the quaternion algebra B/K ramified at precisely two of
the three real places (and no finite places). In particular, there is obstruction to
the existence of an embedding ∆ → PSL2(K) measured by B, and a representation
to L/K exists if and only if L splits B, as occurs for Fricke’s quadratic extension
L = K(j) given in (1.1.3). The situation for all compact arithmetic triangle groups
is very similar — they correspond to quaternion algebras B over ramified at all
but one real place, and hence they never split over a totally real field unless the
corresponding base field is Q.1 On the other hand, a well-known theorem of [Tak77,
Thm 3] implies that there only exist 76 cocompact hyperbolic triangle groups which
are arithmetic. This leads to the following natural question, which we answer in
this paper:

Problem A. When is ∆(p, q, r) isomorphic to a subgroup of PSL2(K)?

1The base field may be smaller than K and coincides with the invariant trace field. In particu-
lar, in the notation introduced later, the corresponding quaternion algebra and field is B(2)/K(2).
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This question was first considered by Waterman and Machlachlan in [WM85],
where it was proved that Problem A has a negative answer for all but finitely many
compact triangle groups.2 In fact, they prove the stronger statement that only
finitely many triangle groups are subgroups of PSL2(L) for any totally real finite
extension L/K. Note that by construction, they are subgroups of PSL2(L) for some
L/K with at least one real embedding, but that is much weaker than demanding
that L is totally real.

In this paper, we will give a complete answer to Question A; there are no further
examples beyond the ones found in [WM85]. This question has also recently been
considered by McMullen [McM24a, McM24b] in relation to compact geodesic curves
on Hilbert modular varieties. Before stating our main results, we introduce some
notation for the quaternion algebras associated to ∆ and to its commensurability
class. The quaternion algebras govern the fields L such that ∆ and its finite order
subgroups admit a representation to PSL2(L). Let ∆(2) = ⟨g2 : g ∈ ∆⟩ and let
K(2) be the trace field of ∆(2). The field K(2) is the invariant trace field of ∆ —
it is an invariant of the commensurability class of ∆ (See [Rei90, MR03]). We have
[K : K(2)] = 2e where e = 2, 1, 0 depending on whether three of the (p, q, r) are
even, exactly two are even, or at most one is even respectively (See [Tak77] and
also [McM24b], where ∆(2) is denoted by ∆0). The groups ∆ and ∆(2) canonically
admit representations to PSL(B) and PSL(B(2)) respectively, where B and B(2)

are the associated quaternion algebras over K and K(2). The quaternion algebra

of Γ is given explicitly by Q[Γ̃] where Γ̃ is the pre-image of Γ in SL2(R). The
representations of these groups are defined over the respective trace fields if and
only if the corresponding quaternion algebras split, and one obtains representations
over some totally real extension L/K if and only if the quaternion algebras split at
all real places. Thus question A is equivalent to asking when B/K is split at all real
places. (The “opposite” question of understanding the triangle groups for which
B/K is ramified at all but a fixed number of real places was considered in [NV17],
following [Tak77].) In [McM24b], McMullen introduces the Hilbert Series consisting
of the following eleven hyperbolic triangle groups:

Definition 1.1.4 (McMullen, [McM24b]). The Hilbert Series consists of the tri-
angle groups ∆ with (p, q, r) taken from the following list:

(2, 4, 6), (2, 6, 6), (3, 4, 4), (3, 6, 6), (2, 6, 10), (3, 10, 10),

(5, 6, 6), (6, 10, 15), (4, 6, 12), (6, 9, 18), and (14, 21, 42).

(These groups were also identified in [WM85].) McMullen then goes on to make
the following five (related) conjectures concerning the Hilbert Series for hyperbolic
triangle groups:

Conjecture A. [McM24b, Conjecture 1.3], [McM24a, Conjecture 1.15] The quater-
nion algebra Bv is split at all infinite places v of K if and only if ∆ belongs to the
Hilbert series.

Conjecture B. [McM24b, Conjecture 1.4] The quaternion algebra B is split if and
only if ∆ belongs to the Hilbert series.

2For the non-compact triangle groups the situation is much simpler; there always exists a rep-
resentation over the corresponding trace field, see [WM85, Thm 1]. This is because the existence

of parabolic elements in ∆ forces the corresponding quaternion algebra to split, cf. [NR92].
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Conjecture C. [McM24b, Conjecture 1.5] The quaternion algebra B(2) is split if
and only if ∆ is conjugate to ∆(14, 21, 42).

Conjecture D. [McM24b, Conjecture 1.6] A cocompact triangle group ∆ has a
model over a totally real field if and only if ∆ belongs to the Hilbert series.

Conjecture E. [McM24b, Conjecture 1.8] A finite cover of H/∆ can be presented
as a Kobayashi geodesic curve on a Hilbert modular variety if and only if ∆ belongs
to the Hilbert series.

Conjecture B is equivalent to the claim that the answer to Problem A is positive
if and only if ∆ belongs to the Hilbert series. Conjecture A is equivalent to the
claim that ∆ ⊂ PSL2(L) for some totally real field L if and only if ∆ belongs to
the Hilbert series. The main theorem of this paper is as follows:

Theorem B. Conjectures A, B, C, D, and E are all true.

Theorem C. Let ∆ be a hyperbolic triangle group, let K be the corresponding
invariant trace field with integer ring OK . The following are equivalent:

(1) ∆ belongs to the Hilbert series.
(2) There exists a faithful representation ∆ → PSL2(OK).
(3) There exists a faithful representation ∆ → PSL2(K).
(4) There exists a faithful representation ∆ → PSL2(L), where L is totally real.

As established in [McM24b], Conjectures B, C, D, and E all follow from Con-
jecture A. Theorem C follows from Theorem B together with [McM24b, Thm 1.1].
As mentioned above, these results were previously known to hold up to finitely
many exceptions by [WM85]. The argument in [WM85] also gives, in principle, an
explicit (but huge) upper bound on any counterexample. A new but softer proof
of this finiteness result was given by McMullen in [McM24a]. McMullen also veri-
fied [McM24b, Thm 1.7] that the conjecture holds when the parameters (p, q, r) are
at most 5000. The perspective of [McM24a] is to recognize the finiteness as a case
of an equidistribution result for roots of unity. Results of this kind are natural ex-
tensions of Lang’s conjecture (proved by Ihara, Serre, Tate in the 60’s) concerning
the intersection of subvarieties of Gr

m with the set of torsion points. In addition
to these soft equidistribution results, McMullen had to understand the geometry
of a moduli space of triangles identified with R3/Λ, where Λ ⊂ Z3 is the lattice
consisting of triples (a, b, c) with a+b+c ≡ 0 mod 2. On the other hand, it is noto-
riously difficult to turn soft equidistribution results into effective finiteness results.
Such problems have arisen frequently in the literature; we recall one of the most
basic problems of this type now in § 1.2, as a possible model for thinking about
Conjecture A.

1.2. Effective results for roots of unity. Let ζ and ξ be roots of unity, and
consider the sum

(1.2.1) α = 1 + ζ + ξ.

The element α lies in the image of the torsion points of G2
m under the map to A1

given by 1 +X + Y . If one defines the house of α to be:

α := max
σ

|1 + σζ + σξ|



FIELDS OF DEFINITION FOR TRIANGLE GROUPS AS FUCHSIAN GROUPS 5

as σ ranges over all automorphisms σ ∈ Gal(Q/Q), then the triangle inequality

gives α ≤ 3. What can we say about the possible α if we restrict to those for
which α < B for some explicit B < 3? The equidistribution results of the flavor
employed in [McM24a] show that, for any fixed B < 3, all such α lie on the image
of a finite union of translates by torsion points of proper subgroup varieties of G2

m,
which (in this case) will be of dimension one and zero. Can one make this explicit?

An classical argument due to Kronecker [Kro1857] shows that if α ≤ 2, then α is
actually a sum of at most two roots of unity, and subsequently turns out to be in
the image of the the cosets (X, ρX) ⊂ G2

m of the diagonal where ρ is any root of
ρ3 = −1. In [Rob65], Raphael Robinson raised this very question of determining
all α = 1 + ζ + ξ such that

α ≤
√
5.

The reason for Robinson’s choice of this particular bound will be more apparent
below. The soft argument combined with some geometry shows that — with finitely
many exceptions — all such examples either have α < 2 or come from the coset
(X,−X−1) ⊂ G2

m of the anti-diagonal, that is, coming from α of the form

(1.2.2) α = 1 + ζ − ζ−1.

One can check that all specializations on the family (1.2.2) indeed have α ≤
√
5,

and this realizes
√
5 as a limit point of α for sums of three roots of unity; this

is the second such limit point after 2 =
√
4 coming from numbers which can also

be expressed as sums of two roots of unity. However, determining the finitely
many zero dimensional exceptions is significantly harder — in this case they were
ultimately determined by Jones [Jon68] to consist (up to some obvious equivalences)
to precisely the five following examples:

1 + e(1/7) + e(3/7), 1 + e(1/13) + e(4/13), 1 + e(1/24) + e(7/24),

1 + e(1/30) + e(12/30), 1 + e(1/42) + e(13/42),

where e(x) = exp(2πix). Jones used a number of novel arguments via the geometry
of numbers and Mahler’s duality theorem to reduce the problem to a manageable
calculation — previous work of Schinzel and Davenport [DS67] had produced an
explicit but totally unmanageable upper bound (of the flavor that the roots of unity
involved could be assumed to have order less than 1010, for example).

Let us now return to Conjecture A. As explained in [WM85] (cf. [DM86, 12.3.6])
The quaternion algebra B splits at all real places for (p, q, r) if and only if there
exists an integer k prime to [2, p, q, r] such that d(k) ≥ 0, where

(1.2.3)

d(t) = 4− 4 cos2(tπ/p)− 4 cos2(tπ/q)− 4 cos2(tπ/r)

− 8 cos(tπ/p) cos(tπ/q) cos(tπ/r)

= 4 · det

∣∣∣∣∣∣
1 − cos(π/p) − cos(π/q)

− cos(π/p) 1 − cos(π/r)
− cos(π/q) − cos(π/r) 1

∣∣∣∣∣∣ .
More concretely, a Hilbert symbol

(
α, β

K

)
for B/K is given explicitly by

α = 4− 4 cos2(π/p)− 4 cos2(π/q)− 4 cos2(π/r)− 8 cos(π/p) cos(π/q) cos(π/r)

β = 4 cos2 π/p− 4.
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(See [WM85, Thm 2].) It is easy to recognize (1.2.3) as simply the expression

(1.2.4) α = −(ζ + ζ−1)(ξ + ξ−1)(θ + θ−1)(ζξθ + ζ−1ξ−1θ−1)

for three roots of unity ζ, ξ, θ depending in an elementary way on p, q, and r,
which “reduces” Conjecture A to a problem of the same flavor as the problem
of [Rob65] discussed above. Concretely, the conjugates of α lie a priori in the
interval [−16, 4] ⊂ R, and so we want to classify all α such that

8 + α ≤ 8.

The increased apparent level of complication of (1.2.4) over (1.2.1) suggests that
finding an explicit bound which reduces Conjecture A to a manageable computation
may present some difficulties. At the same time, there are a number of further
approaches in the literature for studying such questions. As noted, there is the
work of Jones in [Jon68] and in subsequent papers [Jon69, Jon70, Jon71, Jon75] as
well as the work of Cassels [Cas69], as well as more Fourier–theoretic approaches
such as Davenport–Schinzel [DS67].

