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Line bundles on abelian varieties

Definition

A theta function is a holomorphic function on Cg which is
quasi-periodic with respect to a lattice of full rank. Equivalently, it
is a section of a line bundle on an abelian variety.

Let T be an abelian variety
T = V /Γ
V ≅ Cg , Z2g ≅ Γ

Want to understand the Picard group
Pic(T ) ∶= ({Complex line bundles on T},⊗)

≅ H1(T ;O∗T )
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Exponential sheaf sequence

0 Z OT O∗T 0

f e2πif

exp

Pic(T ) H2(T ;Z) H2(T ;OT )

H2(T ;C) = H2,0 ⊕H1,1 ⊕H0,2 H0,2(T )

c1

≅

c1(Pic(T )) = NS(T ) ∶= H2(T ;Z) ∩H1,1(T )
= {E ∶ Λ2V → C ∣ Z-valued on Γ, E(iz , iw) = E(z ,w)}
= {H ∶ V 2 → C Hermitian ∣ E = Im(H) Z-valued on Γ}
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Exponential sheaf sequence, cont.

Pic0(T ) ∶= ker(c1)

0 Z R S1 0

0 Z OT O∗T 0

exp

exp

0 H1(T ;Z) H1(T ;R) H1(T ;S1) 0

0 H1(T ;Z) H0,1(T ) Pic0(T ) 0

≅

∴ Pic0(T ) ≅ H1(T ;S1) ≅ Hom(Γ,S1)
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Systems of multipliers

V ×C L̃ L

V T

⌟

L ≅V ×C/Γ

γ ⋅ (z , t) = (z + γ, eγ(z)t)
eγ ∈ H0(V ;O∗V )
eγ+δ(z) = eγ(z + δ)eδ(z)

L is trivial ⇐⇒ it has a
nonvanishing section, which lifts
to h(z) on V such that

eγ(z) =
h(z + γ)
h(z) .

Remark. Pic0(T ) ≅ H1(Γ,H0(V ;O∗V ))
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Systems of multipliers associated to Hermitian forms

P ∶= {(H, α) ∣ H Hermitian on V ,

E = Im(H) Z-valued on Γ,

α ∶ Γ→ S1

α(γ + δ) = α(γ)α(δ)(−1)E(γ,δ)}

P

0 Hom(Γ,S1) NS(T ) 0

Pic(T )
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Systems of multipliers associated to Hermitian forms
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L≅

L(H, α) defined by multipliers eγ(z) = α(γ)eπ[H(γ,z)+1
2H(γ,γ)]



Theorem of the square

Lemma

For a ∈ V , let ta ∶ T → T be translation by a. Then
t∗a L(H, α) = L(H, α′), where α′(γ) = α(γ)e2πiE(γ,a).

Theorem (Theorem of the square)

Let L ∈ Pic(T ) with Chern class E ∈ HomZ(Λ2Γ,Z) a unimodular
form. Then the map

λL ∶ T → Pic0(T )

λL(a) = t∗a L⊗ L−1

is an isomorphism.
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Theta functions, polarizations

Definition

A theta function for the system of multipliers {eγ} defining is a
holomorphic function θ on V satisfying

θ(z + γ) = eγ(z)θ(z).

Equivalently, it is a section of the line bundle defined by those
multipliers.

Definition

A polarization of T is a positive definite Hermitian form on V such
that E = Im(H) is Z-valued on Γ. The polarization is principal if E
is unimodular. We abbreviate “principally polarized abelian
variety” by p.p.a.v.
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Counting theta functions

Theorem

Let H be a principal polarization on T . Then for any α,

h0(T ;L(H, α)⊗d) = dg .

These sections are called “theta functions of degree d” for L(H, α).

Proof idea.

α is irrelevant by the theorem of the square.

Choose a symplectic basis {γ1, ..., γg , δ1, ..., δg} for E

By choosing a particular α and modifying by a coboundary,
find a system of multipliers for L(H, α) with eγi (z) = 1.

