Automorphisms of S6 and invariants of 6 points in Pd (partially based on Howard-Millson-Snowden-Vakil) SI. Outer automorphisms of Sn If G is a group. $g \mapsto (x \mapsto gxg^{-1})$ $| \rightarrow Z(G) \rightarrow G \rightarrow Aut(G) \rightarrow Out(G) \rightarrow |$ is exact. Easy, including definition of Out Inn (G) = Im (G -> Aut (G)) = ker (Aut(Gi) -> Out(Gi)) $\cong G/2(G)$. troposition. Out(S_n) = 1, if $n \neq 6$; = 1, if n = 6.

Step 1. If $\varphi \in Aut(S_n)$ takes Lood transpositions to transpositions then YE Inn (Sn). · $\varphi(li)$, $\varphi(lj)$ do not commute for $i\neq j$, so are of the form (ab), (ac). · a is independent of i,j. $((ab),(bc),(ca)) \cong S_3$, while $\langle (li), (lj), (lk) \rangle \cong S_4$ · f(i) = :(f(i), f(i)) is well-defined. • Since $\langle (1i) \rangle = S_n, f \mapsto f$ G->Aut(G). Step 2: If C C Sn is a conjugacy class of involutions and $|c| = {n \choose 2}$ then • either n = 6 and c is the class of (12)(34)(56)· or c is the class of transpositions. Step 2, for n>8 (possible infinite): If c is

a conjugacy class of involutions, then either
the class of Yemsposinion
· C contains 2 elements whose production
order ≥ 4 : either $(12)(3)(4)(56)(7)$, $(1)(2)(34)(5)(67)$ or $(12)(34)(56)(78)$, $(23)(45)(67)(81)$
Proposition: Suppose PEAut (S6). Then TIFAE!
$(a) \varphi \in Inn(S_6)$.
(b) $\varphi^{-1}(Stab(i)) = Stab(f(i))$
(for some i (=) for every i).
(c) $\varphi^{-1}(Stab(i)) < S_6$ is <u>not</u> transitive
(in the obvious action on {1,,6}).
In particular, given $S_5 \cong G_1 \times S_6$ with G_1 transitive, $\varphi: S_6 G_1 \times G_2 \times G_3 \times G_4$ is non-trivial
G transitive, P: S6 G(S6/G) is non-trivial
in Out (S6).
Proof $(a) \rightleftharpoons (b) = (c)$ is easy.

Proof $(a) \rightleftharpoons (b) \rightleftharpoons (c)$ is easy.

For $(c) \rightleftharpoons (b)$, note that other non

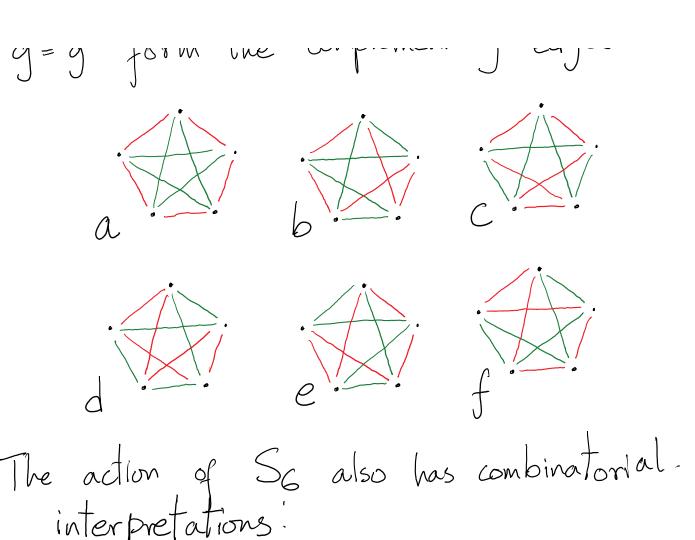
transitive subgroups have size $\leq \# S_2 \times S_4$ $= 2 \times 4! < 5!$ For the coset action, $\varphi'(Stab(eG)) = G_1$. \square

So we are looking for transitive (and faithful)
So actions on a 6 element set.

Algebraic construction! So has 6 Sylow 5-subgroups (each generated by 4 of the 5-cycles) The action is by conjugation.

Combinatorial/"mystical" interpretation

Draw the 5-cycle $g \in S_5$ as a pentagon on given vertices, g' reverses orientation; g^2 and $g^2 = g^3$ form the complementary edges



The action of SG also has combinatorial. interpretations: interpretations:

- · 20 triangles on 6 vertices. Color AB6 the same as the edge AB in the pentagon and CDE the opposite. These are all the 2-colorings such that...
- · Galue the real triangles into half an icosahedron and symmetrize it. The green triangles glue to a complementary i cosahedron.

