Polynomials and puzzle pieces

Soohyun Park

April 30, 2020

- Given a system of polynomial equations $f_1, \ldots f_n$ in n variables with coefficients in \mathbb{C} , how many common roots do they have in \mathbb{P}^n ?
- Bézout: For "generic" f_1, \ldots, f_n , there are $d_1 \cdot \cdots \cdot d_n$ common roots $(d_i = \deg f_i)$.

- Given a system of polynomial equations $f_1, \ldots f_n$ in n variables with coefficients in \mathbb{C} , how many common roots do they have in \mathbb{P}^n ?
- Bézout: For "generic" f_1, \ldots, f_n , there are $d_1 \cdot \cdots \cdot d_n$ common roots $(d_i = \deg f_i)$.

- How many distinct roots?
- What about polynomials of degree 2 and 3?

- How many distinct roots?
- What about polynomials of degree 2 and 3?

- Still doesn't work! Set $g(x, y) = a_1 + a_2x + a_3xy + a_4y$ and $h(x, y) = b_1 + b_2x^2y + b_3xy^3$.
- These polynomials only have 4 distinct common roots.
 Why?

- Still doesn't work! Set $g(x, y) = a_1 + a_2x + a_3xy + a_4y$ and $h(x, y) = b_1 + b_2x^2y + b_3xy^3$.
- These polynomials only have 4 distinct common roots.
 Why?

Connections with polytopes

- Additional structure if take roots in $(\mathbb{C}^*)^n$
- Newton polytope of a polynomial $f \in \mathbb{C}[x_1, ..., x_n]$: Convex hull in \mathbb{R}^n of lattice points from each monomial

Connections with polytopes

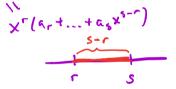
- Additional structure if take roots in $(\mathbb{C}^*)^n$
- **Newton polytope** of a polynomial $f \in \mathbb{C}[x_1, \dots, x_n]$: Convex hull in \mathbb{R}^n of lattice points from each monomial

Examples of Newton polytopes

- Single variable: $f(x) = a_r x^r + ... + a_s x^s$ with $r \le s$, N(f) line segment.
- How does this relate to roots of f?
- Earlier example: $N(g) = \text{conv}\{(0,0), (1,0), (1,1), (0,1)\}$ and $N(h) = \text{conv}\{(0,0), (2,1), (1,2)\}.$

Examples of Newton polytopes

- Single variable: $f(x) = a_r x^r + ... + a_s x^s$ with $r \le s$, N(f) line segment.
- How does this relate to roots of f?



• Earlier example: $N(g) = \text{conv}\{(0,0), (1,0), (1,1), (0,1)\}$ and $N(h) = \text{conv}\{(0,0), (2,1), (1,2)\}.$

Examples of Newton polytopes

- Single variable: $f(x) = a_r x^r + ... + a_s x^s$ with $r \le s$, N(f) line segment.
- How does this relate to roots of f?
- Earlier example: $N(g) = \text{conv}\{(0,0),(1,0),(1,1),(0,1)\}$ and $N(h) = \text{conv}\{(0,0),(2,1),(1,2)\}$.

Why Newton polytopes?

- Hypersurface $Z_f := (f = 0) \subset (\mathbb{C}^*)^n$ vs. $\log : (\mathbb{C}^*)^n \longrightarrow \mathbb{R}^n$ sending $x \mapsto (\log |x_1|, \dots, \log |x_n|)$
- Shape of $\log Z_f$ (boundary and normal cones), vertices of Newton polygon

Why Newton polytopes?

• Hypersurface $Z_f := (f = 0) \subset (\mathbb{C}^*)^n$ vs. $\log : (\mathbb{C}^*)^n \longrightarrow \mathbb{R}^n$ sending $x \mapsto (\log |x_1|, \dots, \log |x_n|)$

Shape of $\log Z_f$ (boundary and normal cones), vertices of

Newton polygon

Roots and mixed volumes

- How to generalize single variable example from earlier? Why "volume"?
- Theorem (Bernstein): Given a "generic" choice of polynomials $g, h \in \mathbb{C}[x, y]$, the number of solutions to g = h = 0 in $(\mathbb{C}^*)^2$ is equal to the mixed volume $\mathcal{M}(N(g), N(h))$ of the Newton polytopes of g and h.

Roots and mixed volumes

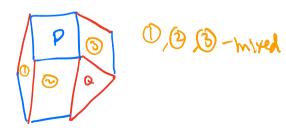
- How to generalize single variable example from earlier? Why "volume"?
- Theorem (Bernstein): Given a "generic" choice of polynomials $g, h \in \mathbb{C}[x, y]$, the number of solutions to g = h = 0 in $(\mathbb{C}^*)^2$ is equal to the mixed volume $\mathcal{M}(N(g), N(h))$ of the Newton polytopes of g and h.