1.3. The strategy. In spirit, our argument is much closer to that of [WM85] than
anything in [McM24a]. We now discuss the general ideas behind our approach.
Suppose one wants to study the distribution of the values of polynomial in a single
variable evaluated at roots of unity, but in an effective manner (this is already
interesting for f(X) = X). The soft statement in this case is the fact that, for m
large, the conjugates of ζ = e(1/m) are equidistributed along the unit circle. More
precisely, however, they have the form e(k/m) with (k,m) = 1. So to understand
how close to a point on |z| = 1 one can find such an e(k/m) for any m, one
has to understand how close to any real t ∈ R one can choose an integer k with
(k,m) = 1. This immediately reduces to the problem of understanding how long an
arithmetic progression a, a+1, a+2, . . . has to be before there exists an element in
this sequence coprime to m. By definition, this is given by the Jacobsthal function
J(m). Suppose that m has r distinct prime factors. A theorem of Iwaniec [Iwa78]
shows that J(m) ≪ (r log r)2, but Iwaniec’s results are not effective. A theorem
of Kanold [Kan67] shows that J(m) ≤ 2r. This is definitely effective but it is not
optimal — if m = pqr, then an elementary argument shows that J(pqr) ≤ 6, and if
m = pqrs, then J(m) ≤ 10. It is crucial for our ultimate applications that we have
excellent bounds on J(m) for m with a moderately large number of prime factors,
say at most 20 prime factors. Fortunately there are results in the literature which
give such bounds. For example, ifm has 20 distinct prime divisors, then J(m) ≤ 174
(see Lemma 3.0.5), which is far better than Kanold’s bound J(m) ≤ 1048576. We
recall the results we need about the Jacobsthal function in § 3.

Now let us return to higher dimensions. Recall that we wish to find an integer
k prime to [2, p, q, r] so that d(k) ≥ 0 where

d(t) = 4−4 cos2(tπ/p)−4 cos2(tπ/q)−4 cos2(tπ/r)−8 cos(tπ/p) cos(tπ/q) cos(tπ/r).

Let Λ ⊂ Z3 denote the sub-lattice of index two with a+ b+ c ≡ 0 mod 2, and for a
vector v = (x, y, z) ∈ R3 we let

|v − Λ| := min (|x− a|+ |y − b|+ |z − c|) , (a, b, c) ∈ Λ.
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If v =

(
1

p
,
1

q
,
1

r

)
, then the condition that d(t) ≥ 0 is equivalent to the condition

that

(1.3.1) |tv − Λ| ≥ 1.

This follows from [McM24a, Thm 1.10]. Instead of trying to prove that d(k) ≥ 0
or |kv − Λ| ≥ 1 for some integer k prime to [2, p, q, r], we could first ask to find
any integer k with this property, or — what is nearly equivalent for big p, q, r — a
real number t so that d(t) ≥ 0. Even better, we can try to produce a t for which
|tv − Λ| ≥ 1 + ε for some explicit ε > 0. Then by varying t slightly, one can hope
to find an integer k close by to t for which k is prime to [2, p, q, r] and for which

1 + ε < |tv − Λ| ∼ |kv − Λ|

does not change that much and so the latter is at least one. Our key technical
result (Theorem D) is that there always exists a t ∈ R so that∣∣∣∣( tp , tq , tr

)
− Λ

∣∣∣∣ ≥ 1 +
1

5
.

(This result is best possible, see Remark 2.0.1.) We shall give two methods to
prove this theorem. The first, using Fourier analysis, constitutes most of § 2. The
second, using geometry of numbers, is discussed in § 2.7. We only carry out the
first approach — the second one certainly works in principle but it is not a priori
clear how computationally feasible it might be.

Returning to our argument, once we have found a t ∈ R so that |tv−Λ| − 1 > 0
is big, we could hope to vary t slightly to make it an integer prime to 2pqr. This
works, proving that that

1

p
+

1

q
+

1

r

is relatively small compared to the lcm n = [2, p, q, r] — but it fails otherwise, in
particular if one of p, q, or r is small. So we need a separate argument to deal with
the cases when 1/p+1/q+1/r is small compared to n and when min(p, q, r) is small
compared to n. The first case is carried out in § 5, and the case when min(p, q, r)
is small is carried out in § 6. It turns out that this last case is ultimately the
most computationally intensive. Finally, in § 7 we show how the cases understood
in §§ 5, 6 cover all cases.

A basic trick that we employ frequently is the following. Suppose that p is
divisible by a prime which does not divide q or r, or more generally that p is
divisible by a strictly higher power of a prime than q or r, or perhaps a product of
such primes. Then we may freely conjugate one of the roots of unity while keeping
the other two roots fixed. This is clearly advantageous for our purposes. In practice
we employ this idea in the setting of vectors in R3/Λ rather than roots of unity,
but the idea is the same. We explain this in § 4.2. More generally, in § 4, we
prove some analogues of our main theorem in dimensions one and two, which we
use inductively to study the problem in dimension three.

Finally, there are a few tricks which by trial and error we simply found that
helped — they involve some combinations of ideas that relate both the idea of
Galois conjugates and some elementary geometry of lines in R2/Z2 of rational
slope — we apologize that some of these will ultimately seem somewhat ad hoc.
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1.4. Some remarks about the title. Given some object X defined over K, the
term “field of moduli” usually refers to the smallest field L for which there exists an
automorphism ψσ : Xσ ≃ X for every σ ∈ Gal(K/L), whereas a “field of definition”
is a field L so that X has a model over L. The reason that fields of moduli are not
always fields of definition is because the ψσ do not always give compatible descent
data due to the existence of automorphisms of X. In our context, we think of X as
the (unique up to conjugacy) representation of the triangle group ∆ to PSL2(R).
The field of moduli in this case is the trace field K, and a field of definition L/K is
any field where the representation admits an explicit matrix model over this field.
We hope that this terminology is clear (although we only ever use this terminology
in the title and in this subsection).

1.5. Preliminaries. For integers ni as i = 1, . . . , r, let [n1, n2, . . . nr] denote the
lowest common multiple of the ni. Let (p, q, r) be integers, let n = [2, p, q, r] be the
least common multiple of these numbers, which is equal to [p, q, r] if at least one
of p, q, r is even, and twice this otherwise.

Definition 1.5.1. Let Λ ⊂ Z3 be the lattice consisting of triples of integers (a, b, c)
with a+ b+ c even.

Given two vectors v and w in R3, we define a distance | · |1 to be the sum of the
absolute values of the differences, i.e.:

|v −w|1 := |v1 − w1|+ |v2 − w2|+ |v3 − w3|.

Since we only use this distance function, we simply write |v|.

Definition 1.5.2. Given a vector v ∈ R3, we define the distance of v to the
lattice Λ to be the smallest distance from v to any point in Λ, i.e.,

|v − Λ| := min{|v − λ| ; λ ∈ Λ}

More generally, for v ∈ Rn and any lattice Λ ⊂ Rn, we make the same definition,
still using the | · |1 norm on Rn.

Note that this is a genuine distance function and so satisfies the triangle inequal-
ity and its variants. Apart from the case of our lattice Λ, we will most often use
this notation for x ∈ R and Λ = Z or 2Z in R, but we shall also use it for the
standard lattice Z3 in R3, particularly in § 2.

Example 1.5.3. If w = (1/2, 1/2, 1/2), then |w − Λ| = 3/2. This is the maximal
value of |v − Λ|.

We now rephrase the basic result of this paper in elementary terms. By [McM24a],
this suffices to prove Conjecture A.

Theorem 1.5.4. Let (p, q, r) be a triple with 1/p+ 1/q + 1/r < 1 which is not in
the Hilbert Series. Let n = [2, p, q, r]. Then there exists an integer (k, n) = 1 such
that |kv − Λ| ≥ 1, where

v =

(
k

p
,
k

q
,
k

r

)
We finish this section with some more preparatory lemmas.
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Lemma 1.5.5. Fix x and y, and let M(x, y) = max |(x, y, z)− Λ| as z ranges over
elements of R. Then

M(x, y) =M(y, x)

M(x, y) =M(x mod 1, y mod 1)

M(x, y) =M(1− x, y)

Proof. Since Λ is invariant under permuting the first two entries, the first claim
follows. For the second, we can replace z by z ± (1, 0, 1) or z ± (0, 1, 1). This
brings us to the third claim. The main point is that, for (a, b, c) ∈ Λ we have
(1− a, b, 1− c) ∈ Λ, and then

|(x, y, z)− (a, b, c)| = |x− a|+ |y− b|+ |z− c| = |(1− x, y, 1− z)− (1− a, b, 1− c)|.
In particular, the distances from (x, y, z) to the set of lattice points is the same as
the distances from (1− x, y, 1− z) to the set of lattice points. But then

M(x, y) = max |(1− x, y, 1− z)− Λ| = max |(1− x, y, z)− Λ| =M(1− x, y).

□

Lemma 1.5.6. If 0 ≤ x, y ≤ 1/2, then M(x, y) = 1 +min(x, y). More generally,

M(x, y) = 1 +min(|x− Z|, |y − Z|)

Proof. To see how the latter equality follows from the former, note that |t − Z| =
|1− t− Z| and so by Lemma 1.5.5 we can reduce to this case.

Suppose that (a, b, c) is the closest lattice point to (x, y, z). We have

|(x, y, z)− (a, b, c)| = |x− a|+ |y − b|+ |z − c|.
Replacing a by −a or b by −b preserves the property of (a, b, c) ∈ Λ, but increases
the RHS, so without loss of generality we have

(a, b) ∈ {(0, 0), (1, 0), (0, 1)}
At the same time, we can always take z ∈ [0, 2] and so either c = 0, 2 or c = 1 is
optimal. Thus |(x, y, z)− Λ| is the minimum of the four quantities:

x+ y + z, x+ y + 2− z, 1− x+ y + |z − 1|, x+ 1− y + |z − 1|.
Suppose that 0 ≤ x ≤ y. Then with the choice z = 1− x, Suppose without loss of
generality that x ≤ y. Then with the choice z = 1− y, these quantities become

1 + x, 1 + x+ 2y, 1 + x+ 2(y − x), 1 + x,

which has minimum 1 + x and shows that M(x, y) ≥ 1 + x. On the other hand,
note that

x+ y + z ≤ 1 + x, for z ≤ 1− y,

x+ 1− y + |z − 1| ≤ 1 + x, for 1− y ≤ z ≤ 1 + y,

x+ y + 2− z ≤ 1 + x, for z ≥ 1 + y,

which shows that 1 + x is optimal. □

Lemma 1.5.7. The norm |v| is invariant under the group

(Z/2Z)3 ⋉ S3 = Z/2Z ≀ S3 ⊂ O(3)

acting on the coordinates by permutation and by signs. If w = (1/2, 1/2, 1/2), then
|v −w − Z3| is also preserved by this group, whereas The distances

|v −w − Λ|
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is preserved only by

(Z/2Z ≀ S3) ∩ SO(3) ≃ S4.

Proof. It suffices to observe that these groups preserve the lattice Z3 and Λ, as well
as w+Z3. Since 2w /∈ Λ, the orbit of this group on w+Λ is given by ±w+Λ and
the stabilizer has index two. □

2. Fourier Analysis

The main result of this section is the following:

Theorem D. Let (p, q, r) be non-zero rational numbers. Then there exists a real
number t such that ∣∣∣∣( tp , tq , tr

)
− Λ

∣∣∣∣ ≥ 1 +
1

5
.

