“How to use finite fields for problems concerning infinite

fields" by Jean-Pierre Serre

Summarized by Nate Harman

May 7, 2020



If G is a finite p-group acting algebraically on C", then there exists a fixed
point for the action.
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If G is a finite p-group acting algebraically on C", then there exists a fixed
point for the action.

Without loss of generality assume C = I, with g relatively prime to p.
Orbits of G on Fg must have sizes which are powers of p as G is a

p-group. Since p does not divide |IFZ| there must exist an orbit of size 1
(i.e. a fixed point).
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“Without loss of generality”

G acting algebraically explicitly means for each g € G there are
polynomials Pg ; € C[x1,x2,...x,]| for i =1,2,...n such that

g (x1,x0,...xn) = (Pga(X1, X2, ..., Xn), - -, Pg,n(X1, X2, ..., Xn))-
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“Without loss of generality”

G acting algebraically explicitly means for each g € G there are
polynomials Pg ; € C[x1,x2,...x,]| for i =1,2,...n such that

g (x1,x0,...xn) = (Pga(X1, X2, ..., Xn), - -, Pg,n(X1, X2, ..., Xn))-
G having no fixed points implies that the system of n|G| equations
Xj — Pg7,‘(X1,X27 .. .X,,) =0

has no solutions in C”. Therefore by the Nullstellensatz there exist
polynomials Qg,; € C[x1, X2, ... Xp] such that

Z(X/ - gl X17X27 . 'Xn))Qg,i(Xl?X27' . 'Xn)) =1



“Without loss of generality” (cont.)

Let A C C be the subring generated by %, the coefficients of the Py ;s, and
the coefficients of the Qg ;s. In particular note that A is finitely generated
as an algebra over Z.



“Without loss of generality” (cont.)

Let A C C be the subring generated by %, the coefficients of the Py ;s, and
the coefficients of the Qg ;s. In particular note that A is finitely generated
as an algebra over Z.

If m C A'is a maximal ideal then A/m is a finite field IF of characteristic
prime to p.



“Without loss of generality” (cont.)

Let A C C be the subring generated by %, the coefficients of the Py ;s, and
the coefficients of the Qg ;s. In particular note that A is finitely generated
as an algebra over Z.

If m C A'is a maximal ideal then A/m is a finite field IF of characteristic
prime to p. Upon reduction modulo m, the P, ;s define an action G on
Fgy, and the equation

Z(X,’ — Pgi(x1,x2,...Xxn))Qg,i(x1,%2,...%p)) =1
g,

ensures that the action does not have any fixed points. This is impossible
by the previous argument.



Almost free actions

We say that an action of a finite group G on a complex algebraic variety
X is almost free if X has finitely many points pi1, p2, ..., px which are
fixed by G, and the action on X — {p1, p2,...px} is free.
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points respectively. Then k = k' mod |G|.
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We say that an action of a finite group G on a complex algebraic variety
X is almost free if X has finitely many points p1, p2, ..., px which are
fixed by G, and the action on X — {p1, p2,...px} is free.

Theorem

Suppose we have two almost free actions of G on X with k and k" fixed
points respectively. Then k = k' mod |G|.

Sketch of proof.

If the actions are defined over a finite field Fg this is clear: By assumption

every orbit either has size |G| or 1 therefore the number of fixed points has
to be the same modulo |G|.

| A
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If the actions are defined over a finite field Fg this is clear: By assumption
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to be the same modulo |G|.
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Similarly to before, for any two such actions defined over C we can find a
finitely generated ring A over which they are both defined, as well as a
maximal ideal m such that the actions remain almost free for A/m.




Ax-Grothendieck

Theorem (Ax, Grothendieck)

If f : C" — C" is an injective algebraic map, then f is surjective.
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If f : C" — C" is an injective algebraic map, then f is surjective.

For f : Fg — Fg the statement is obvious.

Similarly to before we can show that any such f over the complex numbers
is defined over a finitely generated ring, and we can find a maximal ideal
such that the reduction remains injective. O
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Theorem (Ax, Grothendieck)

If f : C" — C" is an injective algebraic map, then f is surjective.

For f : Fg — Fg the statement is obvious.

Similarly to before we can show that any such f over the complex numbers
is defined over a finitely generated ring, and we can find a maximal ideal
such that the reduction remains injective. O

Something to think about: What goes wrong if we try to run this
argument with injectivity and surjectivity flipped?



Sylow Subgroups in GL,(Q)

Theorem (Minkowski)

Suppose G C GL,(Q) is a finite group of order p?. Then
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Proof for p # 2.
Since G is finite we have that G C GL,(Z[1/N]) for some N. Therefore if
q does not divide 2/V we can realize G as a subgroup of GL,(Fg).




Sylow Subgroups in GL,(Q)

Theorem (Minkowski)
Suppose G C GL,(Q) is a finite group of order p?. Then

3 < Min,p) = LpﬁlJ - LP(Pn— 1)J - LﬁJ e

| \

Proof for p # 2.

Since G is finite we have that G C GL,(Z[1/N]) for some N. Therefore if
q does not divide 2/V we can realize G as a subgroup of GL,(Fg).

So we can bound |G| by the cardinality of a p-Sylow subgroup of GL,(Fq)
for any g not dividing 2. An easy calculation gives that if we take g such
that it generates (Z/p?Z)* a p-Sylow subgroup has size pM("P)|
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Sylow Subgroups in GL,(Q) cont.

Theorem (Minkowski)

a) For all primes p there exists a subgroup P C GL,(Q) such that

b) if P’ is any other subgroup of GL,(Q) of order p? then P’ is conjugate
to a subgroup of P.
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to a subgroup of P.

Proof sketch of (b) for p # 2.

Choose g as in the proof of the previous theorem. The image of P is a
Sylow subgroup of GL,(Fg), and therefore we can conjugate the image of
P’ into it. In other words we have an embedding i : P’ — P which is the
restriction of an inner automorphism of GL,(Fy).




Sylow Subgroups in GL,(Q) cont.

Theorem (Minkowski)

a) For all primes p there exists a subgroup P C GL,(Q) such that

b) if P" is any other subgroup of GL,(Q) of order p? then P’ is conjugate
to a subgroup of P.

Proof sketch of (b) for p # 2.

Choose g as in the proof of the previous theorem. The image of P is a
Sylow subgroup of GL,(Fg), and therefore we can conjugate the image of
P’ into it. In other words we have an embedding i : P’ — P which is the
restriction of an inner automorphism of GL,(Fy).

We have two representations P’ — GL,(Q) and P' —; P — GL,(Q)
which are isomorphic upon reduction modulo q. A result from modular
representation theory says that since g does not divide |P’| this implies
they are isomorphic rationally.
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