Mixed volume example

- Given polygons P, Q (2D polytopes), the **mixed volume** is $\mathcal{M}(P, Q) = \text{Area}(P + Q) \text{Area}(P) \text{Area}(Q)$.
- The mixed volume is the complement of the translates of P and Q below.

Mixed volume example

- Given polygons P, Q (2D polytopes), the **mixed volume** is $\mathcal{M}(P,Q) = \text{Area}(P+Q) \text{Area}(P) \text{Area}(Q)$.
- The mixed volume is the complement of the translates of P and Q below.



- Suppose g and h only have two distinct monomial terms (take one term as a constant)
- Use $SL_2(\mathbb{Z})$ to convert linear system to $x^ay^b = c$, $y^d = e$. Get ad roots, equal to N(g) + N(h) (Newton polygons of sums of 2 monomials are lines)
- General case eventually reduces to this!

- Suppose g and h only have two distinct monomial terms (take one term as a constant)
- Use $SL_2(\mathbb{Z})$ to convert linear system to $x^ay^b = c$, $y^d = e$. Get *ad* roots, equal to N(g) + N(h) (Newton polygons of sums of 2 monomials are lines)
- General case eventually reduces to this!

- Suppose g and h only have two distinct monomial terms (take one term as a constant)
- Use $SL_2(\mathbb{Z})$ to convert linear system to $x^ay^b = c$, $y^d = e$. Get *ad* roots, equal to N(g) + N(h) (Newton polygons of sums of 2 monomials are lines)
- General case eventually reduces to this!

- Multiply terms by powers of t, get a **family** of systems of equations $g_t(x,y) = a_1 t^{v_1} + a_2 x t^{v_2} + a_3 x y t^{v_3} + a_4 y t^{v_4}$ and $h_t(x,y) = b_1 t^{w_1} + b_2 x^2 y t^{w_2} + b_3 x y^2 t^{w_3}$ (v_i , w_j "generic")
- In $(\mathbb{C}^*)^3$, solutions (x(t), y(t)) form a curve
- Permitted $v, w \in \mathbb{Q}$ for (Puiseux) power series expansions $x(t) = x_0 t^v + \text{higher order terms}$ and $y(t) = y_0 t^w + \text{higher order terms}$?

- Multiply terms by powers of t, get a **family** of systems of equations $g_t(x,y) = a_1 t^{v_1} + a_2 x t^{v_2} + a_3 x y t^{v_3} + a_4 y t^{v_4}$ and $h_t(x,y) = b_1 t^{w_1} + b_2 x^2 y t^{w_2} + b_3 x y^2 t^{w_3}$ (v_i , w_j "generic")
- In $(\mathbb{C}^*)^3$, solutions (x(t), y(t)) form a curve
- Permitted $v, w \in \mathbb{Q}$ for (Puiseux) power series expansions $x(t) = x_0 t^v + \text{higher order terms}$ and $y(t) = y_0 t^w + \text{higher order terms}$?

- Multiply terms by powers of t, get a **family** of systems of equations $g_t(x,y) = a_1 t^{v_1} + a_2 x t^{v_2} + a_3 x y t^{v_3} + a_4 y t^{v_4}$ and $h_t(x,y) = b_1 t^{w_1} + b_2 x^2 y t^{w_2} + b_3 x y^2 t^{w_3}$ (v_i , w_j "generic")
- In $(\mathbb{C}^*)^3$, solutions (x(t), y(t)) form a curve
- Permitted $v, w \in \mathbb{Q}$ for (Puiseux) power series expansions $x(t) = x_0 t^v + \text{higher order terms}$ and $y(t) = y_0 t^w + \text{higher order terms}$?

Cancelling minimal degree terms in

$$g_t(x(t),y(t))=a_1t^{v_1}+a_2x_0t^{v+v_2}+a_3x_0y_0t^{v+w+v_3}+a_4y_0t^{w+v_4}$$

$$+ ext{ higher order terms}$$
 and $h_t(x(t),y(t))$

- Repeating terms of lowest order
- Inequalities involving linear forms

Cancelling minimal degree terms in

$$g_t(x(t),y(t)) = a_1 t^{v_1} + a_2 x_0 t^{v+v_2} + a_3 x_0 y_0 t^{v+w+v_3} + a_4 y_0 t^{w+v_4} + \text{higher order terms}$$
 and $h_t(x(t),y(t))$

- Repeating terms of lowest order
- Inequalities involving linear forms

Cancelling minimal degree terms in

$$g_t(x(t),y(t)) = a_1 t^{v_1} + a_2 x_0 t^{v+v_2} + a_3 x_0 y_0 t^{v+w+v_3} + a_4 y_0 t^{w+v_4} + \text{higher order terms}$$
 and $h_t(x(t),y(t))$

