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Common roots of polynomials

Common roots of n polynomials in n variables

@ Given a system of polynomial equations fi,...f,inn
variables with coefficients in C, how many common roots
do they have in P"?
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Common roots of polynomials

Common roots of n polynomials in n variables

@ Given a system of polynomial equations fi,...f,inn
variables with coefficients in C, how many common roots
do they have in P"?

@ Bézout: For “generic” fy,...,fy, thereare dy - - - - - o/
common roots (d; = deg f;).
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Common roots of polynomials

Common roots of n polynomials in n variables (cont’d)

@ How many distinct roots?
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Common roots of polynomials

Common roots of n polynomials in n variables (cont’d)

@ How many distinct roots?

@ What about polynomials of degree 2 and 3?

Soohyun Park Polynomials and puzzle pieces



Common roots of polynomials

Common roots of n polynomials in n variables (cont’d)

@ Still doesn’t work! Set g(x, y) = a1 + asx + asxy + a4y and
h(x,y) = by + bax?y + baxy®.
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Common roots of polynomials

Common roots of n polynomials in n variables (cont'd)

@ Still doesn’t work! Set g(x, y) = a1 + asx + asxy + a4y and
h(x,y) = by + bax?y + baxy®.

@ These polynomials only have 4 distinct common roots.
Why?
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Connections with polytopes

Connections with polytopes

@ Additional structure if take roots in (C*)”
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Connections with polytopes

Connections with polytopes

@ Additional structure if take roots in (C*)”

@ Newton polytope of a polynomial f € Clxq, ..., Xp]:
Convex hull in R” of lattice points from each monomial
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Connections with polytopes

Examples of Newton polytopes

@ Single variable: f(x) = a;x" + ... + asx® with r < 's, N(f)
line segment.
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Connections with polytopes

Examples of Newton polytopes

@ Single variable: f(x) = a,x" + ...+ asx® with r < s, N(f)

line segment. « )
)(r(’\r'tu-* asy.(“— )
S=-r
@ How does this relate to roots of ? e —
B S
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Connections with polytopes

Examples of Newton polytopes

@ Single variable: f(x) = a;x" + ... + asx® with r < 's, N(f)
line segment.

@ How does this relate to roots of ?

@ Earlier example: N(g) = conv{(0,0),(1,0),(1,1),(0,1)}
and N(h) = conv{(0,0), ( 1),(1,2)}.
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Connections with polytopes

Why Newton polytopes?

@ Hypersurface Z; := (f =0) C (C*)" vs. log : (C*)" — R”
sending x — (log |x4|, ..., log |Xn|)
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Connections with polytopes

Why Newton polytopes?

@ Hypersurface Z; := (f =0) C (C*)" vs. log : (C*)" — R”
sending x — (log |x4|, ..., log |Xn|)

@ Shape of log Z; (boundary and normal cones), vertices of

Newton polygon
/) %
N7
”//k::‘ )

()r("l‘"b\"\“\) V\brh..hL (A 2N % h Nl’?)
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Counting with volumes

Roots and mixed volumes

@ How to generalize single variable example from earlier?
Why “volume”?
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Counting with volumes

Roots and mixed volumes

@ How to generalize single variable example from earlier?
Why “volume”?

@ Theorem (Bernstein): Given a “generic” choice of
polynomials g, h € C[x, y|, the number of solutions to
g = h=0in (C*)? is equal to the mixed volume
M(N(g), N(h)) of the Newton polytopes of g and h.
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Counting with volumes

Mixed volume example

@ Given polygons P, Q (2D polytopes), the mixed volume is
M(P, Q) = Area(P + Q) — Area(P) — Area(Q).
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Counting with volumes

Mixed volume example

@ Given polygons P, Q (2D polytopes), the mixed volume is
M(P, Q) = Area(P + Q) — Area(P) — Area(Q).

@ The mixed volume is the complement of the translates of P

and Q below.
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Counting with volumes

Bernstein’'s theorem sketch: Part 1

@ Suppose g and h only have two distinct monomial terms
(take one term as a constant)
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Counting with volumes

Bernstein’'s theorem sketch: Part 1

@ Suppose g and h only have two distinct monomial terms
(take one term as a constant)

@ Use SL,(Z) to convert linear system to x3y? = ¢, y? = e.
Get ad roots, equal to N(g) + N(h) (Newton polygons of
sums of 2 monomials are lines)
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Counting with volumes

Bernstein’'s theorem sketch: Part 1

@ Suppose g and h only have two distinct monomial terms
(take one term as a constant)

@ Use SL,(Z) to convert linear system to x3y? = ¢, y? = e.
Get ad roots, equal to N(g) + N(h) (Newton polygons of
sums of 2 monomials are lines)

@ General case eventually reduces to this!
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Counting with volumes

Bernstein’'s theorem sketch: Part 2

@ Multiply terms by powers of t, get a family of systems of
equations gi(x, y) = ait"' + axt"2 + aszxyt"® + a4 yt" and
hi(x,y) = bit" + bax2yt"2 + byxy?t"s (v;, w; “generic”)
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Counting with volumes