Remark 2.0.1. The constant is best possible; one can do no better than equality
in the case of (p, q, r) = (1, 2, 6), (2, 3, 6), and (3, 4, 12) — see Figure 2.4.4. On
the other hand, our proof shows that, apart from these exceptions, the stronger
inequality holds:

∣∣∣∣( tp , tq , tr
)
− Λ

∣∣∣∣ ≥ 3

2
−

3 arccos

(
31/6

21/3

)
π

= 1.206646 . . . > 1 +
1

5
.

Our proof in principle could be modified to increase the constant further (still with
finitely many exceptions), but the gain in utility would be marginal.

2.1. The idea of the proof. Note that by scaling, we may assume that (p, q, r)
are all non-zero integers. Moreover, using the action of Z/2Z ≀S3 as in Lemma 1.5.7
we are also free to change any of the signs of p, q, r (note that the element −I sends
any line through the origin to itself). Our approach is as follows. For most (p, q, r),
we will actually prove the statement that there exists a real t so that

(2.1.1)

∣∣∣∣( tp , tq , tr
)
− Z3

∣∣∣∣ ≥ 1 +
1

5
,

where we recall that Λ has index two in Z3 so that (2.1.1) is a stronger statement.
More precisely, we can even show such an inequality with 1 + 1/5 replaced by
1 + 1/2− ε for any ε > 0 as long as we avoid finitely many hyperplanes

a

p
+
b

q
+
c

r
= 0,

where “finitely many” will depend on ε in a way that one can in practice quantify.
There are two approaches we have to proving such inequalities; one inspired by
Fourier analysis (which is what we ultimately use) and a second using the geometry
of numbers which we discuss in the section below. The Fourier analysis approach
is roughly as follows. We are working in the settings of functions on the compact
torus R3/Z3 or R3/Λ or R3/(2Z)3. Let L ⊂ R3/Λ be a rational line, which is
an embedded one-dimensional torus. Let χ(x, y, z) be the characteristic function of
the region where we want L to intersect. To show the intersection is non-zero, we
want to compute ∫

L

χ(t)dt
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and prove that it is non-zero. This leads to a soft proof that the result holds
away from finitely many hyperplanes; arguments of this kind are well-known to the
experts. However, we need a result which is valid in all cases, so in particular we
need to identify explicitly the list of exceptional hyperplanes which then need to
be considered. Moreover, the particular region we are interested in is really quite
complicated, as seen in Figure 2.1.1.

Figure 2.1.1. The region |(x, y, z)− Λ| ≥ 6/5 in R3/(2Z)3.

As a result, the Fourier series of χ(x, y, z) is a complicated mess. For example, for
the region |v−w| ≥ 1+1/5 in R3/Z3, after the constant term 9/250, the coefficient
of e2πix is

5

√
2(5 +

√
5)− 12π

20π3

and things only get worse from there.3

One alternative is to use a more convenient function that the characteristic
function. There is a function which is transparently given to us in this situation,
namely

d(x, y, z) = 4− 4 cos2(πx)− 4 cos2(πy)− 4 cos2(πz)− 8 cos(πx) cos(πy) cos(πz),

d(t) = d

(
t

p
,
t

q
,
t

r

)
.

This function is non-negative precisely on the region where we wish to ultimately
find integer points. (One way to translate between the roots of unity picture and
the lattice picture is given by [WM85, Thm 2], but it is also transparent by (1.2.4).)
However, this function has the disadvantage that while it is positive where we want
it to be positive, it is also (even more) negative elsewhere, which complicates the
analysis. The situation is not hopeless, and indeed using d(t) we initially proved a

3In contrast, the characteristic function χ of the region |v−Λ| ≥ 1 is more pleasant. A current

project by undergraduates at the University of Chicago analyzing χ more closely, in order to
exactly determine the smallest limit point of the ramification density (see [McM24a]) which is

some real number r < 0, and perhaps even the smallest non-zero ramification density ρH > 0.
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version of Theorem D with 1 + 1/5 replaced by 1 + 1/13, but the improvement to
1/5 will ultimately be important from a computational viewpoint.

Our approach is to replace d(x, y, z) by the function

e(x, y, z) = (8 sin(πx) sin(πy) sin(πz))2

e(t) = (8 sin(πx/p) sin(πy/q) sin(πz/r))
2
.

This function is now invariant under the larger lattice Z3. This function also has
the advantage that it is non-negative everywhere and large exactly near the point
(1/2, 1/2, 1/2), so e(x, y, z) or rather its powers play a convenient proxy role for
the characteristic function. Actually, instead of powers of e(t), we shall consider
a minor variant — powers of (e(t) − 24) — which asymptotically is similar but in
practice gives better results within the limits of our computations.

Note that Theorem D is not true if one replaces Λ by Z3. In fact, this fails not
only finitely often but for all points on the hyperplane

1

p
+

1

q
+

1

r
= 0.

Naturally in our proof we are forced to consider this hyperplane separately and
return to the lattice Λ. Moreover, we also have to deal with a moderate number of
explicit triples (p, q, r) — say on the order of a million — for those also we check
the less restrictive condition with Λ rather than Z3 as well.

2.2. The start of the proof of Theorem D.

Proof. By scaling, we may assume that (p, q, r) are all non-zero integers. We intro-
duce the quantity

e(t) = (8 sin(πx/p) sin(πy/q) sin(πz/r))
2
.

We choose this function for a few reasons. First, the function 8 sin(πx) sin(πy) sin(πz)
in obtains its global maximum exactly at the points (1/2, 1/2, 1/2) mod Z3. Hence
if we can show that it has a large average over the line (t/p, t/q, t/r), we can hope-
fully show that this point is close to (1/2, 1/2, 1/2). Second, the trigonometric form
of e(t) means that we can indeed compute the relevant integrals. Clearly e(t) is
periodic with period (dividing) pqr. Moreover, it is non-negative, and there is a
trivial upper and lower bound of 0 ≤ e(t) ≤ 64. We would like to find values of
t for which e(t) it is as large as possible. One way is to investigate the moments.
More precisely, we shall consider

(2.2.1) E[(e(t)− 24)m] =
1

pqr

∫ pqr

0

(e(t)− 24)
2m

dt,

and then use the bound:

(2.2.2) max(|e(t)− 24|) ≥ m
√
E[(e(t)− 24)m].

Since e(t) ≥ 0 and is non-constant, if the RHS of (2.2.2) is at least 24, it gives a lower
bound for e(t)− 24 for some point t ∈ R rather than its absolute value. However,
we can compute the quantity in (2.2.1) by a simple integration. Certainly, using the
exponential formula for sinπx, we can write, with the sum over λ = (a, b, c) ∈ Z3,
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and with v =

(
1

p
,
1

q
,
1

r

)
,

(e(t)− 24)m =
∑
λ∈Z3

Cλ,m exp (2πiλ · v · t)

=
∑

(a,b,c)∈Z3

C(a,b,c),m exp

(
2πi

(
a

p
+
b

q
+
c

r

)
t

)
,

where Cλ,m = 0 for all but finitely many λ. We plainly have

E[(e(t)− 24)m] =
∑
λ∈Z3

C(a,b,c),m ×

{
1 λ · v = 0,

0 otherwise.

In particular, the possible values of this average are as follows:

(1) The generic case: λ · v ̸= 0 for all λ ̸= 0 with Cλ,m ̸= 0, in which case

E[(e(t)− 24)m] = C0,m.

(2) The co-dimension one case: The ϕ for which ϕ · v = 0 for some ϕ ̸= 0
with Cϕ,m ̸= 0 generate a one dimensional subspace of R3, in which case

E[(e(t)− 24)m] =
∑

λ∈ϕQ∩Z3

Cλ,m

where the sum is over rational multiples of (any such) ϕ.
(3) The co-dimension two case: We have ϕ · v = 0 and ψ · v = 0 and

Cϕ,m, Cψ,m ̸= 0 where ϕ and ψ are linearly independent, in which case

E[(e(t)− 24)m] =
∑

λ∈ϕQ⊕ψQ∩Z3

Cλ,m

where the sum is over rational multiples of ϕ and ψ in Z3.

Since v ̸= 0, it cannot be orthogonal to three linearly independent vectors, and
hence these are the only possibilities. Clearly if there are only finitely many Cλ,m,
there are finitely many values of the sum, and in theory we can compute all the
possible values. In order to do so in a convenient way, observe that, for m = 1, we
have the following values:

C(0,0,0),1 = −16,

C(±1,0,0),1 = C(0,±1,0),1 = C(0,0,±1),1 = −4,

C(±1,±1,0),1 = C(±1,0,±1),1 = C(0,±1,±1),1 = 2,

C(±1,±1,±1),1 = −1,

and all other values are zero, and then the inductive formula:

Cλ,m =
∑

λ′+λ′′=λ

Cλ′,m−1Cλ′′,1,

together with the remark that Cλ,m = 0 unless all the entries of λ are bounded in
absolute value by 2m, and the sum only needs to be evaluated over the 1+6+24+8 =
(1 + 2)3 = 27 terms with Cλ′′,1 ̸= 0.

We now turn to computing the value of E[(e(t)− 24)12].
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Remark 2.2.3. Originally we computed the moments E[(e(t) − 24)m], but the
current method gives a better bound as soon as it gives a non-trivial bound. In
fact, the optimal choice of θ for obtaining a bound for e(t) by considering twelfth
powers of the form E[(e(t) − θ)12] is given by θ ∼ 24.5686 . . . where θ is a root of
a degree 12 irreducible polynomial in Q[x]. The choice of the exponent 12 is close
to the limit of what one can compute with these direct computations. If necessary,
we could probably push this computation slightly further.

2.3. The generic case. We find that

(2.3.1) C0,12 = 48938065973953984 ∼ 4.8× 1016.

2.4. The co-dimension one case. We are assuming that the ϕ for which ϕ ·v = 0
for some ϕ ̸= 0 with Cϕ,m ̸= 0 define a one dimensional subspace. There are exactly
24389 vectors λ with Cλ,12 ̸= 0, which lie on 6337 different lines. In other words,
our vector v has to lie on one of 6337 different hyperplanes, or else E[(e(t)− 24)m]
is given by the value in the generic case. On these 6337 lines generated by vectors
ϕ, the possible sums ∑

λ∈ϕQ∩Z3

Cλ,m

take on 334 different values, which, in increasing order, are given by:

14495307580935536, 14993075676088944,

16558274382015248, 17182507338527490,

17779880901663312, 20880831907741248,

21658015136699472, 23695946550006558,

25723702367996064, 29439428154585408,

31449612130791616, 32684658530437488,

32786111957612896, 35548827082706688,

35574385398832360, 36520347436056576, . . .

