
“How to use finite fields for problems concerning infinite
fields” by Jean-Pierre Serre

Summarized by Nate Harman

May 7, 2020



First Theorem

Theorem

If G is a finite p-group acting algebraically on Cn, then there exists a fixed
point for the action.

Proof.

Without loss of generality assume C = Fq with q relatively prime to p.
Orbits of G on Fn

q must have sizes which are powers of p as G is a
p-group. Since p does not divide |Fn

q| there must exist an orbit of size 1
(i.e. a fixed point).
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“Without loss of generality”

G acting algebraically explicitly means for each g ∈ G there are
polynomials Pg ,i ∈ C[x1, x2, . . . xn] for i = 1, 2, . . . n such that

g · (x1, x2, . . . xn) = (Pg ,1(x1, x2, . . . , xn), . . . ,Pg ,n(x1, x2, . . . , xn)).

G having no fixed points implies that the system of n|G | equations

xi − Pg ,i (x1, x2, . . . xn) = 0

has no solutions in Cn. Therefore by the Nullstellensatz there exist
polynomials Qg ,i ∈ C[x1, x2, . . . xn] such that∑

g ,i

(xi − Pg ,i (x1, x2, . . . xn))Qg ,i (x1, x2, . . . xn)) = 1
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“Without loss of generality” (cont.)

Let Λ ⊂ C be the subring generated by 1
p , the coefficients of the Pg ,i s, and

the coefficients of the Qg ,i s. In particular note that Λ is finitely generated
as an algebra over Z.

If m ⊂ Λ is a maximal ideal then Λ/m is a finite field Fq of characteristic
prime to p. Upon reduction modulo m, the Pg ,i s define an action G on
Fq, and the equation∑

g ,i

(xi − Pg ,i (x1, x2, . . . xn))Qg ,i (x1, x2, . . . xn)) = 1

ensures that the action does not have any fixed points. This is impossible
by the previous argument.
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Almost free actions

We say that an action of a finite group G on a complex algebraic variety
X is almost free if X has finitely many points p1, p2, . . . , pk which are
fixed by G , and the action on X − {p1, p2, . . . pk} is free.

Theorem

Suppose we have two almost free actions of G on X with k and k ′ fixed
points respectively. Then k ≡ k ′ mod |G |.

Sketch of proof.

If the actions are defined over a finite field Fq this is clear: By assumption
every orbit either has size |G | or 1 therefore the number of fixed points has
to be the same modulo |G |.

Similarly to before, for any two such actions defined over C we can find a
finitely generated ring Λ over which they are both defined, as well as a
maximal ideal m such that the actions remain almost free for Λ/m.
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Ax-Grothendieck

Theorem (Ax, Grothendieck)

If f : Cn → Cn is an injective algebraic map, then f is surjective.

Proof.

For f : Fn
q → Fn

q the statement is obvious.
Similarly to before we can show that any such f over the complex numbers
is defined over a finitely generated ring, and we can find a maximal ideal
such that the reduction remains injective.

Something to think about: What goes wrong if we try to run this
argument with injectivity and surjectivity flipped?
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Sylow Subgroups in GLn(Q)

Theorem (Minkowski)

Suppose G ⊂ GLn(Q) is a finite group of order pa. Then

a ≤ M(n, p) :=
⌊ n

p − 1

⌋
+

⌊ n

p(p − 1)

⌋
+
⌊ n

p2(p − 1)

⌋
+ . . .

Proof for p 6= 2.

Since G is finite we have that G ⊂ GLn(Z[1/N]) for some N. Therefore if
q does not divide 2N we can realize G as a subgroup of GLn(Fq).

So we can bound |G | by the cardinality of a p-Sylow subgroup of GLn(Fq)
for any q not dividing 2N. An easy calculation gives that if we take q such
that it generates (Z/p2Z)∗ a p-Sylow subgroup has size pM(n,p).
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Sylow Subgroups in GLn(Q) cont.

Theorem (Minkowski)

a) For all primes p there exists a subgroup P ⊂ GLn(Q) such that
|P| = pM(n,p).

b) if P ′ is any other subgroup of GLn(Q) of order pa then P ′ is conjugate
to a subgroup of P.

Proof sketch of (b) for p 6= 2.

Choose q as in the proof of the previous theorem. The image of P is a
Sylow subgroup of GLn(Fq), and therefore we can conjugate the image of
P ′ into it. In other words we have an embedding i : P ′ ↪→ P which is the
restriction of an inner automorphism of GLn(Fq).

We have two representations P ′ ↪→ GLn(Q) and P ′ →i P ↪→ GLn(Q)
which are isomorphic upon reduction modulo q. A result from modular
representation theory says that since q does not divide |P ′| this implies
they are isomorphic rationally.
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