- Repeating terms of lowest order
- Inequalities involving linear forms

- Let $P = N(g_t(x, y))$ and $Q = N(h_t(x, y))$.
- A **lower facet** is a facet we can see from below (has an inward pointing normal vector $(u, v, 1) \in \mathbb{Q}^3$)
- Projection $\pi: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ sending $(x, y, t) \mapsto (x, y)$ induces bijection from lower hull to N(g) + N(h)

- Let $P = N(g_t(x, y))$ and $Q = N(h_t(x, y))$.
- A **lower facet** is a facet we can see from below (has an inward pointing normal vector $(u, v, 1) \in \mathbb{Q}^3$)

• Projection $\pi: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ sending $(x, y, t) \mapsto (x, y)$ induces bijection from lower hull to N(g) + N(h)

- Let $P = N(g_t(x, y))$ and $Q = N(h_t(x, y))$.
- A **lower facet** is a facet we can see from below (has an inward pointing normal vector $(u, v, 1) \in \mathbb{Q}^3$)
- Projection $\pi: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ sending $(x, y, t) \mapsto (x, y)$ induces bijection from lower hull to N(g) + N(h)

- Projection also gives subdivision $\Delta = \{\pi(F) : F \text{ a lower facet of } P + Q\}$
- Given by projections F_1 , F_2 of faces whose dimensions add to 2
- Mixed cells: Sums of projections of edges. Note: Sum of areas of mixed cells is $\mathcal{M}(N(g), N(h))$.

- Projection also gives subdivision $\Delta = \{\pi(F) : F \text{ a lower facet of } P + Q\}$
- Given by projections F₁, F₂ of faces whose dimensions add to 2
- Mixed cells: Sums of projections of edges. Note: Sum of areas of mixed cells is $\mathcal{M}(N(g), N(h))$.

- Projection also gives subdivision $\Delta = \{\pi(F) : F \text{ a lower facet of } P + Q\}$
- Given by projections F₁, F₂ of faces whose dimensions add to 2
- Mixed cells: Sums of projections of edges. Note: Sum of areas of mixed cells is $\mathcal{M}(N(g), N(h))$.

- Projection also gives subdivision $\Delta = \{\pi(F) : F \text{ a lower facet of } P + Q\}$
- Given by projections F_1 , F_2 of faces whose dimensions add to 2
- Mixed cells: Sums of projections of edges. Note: Sum of areas of mixed cells is $\mathcal{M}(N(g), N(h))$.

- Projection also gives subdivision $\Delta = \{\pi(F) : F \text{ a lower facet of } P + Q\}$
- Given by projections F₁, F₂ of faces whose dimensions add to 2
- Mixed cells: Sums of projections of edges. Note: Sum of areas of mixed cells is $\mathcal{M}(N(g), N(h))$.

- Projection also gives subdivision $\Delta = \{\pi(F) : F \text{ a lower facet of } P + Q\}$
- Given by projections F₁, F₂ of faces whose dimensions add to 2
- Mixed cells: Sums of projections of edges. Note: Sum of areas of mixed cells is $\mathcal{M}(N(g), N(h))$.

- Mixed cell a sum of line segments/edges from each Newton polytope, come from binomial forms g', h'
- $g_t(x,y) = g'(x_0,y_0)t^a + \text{ higher order terms}$

Lemma: Given lowest orders $(u, v) \in \mathbb{Q}^2$ for x and y, the corresponding $(x_0, y_0) \in (\mathbb{C}^*)^2$ are the nonzero roots of $g'(x_0, y_0) = h'(x_0, y_0)$.

- Mixed cell a sum of line segments/edges from each Newton polytope, come from binomial forms g', h'
- $g_t(x, y) = g'(x_0, y_0)t^a + \text{ higher order terms}$

Lemma: Given lowest orders $(u, v) \in \mathbb{Q}^2$ for x and y, the corresponding $(x_0, y_0) \in (\mathbb{C}^*)^2$ are the nonzero roots of $g'(x_0, y_0) = h'(x_0, y_0)$.

- Steps for computing zeros!
- Number of nonzero roots from mixed cell is Area(N(g') + N(h')) (lines)
 - Add up over mixed cells, get $\mathcal{M}(N(g), N(h))$
- Note: Can have more roots in some mixed cells.

- Steps for computing zeros!
- Number of nonzero roots from mixed cell is Area(N(g') + N(h')) (lines)
 - Add up over mixed cells, get $\mathcal{M}(N(g), N(h))$
- Note: Can have more roots in some mixed cells.