The vectors for which this quantity is strictly less than the sixteenth term:

(2.4.1) 2412 = 36520347436056576 ∼ 3.6× 1015 < C0,12

correspond to hyperplanes for which our computation of E[(e(t)− 24)12] does not
give a useful lower bound for the maximum of e(t) along this hyperplane. Changing
the signs of p, q, r appropriately we may assume that a, b, c are non-negative. The
possible triples are below, along with a point P on the hyperplane chosen to be
close to (1/2, 1/2, 1/2) (in practice we tried to choose an optimal such point but
there is no need to prove we were successful):
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Hyperplanes with E[(e(t)− 24)12] < 2412

triple (a, b, c) P |P − (1/2, 1/2, 1/2)|
1 (0, 0, 1) (1/2, 1/2, 0) 1/2
2 (1, 1, 1) (1/3, 1/3, 1/3) 1/2
3 (0, 1, 2) (1/2, 1/2, 1/4) 1/4
4 (1, 2, 2) (1/2, 1/2, 1/4) 1/4
5 (0, 1, 4) (1/2, 2/5, 2/5) 1/5
6 (0, 2, 3) (1/2, 2/5, 2/5) 1/5
7 (1, 1, 3) (1/2, 1/2, 1/3) 1/6
8 (1, 3, 3) (1/2, 1/2, 1/3) 1/6
9 (2, 2, 3) (1/2, 1/2, 1/3) 1/6
10 (0, 2, 5) (1/2, 3/7, 3/7) 1/7
11 (0, 3, 4) (1/2, 3/7, 3/7) 1/7
12 (1, 2, 4) (1/2, 1/2, 5/8) 1/8
13 (1, 4, 4) (1/2, 1/2, 3/8) 1/8
14 (2, 3, 4) (1/2, 1/2, 3/8) 1/8
15 (2, 2, 5) (1/2, 1/2, 2/5) 1/10
16 (1, 1, 5) (1/2, 1/2, 2/5) 1/10

We shall now prove Theorem D explicitly in these sixteen classes cases, so that later
we will be free to assume that E[(e(t) − 24)12] is bounded below by (2.4.1). Note
we are using Lemma 1.5.7 to see we are free to choose the signs of the hyperplane
coefficients. The case (0, 0, 1) does not arise since it would force r = 0. The case
(1, 1, 1) also requires exceptional treatment so we leave it until the end. In all other
cases, there exists a point P on the hypersurface with

|P −w| ≤ 1

4
.

with w = (1/2, 1/2, 1/2). Thus it remains to determine all the lines L on H such
that

|L−H| ≤
(
|w| − 1− 1

5

)
− 1

4
=

1

20
.

As usual, the notation here means the minimum distance of any point on L to any
point on H in the | · |1 norm. The basic idea is that any line L on a rank two torus
is easily seen to be qualitatively close to any given point as soon as the slope of
the line is sufficiently large. In this way, we will reduce the computation to finitely
many lines which we check using magma. We return to the proof. Consider the
hyperplane

H : ax+ by + cz = 0 ⊂ R3/Z3

Without loss of generality, we can assume that c ̸= 0, and that (a, b, c) have no
common factor. More precisely, we shall assume that c is the largest element of the
triple.

Lemma 2.4.2. There is a finite surjection:

π : T := R/Z×R/Z → H ⊂ R3/Z3

given by

(s, t) → (cs, ct,−as− bt).
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Proof. It is easy to see that the map is well-defined. Let (x, y, z) be a point on H.
We can find s, t so that (s, t) 7→ (x, y, z′) ∈ H, and then it follows that c(z − z′) =
0 ∈ R/Z, and so z − z′ is a multiple of (0, 0, 1/c). Since π is linear, it suffices to
show that its image contains the subgroup generated by this element. Let s = i/c
and t = j/c for integers i and j. Then the image under π will generate such a
subgroup as long as ai + bj is prime to c. But we can find a choice of i and j so
that ai + bj is equal to the greatest common divisor (a, b), and this is prime to c
since we are assuming that (a, b, c) do not all have a common factor. □

We can also show that the map π will have degree c, but that is not relevant for
our purposes; The only fact we need is that any line on H through the origin is the
image of a line L on T through the origin (namely, π−1(L)) which follows directly
from the fact that π is surjective by Lemma 2.4.2. Such a line L has the form

(2.4.3) (s, t) = (uz, vz), (u, v) = 1,

we define the height h(L) of this line to be h(L) = max(|u|, |v|).

Lemma 2.4.4. Let P ∈ H,where H is one of the 14 hyperplanes numbered 3 to 16
above. If the height of L satisfies h(L) ≥ 70, then there is a point Q ∈ π(L) so that

|P −Q| ≤ 1

20
.

If h(L) ≥ 84, then this bound can be improved to
1

24
.

Proof. Let π−1(P ) be (any) choice of pre-image of P . Let L be of the form (2.4.3),
and assume that h(L) = u. We may certainly find a z ∈ R so that the first
coordinate of (uz, vz) is equal to the first coordinate of π−1(P ). If we then replace
z by z+1/u, we may vary the second coordinate by v/u and then by repeating this
and using that (u, v) = 1, we may find a point so that

|R− π−1P | ≤ 1

2h
.

and moreover that the first coordinate is zero. If h(L) = v, the exact same argument
gives a point where the second coordinate is zero. If we write R− π−1(P ) = (x, y),
so xy = 0 and max(|x|, |y|) ≤ (2h)−1, we find that

|π(R)− P | ≤ cx+ cy + ax+ by

= (a+ c)x+ (b+ c)y

≤ 1

2h
max (a+ c, b+ c)

But for the 14 hyperplanes above we find that the maximum b + c and a + c is 7,
and we are assuming that h ≥ 70, and so 2h ≥ 140, and so

|π(R)− P | ≤ 7

140
=

1

20
.

Replacing 70 by 84 gives the improved bound. □

As a consequence, for each of the 14 hyperplanes H we are currently considering,
if we take any line on H whose pullback L to T has h(L) ≥ 70, then there exists a
point Q = π(R) on L with:

|Q− P | ≤ 1

20
, |P −w| ≤ 1

4
,
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and hence

|Q−w| ≤ 1

20
+

1

4
=

3

10
,

|Q− Z3| ≥ |w − Z3| − |Q−w| ≥ 3

2
− 3

10
= 1 +

1

5
.

With the stricter condition h(L) ≥ 84, this bound improves to 1 + 5/24. For the
remaining lines L of height h(L) < 70, we project them to H to get a line in R3/Z3,
and hence an explicit triple (p, q, r), and then we check Theorem D explicitly for
each of these triples. More explicitly, if we take the line (uz, vz) on T , then on H
we explicitly get the line L on H corresponding to

z (cu, cv,−bv − au) .

For each of the fourteen H, we need only consider the lines on T whose height is
at most 70. There are 5878 rational numbers with height less than 70, and thus
taking into account 0 and ∞ this gives 5880 lines we need to check on each H. In
fact there is some duplication, and after permuting the orders and taking absolute
values there are only 52258 lines which we need to check in total. If we also consider
the lines of height less than 84, the total number of such lines increases to 76450.
In these cases, we check directly that there exists a t such that∣∣∣∣( tp , tq , tr

)
− Λ

∣∣∣∣ ≥ 1 +
5

24
> 1 +

1

5

in all cases we find such a t, except for the triples (1, 2, 6), (2, 3, 6), and (3, 4, 12).
For these cases, the bound 1+1/5 is achieved with t = 12/5, t = 6/5, and t = 24/5
respectively. Note in all these computations we check the condition against Λ rather
than Z3.

This brings us to the hyperplane H corresponding to

1

p
+

1

q
+

1

r
= 0.

This hyperplane is different in that no points are within anything less than 1/2 of
(1/2, 1/2, 1/2). We can and will assume in this section that (p, q, r) have no common
factor, since Theorem D is insensitive to scaling these parameters. Moreover, by
symmetry, we can assume that (p, q, r) and positive and that

1

p
=

1

q
+

1

r
.

Let us write q = p+ s, so

r =
p(p+ s)

s
.

For this to be an integer, s must divide p, but then we find that p, q, r are all
divisible by s, and so the only possibility is that(

1

p
,
1

q
,
1

r

)
=

(
1

p
,

1

p+ 1
,

1

p(p+ 1)

)
.
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We are free to assume that p > 0. We now choose a suitable t. Let

t =
p(p+ 1)

3
+



p

3
, p ≡ 0 mod 3,

0, p ≡ 1 mod 3,

−p+ 1

3
, p ≡ 2 mod 3.

and then

|tv − Λ| = 1 +
1

3
− 2



1

3(p+ 1)
, p ≡ 0 mod 3,

0, p ≡ 1 mod 3,

1

3p
, p ≡ 2 mod 3.

from which Theorem D (with the improved bound 1 + 5/24 follows in these cases
unless p = 2, 3. The remaining cases p = 2 and p = 3 corresponding to (p, q, r)
being (2, 3, 6) and (3, 4, 12) respectively which we have already verified.

Figure 2.4.4. The region |(x, y, z) − Λ| ≥ 6/5 in R3/(2Z)3 to-
gether with the line (t/3, t/12, t/4).

2.5. The co-dimension two case. For the(
6337

2

)
= 20075616

pairs of different lines, whenever they form a vector space of dimension two, there is
a unique line in R3 which is orthogonal to both of them given by the cross product.
After normalizing these cross products so they are either zero or normalized so that
all terms are non-negative and the entries are coprime integers, there are 266743
terms (these numbers include the zero vector as well). The entries with at least one
zero do not correspond to any (p, q, r). If (a, b, c) is any other triple, then we may
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take (p, q, r) = (bc, ac, ab) up to scalar. For all such triples, we choose (up to) 1000
random points t and stop if we have a value with∣∣∣∣( tp , tq , tr

)
− Λ

∣∣∣∣ ≥ 1 +
5

24
> 1 +

1

5
.

This succeeds in every case except for (p, q, r) = (1, 2, 6), (2, 3, 6) and (3, 4, 12).
This takes 70 seconds with one core in magma. The remaining cases also come up
when we consider the low height lines on the other exceptional hyperplanes. Hence
Theorem D is proved in the exceptional case.

2.6. Relating bounds for e(t) and |tv − Λ|. We are now reduced to the case
where we may assume (see (2.4.1)) that

(2.6.1) E[(e(t)− 24)12] ≥ 2412

In particular, there exists a t with e(t) ≥ 48.
We have the following:

Lemma 2.6.2. Let ε ∈ [0, 1/6]. Let v = (x, y, z) ∈ R3/Z3,and suppose that

|v − Z3| ≤ 1 + 3ε.

Then

(2.6.3) e(x, y, z) = (8 sin(πx) sin(πy) sin(πz))2 ≤ 64 sin6
(π
3
+ πε

)
.

Proof. By symmetry, we may assume that 0 ≤ x, y, z ≤ 1/2. Since sin2(πt) is
increasing in this range, and the function on the RHS of (2.6.3) is also increasing
for ε in this interval, we may assume that |tv−Λ| = 1+3ε and then maximize e(t)
in the parameters (x, y, z). The choice of (x, y, z) means that (0, 0, 0) is the closest
lattice point, and so

x+ y + z = 1 + 3ε.

Let us try to maximize

e(x, y, z) = 64 sin2(xπ) sin2(yπ) sin2(zπ)

subject to the given constraints and show that x = y = z. We can use the method
of Lagrange multipliers, that is, to consider

e(x, y, z) + λ(x+ y + z − 1− 3ε),

and thus we find

λ+ 128π cos(πx) sin(πx) sin(πy)2 sin(πz)2 = 0,

λ+ 128π cos(πy) sin(πy) sin(πx)2 sin(πz)2 = 0,

λ+ 128π cos(πz) sin(πz) sin(πx)2 sin(πy)2 = 0,

x+ y + z = 1 + 3ε.