The Limensional permutation represention

II dimensional permutation representation
associated to this action is the pullback of
The 6-dimensional permutation representation associated to this action is the pullback of the defining permutation rep and decomposes as
BBY Sund
$V_5' = V_5 \times \mathbb{Q}_{sign}$
Res ₅₅ V ₅ = Ind ₅₅ is also irreducible.
82. Moduli space of 6 points in TPd
We are interested in the space
(Pd)6/PGLd+1
For d>3, PConf (Pd) (the locus of 6 district
dépoints) is a single dense orbit, so this space
is trivial.

d=1,2,3 were all studied classically, and can be explicitly identified with projective varieties, as follows.

These identification maps are a generalization of the cross ratio!

 $(p_1,\ldots,p_6) \longrightarrow [2a^2-i2f]$

given by $Z_x = \sum_{i,j,k} \pm P_i P_j P_k$

 $H^{\circ}(S_3, O(1)) \longrightarrow \begin{cases} \text{depends on the color} \\ \text{of triangle ijk given} \\ \text{by pentagon } X. \end{cases}$

Has Some threehold is

The image S_3 , the Segre threefold is cut out by $Z_{a} + \cdots + Z_{f} = Z_{a}^{3} + \cdots + Z_{f}^{3} = 0$. d=3 and duality with d=1. $(P^{3})^{6}/PG_{L_{4}} \qquad (3)$ $(P^{3})^{6}/PG_{L_{4}} \qquad (3)$ $(1) P^{5}.$ (2) | 1) dual hypersurfaces $(3) | (in P^{4}.) PG_{L_{2}}$ $(4) | (in P^{4}.) PG_{L_{2}}$ $(5) | (in P^{4}.) PG_{L_{2}}$ 1) It is cut out by "Igusa quartic" $W_{\alpha} + \cdots + W_{f} = \left(\sum W_{x}^{2}\right)^{2} - 4\left(\sum W_{x}^{4}\right) = 0,$ [Wa! Wf] E P5 6 generic points in P3 are on a

unique rational normal curve, i.e. a translate of im $(P \rightarrow P')$ [s:t] \mapsto [s³:s²t:st²:t³]. $-\frac{1}{2}w_2w_3^2x_5^2x_6y_2y_4^2z_1^2z_6+2w_2w_3w_4x_3x_5x_6y_4y_5y_6z_1^2z_2-w_1w_2w_4x_3^2x_4y_5^2y_6z_1z_2z_6$ $-\frac{2}{3}w_2w_5w_6x_3^2x_6y_1^2y_5z_2z_4^2-\frac{1}{2}w_1w_2w_3x_1x_5x_6y_2y_3y_4z_4z_5z_6$ $+\frac{1}{6}w_2w_3w_4x_1x_2x_5y_1y_4y_6z_3z_5z_6+\frac{1}{4}w_1^2w_2x_2x_3^2y_5^2y_6z_4^2z_6\bigg).$ The map (P') ---> I4 is easier to write down and provides $H^0(I_4; O(1)) \cong V_5$. $W_{x} = \sum_{\sigma \in S_{5}} (2 \text{ or } -1) \left(p_{6} p_{\sigma(3)} \right) \left(p_{\sigma(2)} p_{\sigma(3)} \right) \left(p_{\sigma(4)} p_{\sigma(5)} \right)^{x}$ $\{\alpha, \beta, \vec{r}\} = \{0, 1, 2\} \qquad \text{depends on } (\sigma, x)$ a=2: $(\mathbb{P}^2)^6/PGL_3$ =: X is a double cover of P4 branched over I4. The branch

locus consists of 6 points on a conic, cut out by $V = det \left(\mathcal{V}_2 \left(Pi \right) \right)$ 1 Veronese embedding $\mathbb{P}^2 \to \mathbb{P}^5$. Then the double cover is given by $\left(\sum W_{x}^{2}\right)^{2} - 4\left(\sum W_{x}^{4}\right) + 324V^{2} = 0.$

Where

 $W_{x} = \sum_{\tau \in S_{6}} (2 \text{ or } -1) (x_{\tau(x)} \times_{\sigma(x)}) (y_{\tau(3)} Y_{\tau(4)}) (z_{\tau(5)} z_{\tau(6)}).$ The same way as above.