Bernstein’'s theorem sketch: Part 2

@ Multiply terms by powers of t, get a family of systems of
equations gi(x, y) = ait"' + axt"2 + aszxyt"® + a4 yt" and
hi(x,y) = bit" + bax2yt"2 + byxy?t"s (v;, w; “generic”)

@ In (C*)3, solutions (x(t), y(t)) form a curve
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Counting with volumes

Bernstein’'s theorem sketch: Part 2

@ Multiply terms by powers of t, get a family of systems of
equations gi(x, y) = ait"' + axt"2 + aszxyt"® + a4 yt" and
hi(x,y) = bit" + bax2yt"2 + byxy?t"s (v;, w; “generic”)

@ In (C*)3, solutions (x(t), y(t)) form a curve
@ Permitted v, w € Q for (Puiseux) power series expansions

x(t) = xotV + higher order terms and
y(t) = yot™ + higher order terms ?
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Counting with volumes

Bernstein’'s theorem sketch: Part 2 (cont'd)

@ Cancelling minimal degree terms in
g1(x(1),¥(1)) = a1tV +apxot" 2 +agxoyot B +ayot

+ higher order terms
and hy(x(t), y(1))
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Counting with volumes

Bernstein’'s theorem sketch: Part 2 (cont'd)

@ Cancelling minimal degree terms in
g1(x(1),¥(1)) = a1tV +apxot" 2 +agxoyot B +ayot

+ higher order terms
and hy(x(t), y(1))

@ Repeating terms of lowest order
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Counting with volumes

Bernstein’'s theorem sketch: Part 2 (cont'd)

@ Cancelling minimal degree terms in
g1(x(1),¥(1)) = a1tV +apxot" 2 +agxoyot B +ayot

+ higher order terms
and hy(x(t), y(1))

@ Repeating terms of lowest order

@ Inequalities involving linear forms
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Counting with volumes

Bernstein’'s theorem sketch: Part 2 (cont'd)

o Let P = N(g:i(x,y)) and Q = N(hi(x, y))).
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Counting with volumes

Bernstein’'s theorem sketch: Part 2 (cont'd)

o Let P = N(g:i(x,y)) and Q = N(hi(x, y))).

@ A lower facet is a facet we can see from below (has an
inward pointing normal vector (u, v, 1) € Q%) @
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Counting with volumes

Bernstein’'s theorem sketch: Part 2 (cont'd)

o Let P = N(g:i(x,y)) and Q = N(hi(x, y))).

@ A lower facet is a facet we can see from below (has an
inward pointing normal vector (u, v, 1) € Q3)

@ Projection 7 : R3 — R? sending (x, y, t) — (x, y) induces
bijection from lower hull to N(g) + N(h)
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Counting with volumes

Bernstein’'s theorem sketch: Part 2 (cont'd)

@ Projection also gives subdivision
A = {n(F) : F alower facet of P + Q}
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Counting with volumes

Bernstein’'s theorem sketch: Part 2 (cont'd)

@ Projection also gives subdivision
A = {n(F) : F alower facet of P + Q}

@ Given by projections Fq, F» of faces whose dimensions add
to 2
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Counting with volumes

Bernstein’'s theorem sketch: Part 2 (cont'd)

@ Projection also gives subdivision
A = {n(F) : F alower facet of P + Q}

@ Given by projections Fq, F» of faces whose dimensions add
to 2

@ Mixed cells: Sums of projections of edges. Note: Sum of
areas of mixed cells is M(N(g), N(h)).
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Counting with volumes

Bernstein’'s theorem sketch: Part 2 (cont'd)

@ Projection also gives subdivision
A = {n(F) : F alower facet of P + Q}
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Counting with volumes

Bernstein’'s theorem sketch: Part 2 (cont'd)

@ Projection also gives subdivision
A = {n(F) : F alower facet of P + Q}

@ Given by projections Fq, F» of faces whose dimensions add
to 2
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Counting with volumes

Bernstein’'s theorem sketch: Part 2 (cont'd)

@ Projection also gives subdivision
A = {n(F) : F alower facet of P + Q}

@ Given by projections Fq, F» of faces whose dimensions add
to 2

@ Mixed cells: Sums of projections of edges. Note: Sum of
areas of mixed cells is M(N(g), N(h)).
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Counting with volumes

Bernstein’'s theorem sketch: Part 3

@ Mixed cell a sum of line segments/edges from each
Newton polytope, come from binomial forms g’,
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Counting with volumes

Bernstein’'s theorem sketch: Part 3

@ Mixed cell a sum of line segments/edges from each
Newton polytope, come from binomial forms g’,

@ g:(x,y) =g (X0, ¥o)t? + higher order terms

Lemma: Given lowest orders (u, v) € Q? for x and y, the
corresponding (xo, ¥o) € (C*)? are the nonzero roots of

9' (X0, ¥o) = W' (X0, ¥o)
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Counting with volumes

Bernstein’'s theorem sketch: Part 3

@ Steps for computing zeros!
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Counting with volumes

Bernstein’'s theorem sketch: Part 3

@ Steps for computing zeros!

@ Number of nonzero roots from mixed cell is
Area(N(g’) + N(H)) (lines)

Add up over mixed cells, get M(N(g), N(h))
@ Note: Can have more roots in some mixed cells.
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