The difference of the first two quantities is

−128π sin(πx) sin(πy) sin(π(x− y)) sin(πz)2.

From this and is symmetrizations we deduce that any pair of parameters in x, y, z
are either equal to each other, or they are equal to 1/2. Considering the cases in
turn we are led to the result. □
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Returning to our argument, by (2.6.1) we know there exists a point t for which

(2.6.4) e(t) >
12
√
2412 + 24 = 48,

By Lemma 2.6.2, we deduce that either |tv−Λ| ≥ |tv−Z3| ≥ 1 + 1/5, or we must
have

e(t) ≤ 64 sin(2π/5)6 = (5(5 + 2
√
5)) = 47.3606 . . . < 48.

But this is contradicts (2.6.4), completing the proof of Theorem D.
Note that in the exceptional cases, we proved (with finitely many explicitly given

exceptions) the lower bound 1 + 5/24. We observe that the inequality e(t) ≥ 48
leads to the improved bound

3

2
−

3 arccos

(
31/6

21/3

)
π

= 1.206646 . . . < 1.20833 . . . = 1 +
5

24
,

which justifies Remark 2.0.1. □

2.7. The geometry of numbers. This section is not used in the paper, but is
here as a complement to the rest of § 2, and gives a second approach to proving
Theorem D. It ultimately reduces Theorem D to computations on hyperplanes
of a sort already seen in § 2. These ideas are inspired by the work of Jones,
particularly [Jon69]. We recall:

Lemma 2.7.1. Let (p, q, r) be integers. Then there exists a real number t such that∣∣∣∣( tp , tq , tr
)
− Λ

∣∣∣∣ ≥ 1 +
1

5
.

Note that this theorem is insensitive to a linear scaling of the integers (p, q, r).
Let (p, q, r) be a triple of integers, not all exactly divisible by 2. Let

v = (1/p, 1/q, 1/r) + (1/2, 1/2, 1/2),

and let Λ be the lattice v+ Z3. Let | · | = | · |1. The covolume of the lattice is n−1

where n is the smallest integer so that nv ∈ Z. Either at least one of p, q, and r
is odd, in which case n = [2, p, q, r], or one of p, q, or r is divisible by 4, in which
case n = [p, q, r] = [2, p, q, r]. In particular, n is always even.

Let Φ∨ denote the dual lattice, that is, the set of vectors w such that

w · v ∈ Z

for all v ∈ Z. Note that Φ∨ contains nZ3, but the covolume of Φ∨ is n. (The precise
covolumes will not be relevant for our computations, however.) Let v1 denote a
vector in Φ of smallest norm, and then v2 the next smallest norm vector not in the
space generated by v1, and then v3 the final such vector. These are norms with
respect to F = | · |1. Since n is even, at least one such vector must involve an odd
multiple of v. The dual lattice acquires a polar distance function F ∗ which is | · |∞,
the ℓ∞-norm. Correspondingly, let wi denote such a choice of vectors in the dual
lattice, and let the lengths of the vi and the wi be λi and µi respectively with
respect to the norms | · |1 and | · |∞.

Lemma 2.7.2. Suppose that there do not exist integers a, b, c, not all zero, with

a

p
+
b

q
+
c

r
= 0,

max(|a|, |b|, |c|) ≤ 20.
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Then Lemma 2.7.1 holds for (p, q, r).

This is somewhat similar (if weaker) to what we proved using Fourier analysis
in § 2, but the proof instead uses the geometry of numbers.

Proof. Since Theorem D is invariant up to scaling, we may assume that the (p, q, r)
are not all exactly divisible by 2. Note that if k is an odd integer and |kv − Z3| is
small, then (

k

p
,
k

q
,
k

r

)
will be close to (1/2, 1/2, 1/2) mod 1. The problem is that small vectors may not
involve odd multiples of v). In particular, the smallest vector will typically be

2v − (1, 1, 1) = (2/p, 2/q, 2/r).

On the other hand, the vectors v1,v2,v3 cannot all have an even coefficient of v1,
and hence what we want to show that that v3 is not too large.

Returning to the statement, The claim we want to establish is that we can find
a small linear relation. This would mean that we can find an element in the dual
lattice of very small length. Hence we first assume this is impossible, and that the
smallest vector w1 has length µ1 ≥ 20. Note that the length is an integer since
Φ∨ ⊂ Z3. The first key step is to use Mahler’s duality theorem [Cas97, §VIII.5,
Thm VI], which says that that

1 ≤ λiµ4−i ≤ 3! = 6.

We deduce from this that

λi ≤ λ3 ≤ 6

20
.

The coefficient of v in v1,v2,v3 cannot all be divisible by 2. Thus there exists a
vector of length bounded by 6/20 of the form kv + Z3 with k odd. It follows that∣∣∣∣(kp , kq , kr

)
+

(
k

2
,
k

2
,
k

2

)
− Z3

∣∣∣∣ ≤ 6

20
,

and thus, since k is odd,∣∣∣∣(kp , kq , kr
)
− Z3

∣∣∣∣ ≥ 3

2
− 6

20
= 1 +

1

5
.

Thus we are done unless µ1 < 20, and thus there exists a triple (a, b, c) with

(2.7.3)
a

p
+
b

q
+
c

r
≡ a+ b+ c

2
mod 1.

and

|a|, |b|, |c| < 20.

We are almost done, except the sum on the RHS of (2.7.3) might be non-zero. Note,
however, k constructed above is an integer, but we need only produce a rational
number t = k/d. In particular, since we can always scale (p, q, r) by a large scalar,
we can ensure that

|a|
p

+
|b|
q

+
|c|
r
<

1

2
.
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(Remember that the coefficients in the numerator are at most 20.) Thus we are
reduced to considering (p, q, r) which lie on the hyperplanes

a

p
+
b

q
+
c

r
= 0,

for integers a, b, c with

max(|a|, |b|, |c|) ≤ 20.

□

From this point onwards, we are reduced to considering the exceptional hyper-
planes. This is exactly what we had arrived at in § 2, although only after more
work. On the other hand, that work also resulted in fewer exceptional hyperplanes
to consider. While one can certainly envisage a proof of Lemma 2.7.1 following
on in a similar way, we are content with our original proof of (the same result)
Theorem D.

3. The Jacobsthal Function

Definition 3.0.1. The primordial Pr =
∏r
k=1 pk is the product of the first r prime

numbers.

Definition 3.0.2. Let n be a positive integer. Let (n, d) = 1. The Jacobsthal
function J(n) is the smallest integer such that any arithmetic progression:

a, a+ d, . . . , a+ (J(n)− 1)d

of length J(n) contains an element a+ kd which is coprime to n.

We have:

Theorem 3.0.3 (Kanold). Suppose that n has at most m distinct prime divisors.
Then J(n) ≤ 2m.

From this we get:

Lemma 3.0.4. If n > 4, we have an inequality

J(n) ≤ 2
√
n.

If n has at least 16 prime factors, then

J(n)3 ≤ n

24300
.

Proof. If n has one prime divisor, then J(n) = 2 < 2
√
n for n > 1. If n has two

prime divisors, then J(n) ≤ 4 < 2
√
n for n > 4. So we may assume that J(n) has

at least three prime divisors. Suppose it has m ≥ 3 prime divisors. Then

n ≥ 2 · 3 · 5 · . . . pm,
where pm is the mth prime. But then

n ≥ 2 · 3 · 5 · 5 . . . 5 = 6 · 5m−2.

On the other hand, by the previous theorem, J(n) ≤ 2m. Now it suffices to check
that

J(n) ≤ 2m ≤
√
4m ≤ 2

√
6 · 5m−2 ≤

√
n,

where the third inequality holds for all m.
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Now for for n with m ≥ r prime factors, and with pr+1 ≥ 2k, we have

n ≥ Pm ≥ Pr · 2k(m−r),

and so

J(n)k ≤ 2mk =
2rkPr2

k(m−r)

Pr
≤ 2rkn

Pr
= n · 2

kr

Pr
.

Now certainly p17 = 59 ≥ 8 = 23, and so it suffices to note that

P16

248
= 115779.94 . . . > 24300.

□

We can (and will) improve this inequality, at least for numbers of moderate
size. More importantly, we have [HS12] the following bounds on J(n) when n has
moderately few factors:

Lemma 3.0.5 ([HS12]). Suppose that n has r distinct prime factors when r ≤ 24.
Then J(n) is bounded above by U(r) given by the following table:

Upper bounds for J(n)

r U(r) r U(r)

1 2 13 74
2 4 14 90
3 6 15 100
4 10 16 106
5 14 17 118
6 22 18 132
7 26 19 152
8 34 20 174
9 40 21 190
10 46 22 200
11 58 23 216
12 66 24 236

The main result of [HS12] is that it is possible that if n has r prime factors that
J(n) > J(Pr). On the other hand, is is trivial that if n has r prime factors then
n ≥ Pr. There are also bounds available for larger ranges of r, including [Hag09,
CW15], but these will ultimately not be needed (but whose existence were still
psychologically useful).

3.1. A useful lemma. We begin by formulating a general lemma.

Lemma 3.1.1. Let mR be a real number, and let a, d, N , be positive integers.
If (d,N) = 1, then there exists an integer m such that:

(1) (a+ dm) is prime to N .
(2) |m−mR| ≤ J(N)/2.

If a = 1, the assumption that (d,N) = 1 is unnecessary.

Proof. Let mZ denote the nearest integer to mR, so mR = mZ + ε and |ε| < 1/2.
If (d,N) = 1, then by definition, any arithmetic progression (a+di) of length J(N)
contains an element coprime to N . If d has a common factor with N , then let N ′

denote the largest factor of N which is prime to d, so N/N ′ is only divisible by
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primes dividing d. Then (d,N ′) = 1 and any arithmetic progression (a + di) of
length J(N ′) ≤ J(N) contains an element coprime to N . But the prime factors of
N/N ′ divide d, so if a = 1 then they are coprime to 1 + di, and so every element
in this sequence is coprime to N/N ′ and hence once an element is co-prime to N ′

it is co-prime to N . We choose the sequence as follows:

(1) If J(N) = 2k + 1, we choose the sequence

a+ d(mZ + i), i = −k, . . . , k.

We deduce there is a suitable m with |mZ −m| ≤ k, and so

|mR −m| ≤ k + |ε| ≤ k +
1

2
=
J(N)

2
.

(2) If J(N) = 2k, we choose the sequence as follows:

If ε > 0, a+ d(mZ + i), i = −(k − 1), . . . , k,

If ε ≤ 0, a+ d(mZ + i), i = −k, . . . , (k − 1).

If m comes from an i with |i| ≠ k, then |m−mZ| ≤ k− 1 and |m−mR| ≤
k − 1/2 = (J(N) − 1)/2. If |i| = k, then, by construction, m > mZ if and
only if mR > mZ, and so

|m−mR| ≤ |m−mZ| = k =
J(N)

2
.

□

4. Lower dimensional versions and Galois twists

Our constructions are somewhat inductive, so it will be useful to understand
versions of this problem in dimensions one and two. Along the way we also introduce
a new technique which we call twisting. Some of the arguments in this section are
also ultimately going to be used in cumulative way, where a preliminary version of
one lemma is used as input in a second argument which is then used to strengthen
the original lemma.

