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Common roots of polynomials

Connections with polytopes

Counting with volumes

Common roots of n polynomials in n variables

Given a system of polynomial equations f1, . . . fn in n
variables with coefficients in C, how many common roots

do they have in Pn?

Bézout: For “generic” f1, . . . , fn, there are d1 · · · · · dn
common roots (di = deg fi ).
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Common roots of polynomials

Connections with polytopes

Counting with volumes

Common roots of n polynomials in n variables (cont’d)

How many distinct roots?

What about polynomials of degree 2 and 3?
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Common roots of polynomials

Connections with polytopes

Counting with volumes

Common roots of n polynomials in n variables (cont’d)

Still doesn’t work! Set g(x , y) = a1 + a2x + a3xy + a4y and

h(x , y) = b1 + b2x2y + b3xy3.

These polynomials only have 4 distinct common roots.

Why?
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Common roots of polynomials

Connections with polytopes

Counting with volumes

Connections with polytopes

Additional structure if take roots in (C⇤)n

Newton polytope of a polynomial f 2 C[x1, . . . , xn]:
Convex hull in Rn of lattice points from each monomial
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Common roots of polynomials

Connections with polytopes

Counting with volumes

Examples of Newton polytopes

Single variable: f (x) = ar xr + . . .+ asxs with r  s, N(f )
line segment.

How does this relate to roots of f?

Earlier example: N(g) = conv{(0, 0), (1, 0), (1, 1), (0, 1)}
and N(h) = conv{(0, 0), (2, 1), (1, 2)}.
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Common roots of polynomials

Connections with polytopes

Counting with volumes

Why Newton polytopes?

Hypersurface Zf := (f = 0) ⇢ (C⇤)n vs. log : (C⇤)n �! Rn

sending x 7! (log |x1|, . . . , log |xn|)

Shape of logZf (boundary and normal cones), vertices of

Newton polygon

Soohyun Park Polynomials and puzzle pieces



Common roots of polynomials

Connections with polytopes

Counting with volumes

Why Newton polytopes?

Hypersurface Zf := (f = 0) ⇢ (C⇤)n vs. log : (C⇤)n �! Rn

sending x 7! (log |x1|, . . . , log |xn|)

Shape of logZf (boundary and normal cones), vertices of

Newton polygon

Soohyun Park Polynomials and puzzle pieces



Common roots of polynomials

Connections with polytopes

Counting with volumes

Roots and mixed volumes

How to generalize single variable example from earlier?

Why “volume”?

Theorem (Bernstein): Given a “generic” choice of

polynomials g, h 2 C[x , y ], the number of solutions to

g = h = 0 in (C⇤)2 is equal to the mixed volume

M(N(g),N(h)) of the Newton polytopes of g and h.
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Common roots of polynomials

Connections with polytopes

Counting with volumes

Mixed volume example

Given polygons P,Q (2D polytopes), the mixed volume is

M(P,Q) = Area(P + Q)� Area(P)� Area(Q).

The mixed volume is the complement of the translates of P
and Q below.
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Common roots of polynomials

Connections with polytopes

Counting with volumes

Bernstein’s theorem sketch: Part 1

Suppose g and h only have two distinct monomial terms

(take one term as a constant)

Use SL2(Z) to convert linear system to xayb = c, yd = e.

Get ad roots, equal to N(g) + N(h) (Newton polygons of

sums of 2 monomials are lines)

General case eventually reduces to this!
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Common roots of polynomials

Connections with polytopes

Counting with volumes

Bernstein’s theorem sketch: Part 2

Multiply terms by powers of t , get a family of systems of

equations gt(x , y) = a1tv1 + a2xtv2 + a3xytv3 + a4ytv4 and

ht(x , y) = b1tw1 + b2x2ytw2 + b3xy2tw3 (vi ,wj “generic”)

In (C⇤)3, solutions (x(t), y(t)) form a curve

Permitted v ,w 2 Q for (Puiseux) power series expansions

x(t) = x0tv + higher order terms and

y(t) = y0tw + higher order terms ?
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Common roots of polynomials

Connections with polytopes

Counting with volumes

Bernstein’s theorem sketch: Part 2 (cont’d)

Cancelling minimal degree terms in

gt(x(t), y(t)) = a1tv1+a2x0tv+v2+a3x0y0tv+w+v3+a4y0tw+v4

+ higher order terms

and ht(x(t), y(t))

Repeating terms of lowest order

Inequalities involving linear forms
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Common roots of polynomials

Connections with polytopes

Counting with volumes

Bernstein’s theorem sketch: Part 2 (cont’d)

Let P = N(gt(x , y)) and Q = N(ht(x , y))).

A lower facet is a facet we can see from below (has an

inward pointing normal vector (u, v , 1) 2 Q3)

Projection ⇡ : R3 �! R2 sending (x , y , t) 7! (x , y) induces

bijection from lower hull to N(g) + N(h)
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Common roots of polynomials

Connections with polytopes

Counting with volumes

Bernstein’s theorem sketch: Part 2 (cont’d)

Projection also gives subdivision

� = {⇡(F ) : F a lower facet of P + Q}

Given by projections F1,F2 of faces whose dimensions add

to 2

Mixed cells: Sums of projections of edges. Note: Sum of

areas of mixed cells is M(N(g),N(h)).
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Common roots of polynomials

Connections with polytopes

Counting with volumes

Bernstein’s theorem sketch: Part 3

Mixed cell a sum of line segments/edges from each

Newton polytope, come from binomial forms g0, h0

gt(x , y) = g0(x0, y0)ta + higher order terms

Lemma: Given lowest orders (u, v) 2 Q2 for x and y , the

corresponding (x0, y0) 2 (C⇤)2 are the nonzero roots of

g0(x0, y0) = h0(x0, y0).
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Common roots of polynomials

Connections with polytopes

Counting with volumes

Bernstein’s theorem sketch: Part 3

Steps for computing zeros!

Number of nonzero roots from mixed cell is

Area(N(g0) + N(h0)) (lines)

Add up over mixed cells, get M(N(g),N(h))
Note: Can have more roots in some mixed cells.
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