Fourier expand and use quasi-periodicity to relate the
coefficients.
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Explicit formulas

Definition

Let (T ,H) be a p.p.a.v., and {γ1, ..., γg , δ1, ..., δg} be a symplectic
basis for E . Then the γi form a basis for V over C, and the matrix
τ expressing the δj in terms of the γi is the period matrix.

Corollary

Having chosen a symplectic basis for a p.p.a.v., the unique theta
function of degree 1 has formula

θ(z) = ∑
m∈Zg

e2πi( tmz+1
2

tmτm).

A basis for the theta functions of degree d is given by

θ[ε](z) = ∑
m∈ε

e2πi( tmz+ 1
2d

tmτm), ε ∈ Zg /dZg
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Consequences

The existence of theta functions shows that any p.p.a.v. is a
projective variety.

A Theta divisor Θ is the vanishing locus of a theta function.
By the theorem of the square, “the” theta divisor of a p.p.a.v.
is well defined up to translation (but not up to linear
equivalence).

The explicit formula above is invariant under iT ∶ z ↦ −z , so
the corresponding theta divisor (denoted Θτ ) is symmetric.
Again from the theorem of the square we can deduce that
t∗a Θτ is symmetric if and only if a is a 2-torsion point.
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∣2Θ∣

It follows from the above that the linear system ∣2Θ∣ is the
same for any of the 2g symmetric divisors Θ, so this linear
system is canonically associated to a p.p.a.v.

Theorem

For Θ symmetric and irreducible, the canonical map
φ2Θ ∶ T → ∣2Θ∣∗ factors through T /iT = K (the Kummer variety of
T) and gives an embedding of K.



Jacobians

Let C be a genus g curve. Its Jacobian

JC ∶= H0,1(C)/H1(C ;Z) ≅ Pic0(C)

is a g -dimensional abelian variety with a canonical principal
polarization given by the cup product.

For each d , after fixing a degree d divisor Dd we can define the
Abel-Jacobi map

C (d) ∶= Cd/Sd JC

E OC(E −Dd)

αd
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Riemann’s Theorem

Theorem

αd is genererically injective for d ≤ g. In particular it is birational
for d = g.

Theorem (Riemann)

The image of αg−1 ∶ C (g−1) → JC is a theta divisor.

Writing L = OC(Dg−1), this gives us another way of describing the
theta divisor:

ΘL = {M ∈ JC ∣ H0(M ⊗ L) ≠ 0}
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Higher rank

The role analogous to that of the Jacobian will be played by
M(r), the moduli space of polystable rank r vector bundles E on
C such that det(E) ∶= ΛrE = OC .

Facts:

dimM(r) = (r2 − 1)(g − 1)
M(r) is irreducible, normal, projective, with only mild
singularities.

M(r) is unirational. This is very far from being an abelian
variety.
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Generalized theta functions

Let Jd denote the space of line bundles of degree d . Fix some
L ∈ Jg−1. In analogy with the theta divisor of the Jacobian, we
define

∆L = {E ∈ M(r) ∣ H0(E ⊗ L) ≠ 0}.

Also, for each E ∈ M(r) we define the locus

θ(E) = {L ∈ Jg−1 ∣ H0(E ⊗ L) ≠ 0}

Theorem

∣θ(E)∣ is either all of Jg−1 or is a divisor in the linear system ∣rΘ∣.



Generalized theta functions, cont.

Theorem

∣θ(E)∣ is either all of Jg−1 or is a divisor in the linear system ∣rΘ∣.

It follows from the proof that θ defines a rational map
M(r) ⇢ ∣rΘ∣. The corresponding linear system on M(r) is ∣∆L∣.

This map is reasonably well understood for r = 2. For example:

For g = 2, θ ∶ M(2) → ∣2Θ∣ is an isomorphism.

For g ≥ 3, C not hyperelliptic, θ is an embedding.

Beyond that, very little is known!
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