4.1. A one dimensional version. Let’s consider the one dimensional version of
this problem with Λ = 2Z ⊂ R. If we are given a n, how accurately can we choose
a k with (k, 2n) = 1 and with k/n mod 2 in some given range? Equidistribution
implies that we can make it more and more accurate the larger n is. Bounds on
the Jacobsthal function allow us to prove this for some explicit lower bound in n,
and then checking directly for smaller n we can prove a result for all n.

Lemma 4.1.1. Let n > 1. There exists an integer (k, 2n) = 1 so that if x =
k/n mod 2, then x ∈ [1/6, 1/2]. If we assume that n ≥ 15 and n ̸= 18, 21, 33, then
we can additionally find k so that x ∈ [4/10, 1/2].

Remark 4.1.2. With our notation (see Definition 1.5.2), we can also write the
first condition that x = k/n mod 2 lies in [1/6, 1/2] as∣∣∣∣kn − 1

3
− 2Z

∣∣∣∣ ≤ 1

6
.
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Proof. Write k = 1 + 2m, and choose a real number mR so that k/n mod 2 lands
in the middle of this interval, which is x = 1/3. Clearly we can take

mR =
n

6
− 1

2
.

Now by Lemma 3.1.1 we can find an integer m so that k = 1 + 2m is prime to n
and |m −mR| ≤ J(N)/2, where N = n′ is the largest odd factor of n. (Certainly
if m is an integer then 1 + 2m is automatically odd and prime to 2.) We then find
that

k

n
=

1 + 2m

n
=

1 + 2mR

n
+

2(m−mR)

n
=

1

3
+

2(m−mR)

n
mod 2.

We are done as long as
2|m−mR|

n
≤ 1

6
,

but by construction we have

2|m−mR|
n

≤ J(n′)

n
.

Thus we are done as long as

(4.1.3) J(n′) ≤ n

6
.

Since J(n′) ≤ J(n) and J(n) ≤ 2
√
n by Lemma 3.0.4, this is true for n ≥ 144. For

smaller n, we find by computation that (4.1.3) still holds unless

n = 2, 3, 4, 5, 6, 7, 9, 10, 11, 15.

But for these values we can choose k so that k/n mod 2 is as follows:

1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
2

7
,
2

9
,
3

10
,
3

11
,
4

15
∈
[
1

6
,
1

2

]
,

which completes the proof of the first claim.
Now suppose that n ≥ 16. The proof is very similar — we now take

mR =
9n

40
− 1

2
,

and we find an integer m so that k = 1+ 2m is prime to n and |m−mR| ≤ J(N),
where N = n′ is the largest odd factor of n. Then we have

k

n
=

9

20
+

2(m−mR)

n
mod 2.

We are done as above as long as

(4.1.4) J(n′) ≤ n

20
.

Since J(n′) ≤ J(n) and J(n) ≤ 2
√
n by Lemma 3.0.4, this is true for n ≥ 1600. For

smaller n ≥ 15 with n ̸= 18, 21, 33, we find by computation that (4.1.4) still holds
unless

n = 15, 16, 17, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, 36, 37, 38, 39, 42, 45, 51, 55, 57.

But for these values we can choose the corresponding k as follows:

7, 7, 7, 9, 9, 9, 11, 11, 11, 11, 13, 13, 13, 13, 15, 15, 17, 17, 17, 17, 19, 19, 19, 25, 27, 25,

and then k/n always lies in the desired range, completing the proof. □
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Naturally, if required, one can always prove versions of this lemma allowing more
explicit exceptions.

4.2. Twisting. As mentioned in the introduction, one can approach Conjecture A
by thinking in terms of roots of unity or in terms of lattice points. From the point
of view of roots of unity ζ, ξ, θ, if the extension [Q(ζ, ξ, θ) : Q(ξ, θ)] is large, then
Gal(Q(ζ, ξ, θ)/Q(ξ, θ)) will move ζ around to within a small error of every point
in the circle while keeping the other roots of unity fixed. In this subsection we
describe the corresponding analogue for the lattice point version of the problem.

Lemma 4.2.1. Let m =
[p1, p2, . . . , pr, q]

[p1, p2, . . . , pr]
. Let m′ be the largest odd factor of m.

Let k be prime to 2

r∏
i=1

pi. Then there exists another integer k′ with the following

properties:

(1) k′ is prime to 2q

r∏
i=1

pi.

(2) For i = 1, . . . , r, we have
k′

pi
≡ k

pi
mod 2

(3) We have

∣∣∣∣k′q − x− 2Z

∣∣∣∣ ≤ J(m′)

m
.

(4) k′ is prime to any auxiliary integer.

Proof. Since adding 2

r∏
i=1

pi to k
′ doesn’t change any of the first three properties, we

can easily ensure the fourth by the Chinese Remainder Theorem, so we concentrate
on the first three conditions.

We shall consider integers k′ of the form

k′ = k + 2[p1, . . . , pm]ij

for integers i, j. Here i will vary and j is fixed, to be chosen later. Certainly k′ is
prime to 2 and the integers pi. Thus k′ is prime to q if and only if it is prime to
m′. Finally, k′/pi ≡ k/pi mod 2. Now we need to make a judicious choice of the
integer i. There exists an iR and kR so that if kR = k + 2[p1, . . . , pr]iRj, then

kR/q ≡ x mod 2.

By Lemma 3.1.1, we can now find an integer i′ with |i′ − iR| ≤ J(m′)/2 so that k′

is prime to m′. Now let us make a careful choice of j. We note that if we change i
to i+ 1 then k′/q changes by

2 · [p1, . . . , pr]j
q

mod 2.

By considering the powers of any prime dividing either p, q, or r, we find that in
reduced terms this is equal to

2 · cj
m

mod 2,
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where (c,m) = 1. We now choose a (j,m) = 1 so that cj ≡ 1 mod m, which is
possible because (c,m) = 1. But then we have

2 · [p1, . . . , pr]j
q

≡ 2

m
mod 2.

Now by construction, we find that, modulo 2, we have∣∣∣∣k′q − x− 2Z

∣∣∣∣ = ∣∣∣∣k′q − kR
q

∣∣∣∣ = 2|i′ − iR|
m

≤ J(m′)

m

which gives the third condition. □

4.3. A two dimensional problem. With the one dimensional version and with
twisting in hand, we now consider a two dimensional version of our problem.

Lemma 4.3.1. Let (p, q) be any pair of integers. Then there exists an inte-
ger (k, 2pq) = 1 so that if x = k/p mod 2 and y = k/q mod 2, then, up to re-
ordering,

1

2
≥ x ≥ 1

6
,

5

6
≥ y ≥ 1

6
.

Proof. Write (p, q) = (ad, bd) with (a, b) = 1, and b > a. Let m = [p, q]/p = b.
By Lemma 4.1.1, we may find a k with k/p ∈ [1/6, 1/2] mod 2. We now want to
modify k so that k/p mod 2 remains unchanged but k/q mod 2 lands in the desired
interval. By Lemma 4.2.1, we can keep k/p mod 2 fixed, and make∣∣∣∣kq − 1

2
− 2Z

∣∣∣∣ ≤ J(m′)

m
.

Thus we are done as long as

J(m′)

m
≤ min

(∣∣∣∣12 − 1

6

∣∣∣∣ , ∣∣∣∣12 − 5

6

∣∣∣∣) =
1

3
.

With m = b, this only occurs for b = 1, 2, 3, 5. So it remains to consider these
remaining cases.

We claim that for all of the finitely many remaining pairs (a, b), there exists a
real number kR so that — after possibly reordering a and b — the point(

kR
ad
,
kR
bd

)
lies on the vertical line segment Φ from [1/4, 1/4] to [1/4, 3/4]. To prove this,
we simply compute each of the seven lines for a suitable ordering of (a, b). More
concretely, the lines of slopes

1/1, 2/1, 3/1, 3/2, 1/5, 2/5, 3/5

intersect Φ at the points with y coordinates

1/4, 2/4, 3/4, 3/8, 9/20, 11/20

respectively. By Lemma 3.1.1, we may find an integer k with (k, 2abd) = 1 and
such that |k − kR| ≤ J(2abd)/2. We now claim that the point(

k

ad
,
k

bd

)
lies in the correct interval. If k = kR, then one value would be 1/4 mod 2 and
the other in [1/4, 3/4]. After changing to k, the terms will deviate by at most
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J(2abd)/(2ad) for the first term and J(2abd)/(2bd) for the second. Note that a ≤ b
so these are both at most J(2abd)/(2ad). In order to stay inside the region, which
for one term is in [1/6, 1/2] and the other is in [1/6, 5/6], the terms can both vary
as much as the distance from 1/4 to the closest boundary point 1/6, or the distance
from a point in [1/4, 3/4] to the nearest boundary point in [1/6, 5/6], or in other
words by

min

(∣∣∣∣14 − 1

6

∣∣∣∣ , ∣∣∣∣34 − 5

6

∣∣∣∣) =
1

12
.

Thus we are done as long as

J(2abd)

2ad
≤ 1

12
,

but since J(2abd) ≤ 2
√
2abd, this holds if

2
√
2abd ≤ ad

6
,

or

d ≤ 288b

a
≤ 288 · 5 = 1440.

There are 7 pairs (a, b) = 1 with b ∈ {1, 2, 3, 5} so this leaves 4× 1440 = 7200 cases
to check directly. □

In Lemma 4.3.1, one can do no better than equality in the case of (p, q) = (6, 6).
But we can give an improvement if we impose further lower bounds on p and q.

Lemma 4.3.2. Let (p, q) be any pair of integers with p, q ≥ 15 and p, q ̸= 18, 21, 33.
Write (p, q) = (ad, bd) with (a, b) = 1. Then there exists an integer (k, 2pq) = 1 so
that if x = k/p mod 1 and y = k/q mod 1, then

5

7
≥ x ≥ 2

7
,

5

7
≥ y ≥ 2

7
,

unless (p, q) = (15, 30).

Proof. Write (p, q) = (ad, bd) with (a, b) = 1, and, without loss of generality, assume
that b > a. Let m = [p, q]/p = b. By Lemma 4.1.1, we choose a (k, 2pq) = 1 so that
k/p mod 2 lies in [4/10, 1/2]. Arguing as in the proof of Lemma 4.3.1, and using
Lemma 4.2.1, we can keep k/p mod 2 fixed, and make∣∣∣∣kq − 1

2
− 2Z

∣∣∣∣ ≤ J(m′)

m
.

Thus we are done as long as

J(m′)

m
≤ min

(∣∣∣∣12 − 2

7

∣∣∣∣ , ∣∣∣∣12 − 5

7

∣∣∣∣) =
3

14
.

With m = b, this only occurs for

(4.3.3) b = 1, 2, 3, 4, 5, 6, 7, 9
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For a < b with (a, b) = 1 and b in this list, but not of the exceptional form above,
we claim that there exists a kR such that

max

(∣∣∣∣kRad − 1

2
+ Z

∣∣∣∣ , ∣∣∣∣kRbd − 1

2
+ Z

∣∣∣∣) ≤



1

6
, (a, b) = (1, 2),

1

10
, (a, b) = (1, 4), (2, 3),

1

14
, otherwise.

We prove this but taking points (t/a, t/b) with t ∈ Z/1260 and finding the
largest such point; for this method, the case 1/14 is optimal for the choices (a, b) =
(1, 6), (2, 5), (3, 4). The next step is to now find an integer k with |k − kR| ≤
J(2abd)/2 and (k, 2abd) = 1, and then, since 1/ad ≥ 1/bd, we need

(4.3.4)
J(2abd)

2ad
≤



3

14
− 1

6
=

1

21
, (a, b) = (1, 2),

3

14
− 1

10
=

4

35
, (a, b) = (1, 4), (2, 3),

3

14
− 1

14
=

2

7
, otherwise.

Using that J(2abd) ≤ 2
√
2abd, we are done if

J(2abd)

2ad
≤ 1

C
⇒ abd ≤ 2b2C2,

and hence we are done if

(4.3.5) abd ≤



882 = 2 · 22 · 212 (a, b) = (1, 2),

2450 = 2 · 42 ·
(
35

4

)2

(a, b) = (1, 4), (2, 3),

1985 > 2 · 92 ·
(
7

2

)2

otherwise.

and we can easily check these cases and find that the only exception in this range
is (p, q) = (15, 30). □

4.4. Bounds for [p, q, r]/[p, q]. We can draw a few useful consequences out of the
lemmas in this section. For example:

Lemma 4.4.1. Let (p, q, r) be a triple, and let m = [p, q, r]/[p, q]. Then if m is not
in the following list:

(4.4.2) 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 15

then Theorem 1.5.4 is true for (p, q, r).

Proof. We first find (k, 2pq) with k/p ≡ x mod 2 and k/q ≡ y mod 2 as in Lemma 4.3.1,
so with

1

2
≥ x ≥ 1

6
,

5

6
≥ y ≥ 1

6
.
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By Lemma 1.5.6, there exists a z such that |(x, y, z) − Λ| ≥ 1 + 1/6. By
Lemma 4.2.1, we find a k′ with (k′, 2pqr) = 1 and

J(m′)

m
≥ e = |k′/r − z − 2Z|.

By the triangle inequality, we have∣∣∣∣(k′p , k′q , k′r
)
− Λ

∣∣∣∣ ≥ 1 +
1

6
− J(m′)

m
,

This means we are done as long as

J(m′)

m
≤ 1

6

Since

J(m′)

m
≤ J(m)

m
≤ 2

√
m

m
≤ 1

6

this is automatic as soon as m ≥ 122 = 144, and then by computation for most
smaller m as well, and we find the only exceptions lie in (4.4.2). □

There is also the following very similar variant:

Lemma 4.4.3. Let (p, q, r) be a triple with (p, q) = (ad, bd) and (a, b) = 1, and
let m = [p, q, r]/[p, q]. Suppose that p, q ≥ 15 and p, q ̸= 18, 21, 33. If m ̸=
1, 2, 3, 5, 6, then Theorem 1.5.4 is true for (p, q, r).

Proof. By Lemma 4.3.2, we find k with k/p, k/q in [2/7, 5/7]2. Then, as in the
proof of Lemma 4.4.1, we are done as long as and then we are in good shape as
long as

1 +
2

7
− J(m′)

m
≥ 1.

But for m /∈ {1, 2, 3, 5, 6} we have J(m′)/m ≤ 2/7. This leaves the exceptional
pair (p, q) = (15, 30), But we know that the possible rs must satisfy [r, p, q]/[p, q] ≤
15, by Lemma 4.4.1. This bounds r in all cases by [p, q] · 15 ≤ 30 · 15 = 450, and
and indeed the value of n = [2, p, q, r] is also bounded by this quantity. But we can
compute these cases directly. □

5. The Regime where min(p, q, r) is large relative to n

In this section, we study the problem where the p, q, r are not too large compared
to n. The main theorem of this section is as follows:

Lemma 5.0.1. Suppose that min(p, q, r) ≥ m. Let n = [2, p, q, r] and suppose
that the number of distinct prime factors of n is r. Then Theorem 1.5.4 holds for
(p, q, r) as long as

J(n) ≤ 2m

15
.

Moreover, this holds if r < A(m) for the values of A(m) in the table below, or if
n < B(m).
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Lower bounds for n in terms of min(p, q, r)

m = min(p, q, r) A(m) B(m)

105 6 30030
165 7 510510
195 8 9699690
255 9 223092870
300 10 6469693230
345 11 200560490130
435 12 7420738134810
495 13 304250263527210
555 14 13082761331670030
675 15 614889782588491410
750 16 32589158477190044730
795 17 1922760350154212639070
885 18 117288381359406970983270
990 19 7858321551080267055879090
1140 20 557940830126698960967415390

Proof. The basic idea is to start with Theorem D, which guarantees a real number
t = tR so that ∣∣∣∣( tp , tq , tr

)
− Λ

∣∣∣∣ ≥ 1 +
1

5
.

By Lemma 3.1.1, there exists a k ∈ Z with (k, n) = 1 and |k − t| ≤ J(n)/2. We
then have ∣∣∣∣(kp , kq , kr

)
− Λ

∣∣∣∣ ≥ 1 +
1

5
− J(n)

2

(
1

p
+

1

q
+

1

r

)
.

Thus Theorem 1.5.4 holds for (p, q, r) as long as

J(n)

2

(
1

p
+

1

q
+

1

r

)
≤ 1

5

If min(p, q, r) ≥ m, then we are done as long as

J(n) ≤ 2m

15
, or m ≥ 15J(n)

2
.

Suppose this inequality fails. Then Lemma 3.0.5, for the various m, this implies
that n has at least A(m) = k prime factors for various k and thus

n ≥ B(m) = Pk =

k∏
i=1

pk.

□

In light of this, it will be useful to understand what happens when one of p, q,
and r is small. We develop some tools now to understand this case.

6. The Regime where min(p, q, r) is fixed

In § 5, we obtained some control when n was not too large compared to min(p, q, r).
In this section, we are now in a position to rule out one form of counterexamples
to Theorem 1.5.4 when min(p, q, r) is small. Supposing that p is small, we typically
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write (q, r) = (ad, bd) with (a, b) = 1. Our first observation is that, for a fixed p,
we need only consider finitely many pairs (a, b):

Lemma 6.0.1. Consider triples (p, ad, bd), where (a, b) = 1 and b ≥ a. Then if
this is a counterexample to Theorem 1.5.4, we have the following inequalities:

b ≤ 15p,

a ≤ 15p,

ab ≤ 165p.

Proof. Let us compute m = [p, q, r]/[p, q] and m′ = [p, q, r]/[p, r]. Certainly [p, q, r]
is divisible by bd. The largest factor of bd in ad is d, and the largest factor of p
in bd divides p, so

b

(b, p)

∣∣∣∣m, a

(a, p)

∣∣∣∣m′

By Lemma 4.4.1, we have

m,m′ ∈ 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 15.

The inequality for a and b then follows. On the other hand, we see that (m,m′) = 1
since a prime dividing m or m′ divides r or q respectively to a higher power than
any other element. So from the divisibility

ab

(ab, p)
=

b

(b, p)

a

(a, p)

∣∣∣∣mm′

we get ab|pmm′ ≤ 165p. □

6.1. The strategy for small p. Now let us explain our approach to triples of the
form (p, ad, bd). We first choose a k so that x = k/p mod 2 lies in [1/6, 1/2]. We
then consider new k′ of the form k′ = k+2pm, fixing the congruence class modulo
2p. The idea is that this is not too restrictive for p small, and guarantees that
k/p mod 2 is not too small. In order to choose m, we find a real number mR so
that, with

y =
k + 2pmR

ad
mod 2, z =

k + 2pmR

bd
mod 2,

we have

|(x, y, z)− Λ| ≥ 7

6
.

Note that the existence of such a real number mR depends only on x and a and
b and not on d. Then we show, for d sufficiently large, we can find an integer m
sufficiently close to mR so that, for k′ = k + 2pm, we have (k′, 2pad) = 1 and the
triple v = (k′/p, k′/q, k′/r) is close enough to (x, y, z) to ensure that |v − Λ| ≥ 1.

The following is elementary:

Lemma 6.1.1. Let x ∈ [1/6, 1/2]. Let Ω[0,1](x) ⊂ [0, 1]2 denote the region of
points (y, z) in the plane satisfying the following four inequalities:

1− 1

6
+ x ≥ z + y ≥ 1 +

1

6
− x,

1− 1

6
− x ≥ z − y ≥ −1 +

1

6
+ x,

Let Ω(x) ⊂ [0, 2]2 denote the union of four copies of Ω[0,1](x) rotated by multiples
of π/2 around the point (1, 1). Then |(x, y, z)− Λ| ≥ 1 + 1/6 for (y, z) ∈ Ω(x).
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Note that when x = 1/6 then Ω(x) consists of four lines, and when x = 1/2, it
consists of four squares, and otherwise it consists of four (non-square) rectangles.
Here are pictures of Ω(x) for x = 1/6, 1/3 and 1/2 together with

Ω := ∩x∈[1/6,1/2]Ω(x),

where Ω is the region given by four rotated copies of the line:

x+ y = 1, 1/3 ≤ x, y ≤ 2/3.

Pictures of these regions are as follows:

Figure 6.1.1. The region Ω(x) for x = 1/6, 1/3, 1/2 and the in-
tersection Ω of all Ω(x).

Lemma 6.1.2. Let (a, b) be any pair of coprime positive integers. Then there exists
a real t so that (t/a, t/b) mod 2 lies on Ω.

Proof. Let r denote the slope, and consider equivalently the line (t, tr) mod 2.
Without loss of generality by symmetry, we may assume that 0 < r ≤ 1. In
particular, we may assume that

r ∈
[
1,

1

2

]
∪
[
1

2
,
4

11

]
∪
[
4

11
,
1

4

]
∪
[
1

8
,
1

4

]
∪

⋃
n≥1

[
1

4 + 6n
,

2

5 + 6n

]

To see this contains [0, 1), note that

2

11
>

1

8
,

2

5 + 6n
>

1

4 + 6(n+ 1)
, n ≥ 1 ≥ 1

2
.

Now for any r in the final segments the line intersects the line between the two
points (

2n+ 1 +
1

3
,
1

3

)
,

(
2n+ 1 +

2

3
,
2

3

)
.

For the initial four segments, they also intersect four corresponding lines as observed
in Figure 6.1.2.
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Figure 6.1.2. Lines intersecting Ω.

□

Now let us return to the (p, an, bn) problem.

Lemma 6.1.3. Suppose that p ≤ 33. Then Theorem 1.5.4 holds for (p, q, r) =
(p, an, bn).

Proof. Write (p, q, r) = (p, ad, bd) with (a, b) = 1 and b ≥ a ≥ 1. By Lemma 6.0.1,
we may assume that a, b ≤ 15p, and ab ≤ 165p. If n = [2, p, q, r], then n divides
2abdp. By Lemma 4.1.1, we choose a (k, 2p) = 1 with k/p mod 2 ∈ [1/6, 1/2]. By
Lemma 6.1.2, there exists real numbers mR and tR so that k + 2pmR = tR and(

tR
da
,
tR
db

)
∈ Ω mod 2.

By Lemma 3.1.1, there exists an m ∈ Z so that (k+2pm, abd) = 1 with |m−mR| ≤
J(abd)/2. We find that, modulo 2,(

k + 2pm

p
,
k + 2pm

ad
,
k + 2pm

bd

)
=

(
k

p
,
k + 2pmR

ad
,
k + 2pmR

bd

)
+ 2p(m−mR)

(
0,

1

ad
,
1

bd

)
.

=

(
k

p
,
tR
ad
,
tR
bd

)
+ 2p(m−mR)

(
0,

1

ad
,
1

bd

)
.

By construction, the first point is 7/6 from Λ. Thus, by the triangle inequality,

|kv − Λ| ≥ 7

6
− 2p|m−mR|

(
1

ad
+

1

bd

)
≥ 1 +

1

6
− pJ(abd)

(
1

ad
+

1

bd

)
This is greater than one as long as

1

6
≥ pJ(abd)

(
1

ad
+

1

bd

)
,

or rearranging a little bit more, as long as

(6.1.4) J(abd) ≤ abd

6p(a+ b)
.
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Note that with 15p ≥ b, a, and 33 ≥ p, this would certainly follow if we knew that

J(abd) ≤ abd

198(495 + 495)
=

abd

196020
.

But we know by Lemma 3.0.4 that J(abd) ≤ 2
√
abd. Hence we are done as long as

2
√
abd ≤ abd

196020
,

which holds as soon as

abd ≥ 4 · 1960202 = 153695361600.

Hence we can assume that abd is less than this quantity. But then we know that
abd has at most 10 prime factors, since

P11 = 200560490130 ≥ 153695361600.

This allows us to use better bounds on J(abd), namely that J(abd) ≤ 46 by
Lemma 3.0.5, and thus (6.1.4) is satisfied (and we are done) as long as

abd ≥ 46 · 6p(a+ b),

which certainly is satisfied if

d ≥ 276 · p(a+ b)

ab
.

With 495 ≥ 15p ≥ b, a ≥ 1, the RHS is maximized with b = a = 1, and so we are
done if d ≥ 18216. Hence we compute over all triples p, a, b, d with:

(1) p = 2, . . . , 33,
(2) a ≤ b ≤ 15p with (a, b) = 1 and ab ≤ 265p.

(3) d ≤ 276p(a+ b)

ab
.

Checking all these cases, we complete the proof of the Lemma. □

6.2. Self-improvement. We can now feed the results of this section back into
Lemma 4.4.3 to prove a stronger result:

Lemma 6.2.1. If (p, q, r) is any triple which does not satisfy the conclusion of
Theorem 1.5.4, then we can assume:

(1) min(p, q, r) > 33.
(2) For any ordering, of the triple, if we let m = [p, q, r]/[p, q], then we may

assume that m ∈ {1, 2, 3, 5, 6}.

Proof. The first claim follows from Theorem 6.1.3. The second claim follows from
Lemma 4.4.3. □

6.3. Increasing the range of p. Now that we know that p, q, r > 33, we can
improve upon Lemma 6.1.3 by using Lemma 6.2.1.

Lemma 6.3.1. Suppose that p ≤ 885. Then Theorem 1.5.4 holds for (p, q, r) =
(p, an, bn).
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Proof. We proceed exactly as in Lemma 6.1.3 except now with the additional as-
sumption that p > 33. Let B = 885 be our bound for p. Since p > 33, we know by
Lemma 6.2.1 that max(a, b) ≤ 6p, and following Lemma 6.0.1 we also find that:

b ≤ 6p,

a ≤ 6p,

ab ≤ 30p.

Returning to (6.1.4), we have

(6.3.2) J(abd) ≤ abd

6p(a+ b)
.

This would follow if we knew that if we knew that

J(abd) ≤ abd

6B(6B + 6B)
=

abc

72B2
.

But we know by Lemma 3.0.4 that J(abd) ≤ 2
√
abd. Hence we are done as long as

2
√
abd ≤ abd

72B2
,

which holds as soon as

(6.3.3) abd ≥ 4 · (72B2)2 = 20736B4 = 12720320883360000 ∼ 1.2× 1016.

Now we have

P14 = 13082761331670030 ∼ 1.3× 1016 > 12720320883360000.

This means that we may assume that abd as at most 13 factors. This allows us to
use better bounds on J(abd), namely that J(abd) ≤ 74 by Lemma 3.0.5, and thus
(6.1.4) is satisfied (and we are done) as long as

abd ≥ 74 · 6B · (12B) ≥ 74 · 6p(a+ b),

and so we are done if

abd ≥ 5328B2 = 4173022800 < 6469693230 = P10,

from which we deduce that abd has at most 9 prime factors. Repeating this process,
we feed this bound back into the the same argument to deduce that J(abd) ≤ 40.
Thus we are done as long as

abd ≥ 240p(a+ b),

which certainly is satisfied if

d ≥ 240 · p(a+ b)

ab
.

Thus it remains to loop over all p, a, b, d with:

(1) p = 34, . . . , B,

(2) a ≤ b ≤ 6p with (a, b) = 1 and
ab

(ab, p)
≤ 30.

(3) d ≤ 240p(a+ b)

ab
.

We check that this does not lead to any new triples. For remarks about the com-
putational aspect of this proof, see § A.1. □
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7. Completing the Argument

We now combine the results of the last two sections to complete the argument.
We begin with a special case:

Lemma 7.0.1. If p, q, r are all odd, then Theorem 1.5.4 applies for this triple.

Proof. Note that pqr is odd so we can let k be one of pqr+1
2 , pqr−1

2 , both of which
are prime to pqr and one of which is odd, so prime to n = [2, p, q, r]. For that
choice, we have

k

p
=
qr

2
± 1

2p
≡ 1

2
± 1

2p
mod Z.

Thus we find that∣∣∣∣(kp , kq , kr
)
− Λ

∣∣∣∣ ≥ 3

2
− 1

2p
− 1

2q
− 1

2r
≥ 3

2
− 3

6
≥ 1,

as soon as min(p, q, r) ≥ 6, which we can assume by Lemma 6.1.3. □

7.1. Proof of Theorem 1.5.4. Assume that (p, q, r) is a counter example to The-
orem 1.5.4, and let n = [2, p, q, r]. By Lemma 6.3.1 we know that min(p, q, r) =
B > 885. By Lemma 7.0.1, we may also assume that n = [2, p, q, r] = [p, q, r]. By
Lemma 5.0.1, with n = [p, q, r], we therefore deduce that

n ≥ 117288381359406970983270 = 1.1× 1023,

and moreover that n has at least r ≥ 18 prime factors. As in the proof of
Lemma 6.3.1, we write (p, q, r) = (p, ad, bd) with p = B and

b ≤ 6B,

a ≤ 6B,

ab ≤ 30B,

and we are done providing that

(7.1.1) J(abd) ≤ abd

6p(a+ b)
,

and hence done if

(7.1.2) J(abd) ≤ abd

72B2
.

We know thatm = [p, ad, bd]/[ad, bd] ≤ 6, and so n divides 6abd. Also the primes
dividing n are the primes dividing abd so J(n) = J(abd). Hence we are done if

J(n) ≤ n

432B2
.

On the other hand, by Lemma 5.0.1, we are also done if

J(n) ≤ 2B

15
.

if neither of these are satisfied, then

J(n)3 = J(n) · J(n)2 > n

432B2
·
(
2B

15

)2

=
n

24300

But this is a contradiction by Lemma 3.0.4 as soon as r ≥ 16, and as noted above
we may assume that r ≥ 18. This completes the proof of Theorem 1.5.4. □
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7.2. Acknowledgments. The genesis of this paper was a project of the second
author supervised by the first author. The initial problem was to consider triples of
the form (p, q, r) = (6, d, d), which can be handled in a completely elementary way.
The case when p = 6 can be thought of as the “worst case” in light of Lemma 4.1.1;
it already includes 8 of the 11 elements of the Hilbert Series. It is a short step
from this to the case of (p, q, r) = (6, ad, bd) for small (a, b) = 1, and then to
Lemma 6.1.3, and finally to Lemma 6.3.1. At the same time, one can also give a
completely elementary proof of Theorem D (or rather its analogue) for hyperplanes
rather than lines, and additionally to prove Theorem D for all but finitely many
(explicit) lines on any given hyperplane, using a version of Lemma 2.4.4. This is
not quite good enough to reduce Theorem D to a finite calculation, since one has
to worry about possible exceptions on every hyperplane — boundary cases like the
line (t/2, t/3, t/6) do lie on infinitely many hyperplanes. The argument required
to reduce Theorem D to finitely many hyperplanes (using Fourier analysis or the
geometry of numbers) is the only non-elementary step in this paper. We thank
Andrew Sutherland at MIT for providing us access to his 128 core machine with a
magma license, and with help in setting up the scripts to run in parallel.

Appendix A. Remarks on computations

In this section, we give some more details on our explicit computations, with
links to files on github. We also make some remarks on computational efficiently.
Suppose we have a triple of integers (p, q, r) and we wish to find either:

(1) An integer (k, n) = 1 with n = [2, p, q, r] such that∣∣∣∣(kp , kq , kr
)
− Λ

∣∣∣∣ ≥ 1

(2) An real number t such that∣∣∣∣( tp , tq , tr
)
− Λ

∣∣∣∣ ≥ 1 +
1

5
.

Following [McM24b], a natural approach to the first problem is simply to repeatedly
pick a random integer (k, n) = 1 and check if the condition is satisfied. We expect
(from [McM24a]) from the spectral gap condition that this is satisfied for a large
positive percentage of k (independent of n), unless (p, q, r) is a triple for which no
such k exists. Hence this provides an excellent probabilistic test — if we run this
up to 1000 times until it finishes, this is exceedingly likely to find such a k if (p, q, r)
is not in the Hilbert Series (or some other unknown exception before Theorem 1.5.4
is proved). Moreover, there is no issue with false positives, only false negatives —
if a triple does pass all 1000 tests, we can check it theoretically by hand (this never
happened).

The approach in the second case is exceedingly similar. Instead of choosing t to
be a random integer prime to n, we choose a random integer in [−1000n, 1000n]
and then divide by 1000) to get a rational number in [−n, n]. This works equally
well in practice. Computing J(n) for relatively small values of n (say n ≤ 10000) is
very easy to do directly and so we make no further comments on these calculations.
The most difficult computations we use are the upper bounds for J(n) for integers
n with r prime divisors — but these computations have already been done in other
papers which we may simply cite.)
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A.1. The case of fixed primes p. By far, the longest computation was the verifi-
cation that min(p, q, r) ≥ 885 in the proof of Lemma 6.3.1. Our original program in
magma [BCP97] first computed in the range to B ≤ 33, and then B ≤ 100, the second
computation finishing in slightly under one day. The program for B = 101 . . . 885
was set running with a single core. On the other hand, the computations for every
value of p are completely independent, and so in particular this is a very paral-
lelizable computation. One issue is that magma licenses do not easily transfer to
cloud machines, so one would have to port the code to c++. Andrew Sutherland,
however, generously provided use of 100 cores on his 128 core machine which did
have a magma license. We then divided up the computation for B = 34, . . . 885 into
852 individual computations and set them running late overnight in parallel on 100
cores. By the next morning the computations had long since been completed. The
original computation (using one core) was left to puff away even after the parallel
computation had long since finished. It eventually completed its task (finding no
further triples) after 267 hours.

A.2. The co-dimension two lines of § 2.5. For some computations in § 2 we
used mathematica. Computing the values of E[(e(t) − 24)12] for the exceptional
hyperplanes takes a little less than 30 minutes. Forming the cross products of(

6337

2

)
= 20075616

pairs of elements, and then removing duplicates after scaling, taking absolute values,
and dividing by the GCD. Operating on lists of this size in mathematica took well
under 10 minutes. Testing the exceptional cases can all be done in the order of
minutes. The explicit computer scrips together with input and output files can be
found here [CC25].
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